freebsd-dev/sys/geom/part/g_part_gpt.c
Allan Jude 9c0c355f2a Add some additional GPT partition types
4 ChromeOS GPT types
2 Microsoft partition types
the new OpenBSD partition type

Approved by:	marcel (mentor)
MFC after:	1 week
Relnotes:	yes
Sponsored by:	ScaleEngine Inc.
Differential Revision:	https://reviews.freebsd.org/D3841
2015-12-27 18:12:13 +00:00

1393 lines
43 KiB
C

/*-
* Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/diskmbr.h>
#include <sys/endian.h>
#include <sys/gpt.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/uuid.h>
#include <geom/geom.h>
#include <geom/geom_int.h>
#include <geom/part/g_part.h>
#include "g_part_if.h"
FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
CTASSERT(sizeof(struct gpt_ent) == 128);
#define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0)
#define MBRSIZE 512
enum gpt_elt {
GPT_ELT_PRIHDR,
GPT_ELT_PRITBL,
GPT_ELT_SECHDR,
GPT_ELT_SECTBL,
GPT_ELT_COUNT
};
enum gpt_state {
GPT_STATE_UNKNOWN, /* Not determined. */
GPT_STATE_MISSING, /* No signature found. */
GPT_STATE_CORRUPT, /* Checksum mismatch. */
GPT_STATE_INVALID, /* Nonconformant/invalid. */
GPT_STATE_OK /* Perfectly fine. */
};
struct g_part_gpt_table {
struct g_part_table base;
u_char mbr[MBRSIZE];
struct gpt_hdr *hdr;
quad_t lba[GPT_ELT_COUNT];
enum gpt_state state[GPT_ELT_COUNT];
int bootcamp;
};
struct g_part_gpt_entry {
struct g_part_entry base;
struct gpt_ent ent;
};
static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
struct g_part_parms *);
static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
struct sbuf *, const char *);
static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
struct g_part_parms *);
static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
char *, size_t);
static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
static int g_part_gpt_setunset(struct g_part_table *table,
struct g_part_entry *baseentry, const char *attrib, unsigned int set);
static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
char *, size_t);
static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
struct g_part_parms *);
static int g_part_gpt_recover(struct g_part_table *);
static kobj_method_t g_part_gpt_methods[] = {
KOBJMETHOD(g_part_add, g_part_gpt_add),
KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode),
KOBJMETHOD(g_part_create, g_part_gpt_create),
KOBJMETHOD(g_part_destroy, g_part_gpt_destroy),
KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf),
KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto),
KOBJMETHOD(g_part_modify, g_part_gpt_modify),
KOBJMETHOD(g_part_resize, g_part_gpt_resize),
KOBJMETHOD(g_part_name, g_part_gpt_name),
KOBJMETHOD(g_part_probe, g_part_gpt_probe),
KOBJMETHOD(g_part_read, g_part_gpt_read),
KOBJMETHOD(g_part_recover, g_part_gpt_recover),
KOBJMETHOD(g_part_setunset, g_part_gpt_setunset),
KOBJMETHOD(g_part_type, g_part_gpt_type),
KOBJMETHOD(g_part_write, g_part_gpt_write),
{ 0, 0 }
};
static struct g_part_scheme g_part_gpt_scheme = {
"GPT",
g_part_gpt_methods,
sizeof(struct g_part_gpt_table),
.gps_entrysz = sizeof(struct g_part_gpt_entry),
.gps_minent = 128,
.gps_maxent = 4096,
.gps_bootcodesz = MBRSIZE,
};
G_PART_SCHEME_DECLARE(g_part_gpt);
static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
static struct uuid gpt_uuid_apple_core_storage =
GPT_ENT_TYPE_APPLE_CORE_STORAGE;
static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
static struct g_part_uuid_alias {
struct uuid *uuid;
int alias;
int mbrtype;
} gpt_uuid_alias_match[] = {
{ &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab },
{ &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
{ &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf },
{ &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 },
{ &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 },
{ &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
{ &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 },
{ &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 },
{ &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 },
{ &gpt_uuid_chromeos_firmware, G_PART_ALIAS_CHROMEOS_FIRMWARE, 0 },
{ &gpt_uuid_chromeos_kernel, G_PART_ALIAS_CHROMEOS_KERNEL, 0 },
{ &gpt_uuid_chromeos_reserved, G_PART_ALIAS_CHROMEOS_RESERVED, 0 },
{ &gpt_uuid_chromeos_root, G_PART_ALIAS_CHROMEOS_ROOT, 0 },
{ &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 },
{ &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 },
{ &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 },
{ &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 },
{ &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 },
{ &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 },
{ &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 },
{ &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 },
{ &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 },
{ &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee },
{ &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 },
{ &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 },
{ &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 },
{ &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 },
{ &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 },
{ &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 },
{ &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 },
{ &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b },
{ &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 },
{ &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 },
{ &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 },
{ &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 },
{ &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b },
{ &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 },
{ &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 },
{ &gpt_uuid_ms_recovery, G_PART_ALIAS_MS_RECOVERY, 0 },
{ &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 },
{ &gpt_uuid_ms_spaces, G_PART_ALIAS_MS_SPACES, 0 },
{ &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 },
{ &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 },
{ &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 },
{ &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 },
{ &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 },
{ &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 },
{ &gpt_uuid_openbsd_data, G_PART_ALIAS_OPENBSD_DATA, 0 },
{ &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 },
{ &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 },
{ &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 },
{ &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 },
{ &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 },
{ NULL, 0, 0 }
};
static int
gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
quad_t end)
{
if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
return (EINVAL);
mbr += DOSPARTOFF + idx * DOSPARTSIZE;
mbr[0] = 0;
if (start == 1) {
/*
* Treat the PMBR partition specially to maximize
* interoperability with BIOSes.
*/
mbr[1] = mbr[3] = 0;
mbr[2] = 2;
} else
mbr[1] = mbr[2] = mbr[3] = 0xff;
mbr[4] = typ;
mbr[5] = mbr[6] = mbr[7] = 0xff;
le32enc(mbr + 8, (uint32_t)start);
le32enc(mbr + 12, (uint32_t)(end - start + 1));
return (0);
}
static int
gpt_map_type(struct uuid *t)
{
struct g_part_uuid_alias *uap;
for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
if (EQUUID(t, uap->uuid))
return (uap->mbrtype);
}
return (0);
}
static void
gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
{
bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
}
/*
* Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
* whole disk anymore. Rather, it covers the GPT table and the EFI
* system partition only. This way the HFS+ partition and any FAT
* partitions can be added to the MBR without creating an overlap.
*/
static int
gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
{
uint8_t *p;
p = table->mbr + DOSPARTOFF;
if (p[4] != 0xee || le32dec(p + 8) != 1)
return (0);
p += DOSPARTSIZE;
if (p[4] != 0xaf)
return (0);
printf("GEOM: %s: enabling Boot Camp\n", provname);
return (1);
}
static void
gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
{
struct g_part_entry *baseentry;
struct g_part_gpt_entry *entry;
struct g_part_gpt_table *table;
int bootable, error, index, slices, typ;
table = (struct g_part_gpt_table *)basetable;
bootable = -1;
for (index = 0; index < NDOSPART; index++) {
if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
bootable = index;
}
bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
slices = 0;
LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
if (baseentry->gpe_deleted)
continue;
index = baseentry->gpe_index - 1;
if (index >= NDOSPART)
continue;
entry = (struct g_part_gpt_entry *)baseentry;
switch (index) {
case 0: /* This must be the EFI system partition. */
if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
goto disable;
error = gpt_write_mbr_entry(table->mbr, index, 0xee,
1ull, entry->ent.ent_lba_end);
break;
case 1: /* This must be the HFS+ partition. */
if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
goto disable;
error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
entry->ent.ent_lba_start, entry->ent.ent_lba_end);
break;
default:
typ = gpt_map_type(&entry->ent.ent_type);
error = gpt_write_mbr_entry(table->mbr, index, typ,
entry->ent.ent_lba_start, entry->ent.ent_lba_end);
break;
}
if (error)
continue;
if (index == bootable)
table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
slices |= 1 << index;
}
if ((slices & 3) == 3)
return;
disable:
table->bootcamp = 0;
gpt_create_pmbr(table, pp);
}
static struct gpt_hdr *
gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
enum gpt_elt elt)
{
struct gpt_hdr *buf, *hdr;
struct g_provider *pp;
quad_t lba, last;
int error;
uint32_t crc, sz;
pp = cp->provider;
last = (pp->mediasize / pp->sectorsize) - 1;
table->state[elt] = GPT_STATE_MISSING;
/*
* If the primary header is valid look for secondary
* header in AlternateLBA, otherwise in the last medium's LBA.
*/
if (elt == GPT_ELT_SECHDR) {
if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
table->lba[elt] = last;
} else
table->lba[elt] = 1;
buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
&error);
if (buf == NULL)
return (NULL);
hdr = NULL;
if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
goto fail;
table->state[elt] = GPT_STATE_CORRUPT;
sz = le32toh(buf->hdr_size);
if (sz < 92 || sz > pp->sectorsize)
goto fail;
hdr = g_malloc(sz, M_WAITOK | M_ZERO);
bcopy(buf, hdr, sz);
hdr->hdr_size = sz;
crc = le32toh(buf->hdr_crc_self);
buf->hdr_crc_self = 0;
if (crc32(buf, sz) != crc)
goto fail;
hdr->hdr_crc_self = crc;
table->state[elt] = GPT_STATE_INVALID;
hdr->hdr_revision = le32toh(buf->hdr_revision);
if (hdr->hdr_revision < GPT_HDR_REVISION)
goto fail;
hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
if (hdr->hdr_lba_self != table->lba[elt])
goto fail;
hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
hdr->hdr_lba_alt > last)
goto fail;
/* Check the managed area. */
hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
goto fail;
hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
goto fail;
/* Check the table location and size of the table. */
hdr->hdr_entries = le32toh(buf->hdr_entries);
hdr->hdr_entsz = le32toh(buf->hdr_entsz);
if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
(hdr->hdr_entsz & 7) != 0)
goto fail;
hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
goto fail;
if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
hdr->hdr_lba_table <= hdr->hdr_lba_end)
goto fail;
lba = hdr->hdr_lba_table +
(hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
pp->sectorsize - 1;
if (lba >= last)
goto fail;
if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
goto fail;
table->state[elt] = GPT_STATE_OK;
le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
/* save LBA for secondary header */
if (elt == GPT_ELT_PRIHDR)
table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
g_free(buf);
return (hdr);
fail:
if (hdr != NULL)
g_free(hdr);
g_free(buf);
return (NULL);
}
static struct gpt_ent *
gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
enum gpt_elt elt, struct gpt_hdr *hdr)
{
struct g_provider *pp;
struct gpt_ent *ent, *tbl;
char *buf, *p;
unsigned int idx, sectors, tblsz, size;
int error;
if (hdr == NULL)
return (NULL);
pp = cp->provider;
table->lba[elt] = hdr->hdr_lba_table;
table->state[elt] = GPT_STATE_MISSING;
tblsz = hdr->hdr_entries * hdr->hdr_entsz;
sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS:
(sectors - idx) * pp->sectorsize;
p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
size, &error);
if (p == NULL) {
g_free(buf);
return (NULL);
}
bcopy(p, buf + idx * pp->sectorsize, size);
g_free(p);
}
table->state[elt] = GPT_STATE_CORRUPT;
if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
g_free(buf);
return (NULL);
}
table->state[elt] = GPT_STATE_OK;
tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
M_WAITOK | M_ZERO);
for (idx = 0, ent = tbl, p = buf;
idx < hdr->hdr_entries;
idx++, ent++, p += hdr->hdr_entsz) {
le_uuid_dec(p, &ent->ent_type);
le_uuid_dec(p + 16, &ent->ent_uuid);
ent->ent_lba_start = le64dec(p + 32);
ent->ent_lba_end = le64dec(p + 40);
ent->ent_attr = le64dec(p + 48);
/* Keep UTF-16 in little-endian. */
bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
}
g_free(buf);
return (tbl);
}
static int
gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
{
if (pri == NULL || sec == NULL)
return (0);
if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
return (0);
return ((pri->hdr_revision == sec->hdr_revision &&
pri->hdr_size == sec->hdr_size &&
pri->hdr_lba_start == sec->hdr_lba_start &&
pri->hdr_lba_end == sec->hdr_lba_end &&
pri->hdr_entries == sec->hdr_entries &&
pri->hdr_entsz == sec->hdr_entsz &&
pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
}
static int
gpt_parse_type(const char *type, struct uuid *uuid)
{
struct uuid tmp;
const char *alias;
int error;
struct g_part_uuid_alias *uap;
if (type[0] == '!') {
error = parse_uuid(type + 1, &tmp);
if (error)
return (error);
if (EQUUID(&tmp, &gpt_uuid_unused))
return (EINVAL);
*uuid = tmp;
return (0);
}
for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
alias = g_part_alias_name(uap->alias);
if (!strcasecmp(type, alias)) {
*uuid = *uap->uuid;
return (0);
}
}
return (EINVAL);
}
static int
g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
struct g_part_parms *gpp)
{
struct g_part_gpt_entry *entry;
int error;
entry = (struct g_part_gpt_entry *)baseentry;
error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
if (error)
return (error);
kern_uuidgen(&entry->ent.ent_uuid, 1);
entry->ent.ent_lba_start = baseentry->gpe_start;
entry->ent.ent_lba_end = baseentry->gpe_end;
if (baseentry->gpe_deleted) {
entry->ent.ent_attr = 0;
bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
}
if (gpp->gpp_parms & G_PART_PARM_LABEL)
g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
sizeof(entry->ent.ent_name) /
sizeof(entry->ent.ent_name[0]));
return (0);
}
static int
g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
{
struct g_part_gpt_table *table;
size_t codesz;
codesz = DOSPARTOFF;
table = (struct g_part_gpt_table *)basetable;
bzero(table->mbr, codesz);
codesz = MIN(codesz, gpp->gpp_codesize);
if (codesz > 0)
bcopy(gpp->gpp_codeptr, table->mbr, codesz);
return (0);
}
static int
g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
{
struct g_provider *pp;
struct g_part_gpt_table *table;
size_t tblsz;
/* We don't nest, which means that our depth should be 0. */
if (basetable->gpt_depth != 0)
return (ENXIO);
table = (struct g_part_gpt_table *)basetable;
pp = gpp->gpp_provider;
tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
pp->sectorsize - 1) / pp->sectorsize;
if (pp->sectorsize < MBRSIZE ||
pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
pp->sectorsize)
return (ENOSPC);
gpt_create_pmbr(table, pp);
/* Allocate space for the header */
table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
table->hdr->hdr_revision = GPT_HDR_REVISION;
table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
kern_uuidgen(&table->hdr->hdr_uuid, 1);
table->hdr->hdr_entries = basetable->gpt_entries;
table->hdr->hdr_entsz = sizeof(struct gpt_ent);
g_gpt_set_defaults(basetable, pp);
return (0);
}
static int
g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
{
struct g_part_gpt_table *table;
struct g_provider *pp;
table = (struct g_part_gpt_table *)basetable;
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
g_free(table->hdr);
table->hdr = NULL;
/*
* Wipe the first 2 sectors to clear the partitioning. Wipe the last
* sector only if it has valid secondary header.
*/
basetable->gpt_smhead |= 3;
if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
basetable->gpt_smtail |= 1;
return (0);
}
static void
g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
struct sbuf *sb, const char *indent)
{
struct g_part_gpt_entry *entry;
entry = (struct g_part_gpt_entry *)baseentry;
if (indent == NULL) {
/* conftxt: libdisk compatibility */
sbuf_printf(sb, " xs GPT xt ");
sbuf_printf_uuid(sb, &entry->ent.ent_type);
} else if (entry != NULL) {
/* confxml: partition entry information */
sbuf_printf(sb, "%s<label>", indent);
g_gpt_printf_utf16(sb, entry->ent.ent_name,
sizeof(entry->ent.ent_name) >> 1);
sbuf_printf(sb, "</label>\n");
if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
indent);
}
if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
indent);
}
sbuf_printf(sb, "%s<rawtype>", indent);
sbuf_printf_uuid(sb, &entry->ent.ent_type);
sbuf_printf(sb, "</rawtype>\n");
sbuf_printf(sb, "%s<rawuuid>", indent);
sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
sbuf_printf(sb, "</rawuuid>\n");
} else {
/* confxml: scheme information */
}
}
static int
g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
{
struct g_part_gpt_entry *entry;
entry = (struct g_part_gpt_entry *)baseentry;
return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
}
static int
g_part_gpt_modify(struct g_part_table *basetable,
struct g_part_entry *baseentry, struct g_part_parms *gpp)
{
struct g_part_gpt_entry *entry;
int error;
entry = (struct g_part_gpt_entry *)baseentry;
if (gpp->gpp_parms & G_PART_PARM_TYPE) {
error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
if (error)
return (error);
}
if (gpp->gpp_parms & G_PART_PARM_LABEL)
g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
sizeof(entry->ent.ent_name) /
sizeof(entry->ent.ent_name[0]));
return (0);
}
static int
g_part_gpt_resize(struct g_part_table *basetable,
struct g_part_entry *baseentry, struct g_part_parms *gpp)
{
struct g_part_gpt_entry *entry;
if (baseentry == NULL)
return (g_part_gpt_recover(basetable));
entry = (struct g_part_gpt_entry *)baseentry;
baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
entry->ent.ent_lba_end = baseentry->gpe_end;
return (0);
}
static const char *
g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
char *buf, size_t bufsz)
{
struct g_part_gpt_entry *entry;
char c;
entry = (struct g_part_gpt_entry *)baseentry;
c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
return (buf);
}
static int
g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
{
struct g_provider *pp;
u_char *buf;
int error, index, pri, res;
/* We don't nest, which means that our depth should be 0. */
if (table->gpt_depth != 0)
return (ENXIO);
pp = cp->provider;
/*
* Sanity-check the provider. Since the first sector on the provider
* must be a PMBR and a PMBR is 512 bytes large, the sector size
* must be at least 512 bytes. Also, since the theoretical minimum
* number of sectors needed by GPT is 6, any medium that has less
* than 6 sectors is never going to be able to hold a GPT. The
* number 6 comes from:
* 1 sector for the PMBR
* 2 sectors for the GPT headers (each 1 sector)
* 2 sectors for the GPT tables (each 1 sector)
* 1 sector for an actual partition
* It's better to catch this pathological case early than behaving
* pathologically later on...
*/
if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
return (ENOSPC);
/*
* Check that there's a MBR or a PMBR. If it's a PMBR, we return
* as the highest priority on a match, otherwise we assume some
* GPT-unaware tool has destroyed the GPT by recreating a MBR and
* we really want the MBR scheme to take precedence.
*/
buf = g_read_data(cp, 0L, pp->sectorsize, &error);
if (buf == NULL)
return (error);
res = le16dec(buf + DOSMAGICOFFSET);
pri = G_PART_PROBE_PRI_LOW;
if (res == DOSMAGIC) {
for (index = 0; index < NDOSPART; index++) {
if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
pri = G_PART_PROBE_PRI_HIGH;
}
g_free(buf);
/* Check that there's a primary header. */
buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
if (buf == NULL)
return (error);
res = memcmp(buf, GPT_HDR_SIG, 8);
g_free(buf);
if (res == 0)
return (pri);
} else
g_free(buf);
/* No primary? Check that there's a secondary. */
buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
&error);
if (buf == NULL)
return (error);
res = memcmp(buf, GPT_HDR_SIG, 8);
g_free(buf);
return ((res == 0) ? pri : ENXIO);
}
static int
g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
{
struct gpt_hdr *prihdr, *sechdr;
struct gpt_ent *tbl, *pritbl, *sectbl;
struct g_provider *pp;
struct g_part_gpt_table *table;
struct g_part_gpt_entry *entry;
u_char *buf;
uint64_t last;
int error, index;
table = (struct g_part_gpt_table *)basetable;
pp = cp->provider;
last = (pp->mediasize / pp->sectorsize) - 1;
/* Read the PMBR */
buf = g_read_data(cp, 0, pp->sectorsize, &error);
if (buf == NULL)
return (error);
bcopy(buf, table->mbr, MBRSIZE);
g_free(buf);
/* Read the primary header and table. */
prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
} else {
table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
pritbl = NULL;
}
/* Read the secondary header and table. */
sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
} else {
table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
sectbl = NULL;
}
/* Fail if we haven't got any good tables at all. */
if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
printf("GEOM: %s: corrupt or invalid GPT detected.\n",
pp->name);
printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
pp->name);
return (EINVAL);
}
/*
* If both headers are good but they disagree with each other,
* then invalidate one. We prefer to keep the primary header,
* unless the primary table is corrupt.
*/
if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
!gpt_matched_hdrs(prihdr, sechdr)) {
if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
g_free(sechdr);
sechdr = NULL;
} else {
table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
g_free(prihdr);
prihdr = NULL;
}
}
if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
printf("GEOM: %s: the primary GPT table is corrupt or "
"invalid.\n", pp->name);
printf("GEOM: %s: using the secondary instead -- recovery "
"strongly advised.\n", pp->name);
table->hdr = sechdr;
basetable->gpt_corrupt = 1;
if (prihdr != NULL)
g_free(prihdr);
tbl = sectbl;
if (pritbl != NULL)
g_free(pritbl);
} else {
if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
printf("GEOM: %s: the secondary GPT table is corrupt "
"or invalid.\n", pp->name);
printf("GEOM: %s: using the primary only -- recovery "
"suggested.\n", pp->name);
basetable->gpt_corrupt = 1;
} else if (table->lba[GPT_ELT_SECHDR] != last) {
printf( "GEOM: %s: the secondary GPT header is not in "
"the last LBA.\n", pp->name);
basetable->gpt_corrupt = 1;
}
table->hdr = prihdr;
if (sechdr != NULL)
g_free(sechdr);
tbl = pritbl;
if (sectbl != NULL)
g_free(sectbl);
}
basetable->gpt_first = table->hdr->hdr_lba_start;
basetable->gpt_last = table->hdr->hdr_lba_end;
basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) *
pp->sectorsize / table->hdr->hdr_entsz;
for (index = table->hdr->hdr_entries - 1; index >= 0; index--) {
if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
continue;
entry = (struct g_part_gpt_entry *)g_part_new_entry(
basetable, index + 1, tbl[index].ent_lba_start,
tbl[index].ent_lba_end);
entry->ent = tbl[index];
}
g_free(tbl);
/*
* Under Mac OS X, the MBR mirrors the first 4 GPT partitions
* if (and only if) any FAT32 or FAT16 partitions have been
* created. This happens irrespective of whether Boot Camp is
* used/enabled, though it's generally understood to be done
* to support legacy Windows under Boot Camp. We refer to this
* mirroring simply as Boot Camp. We try to detect Boot Camp
* so that we can update the MBR if and when GPT changes have
* been made. Note that we do not enable Boot Camp if not
* previously enabled because we can't assume that we're on a
* Mac alongside Mac OS X.
*/
table->bootcamp = gpt_is_bootcamp(table, pp->name);
return (0);
}
static int
g_part_gpt_recover(struct g_part_table *basetable)
{
struct g_part_gpt_table *table;
struct g_provider *pp;
table = (struct g_part_gpt_table *)basetable;
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
gpt_create_pmbr(table, pp);
g_gpt_set_defaults(basetable, pp);
basetable->gpt_corrupt = 0;
return (0);
}
static int
g_part_gpt_setunset(struct g_part_table *basetable,
struct g_part_entry *baseentry, const char *attrib, unsigned int set)
{
struct g_part_gpt_entry *entry;
struct g_part_gpt_table *table;
struct g_provider *pp;
uint8_t *p;
uint64_t attr;
int i;
table = (struct g_part_gpt_table *)basetable;
entry = (struct g_part_gpt_entry *)baseentry;
if (strcasecmp(attrib, "active") == 0) {
if (table->bootcamp) {
/* The active flag must be set on a valid entry. */
if (entry == NULL)
return (ENXIO);
if (baseentry->gpe_index > NDOSPART)
return (EINVAL);
for (i = 0; i < NDOSPART; i++) {
p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
p[0] = (i == baseentry->gpe_index - 1)
? ((set) ? 0x80 : 0) : 0;
}
} else {
/* The PMBR is marked as active without an entry. */
if (entry != NULL)
return (ENXIO);
for (i = 0; i < NDOSPART; i++) {
p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
}
}
return (0);
} else if (strcasecmp(attrib, "lenovofix") == 0) {
/*
* Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
* This workaround allows Lenovo X220, T420, T520, etc to boot
* from GPT Partitions in BIOS mode.
*/
if (entry != NULL)
return (ENXIO);
pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
return (0);
}
if (entry == NULL)
return (ENODEV);
attr = 0;
if (strcasecmp(attrib, "bootme") == 0) {
attr |= GPT_ENT_ATTR_BOOTME;
} else if (strcasecmp(attrib, "bootonce") == 0) {
attr |= GPT_ENT_ATTR_BOOTONCE;
if (set)
attr |= GPT_ENT_ATTR_BOOTME;
} else if (strcasecmp(attrib, "bootfailed") == 0) {
/*
* It should only be possible to unset BOOTFAILED, but it might
* be useful for test purposes to also be able to set it.
*/
attr |= GPT_ENT_ATTR_BOOTFAILED;
}
if (attr == 0)
return (EINVAL);
if (set)
attr = entry->ent.ent_attr | attr;
else
attr = entry->ent.ent_attr & ~attr;
if (attr != entry->ent.ent_attr) {
entry->ent.ent_attr = attr;
if (!baseentry->gpe_created)
baseentry->gpe_modified = 1;
}
return (0);
}
static const char *
g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
char *buf, size_t bufsz)
{
struct g_part_gpt_entry *entry;
struct uuid *type;
struct g_part_uuid_alias *uap;
entry = (struct g_part_gpt_entry *)baseentry;
type = &entry->ent.ent_type;
for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
if (EQUUID(type, uap->uuid))
return (g_part_alias_name(uap->alias));
buf[0] = '!';
snprintf_uuid(buf + 1, bufsz - 1, type);
return (buf);
}
static int
g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
{
unsigned char *buf, *bp;
struct g_provider *pp;
struct g_part_entry *baseentry;
struct g_part_gpt_entry *entry;
struct g_part_gpt_table *table;
size_t tblsz;
uint32_t crc;
int error, index;
pp = cp->provider;
table = (struct g_part_gpt_table *)basetable;
tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
pp->sectorsize - 1) / pp->sectorsize;
/* Reconstruct the MBR from the GPT if under Boot Camp. */
if (table->bootcamp)
gpt_update_bootcamp(basetable, pp);
/* Write the PMBR */
buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
bcopy(table->mbr, buf, MBRSIZE);
error = g_write_data(cp, 0, buf, pp->sectorsize);
g_free(buf);
if (error)
return (error);
/* Allocate space for the header and entries. */
buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
le32enc(buf + 8, table->hdr->hdr_revision);
le32enc(buf + 12, table->hdr->hdr_size);
le64enc(buf + 40, table->hdr->hdr_lba_start);
le64enc(buf + 48, table->hdr->hdr_lba_end);
le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
le32enc(buf + 80, table->hdr->hdr_entries);
le32enc(buf + 84, table->hdr->hdr_entsz);
LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
if (baseentry->gpe_deleted)
continue;
entry = (struct g_part_gpt_entry *)baseentry;
index = baseentry->gpe_index - 1;
bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
le_uuid_enc(bp, &entry->ent.ent_type);
le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
le64enc(bp + 32, entry->ent.ent_lba_start);
le64enc(bp + 40, entry->ent.ent_lba_end);
le64enc(bp + 48, entry->ent.ent_attr);
memcpy(bp + 56, entry->ent.ent_name,
sizeof(entry->ent.ent_name));
}
crc = crc32(buf + pp->sectorsize,
table->hdr->hdr_entries * table->hdr->hdr_entsz);
le32enc(buf + 88, crc);
/* Write primary meta-data. */
le32enc(buf + 16, 0); /* hdr_crc_self. */
le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */
le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */
le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */
crc = crc32(buf, table->hdr->hdr_size);
le32enc(buf + 16, crc);
for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
error = g_write_data(cp,
(table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
buf + (index + 1) * pp->sectorsize,
(tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
(tblsz - index) * pp->sectorsize);
if (error)
goto out;
}
error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
buf, pp->sectorsize);
if (error)
goto out;
/* Write secondary meta-data. */
le32enc(buf + 16, 0); /* hdr_crc_self. */
le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */
le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */
le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */
crc = crc32(buf, table->hdr->hdr_size);
le32enc(buf + 16, crc);
for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
error = g_write_data(cp,
(table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
buf + (index + 1) * pp->sectorsize,
(tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
(tblsz - index) * pp->sectorsize);
if (error)
goto out;
}
error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
buf, pp->sectorsize);
out:
g_free(buf);
return (error);
}
static void
g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
{
struct g_part_entry *baseentry;
struct g_part_gpt_entry *entry;
struct g_part_gpt_table *table;
quad_t start, end, min, max;
quad_t lba, last;
size_t spb, tblsz;
table = (struct g_part_gpt_table *)basetable;
last = pp->mediasize / pp->sectorsize - 1;
tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
pp->sectorsize - 1) / pp->sectorsize;
table->lba[GPT_ELT_PRIHDR] = 1;
table->lba[GPT_ELT_PRITBL] = 2;
table->lba[GPT_ELT_SECHDR] = last;
table->lba[GPT_ELT_SECTBL] = last - tblsz;
table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
max = start = 2 + tblsz;
min = end = last - tblsz - 1;
LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
if (baseentry->gpe_deleted)
continue;
entry = (struct g_part_gpt_entry *)baseentry;
if (entry->ent.ent_lba_start < min)
min = entry->ent.ent_lba_start;
if (entry->ent.ent_lba_end > max)
max = entry->ent.ent_lba_end;
}
spb = 4096 / pp->sectorsize;
if (spb > 1) {
lba = start + ((start % spb) ? spb - start % spb : 0);
if (lba <= min)
start = lba;
lba = end - (end + 1) % spb;
if (max <= lba)
end = lba;
}
table->hdr->hdr_lba_start = start;
table->hdr->hdr_lba_end = end;
basetable->gpt_first = start;
basetable->gpt_last = end;
}
static void
g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
{
u_int bo;
uint32_t ch;
uint16_t c;
bo = LITTLE_ENDIAN; /* GPT is little-endian */
while (len > 0 && *str != 0) {
ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
str++, len--;
if ((ch & 0xf800) == 0xd800) {
if (len > 0) {
c = (bo == BIG_ENDIAN) ? be16toh(*str)
: le16toh(*str);
str++, len--;
} else
c = 0xfffd;
if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
ch += 0x10000;
} else
ch = 0xfffd;
} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
continue;
} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
continue;
/* Write the Unicode character in UTF-8 */
if (ch < 0x80)
g_conf_printf_escaped(sb, "%c", ch);
else if (ch < 0x800)
g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
0x80 | (ch & 0x3f));
else if (ch < 0x10000)
g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
else if (ch < 0x200000)
g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
(ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
}
}
static void
g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
{
size_t s16idx, s8idx;
uint32_t utfchar;
unsigned int c, utfbytes;
s8idx = s16idx = 0;
utfchar = 0;
utfbytes = 0;
bzero(s16, s16len << 1);
while (s8[s8idx] != 0 && s16idx < s16len) {
c = s8[s8idx++];
if ((c & 0xc0) != 0x80) {
/* Initial characters. */
if (utfbytes != 0) {
/* Incomplete encoding of previous char. */
s16[s16idx++] = htole16(0xfffd);
}
if ((c & 0xf8) == 0xf0) {
utfchar = c & 0x07;
utfbytes = 3;
} else if ((c & 0xf0) == 0xe0) {
utfchar = c & 0x0f;
utfbytes = 2;
} else if ((c & 0xe0) == 0xc0) {
utfchar = c & 0x1f;
utfbytes = 1;
} else {
utfchar = c & 0x7f;
utfbytes = 0;
}
} else {
/* Followup characters. */
if (utfbytes > 0) {
utfchar = (utfchar << 6) + (c & 0x3f);
utfbytes--;
} else if (utfbytes == 0)
utfbytes = ~0;
}
/*
* Write the complete Unicode character as UTF-16 when we
* have all the UTF-8 charactars collected.
*/
if (utfbytes == 0) {
/*
* If we need to write 2 UTF-16 characters, but
* we only have room for 1, then we truncate the
* string by writing a 0 instead.
*/
if (utfchar >= 0x10000 && s16idx < s16len - 1) {
s16[s16idx++] =
htole16(0xd800 | ((utfchar >> 10) - 0x40));
s16[s16idx++] =
htole16(0xdc00 | (utfchar & 0x3ff));
} else
s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
htole16(utfchar);
}
}
/*
* If our input string was truncated, append an invalid encoding
* character to the output string.
*/
if (utfbytes != 0 && s16idx < s16len)
s16[s16idx++] = htole16(0xfffd);
}