freebsd-dev/sys/dev/ath/ath_hal/ar5210/ar5210_xmit.c
Adrian Chadd 9ea467445d Add a new HAL method to retrieve the completion schedule. It sets
the completion schedule from the hardware and returns AH_TRUE if
the hardware supports multi-rate retries (AR5212 and above); and
returns AH_FALSE if the hardware doesn't support multi-rate retries.

The sample rate module directly reads the TX completion descriptor
and extracts the TX schedule information from that. It will be
updated in a future commit to instead use this method to determine
the completion schedule.
2011-01-20 05:49:15 +00:00

633 lines
16 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2004 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_desc.h"
#include "ar5210/ar5210.h"
#include "ar5210/ar5210reg.h"
#include "ar5210/ar5210phy.h"
#include "ar5210/ar5210desc.h"
/*
* Set the properties of the tx queue with the parameters
* from qInfo. The queue must previously have been setup
* with a call to ar5210SetupTxQueue.
*/
HAL_BOOL
ar5210SetTxQueueProps(struct ath_hal *ah, int q, const HAL_TXQ_INFO *qInfo)
{
struct ath_hal_5210 *ahp = AH5210(ah);
if (q >= HAL_NUM_TX_QUEUES) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], qInfo);
}
/*
* Return the properties for the specified tx queue.
*/
HAL_BOOL
ar5210GetTxQueueProps(struct ath_hal *ah, int q, HAL_TXQ_INFO *qInfo)
{
struct ath_hal_5210 *ahp = AH5210(ah);
if (q >= HAL_NUM_TX_QUEUES) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
return ath_hal_getTxQProps(ah, qInfo, &ahp->ah_txq[q]);
}
/*
* Allocate and initialize a tx DCU/QCU combination.
*/
int
ar5210SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
const HAL_TXQ_INFO *qInfo)
{
struct ath_hal_5210 *ahp = AH5210(ah);
HAL_TX_QUEUE_INFO *qi;
int q;
switch (type) {
case HAL_TX_QUEUE_BEACON:
q = 2;
break;
case HAL_TX_QUEUE_CAB:
q = 1;
break;
case HAL_TX_QUEUE_DATA:
q = 0;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad tx queue type %u\n",
__func__, type);
return -1;
}
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
__func__, q);
return -1;
}
OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
qi->tqi_type = type;
if (qInfo == AH_NULL) {
/* by default enable OK+ERR+DESC+URN interrupts */
qi->tqi_qflags =
HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
;
qi->tqi_aifs = INIT_AIFS;
qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */
qi->tqi_shretry = INIT_SH_RETRY;
qi->tqi_lgretry = INIT_LG_RETRY;
} else
(void) ar5210SetTxQueueProps(ah, q, qInfo);
/* NB: must be followed by ar5210ResetTxQueue */
return q;
}
/*
* Free a tx DCU/QCU combination.
*/
HAL_BOOL
ar5210ReleaseTxQueue(struct ath_hal *ah, u_int q)
{
struct ath_hal_5210 *ahp = AH5210(ah);
HAL_TX_QUEUE_INFO *qi;
if (q >= HAL_NUM_TX_QUEUES) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
__func__, q);
return AH_FALSE;
}
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: release queue %u\n", __func__, q);
qi->tqi_type = HAL_TX_QUEUE_INACTIVE;
ahp->ah_txOkInterruptMask &= ~(1 << q);
ahp->ah_txErrInterruptMask &= ~(1 << q);
ahp->ah_txDescInterruptMask &= ~(1 << q);
ahp->ah_txEolInterruptMask &= ~(1 << q);
ahp->ah_txUrnInterruptMask &= ~(1 << q);
return AH_TRUE;
#undef N
}
HAL_BOOL
ar5210ResetTxQueue(struct ath_hal *ah, u_int q)
{
struct ath_hal_5210 *ahp = AH5210(ah);
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
HAL_TX_QUEUE_INFO *qi;
uint32_t cwMin;
if (q >= HAL_NUM_TX_QUEUES) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
__func__, q);
return AH_FALSE;
}
/*
* Ignore any non-data queue(s).
*/
if (qi->tqi_type != HAL_TX_QUEUE_DATA)
return AH_TRUE;
/* Set turbo mode / base mode parameters on or off */
if (IEEE80211_IS_CHAN_TURBO(chan)) {
OS_REG_WRITE(ah, AR_SLOT_TIME, INIT_SLOT_TIME_TURBO);
OS_REG_WRITE(ah, AR_TIME_OUT, INIT_ACK_CTS_TIMEOUT_TURBO);
OS_REG_WRITE(ah, AR_USEC, INIT_TRANSMIT_LATENCY_TURBO);
OS_REG_WRITE(ah, AR_IFS0,
((INIT_SIFS_TURBO + qi->tqi_aifs * INIT_SLOT_TIME_TURBO)
<< AR_IFS0_DIFS_S)
| INIT_SIFS_TURBO);
OS_REG_WRITE(ah, AR_IFS1, INIT_PROTO_TIME_CNTRL_TURBO);
OS_REG_WRITE(ah, AR_PHY(17),
(OS_REG_READ(ah, AR_PHY(17)) & ~0x7F) | 0x38);
OS_REG_WRITE(ah, AR_PHY_FRCTL,
AR_PHY_SERVICE_ERR | AR_PHY_TXURN_ERR |
AR_PHY_ILLLEN_ERR | AR_PHY_ILLRATE_ERR |
AR_PHY_PARITY_ERR | AR_PHY_TIMING_ERR |
0x2020 |
AR_PHY_TURBO_MODE | AR_PHY_TURBO_SHORT);
} else {
OS_REG_WRITE(ah, AR_SLOT_TIME, INIT_SLOT_TIME);
OS_REG_WRITE(ah, AR_TIME_OUT, INIT_ACK_CTS_TIMEOUT);
OS_REG_WRITE(ah, AR_USEC, INIT_TRANSMIT_LATENCY);
OS_REG_WRITE(ah, AR_IFS0,
((INIT_SIFS + qi->tqi_aifs * INIT_SLOT_TIME)
<< AR_IFS0_DIFS_S)
| INIT_SIFS);
OS_REG_WRITE(ah, AR_IFS1, INIT_PROTO_TIME_CNTRL);
OS_REG_WRITE(ah, AR_PHY(17),
(OS_REG_READ(ah, AR_PHY(17)) & ~0x7F) | 0x1C);
OS_REG_WRITE(ah, AR_PHY_FRCTL,
AR_PHY_SERVICE_ERR | AR_PHY_TXURN_ERR |
AR_PHY_ILLLEN_ERR | AR_PHY_ILLRATE_ERR |
AR_PHY_PARITY_ERR | AR_PHY_TIMING_ERR | 0x1020);
}
if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT)
cwMin = INIT_CWMIN;
else
cwMin = qi->tqi_cwmin;
/* Set cwmin and retry limit values */
OS_REG_WRITE(ah, AR_RETRY_LMT,
(cwMin << AR_RETRY_LMT_CW_MIN_S)
| SM(INIT_SLG_RETRY, AR_RETRY_LMT_SLG_RETRY)
| SM(INIT_SSH_RETRY, AR_RETRY_LMT_SSH_RETRY)
| SM(qi->tqi_lgretry, AR_RETRY_LMT_LG_RETRY)
| SM(qi->tqi_shretry, AR_RETRY_LMT_SH_RETRY)
);
if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
ahp->ah_txOkInterruptMask |= 1 << q;
else
ahp->ah_txOkInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
ahp->ah_txErrInterruptMask |= 1 << q;
else
ahp->ah_txErrInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
ahp->ah_txDescInterruptMask |= 1 << q;
else
ahp->ah_txDescInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
ahp->ah_txEolInterruptMask |= 1 << q;
else
ahp->ah_txEolInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
ahp->ah_txUrnInterruptMask |= 1 << q;
else
ahp->ah_txUrnInterruptMask &= ~(1 << q);
return AH_TRUE;
}
/*
* Get the TXDP for the "main" data queue. Needs to be extended
* for multiple Q functionality
*/
uint32_t
ar5210GetTxDP(struct ath_hal *ah, u_int q)
{
struct ath_hal_5210 *ahp = AH5210(ah);
HAL_TX_QUEUE_INFO *qi;
HALASSERT(q < HAL_NUM_TX_QUEUES);
qi = &ahp->ah_txq[q];
switch (qi->tqi_type) {
case HAL_TX_QUEUE_DATA:
return OS_REG_READ(ah, AR_TXDP0);
case HAL_TX_QUEUE_INACTIVE:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: inactive queue %u\n",
__func__, q);
/* fall thru... */
default:
break;
}
return 0xffffffff;
}
/*
* Set the TxDP for the "main" data queue.
*/
HAL_BOOL
ar5210SetTxDP(struct ath_hal *ah, u_int q, uint32_t txdp)
{
struct ath_hal_5210 *ahp = AH5210(ah);
HAL_TX_QUEUE_INFO *qi;
HALASSERT(q < HAL_NUM_TX_QUEUES);
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u 0x%x\n",
__func__, q, txdp);
qi = &ahp->ah_txq[q];
switch (qi->tqi_type) {
case HAL_TX_QUEUE_DATA:
#ifdef AH_DEBUG
/*
* Make sure that TXE is deasserted before setting the
* TXDP. If TXE is still asserted, setting TXDP will
* have no effect.
*/
if (OS_REG_READ(ah, AR_CR) & AR_CR_TXE0)
ath_hal_printf(ah, "%s: TXE asserted; AR_CR=0x%x\n",
__func__, OS_REG_READ(ah, AR_CR));
#endif
OS_REG_WRITE(ah, AR_TXDP0, txdp);
break;
case HAL_TX_QUEUE_BEACON:
case HAL_TX_QUEUE_CAB:
OS_REG_WRITE(ah, AR_TXDP1, txdp);
break;
case HAL_TX_QUEUE_INACTIVE:
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
__func__, q);
/* fall thru... */
default:
return AH_FALSE;
}
return AH_TRUE;
}
/*
* Update Tx FIFO trigger level.
*
* Set bIncTrigLevel to TRUE to increase the trigger level.
* Set bIncTrigLevel to FALSE to decrease the trigger level.
*
* Returns TRUE if the trigger level was updated
*/
HAL_BOOL
ar5210UpdateTxTrigLevel(struct ath_hal *ah, HAL_BOOL bIncTrigLevel)
{
uint32_t curTrigLevel;
HAL_INT ints = ar5210GetInterrupts(ah);
/*
* Disable chip interrupts. This is because halUpdateTxTrigLevel
* is called from both ISR and non-ISR contexts.
*/
(void) ar5210SetInterrupts(ah, ints &~ HAL_INT_GLOBAL);
curTrigLevel = OS_REG_READ(ah, AR_TRIG_LEV);
if (bIncTrigLevel){
/* increase the trigger level */
curTrigLevel = curTrigLevel +
((MAX_TX_FIFO_THRESHOLD - curTrigLevel) / 2);
} else {
/* decrease the trigger level if not already at the minimum */
if (curTrigLevel > MIN_TX_FIFO_THRESHOLD) {
/* decrease the trigger level */
curTrigLevel--;
} else {
/* no update to the trigger level */
/* re-enable chip interrupts */
ar5210SetInterrupts(ah, ints);
return AH_FALSE;
}
}
/* Update the trigger level */
OS_REG_WRITE(ah, AR_TRIG_LEV, curTrigLevel);
/* re-enable chip interrupts */
ar5210SetInterrupts(ah, ints);
return AH_TRUE;
}
/*
* Set Transmit Enable bits for the specified queues.
*/
HAL_BOOL
ar5210StartTxDma(struct ath_hal *ah, u_int q)
{
struct ath_hal_5210 *ahp = AH5210(ah);
HAL_TX_QUEUE_INFO *qi;
HALASSERT(q < HAL_NUM_TX_QUEUES);
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
switch (qi->tqi_type) {
case HAL_TX_QUEUE_DATA:
OS_REG_WRITE(ah, AR_CR, AR_CR_TXE0);
break;
case HAL_TX_QUEUE_CAB:
OS_REG_WRITE(ah, AR_CR, AR_CR_TXE1); /* enable altq xmit */
OS_REG_WRITE(ah, AR_BCR,
AR_BCR_TQ1V | AR_BCR_BDMAE | AR_BCR_TQ1FV);
break;
case HAL_TX_QUEUE_BEACON:
/* XXX add CR_BCR_BCMD if IBSS mode */
OS_REG_WRITE(ah, AR_BCR, AR_BCR_TQ1V | AR_BCR_BDMAE);
break;
case HAL_TX_QUEUE_INACTIVE:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: inactive queue %u\n",
__func__, q);
/* fal thru... */
default:
return AH_FALSE;
}
return AH_TRUE;
}
uint32_t
ar5210NumTxPending(struct ath_hal *ah, u_int q)
{
struct ath_hal_5210 *ahp = AH5210(ah);
HAL_TX_QUEUE_INFO *qi;
uint32_t v;
HALASSERT(q < HAL_NUM_TX_QUEUES);
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
switch (qi->tqi_type) {
case HAL_TX_QUEUE_DATA:
v = OS_REG_READ(ah, AR_CFG);
return MS(v, AR_CFG_TXCNT);
case HAL_TX_QUEUE_INACTIVE:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: inactive queue %u\n",
__func__, q);
/* fall thru... */
default:
break;
}
return 0;
}
/*
* Stop transmit on the specified queue
*/
HAL_BOOL
ar5210StopTxDma(struct ath_hal *ah, u_int q)
{
struct ath_hal_5210 *ahp = AH5210(ah);
HAL_TX_QUEUE_INFO *qi;
HALASSERT(q < HAL_NUM_TX_QUEUES);
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
switch (qi->tqi_type) {
case HAL_TX_QUEUE_DATA: {
int i;
OS_REG_WRITE(ah, AR_CR, AR_CR_TXD0);
for (i = 0; i < 1000; i++) {
if ((OS_REG_READ(ah, AR_CFG) & AR_CFG_TXCNT) == 0)
break;
OS_DELAY(10);
}
OS_REG_WRITE(ah, AR_CR, 0);
return (i < 1000);
}
case HAL_TX_QUEUE_BEACON:
return ath_hal_wait(ah, AR_BSR, AR_BSR_TXQ1F, 0);
case HAL_TX_QUEUE_INACTIVE:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: inactive queue %u\n",
__func__, q);
/* fall thru... */
default:
break;
}
return AH_FALSE;
}
/*
* Descriptor Access Functions
*/
#define VALID_PKT_TYPES \
((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
(1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
(1<<HAL_PKT_TYPE_BEACON))
#define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES)
#define VALID_TX_RATES \
((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
(1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
(1<<0x1d)|(1<<0x18)|(1<<0x1c))
#define isValidTxRate(_r) ((1<<(_r)) & VALID_TX_RATES)
HAL_BOOL
ar5210SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int txPower,
u_int txRate0, u_int txTries0,
u_int keyIx,
u_int antMode,
u_int flags,
u_int rtsctsRate,
u_int rtsctsDuration,
u_int compicvLen,
u_int compivLen,
u_int comp)
{
struct ar5210_desc *ads = AR5210DESC(ds);
uint32_t frtype;
(void) txPower;
(void) rtsctsDuration;
HALASSERT(txTries0 != 0);
HALASSERT(isValidPktType(type));
HALASSERT(isValidTxRate(txRate0));
if (type == HAL_PKT_TYPE_BEACON || type == HAL_PKT_TYPE_PROBE_RESP)
frtype = AR_Frm_NoDelay;
else
frtype = type << 26;
ads->ds_ctl0 = (pktLen & AR_FrameLen)
| (txRate0 << AR_XmitRate_S)
| ((hdrLen << AR_HdrLen_S) & AR_HdrLen)
| frtype
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClearDestMask : 0)
| (flags & HAL_TXDESC_INTREQ ? AR_TxInterReq : 0)
| (antMode ? AR_AntModeXmit : 0)
;
if (keyIx != HAL_TXKEYIX_INVALID) {
ads->ds_ctl1 = (keyIx << AR_EncryptKeyIdx_S) & AR_EncryptKeyIdx;
ads->ds_ctl0 |= AR_EncryptKeyValid;
} else
ads->ds_ctl1 = 0;
if (flags & HAL_TXDESC_RTSENA) {
ads->ds_ctl0 |= AR_RTSCTSEnable;
ads->ds_ctl1 |= rtsctsDuration & AR_RTSDuration;
}
return AH_TRUE;
}
HAL_BOOL
ar5210SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int txRate1, u_int txTries1,
u_int txRate2, u_int txTries2,
u_int txRate3, u_int txTries3)
{
(void) ah; (void) ds;
(void) txRate1; (void) txTries1;
(void) txRate2; (void) txTries2;
(void) txRate3; (void) txTries3;
return AH_FALSE;
}
void
ar5210IntrReqTxDesc(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5210_desc *ads = AR5210DESC(ds);
ads->ds_ctl0 |= AR_TxInterReq;
}
HAL_BOOL
ar5210FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
const struct ath_desc *ds0)
{
struct ar5210_desc *ads = AR5210DESC(ds);
HALASSERT((segLen &~ AR_BufLen) == 0);
if (firstSeg) {
/*
* First descriptor, don't clobber xmit control data
* setup by ar5210SetupTxDesc.
*/
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_More);
} else if (lastSeg) { /* !firstSeg && lastSeg */
/*
* Last descriptor in a multi-descriptor frame,
* copy the transmit parameters from the first
* frame for processing on completion.
*/
ads->ds_ctl0 = AR5210DESC_CONST(ds0)->ds_ctl0;
ads->ds_ctl1 = segLen;
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen | AR_More;
}
ads->ds_status0 = ads->ds_status1 = 0;
return AH_TRUE;
}
/*
* Processing of HW TX descriptor.
*/
HAL_STATUS
ar5210ProcTxDesc(struct ath_hal *ah,
struct ath_desc *ds, struct ath_tx_status *ts)
{
struct ar5210_desc *ads = AR5210DESC(ds);
if ((ads->ds_status1 & AR_Done) == 0)
return HAL_EINPROGRESS;
/* Update software copies of the HW status */
ts->ts_seqnum = ads->ds_status1 & AR_SeqNum;
ts->ts_tstamp = MS(ads->ds_status0, AR_SendTimestamp);
ts->ts_status = 0;
if ((ads->ds_status0 & AR_FrmXmitOK) == 0) {
if (ads->ds_status0 & AR_ExcessiveRetries)
ts->ts_status |= HAL_TXERR_XRETRY;
if (ads->ds_status0 & AR_Filtered)
ts->ts_status |= HAL_TXERR_FILT;
if (ads->ds_status0 & AR_FIFOUnderrun)
ts->ts_status |= HAL_TXERR_FIFO;
}
ts->ts_rate = MS(ads->ds_ctl0, AR_XmitRate);
ts->ts_rssi = MS(ads->ds_status1, AR_AckSigStrength);
ts->ts_shortretry = MS(ads->ds_status0, AR_ShortRetryCnt);
ts->ts_longretry = MS(ads->ds_status0, AR_LongRetryCnt);
ts->ts_antenna = 0; /* NB: don't know */
ts->ts_finaltsi = 0;
return HAL_OK;
}
/*
* Determine which tx queues need interrupt servicing.
* STUB.
*/
void
ar5210GetTxIntrQueue(struct ath_hal *ah, uint32_t *txqs)
{
return;
}
/*
* Retrieve the rate table from the given TX completion descriptor
*/
HAL_BOOL
ar5210GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
{
return AH_FALSE;
}