freebsd-dev/sys/cam/cam_xpt.c
Alexander Motin 2ef6e7aea8 Allow XPT_GDEV_STATS for UNCONFIGURED devices.
Queue statistics has nothing to do with presence or absence of INQUIRY
data, etc.  Target mode devices are never configured, but have queues.

MFC after:	2 weeks
2017-03-11 18:23:05 +00:00

5450 lines
140 KiB
C

/*-
* Implementation of the Common Access Method Transport (XPT) layer.
*
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_printf.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/interrupt.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/kthread.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_queue.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_debug.h>
#include <cam/cam_compat.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pass.h>
#include <machine/md_var.h> /* geometry translation */
#include <machine/stdarg.h> /* for xpt_print below */
#include "opt_cam.h"
/* Wild guess based on not wanting to grow the stack too much */
#define XPT_PRINT_MAXLEN 512
#ifdef PRINTF_BUFR_SIZE
#define XPT_PRINT_LEN PRINTF_BUFR_SIZE
#else
#define XPT_PRINT_LEN 128
#endif
_Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
/*
* This is the maximum number of high powered commands (e.g. start unit)
* that can be outstanding at a particular time.
*/
#ifndef CAM_MAX_HIGHPOWER
#define CAM_MAX_HIGHPOWER 4
#endif
/* Datastructures internal to the xpt layer */
MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
/* Object for defering XPT actions to a taskqueue */
struct xpt_task {
struct task task;
void *data1;
uintptr_t data2;
};
struct xpt_softc {
uint32_t xpt_generation;
/* number of high powered commands that can go through right now */
struct mtx xpt_highpower_lock;
STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
int num_highpower;
/* queue for handling async rescan requests. */
TAILQ_HEAD(, ccb_hdr) ccb_scanq;
int buses_to_config;
int buses_config_done;
/*
* Registered buses
*
* N.B., "busses" is an archaic spelling of "buses". In new code
* "buses" is preferred.
*/
TAILQ_HEAD(,cam_eb) xpt_busses;
u_int bus_generation;
struct intr_config_hook *xpt_config_hook;
int boot_delay;
struct callout boot_callout;
struct mtx xpt_topo_lock;
struct mtx xpt_lock;
struct taskqueue *xpt_taskq;
};
typedef enum {
DM_RET_COPY = 0x01,
DM_RET_FLAG_MASK = 0x0f,
DM_RET_NONE = 0x00,
DM_RET_STOP = 0x10,
DM_RET_DESCEND = 0x20,
DM_RET_ERROR = 0x30,
DM_RET_ACTION_MASK = 0xf0
} dev_match_ret;
typedef enum {
XPT_DEPTH_BUS,
XPT_DEPTH_TARGET,
XPT_DEPTH_DEVICE,
XPT_DEPTH_PERIPH
} xpt_traverse_depth;
struct xpt_traverse_config {
xpt_traverse_depth depth;
void *tr_func;
void *tr_arg;
};
typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
/* Transport layer configuration information */
static struct xpt_softc xsoftc;
MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
&xsoftc.boot_delay, 0, "Bus registration wait time");
SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
&xsoftc.xpt_generation, 0, "CAM peripheral generation count");
struct cam_doneq {
struct mtx_padalign cam_doneq_mtx;
STAILQ_HEAD(, ccb_hdr) cam_doneq;
int cam_doneq_sleep;
};
static struct cam_doneq cam_doneqs[MAXCPU];
static int cam_num_doneqs;
static struct proc *cam_proc;
SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
&cam_num_doneqs, 0, "Number of completion queues/threads");
struct cam_periph *xpt_periph;
static periph_init_t xpt_periph_init;
static struct periph_driver xpt_driver =
{
xpt_periph_init, "xpt",
TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
CAM_PERIPH_DRV_EARLY
};
PERIPHDRIVER_DECLARE(xpt, xpt_driver);
static d_open_t xptopen;
static d_close_t xptclose;
static d_ioctl_t xptioctl;
static d_ioctl_t xptdoioctl;
static struct cdevsw xpt_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = xptopen,
.d_close = xptclose,
.d_ioctl = xptioctl,
.d_name = "xpt",
};
/* Storage for debugging datastructures */
struct cam_path *cam_dpath;
u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
&cam_dflags, 0, "Enabled debug flags");
u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
&cam_debug_delay, 0, "Delay in us after each debug message");
/* Our boot-time initialization hook */
static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
static moduledata_t cam_moduledata = {
"cam",
cam_module_event_handler,
NULL
};
static int xpt_init(void *);
DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
MODULE_VERSION(cam, 1);
static void xpt_async_bcast(struct async_list *async_head,
u_int32_t async_code,
struct cam_path *path,
void *async_arg);
static path_id_t xptnextfreepathid(void);
static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
static union ccb *xpt_get_ccb(struct cam_periph *periph);
static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
static void xpt_run_allocq(struct cam_periph *periph, int sleep);
static void xpt_run_allocq_task(void *context, int pending);
static void xpt_run_devq(struct cam_devq *devq);
static timeout_t xpt_release_devq_timeout;
static void xpt_release_simq_timeout(void *arg) __unused;
static void xpt_acquire_bus(struct cam_eb *bus);
static void xpt_release_bus(struct cam_eb *bus);
static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
int run_queue);
static struct cam_et*
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
static void xpt_acquire_target(struct cam_et *target);
static void xpt_release_target(struct cam_et *target);
static struct cam_eb*
xpt_find_bus(path_id_t path_id);
static struct cam_et*
xpt_find_target(struct cam_eb *bus, target_id_t target_id);
static struct cam_ed*
xpt_find_device(struct cam_et *target, lun_id_t lun_id);
static void xpt_config(void *arg);
static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
u_int32_t new_priority);
static xpt_devicefunc_t xptpassannouncefunc;
static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
static void xptpoll(struct cam_sim *sim);
static void camisr_runqueue(void);
static void xpt_done_process(struct ccb_hdr *ccb_h);
static void xpt_done_td(void *);
static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
u_int num_patterns, struct cam_eb *bus);
static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
u_int num_patterns,
struct cam_ed *device);
static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
u_int num_patterns,
struct cam_periph *periph);
static xpt_busfunc_t xptedtbusfunc;
static xpt_targetfunc_t xptedttargetfunc;
static xpt_devicefunc_t xptedtdevicefunc;
static xpt_periphfunc_t xptedtperiphfunc;
static xpt_pdrvfunc_t xptplistpdrvfunc;
static xpt_periphfunc_t xptplistperiphfunc;
static int xptedtmatch(struct ccb_dev_match *cdm);
static int xptperiphlistmatch(struct ccb_dev_match *cdm);
static int xptbustraverse(struct cam_eb *start_bus,
xpt_busfunc_t *tr_func, void *arg);
static int xpttargettraverse(struct cam_eb *bus,
struct cam_et *start_target,
xpt_targetfunc_t *tr_func, void *arg);
static int xptdevicetraverse(struct cam_et *target,
struct cam_ed *start_device,
xpt_devicefunc_t *tr_func, void *arg);
static int xptperiphtraverse(struct cam_ed *device,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg);
static int xptpdrvtraverse(struct periph_driver **start_pdrv,
xpt_pdrvfunc_t *tr_func, void *arg);
static int xptpdperiphtraverse(struct periph_driver **pdrv,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func,
void *arg);
static xpt_busfunc_t xptdefbusfunc;
static xpt_targetfunc_t xptdeftargetfunc;
static xpt_devicefunc_t xptdefdevicefunc;
static xpt_periphfunc_t xptdefperiphfunc;
static void xpt_finishconfig_task(void *context, int pending);
static void xpt_dev_async_default(u_int32_t async_code,
struct cam_eb *bus,
struct cam_et *target,
struct cam_ed *device,
void *async_arg);
static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
struct cam_et *target,
lun_id_t lun_id);
static xpt_devicefunc_t xptsetasyncfunc;
static xpt_busfunc_t xptsetasyncbusfunc;
static cam_status xptregister(struct cam_periph *periph,
void *arg);
static const char * xpt_action_name(uint32_t action);
static __inline int device_is_queued(struct cam_ed *device);
static __inline int
xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
{
int retval;
mtx_assert(&devq->send_mtx, MA_OWNED);
if ((dev->ccbq.queue.entries > 0) &&
(dev->ccbq.dev_openings > 0) &&
(dev->ccbq.queue.qfrozen_cnt == 0)) {
/*
* The priority of a device waiting for controller
* resources is that of the highest priority CCB
* enqueued.
*/
retval =
xpt_schedule_dev(&devq->send_queue,
&dev->devq_entry,
CAMQ_GET_PRIO(&dev->ccbq.queue));
} else {
retval = 0;
}
return (retval);
}
static __inline int
device_is_queued(struct cam_ed *device)
{
return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
}
static void
xpt_periph_init()
{
make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
}
static int
xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
{
/*
* Only allow read-write access.
*/
if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
return(EPERM);
/*
* We don't allow nonblocking access.
*/
if ((flags & O_NONBLOCK) != 0) {
printf("%s: can't do nonblocking access\n", devtoname(dev));
return(ENODEV);
}
return(0);
}
static int
xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
{
return(0);
}
/*
* Don't automatically grab the xpt softc lock here even though this is going
* through the xpt device. The xpt device is really just a back door for
* accessing other devices and SIMs, so the right thing to do is to grab
* the appropriate SIM lock once the bus/SIM is located.
*/
static int
xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
int error;
if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
}
return (error);
}
static int
xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
int error;
error = 0;
switch(cmd) {
/*
* For the transport layer CAMIOCOMMAND ioctl, we really only want
* to accept CCB types that don't quite make sense to send through a
* passthrough driver. XPT_PATH_INQ is an exception to this, as stated
* in the CAM spec.
*/
case CAMIOCOMMAND: {
union ccb *ccb;
union ccb *inccb;
struct cam_eb *bus;
inccb = (union ccb *)addr;
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
if (inccb->ccb_h.func_code == XPT_SCSI_IO)
inccb->csio.bio = NULL;
#endif
if (inccb->ccb_h.flags & CAM_UNLOCKED)
return (EINVAL);
bus = xpt_find_bus(inccb->ccb_h.path_id);
if (bus == NULL)
return (EINVAL);
switch (inccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
case XPT_RESET_BUS:
if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
xpt_release_bus(bus);
return (EINVAL);
}
break;
case XPT_SCAN_TGT:
if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
xpt_release_bus(bus);
return (EINVAL);
}
break;
default:
break;
}
switch(inccb->ccb_h.func_code) {
case XPT_SCAN_BUS:
case XPT_RESET_BUS:
case XPT_PATH_INQ:
case XPT_ENG_INQ:
case XPT_SCAN_LUN:
case XPT_SCAN_TGT:
ccb = xpt_alloc_ccb();
/*
* Create a path using the bus, target, and lun the
* user passed in.
*/
if (xpt_create_path(&ccb->ccb_h.path, NULL,
inccb->ccb_h.path_id,
inccb->ccb_h.target_id,
inccb->ccb_h.target_lun) !=
CAM_REQ_CMP){
error = EINVAL;
xpt_free_ccb(ccb);
break;
}
/* Ensure all of our fields are correct */
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
inccb->ccb_h.pinfo.priority);
xpt_merge_ccb(ccb, inccb);
xpt_path_lock(ccb->ccb_h.path);
cam_periph_runccb(ccb, NULL, 0, 0, NULL);
xpt_path_unlock(ccb->ccb_h.path);
bcopy(ccb, inccb, sizeof(union ccb));
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
break;
case XPT_DEBUG: {
union ccb ccb;
/*
* This is an immediate CCB, so it's okay to
* allocate it on the stack.
*/
/*
* Create a path using the bus, target, and lun the
* user passed in.
*/
if (xpt_create_path(&ccb.ccb_h.path, NULL,
inccb->ccb_h.path_id,
inccb->ccb_h.target_id,
inccb->ccb_h.target_lun) !=
CAM_REQ_CMP){
error = EINVAL;
break;
}
/* Ensure all of our fields are correct */
xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
inccb->ccb_h.pinfo.priority);
xpt_merge_ccb(&ccb, inccb);
xpt_action(&ccb);
bcopy(&ccb, inccb, sizeof(union ccb));
xpt_free_path(ccb.ccb_h.path);
break;
}
case XPT_DEV_MATCH: {
struct cam_periph_map_info mapinfo;
struct cam_path *old_path;
/*
* We can't deal with physical addresses for this
* type of transaction.
*/
if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
CAM_DATA_VADDR) {
error = EINVAL;
break;
}
/*
* Save this in case the caller had it set to
* something in particular.
*/
old_path = inccb->ccb_h.path;
/*
* We really don't need a path for the matching
* code. The path is needed because of the
* debugging statements in xpt_action(). They
* assume that the CCB has a valid path.
*/
inccb->ccb_h.path = xpt_periph->path;
bzero(&mapinfo, sizeof(mapinfo));
/*
* Map the pattern and match buffers into kernel
* virtual address space.
*/
error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
if (error) {
inccb->ccb_h.path = old_path;
break;
}
/*
* This is an immediate CCB, we can send it on directly.
*/
xpt_action(inccb);
/*
* Map the buffers back into user space.
*/
cam_periph_unmapmem(inccb, &mapinfo);
inccb->ccb_h.path = old_path;
error = 0;
break;
}
default:
error = ENOTSUP;
break;
}
xpt_release_bus(bus);
break;
}
/*
* This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
* with the periphal driver name and unit name filled in. The other
* fields don't really matter as input. The passthrough driver name
* ("pass"), and unit number are passed back in the ccb. The current
* device generation number, and the index into the device peripheral
* driver list, and the status are also passed back. Note that
* since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
* we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
* (or rather should be) impossible for the device peripheral driver
* list to change since we look at the whole thing in one pass, and
* we do it with lock protection.
*
*/
case CAMGETPASSTHRU: {
union ccb *ccb;
struct cam_periph *periph;
struct periph_driver **p_drv;
char *name;
u_int unit;
int base_periph_found;
ccb = (union ccb *)addr;
unit = ccb->cgdl.unit_number;
name = ccb->cgdl.periph_name;
base_periph_found = 0;
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
if (ccb->ccb_h.func_code == XPT_SCSI_IO)
ccb->csio.bio = NULL;
#endif
/*
* Sanity check -- make sure we don't get a null peripheral
* driver name.
*/
if (*ccb->cgdl.periph_name == '\0') {
error = EINVAL;
break;
}
/* Keep the list from changing while we traverse it */
xpt_lock_buses();
/* first find our driver in the list of drivers */
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
if (strcmp((*p_drv)->driver_name, name) == 0)
break;
if (*p_drv == NULL) {
xpt_unlock_buses();
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
*ccb->cgdl.periph_name = '\0';
ccb->cgdl.unit_number = 0;
error = ENOENT;
break;
}
/*
* Run through every peripheral instance of this driver
* and check to see whether it matches the unit passed
* in by the user. If it does, get out of the loops and
* find the passthrough driver associated with that
* peripheral driver.
*/
for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
periph = TAILQ_NEXT(periph, unit_links)) {
if (periph->unit_number == unit)
break;
}
/*
* If we found the peripheral driver that the user passed
* in, go through all of the peripheral drivers for that
* particular device and look for a passthrough driver.
*/
if (periph != NULL) {
struct cam_ed *device;
int i;
base_periph_found = 1;
device = periph->path->device;
for (i = 0, periph = SLIST_FIRST(&device->periphs);
periph != NULL;
periph = SLIST_NEXT(periph, periph_links), i++) {
/*
* Check to see whether we have a
* passthrough device or not.
*/
if (strcmp(periph->periph_name, "pass") == 0) {
/*
* Fill in the getdevlist fields.
*/
strcpy(ccb->cgdl.periph_name,
periph->periph_name);
ccb->cgdl.unit_number =
periph->unit_number;
if (SLIST_NEXT(periph, periph_links))
ccb->cgdl.status =
CAM_GDEVLIST_MORE_DEVS;
else
ccb->cgdl.status =
CAM_GDEVLIST_LAST_DEVICE;
ccb->cgdl.generation =
device->generation;
ccb->cgdl.index = i;
/*
* Fill in some CCB header fields
* that the user may want.
*/
ccb->ccb_h.path_id =
periph->path->bus->path_id;
ccb->ccb_h.target_id =
periph->path->target->target_id;
ccb->ccb_h.target_lun =
periph->path->device->lun_id;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
}
}
/*
* If the periph is null here, one of two things has
* happened. The first possibility is that we couldn't
* find the unit number of the particular peripheral driver
* that the user is asking about. e.g. the user asks for
* the passthrough driver for "da11". We find the list of
* "da" peripherals all right, but there is no unit 11.
* The other possibility is that we went through the list
* of peripheral drivers attached to the device structure,
* but didn't find one with the name "pass". Either way,
* we return ENOENT, since we couldn't find something.
*/
if (periph == NULL) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
ccb->cgdl.status = CAM_GDEVLIST_ERROR;
*ccb->cgdl.periph_name = '\0';
ccb->cgdl.unit_number = 0;
error = ENOENT;
/*
* It is unfortunate that this is even necessary,
* but there are many, many clueless users out there.
* If this is true, the user is looking for the
* passthrough driver, but doesn't have one in his
* kernel.
*/
if (base_periph_found == 1) {
printf("xptioctl: pass driver is not in the "
"kernel\n");
printf("xptioctl: put \"device pass\" in "
"your kernel config file\n");
}
}
xpt_unlock_buses();
break;
}
default:
error = ENOTTY;
break;
}
return(error);
}
static int
cam_module_event_handler(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
if ((error = xpt_init(NULL)) != 0)
return (error);
break;
case MOD_UNLOAD:
return EBUSY;
default:
return EOPNOTSUPP;
}
return 0;
}
static struct xpt_proto *
xpt_proto_find(cam_proto proto)
{
struct xpt_proto **pp;
SET_FOREACH(pp, cam_xpt_proto_set) {
if ((*pp)->proto == proto)
return *pp;
}
return NULL;
}
static void
xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
{
if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
xpt_free_path(done_ccb->ccb_h.path);
xpt_free_ccb(done_ccb);
} else {
done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
}
xpt_release_boot();
}
/* thread to handle bus rescans */
static void
xpt_scanner_thread(void *dummy)
{
union ccb *ccb;
struct cam_path path;
xpt_lock_buses();
for (;;) {
if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
"-", 0);
if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
xpt_unlock_buses();
/*
* Since lock can be dropped inside and path freed
* by completion callback even before return here,
* take our own path copy for reference.
*/
xpt_copy_path(&path, ccb->ccb_h.path);
xpt_path_lock(&path);
xpt_action(ccb);
xpt_path_unlock(&path);
xpt_release_path(&path);
xpt_lock_buses();
}
}
}
void
xpt_rescan(union ccb *ccb)
{
struct ccb_hdr *hdr;
/* Prepare request */
if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
ccb->ccb_h.func_code = XPT_SCAN_BUS;
else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
ccb->ccb_h.func_code = XPT_SCAN_TGT;
else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
ccb->ccb_h.func_code = XPT_SCAN_LUN;
else {
xpt_print(ccb->ccb_h.path, "illegal scan path\n");
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
return;
}
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
xpt_action_name(ccb->ccb_h.func_code)));
ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
ccb->ccb_h.cbfcnp = xpt_rescan_done;
xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
/* Don't make duplicate entries for the same paths. */
xpt_lock_buses();
if (ccb->ccb_h.ppriv_ptr1 == NULL) {
TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
wakeup(&xsoftc.ccb_scanq);
xpt_unlock_buses();
xpt_print(ccb->ccb_h.path, "rescan already queued\n");
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
return;
}
}
}
TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
xsoftc.buses_to_config++;
wakeup(&xsoftc.ccb_scanq);
xpt_unlock_buses();
}
/* Functions accessed by the peripheral drivers */
static int
xpt_init(void *dummy)
{
struct cam_sim *xpt_sim;
struct cam_path *path;
struct cam_devq *devq;
cam_status status;
int error, i;
TAILQ_INIT(&xsoftc.xpt_busses);
TAILQ_INIT(&xsoftc.ccb_scanq);
STAILQ_INIT(&xsoftc.highpowerq);
xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
#ifdef CAM_BOOT_DELAY
/*
* Override this value at compile time to assist our users
* who don't use loader to boot a kernel.
*/
xsoftc.boot_delay = CAM_BOOT_DELAY;
#endif
/*
* The xpt layer is, itself, the equivalent of a SIM.
* Allow 16 ccbs in the ccb pool for it. This should
* give decent parallelism when we probe buses and
* perform other XPT functions.
*/
devq = cam_simq_alloc(16);
xpt_sim = cam_sim_alloc(xptaction,
xptpoll,
"xpt",
/*softc*/NULL,
/*unit*/0,
/*mtx*/&xsoftc.xpt_lock,
/*max_dev_transactions*/0,
/*max_tagged_dev_transactions*/0,
devq);
if (xpt_sim == NULL)
return (ENOMEM);
mtx_lock(&xsoftc.xpt_lock);
if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
mtx_unlock(&xsoftc.xpt_lock);
printf("xpt_init: xpt_bus_register failed with status %#x,"
" failing attach\n", status);
return (EINVAL);
}
mtx_unlock(&xsoftc.xpt_lock);
/*
* Looking at the XPT from the SIM layer, the XPT is
* the equivalent of a peripheral driver. Allocate
* a peripheral driver entry for us.
*/
if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
printf("xpt_init: xpt_create_path failed with status %#x,"
" failing attach\n", status);
return (EINVAL);
}
xpt_path_lock(path);
cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
path, NULL, 0, xpt_sim);
xpt_path_unlock(path);
xpt_free_path(path);
if (cam_num_doneqs < 1)
cam_num_doneqs = 1 + mp_ncpus / 6;
else if (cam_num_doneqs > MAXCPU)
cam_num_doneqs = MAXCPU;
for (i = 0; i < cam_num_doneqs; i++) {
mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
MTX_DEF);
STAILQ_INIT(&cam_doneqs[i].cam_doneq);
error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
&cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
if (error != 0) {
cam_num_doneqs = i;
break;
}
}
if (cam_num_doneqs < 1) {
printf("xpt_init: Cannot init completion queues "
"- failing attach\n");
return (ENOMEM);
}
/*
* Register a callback for when interrupts are enabled.
*/
xsoftc.xpt_config_hook =
(struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
M_CAMXPT, M_NOWAIT | M_ZERO);
if (xsoftc.xpt_config_hook == NULL) {
printf("xpt_init: Cannot malloc config hook "
"- failing attach\n");
return (ENOMEM);
}
xsoftc.xpt_config_hook->ich_func = xpt_config;
if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
free (xsoftc.xpt_config_hook, M_CAMXPT);
printf("xpt_init: config_intrhook_establish failed "
"- failing attach\n");
}
return (0);
}
static cam_status
xptregister(struct cam_periph *periph, void *arg)
{
struct cam_sim *xpt_sim;
if (periph == NULL) {
printf("xptregister: periph was NULL!!\n");
return(CAM_REQ_CMP_ERR);
}
xpt_sim = (struct cam_sim *)arg;
xpt_sim->softc = periph;
xpt_periph = periph;
periph->softc = NULL;
return(CAM_REQ_CMP);
}
int32_t
xpt_add_periph(struct cam_periph *periph)
{
struct cam_ed *device;
int32_t status;
TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
device = periph->path->device;
status = CAM_REQ_CMP;
if (device != NULL) {
mtx_lock(&device->target->bus->eb_mtx);
device->generation++;
SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
mtx_unlock(&device->target->bus->eb_mtx);
atomic_add_32(&xsoftc.xpt_generation, 1);
}
return (status);
}
void
xpt_remove_periph(struct cam_periph *periph)
{
struct cam_ed *device;
device = periph->path->device;
if (device != NULL) {
mtx_lock(&device->target->bus->eb_mtx);
device->generation++;
SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
mtx_unlock(&device->target->bus->eb_mtx);
atomic_add_32(&xsoftc.xpt_generation, 1);
}
}
void
xpt_announce_periph(struct cam_periph *periph, char *announce_string)
{
struct cam_path *path = periph->path;
struct xpt_proto *proto;
cam_periph_assert(periph, MA_OWNED);
periph->flags |= CAM_PERIPH_ANNOUNCED;
printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
periph->periph_name, periph->unit_number,
path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id,
path->bus->path_id,
path->target->target_id,
(uintmax_t)path->device->lun_id);
printf("%s%d: ", periph->periph_name, periph->unit_number);
proto = xpt_proto_find(path->device->protocol);
if (proto)
proto->ops->announce(path->device);
else
printf("%s%d: Unknown protocol device %d\n",
periph->periph_name, periph->unit_number,
path->device->protocol);
if (path->device->serial_num_len > 0) {
/* Don't wrap the screen - print only the first 60 chars */
printf("%s%d: Serial Number %.60s\n", periph->periph_name,
periph->unit_number, path->device->serial_num);
}
/* Announce transport details. */
path->bus->xport->ops->announce(periph);
/* Announce command queueing. */
if (path->device->inq_flags & SID_CmdQue
|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
printf("%s%d: Command Queueing enabled\n",
periph->periph_name, periph->unit_number);
}
/* Announce caller's details if they've passed in. */
if (announce_string != NULL)
printf("%s%d: %s\n", periph->periph_name,
periph->unit_number, announce_string);
}
void
xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
{
if (quirks != 0) {
printf("%s%d: quirks=0x%b\n", periph->periph_name,
periph->unit_number, quirks, bit_string);
}
}
void
xpt_denounce_periph(struct cam_periph *periph)
{
struct cam_path *path = periph->path;
struct xpt_proto *proto;
cam_periph_assert(periph, MA_OWNED);
printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
periph->periph_name, periph->unit_number,
path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id,
path->bus->path_id,
path->target->target_id,
(uintmax_t)path->device->lun_id);
printf("%s%d: ", periph->periph_name, periph->unit_number);
proto = xpt_proto_find(path->device->protocol);
if (proto)
proto->ops->denounce(path->device);
else
printf("%s%d: Unknown protocol device %d\n",
periph->periph_name, periph->unit_number,
path->device->protocol);
if (path->device->serial_num_len > 0)
printf(" s/n %.60s", path->device->serial_num);
printf(" detached\n");
}
int
xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
{
int ret = -1, l, o;
struct ccb_dev_advinfo cdai;
struct scsi_vpd_id_descriptor *idd;
xpt_path_assert(path, MA_OWNED);
memset(&cdai, 0, sizeof(cdai));
xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
cdai.flags = CDAI_FLAG_NONE;
cdai.bufsiz = len;
if (!strcmp(attr, "GEOM::ident"))
cdai.buftype = CDAI_TYPE_SERIAL_NUM;
else if (!strcmp(attr, "GEOM::physpath"))
cdai.buftype = CDAI_TYPE_PHYS_PATH;
else if (strcmp(attr, "GEOM::lunid") == 0 ||
strcmp(attr, "GEOM::lunname") == 0) {
cdai.buftype = CDAI_TYPE_SCSI_DEVID;
cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
} else
goto out;
cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
if (cdai.buf == NULL) {
ret = ENOMEM;
goto out;
}
xpt_action((union ccb *)&cdai); /* can only be synchronous */
if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
if (cdai.provsiz == 0)
goto out;
if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
if (strcmp(attr, "GEOM::lunid") == 0) {
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
cdai.provsiz, scsi_devid_is_lun_naa);
if (idd == NULL)
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
cdai.provsiz, scsi_devid_is_lun_eui64);
if (idd == NULL)
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
cdai.provsiz, scsi_devid_is_lun_uuid);
if (idd == NULL)
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
cdai.provsiz, scsi_devid_is_lun_md5);
} else
idd = NULL;
if (idd == NULL)
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
cdai.provsiz, scsi_devid_is_lun_t10);
if (idd == NULL)
idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
cdai.provsiz, scsi_devid_is_lun_name);
if (idd == NULL)
goto out;
ret = 0;
if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
if (idd->length < len) {
for (l = 0; l < idd->length; l++)
buf[l] = idd->identifier[l] ?
idd->identifier[l] : ' ';
buf[l] = 0;
} else
ret = EFAULT;
} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
l = strnlen(idd->identifier, idd->length);
if (l < len) {
bcopy(idd->identifier, buf, l);
buf[l] = 0;
} else
ret = EFAULT;
} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
&& idd->identifier[0] == 0x10) {
if ((idd->length - 2) * 2 + 4 < len) {
for (l = 2, o = 0; l < idd->length; l++) {
if (l == 6 || l == 8 || l == 10 || l == 12)
o += sprintf(buf + o, "-");
o += sprintf(buf + o, "%02x",
idd->identifier[l]);
}
} else
ret = EFAULT;
} else {
if (idd->length * 2 < len) {
for (l = 0; l < idd->length; l++)
sprintf(buf + l * 2, "%02x",
idd->identifier[l]);
} else
ret = EFAULT;
}
} else {
ret = 0;
if (strlcpy(buf, cdai.buf, len) >= len)
ret = EFAULT;
}
out:
if (cdai.buf != NULL)
free(cdai.buf, M_CAMXPT);
return ret;
}
static dev_match_ret
xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_eb *bus)
{
dev_match_ret retval;
u_int i;
retval = DM_RET_NONE;
/*
* If we aren't given something to match against, that's an error.
*/
if (bus == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this bus matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_DESCEND | DM_RET_COPY);
for (i = 0; i < num_patterns; i++) {
struct bus_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a bus node, we
* aren't interested. However, we do indicate to the
* calling routine that we should continue descending the
* tree, since the user wants to match against lower-level
* EDT elements.
*/
if (patterns[i].type != DEV_MATCH_BUS) {
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_DESCEND;
continue;
}
cur_pattern = &patterns[i].pattern.bus_pattern;
/*
* If they want to match any bus node, we give them any
* device node.
*/
if (cur_pattern->flags == BUS_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* If we've already decided on an action, go ahead
* and return.
*/
if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == BUS_MATCH_NONE)
continue;
if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
&& (cur_pattern->path_id != bus->path_id))
continue;
if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
&& (cur_pattern->bus_id != bus->sim->bus_id))
continue;
if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
&& (cur_pattern->unit_number != bus->sim->unit_number))
continue;
if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
&& (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
DEV_IDLEN) != 0))
continue;
/*
* If we get to this point, the user definitely wants
* information on this bus. So tell the caller to copy the
* data out.
*/
retval |= DM_RET_COPY;
/*
* If the return action has been set to descend, then we
* know that we've already seen a non-bus matching
* expression, therefore we need to further descend the tree.
* This won't change by continuing around the loop, so we
* go ahead and return. If we haven't seen a non-bus
* matching expression, we keep going around the loop until
* we exhaust the matching expressions. We'll set the stop
* flag once we fall out of the loop.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
return(retval);
}
/*
* If the return action hasn't been set to descend yet, that means
* we haven't seen anything other than bus matching patterns. So
* tell the caller to stop descending the tree -- the user doesn't
* want to match against lower level tree elements.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_STOP;
return(retval);
}
static dev_match_ret
xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_ed *device)
{
dev_match_ret retval;
u_int i;
retval = DM_RET_NONE;
/*
* If we aren't given something to match against, that's an error.
*/
if (device == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this device matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_DESCEND | DM_RET_COPY);
for (i = 0; i < num_patterns; i++) {
struct device_match_pattern *cur_pattern;
struct scsi_vpd_device_id *device_id_page;
/*
* If the pattern in question isn't for a device node, we
* aren't interested.
*/
if (patterns[i].type != DEV_MATCH_DEVICE) {
if ((patterns[i].type == DEV_MATCH_PERIPH)
&& ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
retval |= DM_RET_DESCEND;
continue;
}
cur_pattern = &patterns[i].pattern.device_pattern;
/* Error out if mutually exclusive options are specified. */
if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
== (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
return(DM_RET_ERROR);
/*
* If they want to match any device node, we give them any
* device node.
*/
if (cur_pattern->flags == DEV_MATCH_ANY)
goto copy_dev_node;
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == DEV_MATCH_NONE)
continue;
if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
&& (cur_pattern->path_id != device->target->bus->path_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
&& (cur_pattern->target_id != device->target->target_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
&& (cur_pattern->target_lun != device->lun_id))
continue;
if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
&& (cam_quirkmatch((caddr_t)&device->inq_data,
(caddr_t)&cur_pattern->data.inq_pat,
1, sizeof(cur_pattern->data.inq_pat),
scsi_static_inquiry_match) == NULL))
continue;
device_id_page = (struct scsi_vpd_device_id *)device->device_id;
if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
&& (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
|| scsi_devid_match((uint8_t *)device_id_page->desc_list,
device->device_id_len
- SVPD_DEVICE_ID_HDR_LEN,
cur_pattern->data.devid_pat.id,
cur_pattern->data.devid_pat.id_len) != 0))
continue;
copy_dev_node:
/*
* If we get to this point, the user definitely wants
* information on this device. So tell the caller to copy
* the data out.
*/
retval |= DM_RET_COPY;
/*
* If the return action has been set to descend, then we
* know that we've already seen a peripheral matching
* expression, therefore we need to further descend the tree.
* This won't change by continuing around the loop, so we
* go ahead and return. If we haven't seen a peripheral
* matching expression, we keep going around the loop until
* we exhaust the matching expressions. We'll set the stop
* flag once we fall out of the loop.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
return(retval);
}
/*
* If the return action hasn't been set to descend yet, that means
* we haven't seen any peripheral matching patterns. So tell the
* caller to stop descending the tree -- the user doesn't want to
* match against lower level tree elements.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
retval |= DM_RET_STOP;
return(retval);
}
/*
* Match a single peripheral against any number of match patterns.
*/
static dev_match_ret
xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
struct cam_periph *periph)
{
dev_match_ret retval;
u_int i;
/*
* If we aren't given something to match against, that's an error.
*/
if (periph == NULL)
return(DM_RET_ERROR);
/*
* If there are no match entries, then this peripheral matches no
* matter what.
*/
if ((patterns == NULL) || (num_patterns == 0))
return(DM_RET_STOP | DM_RET_COPY);
/*
* There aren't any nodes below a peripheral node, so there's no
* reason to descend the tree any further.
*/
retval = DM_RET_STOP;
for (i = 0; i < num_patterns; i++) {
struct periph_match_pattern *cur_pattern;
/*
* If the pattern in question isn't for a peripheral, we
* aren't interested.
*/
if (patterns[i].type != DEV_MATCH_PERIPH)
continue;
cur_pattern = &patterns[i].pattern.periph_pattern;
/*
* If they want to match on anything, then we will do so.
*/
if (cur_pattern->flags == PERIPH_MATCH_ANY) {
/* set the copy flag */
retval |= DM_RET_COPY;
/*
* We've already set the return action to stop,
* since there are no nodes below peripherals in
* the tree.
*/
return(retval);
}
/*
* Not sure why someone would do this...
*/
if (cur_pattern->flags == PERIPH_MATCH_NONE)
continue;
if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
&& (cur_pattern->path_id != periph->path->bus->path_id))
continue;
/*
* For the target and lun id's, we have to make sure the
* target and lun pointers aren't NULL. The xpt peripheral
* has a wildcard target and device.
*/
if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
&& ((periph->path->target == NULL)
||(cur_pattern->target_id != periph->path->target->target_id)))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
&& ((periph->path->device == NULL)
|| (cur_pattern->target_lun != periph->path->device->lun_id)))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
&& (cur_pattern->unit_number != periph->unit_number))
continue;
if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
&& (strncmp(cur_pattern->periph_name, periph->periph_name,
DEV_IDLEN) != 0))
continue;
/*
* If we get to this point, the user definitely wants
* information on this peripheral. So tell the caller to
* copy the data out.
*/
retval |= DM_RET_COPY;
/*
* The return action has already been set to stop, since
* peripherals don't have any nodes below them in the EDT.
*/
return(retval);
}
/*
* If we get to this point, the peripheral that was passed in
* doesn't match any of the patterns.
*/
return(retval);
}
static int
xptedtbusfunc(struct cam_eb *bus, void *arg)
{
struct ccb_dev_match *cdm;
struct cam_et *target;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
/*
* If our position is for something deeper in the tree, that means
* that we've already seen this node. So, we keep going down.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target != NULL))
retval = DM_RET_DESCEND;
else
retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
/*
* If we got an error, bail out of the search.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this bus out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
cdm->pos.cookie.bus = bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_BUS;
cdm->matches[j].result.bus_result.path_id = bus->path_id;
cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
cdm->matches[j].result.bus_result.unit_number =
bus->sim->unit_number;
strncpy(cdm->matches[j].result.bus_result.dev_name,
bus->sim->sim_name, DEV_IDLEN);
}
/*
* If the user is only interested in buses, there's no
* reason to descend to the next level in the tree.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
return(1);
/*
* If there is a target generation recorded, check it to
* make sure the target list hasn't changed.
*/
mtx_lock(&bus->eb_mtx);
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target != NULL)) {
if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
bus->generation)) {
mtx_unlock(&bus->eb_mtx);
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return (0);
}
target = (struct cam_et *)cdm->pos.cookie.target;
target->refcount++;
} else
target = NULL;
mtx_unlock(&bus->eb_mtx);
return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
}
static int
xptedttargetfunc(struct cam_et *target, void *arg)
{
struct ccb_dev_match *cdm;
struct cam_eb *bus;
struct cam_ed *device;
cdm = (struct ccb_dev_match *)arg;
bus = target->bus;
/*
* If there is a device list generation recorded, check it to
* make sure the device list hasn't changed.
*/
mtx_lock(&bus->eb_mtx);
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device != NULL)) {
if (cdm->pos.generations[CAM_DEV_GENERATION] !=
target->generation) {
mtx_unlock(&bus->eb_mtx);
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
device = (struct cam_ed *)cdm->pos.cookie.device;
device->refcount++;
} else
device = NULL;
mtx_unlock(&bus->eb_mtx);
return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
}
static int
xptedtdevicefunc(struct cam_ed *device, void *arg)
{
struct cam_eb *bus;
struct cam_periph *periph;
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
bus = device->target->bus;
/*
* If our position is for something deeper in the tree, that means
* that we've already seen this node. So, we keep going down.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device == device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL))
retval = DM_RET_DESCEND;
else
retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
device);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this device out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
cdm->pos.cookie.bus = device->target->bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->pos.cookie.target = device->target;
cdm->pos.generations[CAM_TARGET_GENERATION] =
device->target->bus->generation;
cdm->pos.cookie.device = device;
cdm->pos.generations[CAM_DEV_GENERATION] =
device->target->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_DEVICE;
cdm->matches[j].result.device_result.path_id =
device->target->bus->path_id;
cdm->matches[j].result.device_result.target_id =
device->target->target_id;
cdm->matches[j].result.device_result.target_lun =
device->lun_id;
cdm->matches[j].result.device_result.protocol =
device->protocol;
bcopy(&device->inq_data,
&cdm->matches[j].result.device_result.inq_data,
sizeof(struct scsi_inquiry_data));
bcopy(&device->ident_data,
&cdm->matches[j].result.device_result.ident_data,
sizeof(struct ata_params));
/* Let the user know whether this device is unconfigured */
if (device->flags & CAM_DEV_UNCONFIGURED)
cdm->matches[j].result.device_result.flags =
DEV_RESULT_UNCONFIGURED;
else
cdm->matches[j].result.device_result.flags =
DEV_RESULT_NOFLAG;
}
/*
* If the user isn't interested in peripherals, don't descend
* the tree any further.
*/
if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
return(1);
/*
* If there is a peripheral list generation recorded, make sure
* it hasn't changed.
*/
xpt_lock_buses();
mtx_lock(&bus->eb_mtx);
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus == bus)
&& (cdm->pos.position_type & CAM_DEV_POS_TARGET)
&& (cdm->pos.cookie.target == device->target)
&& (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
&& (cdm->pos.cookie.device == device)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL)) {
if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
device->generation) {
mtx_unlock(&bus->eb_mtx);
xpt_unlock_buses();
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
periph = (struct cam_periph *)cdm->pos.cookie.periph;
periph->refcount++;
} else
periph = NULL;
mtx_unlock(&bus->eb_mtx);
xpt_unlock_buses();
return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
}
static int
xptedtperiphfunc(struct cam_periph *periph, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this peripheral out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
CAM_DEV_POS_PERIPH;
cdm->pos.cookie.bus = periph->path->bus;
cdm->pos.generations[CAM_BUS_GENERATION]=
xsoftc.bus_generation;
cdm->pos.cookie.target = periph->path->target;
cdm->pos.generations[CAM_TARGET_GENERATION] =
periph->path->bus->generation;
cdm->pos.cookie.device = periph->path->device;
cdm->pos.generations[CAM_DEV_GENERATION] =
periph->path->target->generation;
cdm->pos.cookie.periph = periph;
cdm->pos.generations[CAM_PERIPH_GENERATION] =
periph->path->device->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_PERIPH;
cdm->matches[j].result.periph_result.path_id =
periph->path->bus->path_id;
cdm->matches[j].result.periph_result.target_id =
periph->path->target->target_id;
cdm->matches[j].result.periph_result.target_lun =
periph->path->device->lun_id;
cdm->matches[j].result.periph_result.unit_number =
periph->unit_number;
strncpy(cdm->matches[j].result.periph_result.periph_name,
periph->periph_name, DEV_IDLEN);
}
return(1);
}
static int
xptedtmatch(struct ccb_dev_match *cdm)
{
struct cam_eb *bus;
int ret;
cdm->num_matches = 0;
/*
* Check the bus list generation. If it has changed, the user
* needs to reset everything and start over.
*/
xpt_lock_buses();
if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
&& (cdm->pos.cookie.bus != NULL)) {
if (cdm->pos.generations[CAM_BUS_GENERATION] !=
xsoftc.bus_generation) {
xpt_unlock_buses();
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
bus = (struct cam_eb *)cdm->pos.cookie.bus;
bus->refcount++;
} else
bus = NULL;
xpt_unlock_buses();
ret = xptbustraverse(bus, xptedtbusfunc, cdm);
/*
* If we get back 0, that means that we had to stop before fully
* traversing the EDT. It also means that one of the subroutines
* has set the status field to the proper value. If we get back 1,
* we've fully traversed the EDT and copied out any matching entries.
*/
if (ret == 1)
cdm->status = CAM_DEV_MATCH_LAST;
return(ret);
}
static int
xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
{
struct cam_periph *periph;
struct ccb_dev_match *cdm;
cdm = (struct ccb_dev_match *)arg;
xpt_lock_buses();
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv == pdrv)
&& (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
&& (cdm->pos.cookie.periph != NULL)) {
if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
(*pdrv)->generation) {
xpt_unlock_buses();
cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
return(0);
}
periph = (struct cam_periph *)cdm->pos.cookie.periph;
periph->refcount++;
} else
periph = NULL;
xpt_unlock_buses();
return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
}
static int
xptplistperiphfunc(struct cam_periph *periph, void *arg)
{
struct ccb_dev_match *cdm;
dev_match_ret retval;
cdm = (struct ccb_dev_match *)arg;
retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
/*
* If the copy flag is set, copy this peripheral out.
*/
if (retval & DM_RET_COPY) {
int spaceleft, j;
spaceleft = cdm->match_buf_len - (cdm->num_matches *
sizeof(struct dev_match_result));
/*
* If we don't have enough space to put in another
* match result, save our position and tell the
* user there are more devices to check.
*/
if (spaceleft < sizeof(struct dev_match_result)) {
struct periph_driver **pdrv;
pdrv = NULL;
bzero(&cdm->pos, sizeof(cdm->pos));
cdm->pos.position_type =
CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
CAM_DEV_POS_PERIPH;
/*
* This may look a bit non-sensical, but it is
* actually quite logical. There are very few
* peripheral drivers, and bloating every peripheral
* structure with a pointer back to its parent
* peripheral driver linker set entry would cost
* more in the long run than doing this quick lookup.
*/
for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
if (strcmp((*pdrv)->driver_name,
periph->periph_name) == 0)
break;
}
if (*pdrv == NULL) {
cdm->status = CAM_DEV_MATCH_ERROR;
return(0);
}
cdm->pos.cookie.pdrv = pdrv;
/*
* The periph generation slot does double duty, as
* does the periph pointer slot. They are used for
* both edt and pdrv lookups and positioning.
*/
cdm->pos.cookie.periph = periph;
cdm->pos.generations[CAM_PERIPH_GENERATION] =
(*pdrv)->generation;
cdm->status = CAM_DEV_MATCH_MORE;
return(0);
}
j = cdm->num_matches;
cdm->num_matches++;
cdm->matches[j].type = DEV_MATCH_PERIPH;
cdm->matches[j].result.periph_result.path_id =
periph->path->bus->path_id;
/*
* The transport layer peripheral doesn't have a target or
* lun.
*/
if (periph->path->target)
cdm->matches[j].result.periph_result.target_id =
periph->path->target->target_id;
else
cdm->matches[j].result.periph_result.target_id =
CAM_TARGET_WILDCARD;
if (periph->path->device)
cdm->matches[j].result.periph_result.target_lun =
periph->path->device->lun_id;
else
cdm->matches[j].result.periph_result.target_lun =
CAM_LUN_WILDCARD;
cdm->matches[j].result.periph_result.unit_number =
periph->unit_number;
strncpy(cdm->matches[j].result.periph_result.periph_name,
periph->periph_name, DEV_IDLEN);
}
return(1);
}
static int
xptperiphlistmatch(struct ccb_dev_match *cdm)
{
int ret;
cdm->num_matches = 0;
/*
* At this point in the edt traversal function, we check the bus
* list generation to make sure that no buses have been added or
* removed since the user last sent a XPT_DEV_MATCH ccb through.
* For the peripheral driver list traversal function, however, we
* don't have to worry about new peripheral driver types coming or
* going; they're in a linker set, and therefore can't change
* without a recompile.
*/
if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
&& (cdm->pos.cookie.pdrv != NULL))
ret = xptpdrvtraverse(
(struct periph_driver **)cdm->pos.cookie.pdrv,
xptplistpdrvfunc, cdm);
else
ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
/*
* If we get back 0, that means that we had to stop before fully
* traversing the peripheral driver tree. It also means that one of
* the subroutines has set the status field to the proper value. If
* we get back 1, we've fully traversed the EDT and copied out any
* matching entries.
*/
if (ret == 1)
cdm->status = CAM_DEV_MATCH_LAST;
return(ret);
}
static int
xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
{
struct cam_eb *bus, *next_bus;
int retval;
retval = 1;
if (start_bus)
bus = start_bus;
else {
xpt_lock_buses();
bus = TAILQ_FIRST(&xsoftc.xpt_busses);
if (bus == NULL) {
xpt_unlock_buses();
return (retval);
}
bus->refcount++;
xpt_unlock_buses();
}
for (; bus != NULL; bus = next_bus) {
retval = tr_func(bus, arg);
if (retval == 0) {
xpt_release_bus(bus);
break;
}
xpt_lock_buses();
next_bus = TAILQ_NEXT(bus, links);
if (next_bus)
next_bus->refcount++;
xpt_unlock_buses();
xpt_release_bus(bus);
}
return(retval);
}
static int
xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
xpt_targetfunc_t *tr_func, void *arg)
{
struct cam_et *target, *next_target;
int retval;
retval = 1;
if (start_target)
target = start_target;
else {
mtx_lock(&bus->eb_mtx);
target = TAILQ_FIRST(&bus->et_entries);
if (target == NULL) {
mtx_unlock(&bus->eb_mtx);
return (retval);
}
target->refcount++;
mtx_unlock(&bus->eb_mtx);
}
for (; target != NULL; target = next_target) {
retval = tr_func(target, arg);
if (retval == 0) {
xpt_release_target(target);
break;
}
mtx_lock(&bus->eb_mtx);
next_target = TAILQ_NEXT(target, links);
if (next_target)
next_target->refcount++;
mtx_unlock(&bus->eb_mtx);
xpt_release_target(target);
}
return(retval);
}
static int
xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
xpt_devicefunc_t *tr_func, void *arg)
{
struct cam_eb *bus;
struct cam_ed *device, *next_device;
int retval;
retval = 1;
bus = target->bus;
if (start_device)
device = start_device;
else {
mtx_lock(&bus->eb_mtx);
device = TAILQ_FIRST(&target->ed_entries);
if (device == NULL) {
mtx_unlock(&bus->eb_mtx);
return (retval);
}
device->refcount++;
mtx_unlock(&bus->eb_mtx);
}
for (; device != NULL; device = next_device) {
mtx_lock(&device->device_mtx);
retval = tr_func(device, arg);
mtx_unlock(&device->device_mtx);
if (retval == 0) {
xpt_release_device(device);
break;
}
mtx_lock(&bus->eb_mtx);
next_device = TAILQ_NEXT(device, links);
if (next_device)
next_device->refcount++;
mtx_unlock(&bus->eb_mtx);
xpt_release_device(device);
}
return(retval);
}
static int
xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg)
{
struct cam_eb *bus;
struct cam_periph *periph, *next_periph;
int retval;
retval = 1;
bus = device->target->bus;
if (start_periph)
periph = start_periph;
else {
xpt_lock_buses();
mtx_lock(&bus->eb_mtx);
periph = SLIST_FIRST(&device->periphs);
while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
periph = SLIST_NEXT(periph, periph_links);
if (periph == NULL) {
mtx_unlock(&bus->eb_mtx);
xpt_unlock_buses();
return (retval);
}
periph->refcount++;
mtx_unlock(&bus->eb_mtx);
xpt_unlock_buses();
}
for (; periph != NULL; periph = next_periph) {
retval = tr_func(periph, arg);
if (retval == 0) {
cam_periph_release_locked(periph);
break;
}
xpt_lock_buses();
mtx_lock(&bus->eb_mtx);
next_periph = SLIST_NEXT(periph, periph_links);
while (next_periph != NULL &&
(next_periph->flags & CAM_PERIPH_FREE) != 0)
next_periph = SLIST_NEXT(next_periph, periph_links);
if (next_periph)
next_periph->refcount++;
mtx_unlock(&bus->eb_mtx);
xpt_unlock_buses();
cam_periph_release_locked(periph);
}
return(retval);
}
static int
xptpdrvtraverse(struct periph_driver **start_pdrv,
xpt_pdrvfunc_t *tr_func, void *arg)
{
struct periph_driver **pdrv;
int retval;
retval = 1;
/*
* We don't traverse the peripheral driver list like we do the
* other lists, because it is a linker set, and therefore cannot be
* changed during runtime. If the peripheral driver list is ever
* re-done to be something other than a linker set (i.e. it can
* change while the system is running), the list traversal should
* be modified to work like the other traversal functions.
*/
for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
*pdrv != NULL; pdrv++) {
retval = tr_func(pdrv, arg);
if (retval == 0)
return(retval);
}
return(retval);
}
static int
xptpdperiphtraverse(struct periph_driver **pdrv,
struct cam_periph *start_periph,
xpt_periphfunc_t *tr_func, void *arg)
{
struct cam_periph *periph, *next_periph;
int retval;
retval = 1;
if (start_periph)
periph = start_periph;
else {
xpt_lock_buses();
periph = TAILQ_FIRST(&(*pdrv)->units);
while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
periph = TAILQ_NEXT(periph, unit_links);
if (periph == NULL) {
xpt_unlock_buses();
return (retval);
}
periph->refcount++;
xpt_unlock_buses();
}
for (; periph != NULL; periph = next_periph) {
cam_periph_lock(periph);
retval = tr_func(periph, arg);
cam_periph_unlock(periph);
if (retval == 0) {
cam_periph_release(periph);
break;
}
xpt_lock_buses();
next_periph = TAILQ_NEXT(periph, unit_links);
while (next_periph != NULL &&
(next_periph->flags & CAM_PERIPH_FREE) != 0)
next_periph = TAILQ_NEXT(next_periph, unit_links);
if (next_periph)
next_periph->refcount++;
xpt_unlock_buses();
cam_periph_release(periph);
}
return(retval);
}
static int
xptdefbusfunc(struct cam_eb *bus, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_BUS) {
xpt_busfunc_t *tr_func;
tr_func = (xpt_busfunc_t *)tr_config->tr_func;
return(tr_func(bus, tr_config->tr_arg));
} else
return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
}
static int
xptdeftargetfunc(struct cam_et *target, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_TARGET) {
xpt_targetfunc_t *tr_func;
tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
return(tr_func(target, tr_config->tr_arg));
} else
return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
}
static int
xptdefdevicefunc(struct cam_ed *device, void *arg)
{
struct xpt_traverse_config *tr_config;
tr_config = (struct xpt_traverse_config *)arg;
if (tr_config->depth == XPT_DEPTH_DEVICE) {
xpt_devicefunc_t *tr_func;
tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
return(tr_func(device, tr_config->tr_arg));
} else
return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
}
static int
xptdefperiphfunc(struct cam_periph *periph, void *arg)
{
struct xpt_traverse_config *tr_config;
xpt_periphfunc_t *tr_func;
tr_config = (struct xpt_traverse_config *)arg;
tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
/*
* Unlike the other default functions, we don't check for depth
* here. The peripheral driver level is the last level in the EDT,
* so if we're here, we should execute the function in question.
*/
return(tr_func(periph, tr_config->tr_arg));
}
/*
* Execute the given function for every bus in the EDT.
*/
static int
xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
{
struct xpt_traverse_config tr_config;
tr_config.depth = XPT_DEPTH_BUS;
tr_config.tr_func = tr_func;
tr_config.tr_arg = arg;
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
}
/*
* Execute the given function for every device in the EDT.
*/
static int
xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
{
struct xpt_traverse_config tr_config;
tr_config.depth = XPT_DEPTH_DEVICE;
tr_config.tr_func = tr_func;
tr_config.tr_arg = arg;
return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
}
static int
xptsetasyncfunc(struct cam_ed *device, void *arg)
{
struct cam_path path;
struct ccb_getdev cgd;
struct ccb_setasync *csa = (struct ccb_setasync *)arg;
/*
* Don't report unconfigured devices (Wildcard devs,
* devices only for target mode, device instances
* that have been invalidated but are waiting for
* their last reference count to be released).
*/
if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
return (1);
xpt_compile_path(&path,
NULL,
device->target->bus->path_id,
device->target->target_id,
device->lun_id);
xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
csa->callback(csa->callback_arg,
AC_FOUND_DEVICE,
&path, &cgd);
xpt_release_path(&path);
return(1);
}
static int
xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
{
struct cam_path path;
struct ccb_pathinq cpi;
struct ccb_setasync *csa = (struct ccb_setasync *)arg;
xpt_compile_path(&path, /*periph*/NULL,
bus->path_id,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD);
xpt_path_lock(&path);
xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
csa->callback(csa->callback_arg,
AC_PATH_REGISTERED,
&path, &cpi);
xpt_path_unlock(&path);
xpt_release_path(&path);
return(1);
}
void
xpt_action(union ccb *start_ccb)
{
CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
xpt_action_name(start_ccb->ccb_h.func_code)));
start_ccb->ccb_h.status = CAM_REQ_INPROG;
(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
}
void
xpt_action_default(union ccb *start_ccb)
{
struct cam_path *path;
struct cam_sim *sim;
int lock;
path = start_ccb->ccb_h.path;
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
xpt_action_name(start_ccb->ccb_h.func_code)));
switch (start_ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
{
struct cam_ed *device;
/*
* For the sake of compatibility with SCSI-1
* devices that may not understand the identify
* message, we include lun information in the
* second byte of all commands. SCSI-1 specifies
* that luns are a 3 bit value and reserves only 3
* bits for lun information in the CDB. Later
* revisions of the SCSI spec allow for more than 8
* luns, but have deprecated lun information in the
* CDB. So, if the lun won't fit, we must omit.
*
* Also be aware that during initial probing for devices,
* the inquiry information is unknown but initialized to 0.
* This means that this code will be exercised while probing
* devices with an ANSI revision greater than 2.
*/
device = path->device;
if (device->protocol_version <= SCSI_REV_2
&& start_ccb->ccb_h.target_lun < 8
&& (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
start_ccb->csio.cdb_io.cdb_bytes[1] |=
start_ccb->ccb_h.target_lun << 5;
}
start_ccb->csio.scsi_status = SCSI_STATUS_OK;
}
/* FALLTHROUGH */
case XPT_TARGET_IO:
case XPT_CONT_TARGET_IO:
start_ccb->csio.sense_resid = 0;
start_ccb->csio.resid = 0;
/* FALLTHROUGH */
case XPT_ATA_IO:
if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
start_ccb->ataio.resid = 0;
/* FALLTHROUGH */
case XPT_NVME_IO:
if (start_ccb->ccb_h.func_code == XPT_NVME_IO)
start_ccb->nvmeio.resid = 0;
/* FALLTHROUGH */
case XPT_RESET_DEV:
case XPT_ENG_EXEC:
case XPT_SMP_IO:
{
struct cam_devq *devq;
devq = path->bus->sim->devq;
mtx_lock(&devq->send_mtx);
cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
if (xpt_schedule_devq(devq, path->device) != 0)
xpt_run_devq(devq);
mtx_unlock(&devq->send_mtx);
break;
}
case XPT_CALC_GEOMETRY:
/* Filter out garbage */
if (start_ccb->ccg.block_size == 0
|| start_ccb->ccg.volume_size == 0) {
start_ccb->ccg.cylinders = 0;
start_ccb->ccg.heads = 0;
start_ccb->ccg.secs_per_track = 0;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
#if defined(__sparc64__)
/*
* For sparc64, we may need adjust the geometry of large
* disks in order to fit the limitations of the 16-bit
* fields of the VTOC8 disk label.
*/
if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
#endif
goto call_sim;
case XPT_ABORT:
{
union ccb* abort_ccb;
abort_ccb = start_ccb->cab.abort_ccb;
if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
struct cam_ed *device;
struct cam_devq *devq;
device = abort_ccb->ccb_h.path->device;
devq = device->sim->devq;
mtx_lock(&devq->send_mtx);
if (abort_ccb->ccb_h.pinfo.index > 0) {
cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
abort_ccb->ccb_h.status =
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
xpt_freeze_devq_device(device, 1);
mtx_unlock(&devq->send_mtx);
xpt_done(abort_ccb);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
mtx_unlock(&devq->send_mtx);
if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
&& (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
/*
* We've caught this ccb en route to
* the SIM. Flag it for abort and the
* SIM will do so just before starting
* real work on the CCB.
*/
abort_ccb->ccb_h.status =
CAM_REQ_ABORTED|CAM_DEV_QFRZN;
xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
}
if (XPT_FC_IS_QUEUED(abort_ccb)
&& (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
/*
* It's already completed but waiting
* for our SWI to get to it.
*/
start_ccb->ccb_h.status = CAM_UA_ABORT;
break;
}
/*
* If we weren't able to take care of the abort request
* in the XPT, pass the request down to the SIM for processing.
*/
}
/* FALLTHROUGH */
case XPT_ACCEPT_TARGET_IO:
case XPT_EN_LUN:
case XPT_IMMED_NOTIFY:
case XPT_NOTIFY_ACK:
case XPT_RESET_BUS:
case XPT_IMMEDIATE_NOTIFY:
case XPT_NOTIFY_ACKNOWLEDGE:
case XPT_GET_SIM_KNOB_OLD:
case XPT_GET_SIM_KNOB:
case XPT_SET_SIM_KNOB:
case XPT_GET_TRAN_SETTINGS:
case XPT_SET_TRAN_SETTINGS:
case XPT_PATH_INQ:
call_sim:
sim = path->bus->sim;
lock = (mtx_owned(sim->mtx) == 0);
if (lock)
CAM_SIM_LOCK(sim);
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
(*(sim->sim_action))(sim, start_ccb);
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
if (lock)
CAM_SIM_UNLOCK(sim);
break;
case XPT_PATH_STATS:
start_ccb->cpis.last_reset = path->bus->last_reset;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_GDEV_TYPE:
{
struct cam_ed *dev;
dev = path->device;
if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
} else {
struct ccb_getdev *cgd;
cgd = &start_ccb->cgd;
cgd->protocol = dev->protocol;
cgd->inq_data = dev->inq_data;
cgd->ident_data = dev->ident_data;
cgd->inq_flags = dev->inq_flags;
cgd->nvme_data = dev->nvme_data;
cgd->nvme_cdata = dev->nvme_cdata;
cgd->ccb_h.status = CAM_REQ_CMP;
cgd->serial_num_len = dev->serial_num_len;
if ((dev->serial_num_len > 0)
&& (dev->serial_num != NULL))
bcopy(dev->serial_num, cgd->serial_num,
dev->serial_num_len);
}
break;
}
case XPT_GDEV_STATS:
{
struct ccb_getdevstats *cgds = &start_ccb->cgds;
struct cam_ed *dev = path->device;
struct cam_eb *bus = path->bus;
struct cam_et *tar = path->target;
struct cam_devq *devq = bus->sim->devq;
mtx_lock(&devq->send_mtx);
cgds->dev_openings = dev->ccbq.dev_openings;
cgds->dev_active = dev->ccbq.dev_active;
cgds->allocated = dev->ccbq.allocated;
cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
cgds->last_reset = tar->last_reset;
cgds->maxtags = dev->maxtags;
cgds->mintags = dev->mintags;
if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
cgds->last_reset = bus->last_reset;
mtx_unlock(&devq->send_mtx);
cgds->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GDEVLIST:
{
struct cam_periph *nperiph;
struct periph_list *periph_head;
struct ccb_getdevlist *cgdl;
u_int i;
struct cam_ed *device;
int found;
found = 0;
/*
* Don't want anyone mucking with our data.
*/
device = path->device;
periph_head = &device->periphs;
cgdl = &start_ccb->cgdl;
/*
* Check and see if the list has changed since the user
* last requested a list member. If so, tell them that the
* list has changed, and therefore they need to start over
* from the beginning.
*/
if ((cgdl->index != 0) &&
(cgdl->generation != device->generation)) {
cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
break;
}
/*
* Traverse the list of peripherals and attempt to find
* the requested peripheral.
*/
for (nperiph = SLIST_FIRST(periph_head), i = 0;
(nperiph != NULL) && (i <= cgdl->index);
nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
if (i == cgdl->index) {
strncpy(cgdl->periph_name,
nperiph->periph_name,
DEV_IDLEN);
cgdl->unit_number = nperiph->unit_number;
found = 1;
}
}
if (found == 0) {
cgdl->status = CAM_GDEVLIST_ERROR;
break;
}
if (nperiph == NULL)
cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
else
cgdl->status = CAM_GDEVLIST_MORE_DEVS;
cgdl->index++;
cgdl->generation = device->generation;
cgdl->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_DEV_MATCH:
{
dev_pos_type position_type;
struct ccb_dev_match *cdm;
cdm = &start_ccb->cdm;
/*
* There are two ways of getting at information in the EDT.
* The first way is via the primary EDT tree. It starts
* with a list of buses, then a list of targets on a bus,
* then devices/luns on a target, and then peripherals on a
* device/lun. The "other" way is by the peripheral driver
* lists. The peripheral driver lists are organized by
* peripheral driver. (obviously) So it makes sense to
* use the peripheral driver list if the user is looking
* for something like "da1", or all "da" devices. If the
* user is looking for something on a particular bus/target
* or lun, it's generally better to go through the EDT tree.
*/
if (cdm->pos.position_type != CAM_DEV_POS_NONE)
position_type = cdm->pos.position_type;
else {
u_int i;
position_type = CAM_DEV_POS_NONE;
for (i = 0; i < cdm->num_patterns; i++) {
if ((cdm->patterns[i].type == DEV_MATCH_BUS)
||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
position_type = CAM_DEV_POS_EDT;
break;
}
}
if (cdm->num_patterns == 0)
position_type = CAM_DEV_POS_EDT;
else if (position_type == CAM_DEV_POS_NONE)
position_type = CAM_DEV_POS_PDRV;
}
switch(position_type & CAM_DEV_POS_TYPEMASK) {
case CAM_DEV_POS_EDT:
xptedtmatch(cdm);
break;
case CAM_DEV_POS_PDRV:
xptperiphlistmatch(cdm);
break;
default:
cdm->status = CAM_DEV_MATCH_ERROR;
break;
}
if (cdm->status == CAM_DEV_MATCH_ERROR)
start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
else
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SASYNC_CB:
{
struct ccb_setasync *csa;
struct async_node *cur_entry;
struct async_list *async_head;
u_int32_t added;
csa = &start_ccb->csa;
added = csa->event_enable;
async_head = &path->device->asyncs;
/*
* If there is already an entry for us, simply
* update it.
*/
cur_entry = SLIST_FIRST(async_head);
while (cur_entry != NULL) {
if ((cur_entry->callback_arg == csa->callback_arg)
&& (cur_entry->callback == csa->callback))
break;
cur_entry = SLIST_NEXT(cur_entry, links);
}
if (cur_entry != NULL) {
/*
* If the request has no flags set,
* remove the entry.
*/
added &= ~cur_entry->event_enable;
if (csa->event_enable == 0) {
SLIST_REMOVE(async_head, cur_entry,
async_node, links);
xpt_release_device(path->device);
free(cur_entry, M_CAMXPT);
} else {
cur_entry->event_enable = csa->event_enable;
}
csa->event_enable = added;
} else {
cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
M_NOWAIT);
if (cur_entry == NULL) {
csa->ccb_h.status = CAM_RESRC_UNAVAIL;
break;
}
cur_entry->event_enable = csa->event_enable;
cur_entry->event_lock =
mtx_owned(path->bus->sim->mtx) ? 1 : 0;
cur_entry->callback_arg = csa->callback_arg;
cur_entry->callback = csa->callback;
SLIST_INSERT_HEAD(async_head, cur_entry, links);
xpt_acquire_device(path->device);
}
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_REL_SIMQ:
{
struct ccb_relsim *crs;
struct cam_ed *dev;
crs = &start_ccb->crs;
dev = path->device;
if (dev == NULL) {
crs->ccb_h.status = CAM_DEV_NOT_THERE;
break;
}
if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
/* Don't ever go below one opening */
if (crs->openings > 0) {
xpt_dev_ccbq_resize(path, crs->openings);
if (bootverbose) {
xpt_print(path,
"number of openings is now %d\n",
crs->openings);
}
}
}
mtx_lock(&dev->sim->devq->send_mtx);
if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
/*
* Just extend the old timeout and decrement
* the freeze count so that a single timeout
* is sufficient for releasing the queue.
*/
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
callout_stop(&dev->callout);
} else {
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
callout_reset_sbt(&dev->callout,
SBT_1MS * crs->release_timeout, 0,
xpt_release_devq_timeout, dev, 0);
dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
/*
* Decrement the freeze count so that a single
* completion is still sufficient to unfreeze
* the queue.
*/
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
} else {
dev->flags |= CAM_DEV_REL_ON_COMPLETE;
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
}
if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
|| (dev->ccbq.dev_active == 0)) {
start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
} else {
dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
}
}
mtx_unlock(&dev->sim->devq->send_mtx);
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_DEBUG: {
struct cam_path *oldpath;
/* Check that all request bits are supported. */
if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
}
cam_dflags = CAM_DEBUG_NONE;
if (cam_dpath != NULL) {
oldpath = cam_dpath;
cam_dpath = NULL;
xpt_free_path(oldpath);
}
if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
if (xpt_create_path(&cam_dpath, NULL,
start_ccb->ccb_h.path_id,
start_ccb->ccb_h.target_id,
start_ccb->ccb_h.target_lun) !=
CAM_REQ_CMP) {
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
} else {
cam_dflags = start_ccb->cdbg.flags;
start_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print(cam_dpath, "debugging flags now %x\n",
cam_dflags);
}
} else
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_NOOP:
if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
xpt_freeze_devq(path, 1);
start_ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_REPROBE_LUN:
xpt_async(AC_INQ_CHANGED, path, NULL);
start_ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(start_ccb);
break;
default:
case XPT_SDEV_TYPE:
case XPT_TERM_IO:
case XPT_ENG_INQ:
/* XXX Implement */
xpt_print(start_ccb->ccb_h.path,
"%s: CCB type %#x %s not supported\n", __func__,
start_ccb->ccb_h.func_code,
xpt_action_name(start_ccb->ccb_h.func_code));
start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
xpt_done(start_ccb);
}
break;
}
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("xpt_action_default: func= %#x %s status %#x\n",
start_ccb->ccb_h.func_code,
xpt_action_name(start_ccb->ccb_h.func_code),
start_ccb->ccb_h.status));
}
void
xpt_polled_action(union ccb *start_ccb)
{
u_int32_t timeout;
struct cam_sim *sim;
struct cam_devq *devq;
struct cam_ed *dev;
timeout = start_ccb->ccb_h.timeout * 10;
sim = start_ccb->ccb_h.path->bus->sim;
devq = sim->devq;
dev = start_ccb->ccb_h.path->device;
mtx_unlock(&dev->device_mtx);
/*
* Steal an opening so that no other queued requests
* can get it before us while we simulate interrupts.
*/
mtx_lock(&devq->send_mtx);
dev->ccbq.dev_openings--;
while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
(--timeout > 0)) {
mtx_unlock(&devq->send_mtx);
DELAY(100);
CAM_SIM_LOCK(sim);
(*(sim->sim_poll))(sim);
CAM_SIM_UNLOCK(sim);
camisr_runqueue();
mtx_lock(&devq->send_mtx);
}
dev->ccbq.dev_openings++;
mtx_unlock(&devq->send_mtx);
if (timeout != 0) {
xpt_action(start_ccb);
while(--timeout > 0) {
CAM_SIM_LOCK(sim);
(*(sim->sim_poll))(sim);
CAM_SIM_UNLOCK(sim);
camisr_runqueue();
if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
!= CAM_REQ_INPROG)
break;
DELAY(100);
}
if (timeout == 0) {
/*
* XXX Is it worth adding a sim_timeout entry
* point so we can attempt recovery? If
* this is only used for dumps, I don't think
* it is.
*/
start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
}
} else {
start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
}
mtx_lock(&dev->device_mtx);
}
/*
* Schedule a peripheral driver to receive a ccb when its
* target device has space for more transactions.
*/
void
xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
cam_periph_assert(periph, MA_OWNED);
if (new_priority < periph->scheduled_priority) {
periph->scheduled_priority = new_priority;
xpt_run_allocq(periph, 0);
}
}
/*
* Schedule a device to run on a given queue.
* If the device was inserted as a new entry on the queue,
* return 1 meaning the device queue should be run. If we
* were already queued, implying someone else has already
* started the queue, return 0 so the caller doesn't attempt
* to run the queue.
*/
static int
xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
u_int32_t new_priority)
{
int retval;
u_int32_t old_priority;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
old_priority = pinfo->priority;
/*
* Are we already queued?
*/
if (pinfo->index != CAM_UNQUEUED_INDEX) {
/* Simply reorder based on new priority */
if (new_priority < old_priority) {
camq_change_priority(queue, pinfo->index,
new_priority);
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("changed priority to %d\n",
new_priority));
retval = 1;
} else
retval = 0;
} else {
/* New entry on the queue */
if (new_priority < old_priority)
pinfo->priority = new_priority;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("Inserting onto queue\n"));
pinfo->generation = ++queue->generation;
camq_insert(queue, pinfo);
retval = 1;
}
return (retval);
}
static void
xpt_run_allocq_task(void *context, int pending)
{
struct cam_periph *periph = context;
cam_periph_lock(periph);
periph->flags &= ~CAM_PERIPH_RUN_TASK;
xpt_run_allocq(periph, 1);
cam_periph_unlock(periph);
cam_periph_release(periph);
}
static void
xpt_run_allocq(struct cam_periph *periph, int sleep)
{
struct cam_ed *device;
union ccb *ccb;
uint32_t prio;
cam_periph_assert(periph, MA_OWNED);
if (periph->periph_allocating)
return;
periph->periph_allocating = 1;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
device = periph->path->device;
ccb = NULL;
restart:
while ((prio = min(periph->scheduled_priority,
periph->immediate_priority)) != CAM_PRIORITY_NONE &&
(periph->periph_allocated - (ccb != NULL ? 1 : 0) <
device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
if (ccb == NULL &&
(ccb = xpt_get_ccb_nowait(periph)) == NULL) {
if (sleep) {
ccb = xpt_get_ccb(periph);
goto restart;
}
if (periph->flags & CAM_PERIPH_RUN_TASK)
break;
cam_periph_doacquire(periph);
periph->flags |= CAM_PERIPH_RUN_TASK;
taskqueue_enqueue(xsoftc.xpt_taskq,
&periph->periph_run_task);
break;
}
xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
if (prio == periph->immediate_priority) {
periph->immediate_priority = CAM_PRIORITY_NONE;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("waking cam_periph_getccb()\n"));
SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
periph_links.sle);
wakeup(&periph->ccb_list);
} else {
periph->scheduled_priority = CAM_PRIORITY_NONE;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("calling periph_start()\n"));
periph->periph_start(periph, ccb);
}
ccb = NULL;
}
if (ccb != NULL)
xpt_release_ccb(ccb);
periph->periph_allocating = 0;
}
static void
xpt_run_devq(struct cam_devq *devq)
{
int lock;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
devq->send_queue.qfrozen_cnt++;
while ((devq->send_queue.entries > 0)
&& (devq->send_openings > 0)
&& (devq->send_queue.qfrozen_cnt <= 1)) {
struct cam_ed *device;
union ccb *work_ccb;
struct cam_sim *sim;
struct xpt_proto *proto;
device = (struct cam_ed *)camq_remove(&devq->send_queue,
CAMQ_HEAD);
CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
("running device %p\n", device));
work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
if (work_ccb == NULL) {
printf("device on run queue with no ccbs???\n");
continue;
}
if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
mtx_lock(&xsoftc.xpt_highpower_lock);
if (xsoftc.num_highpower <= 0) {
/*
* We got a high power command, but we
* don't have any available slots. Freeze
* the device queue until we have a slot
* available.
*/
xpt_freeze_devq_device(device, 1);
STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
highpowerq_entry);
mtx_unlock(&xsoftc.xpt_highpower_lock);
continue;
} else {
/*
* Consume a high power slot while
* this ccb runs.
*/
xsoftc.num_highpower--;
}
mtx_unlock(&xsoftc.xpt_highpower_lock);
}
cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
cam_ccbq_send_ccb(&device->ccbq, work_ccb);
devq->send_openings--;
devq->send_active++;
xpt_schedule_devq(devq, device);
mtx_unlock(&devq->send_mtx);
if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
/*
* The client wants to freeze the queue
* after this CCB is sent.
*/
xpt_freeze_devq(work_ccb->ccb_h.path, 1);
}
/* In Target mode, the peripheral driver knows best... */
if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
if ((device->inq_flags & SID_CmdQue) != 0
&& work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
else
/*
* Clear this in case of a retried CCB that
* failed due to a rejected tag.
*/
work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
}
KASSERT(device == work_ccb->ccb_h.path->device,
("device (%p) / path->device (%p) mismatch",
device, work_ccb->ccb_h.path->device));
proto = xpt_proto_find(device->protocol);
if (proto && proto->ops->debug_out)
proto->ops->debug_out(work_ccb);
/*
* Device queues can be shared among multiple SIM instances
* that reside on different buses. Use the SIM from the
* queued device, rather than the one from the calling bus.
*/
sim = device->sim;
lock = (mtx_owned(sim->mtx) == 0);
if (lock)
CAM_SIM_LOCK(sim);
work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
(*(sim->sim_action))(sim, work_ccb);
if (lock)
CAM_SIM_UNLOCK(sim);
mtx_lock(&devq->send_mtx);
}
devq->send_queue.qfrozen_cnt--;
}
/*
* This function merges stuff from the slave ccb into the master ccb, while
* keeping important fields in the master ccb constant.
*/
void
xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
{
/*
* Pull fields that are valid for peripheral drivers to set
* into the master CCB along with the CCB "payload".
*/
master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
sizeof(union ccb) - sizeof(struct ccb_hdr));
}
void
xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
u_int32_t priority, u_int32_t flags)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
ccb_h->pinfo.priority = priority;
ccb_h->path = path;
ccb_h->path_id = path->bus->path_id;
if (path->target)
ccb_h->target_id = path->target->target_id;
else
ccb_h->target_id = CAM_TARGET_WILDCARD;
if (path->device) {
ccb_h->target_lun = path->device->lun_id;
ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
} else {
ccb_h->target_lun = CAM_TARGET_WILDCARD;
}
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
ccb_h->flags = flags;
ccb_h->xflags = 0;
}
void
xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
{
xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
}
/* Path manipulation functions */
cam_status
xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
{
struct cam_path *path;
cam_status status;
path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
if (path == NULL) {
status = CAM_RESRC_UNAVAIL;
return(status);
}
status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
if (status != CAM_REQ_CMP) {
free(path, M_CAMPATH);
path = NULL;
}
*new_path_ptr = path;
return (status);
}
cam_status
xpt_create_path_unlocked(struct cam_path **new_path_ptr,
struct cam_periph *periph, path_id_t path_id,
target_id_t target_id, lun_id_t lun_id)
{
return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
lun_id));
}
cam_status
xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
{
struct cam_eb *bus;
struct cam_et *target;
struct cam_ed *device;
cam_status status;
status = CAM_REQ_CMP; /* Completed without error */
target = NULL; /* Wildcarded */
device = NULL; /* Wildcarded */
/*
* We will potentially modify the EDT, so block interrupts
* that may attempt to create cam paths.
*/
bus = xpt_find_bus(path_id);
if (bus == NULL) {
status = CAM_PATH_INVALID;
} else {
xpt_lock_buses();
mtx_lock(&bus->eb_mtx);
target = xpt_find_target(bus, target_id);
if (target == NULL) {
/* Create one */
struct cam_et *new_target;
new_target = xpt_alloc_target(bus, target_id);
if (new_target == NULL) {
status = CAM_RESRC_UNAVAIL;
} else {
target = new_target;
}
}
xpt_unlock_buses();
if (target != NULL) {
device = xpt_find_device(target, lun_id);
if (device == NULL) {
/* Create one */
struct cam_ed *new_device;
new_device =
(*(bus->xport->ops->alloc_device))(bus,
target,
lun_id);
if (new_device == NULL) {
status = CAM_RESRC_UNAVAIL;
} else {
device = new_device;
}
}
}
mtx_unlock(&bus->eb_mtx);
}
/*
* Only touch the user's data if we are successful.
*/
if (status == CAM_REQ_CMP) {
new_path->periph = perph;
new_path->bus = bus;
new_path->target = target;
new_path->device = device;
CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
} else {
if (device != NULL)
xpt_release_device(device);
if (target != NULL)
xpt_release_target(target);
if (bus != NULL)
xpt_release_bus(bus);
}
return (status);
}
cam_status
xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
{
struct cam_path *new_path;
new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
if (new_path == NULL)
return(CAM_RESRC_UNAVAIL);
xpt_copy_path(new_path, path);
*new_path_ptr = new_path;
return (CAM_REQ_CMP);
}
void
xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
{
*new_path = *path;
if (path->bus != NULL)
xpt_acquire_bus(path->bus);
if (path->target != NULL)
xpt_acquire_target(path->target);
if (path->device != NULL)
xpt_acquire_device(path->device);
}
void
xpt_release_path(struct cam_path *path)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
if (path->device != NULL) {
xpt_release_device(path->device);
path->device = NULL;
}
if (path->target != NULL) {
xpt_release_target(path->target);
path->target = NULL;
}
if (path->bus != NULL) {
xpt_release_bus(path->bus);
path->bus = NULL;
}
}
void
xpt_free_path(struct cam_path *path)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
xpt_release_path(path);
free(path, M_CAMPATH);
}
void
xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
{
xpt_lock_buses();
if (bus_ref) {
if (path->bus)
*bus_ref = path->bus->refcount;
else
*bus_ref = 0;
}
if (periph_ref) {
if (path->periph)
*periph_ref = path->periph->refcount;
else
*periph_ref = 0;
}
xpt_unlock_buses();
if (target_ref) {
if (path->target)
*target_ref = path->target->refcount;
else
*target_ref = 0;
}
if (device_ref) {
if (path->device)
*device_ref = path->device->refcount;
else
*device_ref = 0;
}
}
/*
* Return -1 for failure, 0 for exact match, 1 for match with wildcards
* in path1, 2 for match with wildcards in path2.
*/
int
xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
{
int retval = 0;
if (path1->bus != path2->bus) {
if (path1->bus->path_id == CAM_BUS_WILDCARD)
retval = 1;
else if (path2->bus->path_id == CAM_BUS_WILDCARD)
retval = 2;
else
return (-1);
}
if (path1->target != path2->target) {
if (path1->target->target_id == CAM_TARGET_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
retval = 2;
else
return (-1);
}
if (path1->device != path2->device) {
if (path1->device->lun_id == CAM_LUN_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
retval = 2;
else
return (-1);
}
return (retval);
}
int
xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
{
int retval = 0;
if (path->bus != dev->target->bus) {
if (path->bus->path_id == CAM_BUS_WILDCARD)
retval = 1;
else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
retval = 2;
else
return (-1);
}
if (path->target != dev->target) {
if (path->target->target_id == CAM_TARGET_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
retval = 2;
else
return (-1);
}
if (path->device != dev) {
if (path->device->lun_id == CAM_LUN_WILDCARD) {
if (retval == 0)
retval = 1;
} else if (dev->lun_id == CAM_LUN_WILDCARD)
retval = 2;
else
return (-1);
}
return (retval);
}
void
xpt_print_path(struct cam_path *path)
{
struct sbuf sb;
char buffer[XPT_PRINT_LEN];
sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
xpt_path_sbuf(path, &sb);
sbuf_finish(&sb);
printf("%s", sbuf_data(&sb));
sbuf_delete(&sb);
}
void
xpt_print_device(struct cam_ed *device)
{
if (device == NULL)
printf("(nopath): ");
else {
printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
device->sim->unit_number,
device->sim->bus_id,
device->target->target_id,
(uintmax_t)device->lun_id);
}
}
void
xpt_print(struct cam_path *path, const char *fmt, ...)
{
va_list ap;
struct sbuf sb;
char buffer[XPT_PRINT_LEN];
sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
xpt_path_sbuf(path, &sb);
va_start(ap, fmt);
sbuf_vprintf(&sb, fmt, ap);
va_end(ap);
sbuf_finish(&sb);
printf("%s", sbuf_data(&sb));
sbuf_delete(&sb);
}
int
xpt_path_string(struct cam_path *path, char *str, size_t str_len)
{
struct sbuf sb;
int len;
sbuf_new(&sb, str, str_len, 0);
len = xpt_path_sbuf(path, &sb);
sbuf_finish(&sb);
return (len);
}
int
xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
{
if (path == NULL)
sbuf_printf(sb, "(nopath): ");
else {
if (path->periph != NULL)
sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
path->periph->unit_number);
else
sbuf_printf(sb, "(noperiph:");
if (path->bus != NULL)
sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
path->bus->sim->unit_number,
path->bus->sim->bus_id);
else
sbuf_printf(sb, "nobus:");
if (path->target != NULL)
sbuf_printf(sb, "%d:", path->target->target_id);
else
sbuf_printf(sb, "X:");
if (path->device != NULL)
sbuf_printf(sb, "%jx): ",
(uintmax_t)path->device->lun_id);
else
sbuf_printf(sb, "X): ");
}
return(sbuf_len(sb));
}
path_id_t
xpt_path_path_id(struct cam_path *path)
{
return(path->bus->path_id);
}
target_id_t
xpt_path_target_id(struct cam_path *path)
{
if (path->target != NULL)
return (path->target->target_id);
else
return (CAM_TARGET_WILDCARD);
}
lun_id_t
xpt_path_lun_id(struct cam_path *path)
{
if (path->device != NULL)
return (path->device->lun_id);
else
return (CAM_LUN_WILDCARD);
}
struct cam_sim *
xpt_path_sim(struct cam_path *path)
{
return (path->bus->sim);
}
struct cam_periph*
xpt_path_periph(struct cam_path *path)
{
return (path->periph);
}
/*
* Release a CAM control block for the caller. Remit the cost of the structure
* to the device referenced by the path. If the this device had no 'credits'
* and peripheral drivers have registered async callbacks for this notification
* call them now.
*/
void
xpt_release_ccb(union ccb *free_ccb)
{
struct cam_ed *device;
struct cam_periph *periph;
CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
device = free_ccb->ccb_h.path->device;
periph = free_ccb->ccb_h.path->periph;
xpt_free_ccb(free_ccb);
periph->periph_allocated--;
cam_ccbq_release_opening(&device->ccbq);
xpt_run_allocq(periph, 0);
}
/* Functions accessed by SIM drivers */
static struct xpt_xport_ops xport_default_ops = {
.alloc_device = xpt_alloc_device_default,
.action = xpt_action_default,
.async = xpt_dev_async_default,
};
static struct xpt_xport xport_default = {
.xport = XPORT_UNKNOWN,
.name = "unknown",
.ops = &xport_default_ops,
};
CAM_XPT_XPORT(xport_default);
/*
* A sim structure, listing the SIM entry points and instance
* identification info is passed to xpt_bus_register to hook the SIM
* into the CAM framework. xpt_bus_register creates a cam_eb entry
* for this new bus and places it in the array of buses and assigns
* it a path_id. The path_id may be influenced by "hard wiring"
* information specified by the user. Once interrupt services are
* available, the bus will be probed.
*/
int32_t
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
{
struct cam_eb *new_bus;
struct cam_eb *old_bus;
struct ccb_pathinq cpi;
struct cam_path *path;
cam_status status;
mtx_assert(sim->mtx, MA_OWNED);
sim->bus_id = bus;
new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
M_CAMXPT, M_NOWAIT|M_ZERO);
if (new_bus == NULL) {
/* Couldn't satisfy request */
return (CAM_RESRC_UNAVAIL);
}
mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
TAILQ_INIT(&new_bus->et_entries);
cam_sim_hold(sim);
new_bus->sim = sim;
timevalclear(&new_bus->last_reset);
new_bus->flags = 0;
new_bus->refcount = 1; /* Held until a bus_deregister event */
new_bus->generation = 0;
xpt_lock_buses();
sim->path_id = new_bus->path_id =
xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
while (old_bus != NULL
&& old_bus->path_id < new_bus->path_id)
old_bus = TAILQ_NEXT(old_bus, links);
if (old_bus != NULL)
TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
else
TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
xsoftc.bus_generation++;
xpt_unlock_buses();
/*
* Set a default transport so that a PATH_INQ can be issued to
* the SIM. This will then allow for probing and attaching of
* a more appropriate transport.
*/
new_bus->xport = &xport_default;
status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP) {
xpt_release_bus(new_bus);
free(path, M_CAMXPT);
return (CAM_RESRC_UNAVAIL);
}
xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
if (cpi.ccb_h.status == CAM_REQ_CMP) {
struct xpt_xport **xpt;
SET_FOREACH(xpt, cam_xpt_xport_set) {
if ((*xpt)->xport == cpi.transport) {
new_bus->xport = *xpt;
break;
}
}
if (new_bus->xport == NULL) {
xpt_print(path,
"No transport found for %d\n", cpi.transport);
xpt_release_bus(new_bus);
free(path, M_CAMXPT);
return (CAM_RESRC_UNAVAIL);
}
}
/* Notify interested parties */
if (sim->path_id != CAM_XPT_PATH_ID) {
xpt_async(AC_PATH_REGISTERED, path, &cpi);
if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
union ccb *scan_ccb;
/* Initiate bus rescan. */
scan_ccb = xpt_alloc_ccb_nowait();
if (scan_ccb != NULL) {
scan_ccb->ccb_h.path = path;
scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
scan_ccb->crcn.flags = 0;
xpt_rescan(scan_ccb);
} else {
xpt_print(path,
"Can't allocate CCB to scan bus\n");
xpt_free_path(path);
}
} else
xpt_free_path(path);
} else
xpt_free_path(path);
return (CAM_SUCCESS);
}
int32_t
xpt_bus_deregister(path_id_t pathid)
{
struct cam_path bus_path;
cam_status status;
status = xpt_compile_path(&bus_path, NULL, pathid,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP)
return (status);
xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
/* Release the reference count held while registered. */
xpt_release_bus(bus_path.bus);
xpt_release_path(&bus_path);
return (CAM_REQ_CMP);
}
static path_id_t
xptnextfreepathid(void)
{
struct cam_eb *bus;
path_id_t pathid;
const char *strval;
mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
pathid = 0;
bus = TAILQ_FIRST(&xsoftc.xpt_busses);
retry:
/* Find an unoccupied pathid */
while (bus != NULL && bus->path_id <= pathid) {
if (bus->path_id == pathid)
pathid++;
bus = TAILQ_NEXT(bus, links);
}
/*
* Ensure that this pathid is not reserved for
* a bus that may be registered in the future.
*/
if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
++pathid;
/* Start the search over */
goto retry;
}
return (pathid);
}
static path_id_t
xptpathid(const char *sim_name, int sim_unit, int sim_bus)
{
path_id_t pathid;
int i, dunit, val;
char buf[32];
const char *dname;
pathid = CAM_XPT_PATH_ID;
snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
return (pathid);
i = 0;
while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
if (strcmp(dname, "scbus")) {
/* Avoid a bit of foot shooting. */
continue;
}
if (dunit < 0) /* unwired?! */
continue;
if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
if (sim_bus == val) {
pathid = dunit;
break;
}
} else if (sim_bus == 0) {
/* Unspecified matches bus 0 */
pathid = dunit;
break;
} else {
printf("Ambiguous scbus configuration for %s%d "
"bus %d, cannot wire down. The kernel "
"config entry for scbus%d should "
"specify a controller bus.\n"
"Scbus will be assigned dynamically.\n",
sim_name, sim_unit, sim_bus, dunit);
break;
}
}
if (pathid == CAM_XPT_PATH_ID)
pathid = xptnextfreepathid();
return (pathid);
}
static const char *
xpt_async_string(u_int32_t async_code)
{
switch (async_code) {
case AC_BUS_RESET: return ("AC_BUS_RESET");
case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
case AC_SCSI_AEN: return ("AC_SCSI_AEN");
case AC_SENT_BDR: return ("AC_SENT_BDR");
case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
case AC_CONTRACT: return ("AC_CONTRACT");
case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
}
return ("AC_UNKNOWN");
}
static int
xpt_async_size(u_int32_t async_code)
{
switch (async_code) {
case AC_BUS_RESET: return (0);
case AC_UNSOL_RESEL: return (0);
case AC_SCSI_AEN: return (0);
case AC_SENT_BDR: return (0);
case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
case AC_PATH_DEREGISTERED: return (0);
case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
case AC_LOST_DEVICE: return (0);
case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
case AC_INQ_CHANGED: return (0);
case AC_GETDEV_CHANGED: return (0);
case AC_CONTRACT: return (sizeof(struct ac_contract));
case AC_ADVINFO_CHANGED: return (-1);
case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
}
return (0);
}
static int
xpt_async_process_dev(struct cam_ed *device, void *arg)
{
union ccb *ccb = arg;
struct cam_path *path = ccb->ccb_h.path;
void *async_arg = ccb->casync.async_arg_ptr;
u_int32_t async_code = ccb->casync.async_code;
int relock;
if (path->device != device
&& path->device->lun_id != CAM_LUN_WILDCARD
&& device->lun_id != CAM_LUN_WILDCARD)
return (1);
/*
* The async callback could free the device.
* If it is a broadcast async, it doesn't hold
* device reference, so take our own reference.
*/
xpt_acquire_device(device);
/*
* If async for specific device is to be delivered to
* the wildcard client, take the specific device lock.
* XXX: We may need a way for client to specify it.
*/
if ((device->lun_id == CAM_LUN_WILDCARD &&
path->device->lun_id != CAM_LUN_WILDCARD) ||
(device->target->target_id == CAM_TARGET_WILDCARD &&
path->target->target_id != CAM_TARGET_WILDCARD) ||
(device->target->bus->path_id == CAM_BUS_WILDCARD &&
path->target->bus->path_id != CAM_BUS_WILDCARD)) {
mtx_unlock(&device->device_mtx);
xpt_path_lock(path);
relock = 1;
} else
relock = 0;
(*(device->target->bus->xport->ops->async))(async_code,
device->target->bus, device->target, device, async_arg);
xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
if (relock) {
xpt_path_unlock(path);
mtx_lock(&device->device_mtx);
}
xpt_release_device(device);
return (1);
}
static int
xpt_async_process_tgt(struct cam_et *target, void *arg)
{
union ccb *ccb = arg;
struct cam_path *path = ccb->ccb_h.path;
if (path->target != target
&& path->target->target_id != CAM_TARGET_WILDCARD
&& target->target_id != CAM_TARGET_WILDCARD)
return (1);
if (ccb->casync.async_code == AC_SENT_BDR) {
/* Update our notion of when the last reset occurred */
microtime(&target->last_reset);
}
return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
}
static void
xpt_async_process(struct cam_periph *periph, union ccb *ccb)
{
struct cam_eb *bus;
struct cam_path *path;
void *async_arg;
u_int32_t async_code;
path = ccb->ccb_h.path;
async_code = ccb->casync.async_code;
async_arg = ccb->casync.async_arg_ptr;
CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
("xpt_async(%s)\n", xpt_async_string(async_code)));
bus = path->bus;
if (async_code == AC_BUS_RESET) {
/* Update our notion of when the last reset occurred */
microtime(&bus->last_reset);
}
xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
/*
* If this wasn't a fully wildcarded async, tell all
* clients that want all async events.
*/
if (bus != xpt_periph->path->bus) {
xpt_path_lock(xpt_periph->path);
xpt_async_process_dev(xpt_periph->path->device, ccb);
xpt_path_unlock(xpt_periph->path);
}
if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
xpt_release_devq(path, 1, TRUE);
else
xpt_release_simq(path->bus->sim, TRUE);
if (ccb->casync.async_arg_size > 0)
free(async_arg, M_CAMXPT);
xpt_free_path(path);
xpt_free_ccb(ccb);
}
static void
xpt_async_bcast(struct async_list *async_head,
u_int32_t async_code,
struct cam_path *path, void *async_arg)
{
struct async_node *cur_entry;
int lock;
cur_entry = SLIST_FIRST(async_head);
while (cur_entry != NULL) {
struct async_node *next_entry;
/*
* Grab the next list entry before we call the current
* entry's callback. This is because the callback function
* can delete its async callback entry.
*/
next_entry = SLIST_NEXT(cur_entry, links);
if ((cur_entry->event_enable & async_code) != 0) {
lock = cur_entry->event_lock;
if (lock)
CAM_SIM_LOCK(path->device->sim);
cur_entry->callback(cur_entry->callback_arg,
async_code, path,
async_arg);
if (lock)
CAM_SIM_UNLOCK(path->device->sim);
}
cur_entry = next_entry;
}
}
void
xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
{
union ccb *ccb;
int size;
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
xpt_print(path, "Can't allocate CCB to send %s\n",
xpt_async_string(async_code));
return;
}
if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
xpt_print(path, "Can't allocate path to send %s\n",
xpt_async_string(async_code));
xpt_free_ccb(ccb);
return;
}
ccb->ccb_h.path->periph = NULL;
ccb->ccb_h.func_code = XPT_ASYNC;
ccb->ccb_h.cbfcnp = xpt_async_process;
ccb->ccb_h.flags |= CAM_UNLOCKED;
ccb->casync.async_code = async_code;
ccb->casync.async_arg_size = 0;
size = xpt_async_size(async_code);
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_async: func %#x %s aync_code %d %s\n",
ccb->ccb_h.func_code,
xpt_action_name(ccb->ccb_h.func_code),
async_code,
xpt_async_string(async_code)));
if (size > 0 && async_arg != NULL) {
ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
if (ccb->casync.async_arg_ptr == NULL) {
xpt_print(path, "Can't allocate argument to send %s\n",
xpt_async_string(async_code));
xpt_free_path(ccb->ccb_h.path);
xpt_free_ccb(ccb);
return;
}
memcpy(ccb->casync.async_arg_ptr, async_arg, size);
ccb->casync.async_arg_size = size;
} else if (size < 0) {
ccb->casync.async_arg_ptr = async_arg;
ccb->casync.async_arg_size = size;
}
if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
xpt_freeze_devq(path, 1);
else
xpt_freeze_simq(path->bus->sim, 1);
xpt_done(ccb);
}
static void
xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
struct cam_et *target, struct cam_ed *device,
void *async_arg)
{
/*
* We only need to handle events for real devices.
*/
if (target->target_id == CAM_TARGET_WILDCARD
|| device->lun_id == CAM_LUN_WILDCARD)
return;
printf("%s called\n", __func__);
}
static uint32_t
xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
{
struct cam_devq *devq;
uint32_t freeze;
devq = dev->sim->devq;
mtx_assert(&devq->send_mtx, MA_OWNED);
CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
("xpt_freeze_devq_device(%d) %u->%u\n", count,
dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
freeze = (dev->ccbq.queue.qfrozen_cnt += count);
/* Remove frozen device from sendq. */
if (device_is_queued(dev))
camq_remove(&devq->send_queue, dev->devq_entry.index);
return (freeze);
}
u_int32_t
xpt_freeze_devq(struct cam_path *path, u_int count)
{
struct cam_ed *dev = path->device;
struct cam_devq *devq;
uint32_t freeze;
devq = dev->sim->devq;
mtx_lock(&devq->send_mtx);
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
freeze = xpt_freeze_devq_device(dev, count);
mtx_unlock(&devq->send_mtx);
return (freeze);
}
u_int32_t
xpt_freeze_simq(struct cam_sim *sim, u_int count)
{
struct cam_devq *devq;
uint32_t freeze;
devq = sim->devq;
mtx_lock(&devq->send_mtx);
freeze = (devq->send_queue.qfrozen_cnt += count);
mtx_unlock(&devq->send_mtx);
return (freeze);
}
static void
xpt_release_devq_timeout(void *arg)
{
struct cam_ed *dev;
struct cam_devq *devq;
dev = (struct cam_ed *)arg;
CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
devq = dev->sim->devq;
mtx_assert(&devq->send_mtx, MA_OWNED);
if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
xpt_run_devq(devq);
}
void
xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
{
struct cam_ed *dev;
struct cam_devq *devq;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
count, run_queue));
dev = path->device;
devq = dev->sim->devq;
mtx_lock(&devq->send_mtx);
if (xpt_release_devq_device(dev, count, run_queue))
xpt_run_devq(dev->sim->devq);
mtx_unlock(&devq->send_mtx);
}
static int
xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
{
mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
if (count > dev->ccbq.queue.qfrozen_cnt) {
#ifdef INVARIANTS
printf("xpt_release_devq(): requested %u > present %u\n",
count, dev->ccbq.queue.qfrozen_cnt);
#endif
count = dev->ccbq.queue.qfrozen_cnt;
}
dev->ccbq.queue.qfrozen_cnt -= count;
if (dev->ccbq.queue.qfrozen_cnt == 0) {
/*
* No longer need to wait for a successful
* command completion.
*/
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
/*
* Remove any timeouts that might be scheduled
* to release this queue.
*/
if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
callout_stop(&dev->callout);
dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
}
/*
* Now that we are unfrozen schedule the
* device so any pending transactions are
* run.
*/
xpt_schedule_devq(dev->sim->devq, dev);
} else
run_queue = 0;
return (run_queue);
}
void
xpt_release_simq(struct cam_sim *sim, int run_queue)
{
struct cam_devq *devq;
devq = sim->devq;
mtx_lock(&devq->send_mtx);
if (devq->send_queue.qfrozen_cnt <= 0) {
#ifdef INVARIANTS
printf("xpt_release_simq: requested 1 > present %u\n",
devq->send_queue.qfrozen_cnt);
#endif
} else
devq->send_queue.qfrozen_cnt--;
if (devq->send_queue.qfrozen_cnt == 0) {
/*
* If there is a timeout scheduled to release this
* sim queue, remove it. The queue frozen count is
* already at 0.
*/
if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
callout_stop(&sim->callout);
sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
}
if (run_queue) {
/*
* Now that we are unfrozen run the send queue.
*/
xpt_run_devq(sim->devq);
}
}
mtx_unlock(&devq->send_mtx);
}
/*
* XXX Appears to be unused.
*/
static void
xpt_release_simq_timeout(void *arg)
{
struct cam_sim *sim;
sim = (struct cam_sim *)arg;
xpt_release_simq(sim, /* run_queue */ TRUE);
}
void
xpt_done(union ccb *done_ccb)
{
struct cam_doneq *queue;
int run, hash;
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
done_ccb->csio.bio != NULL)
biotrack(done_ccb->csio.bio, __func__);
#endif
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_done: func= %#x %s status %#x\n",
done_ccb->ccb_h.func_code,
xpt_action_name(done_ccb->ccb_h.func_code),
done_ccb->ccb_h.status));
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
return;
/* Store the time the ccb was in the sim */
done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
done_ccb->ccb_h.target_lun) % cam_num_doneqs;
queue = &cam_doneqs[hash];
mtx_lock(&queue->cam_doneq_mtx);
run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
mtx_unlock(&queue->cam_doneq_mtx);
if (run)
wakeup(&queue->cam_doneq);
}
void
xpt_done_direct(union ccb *done_ccb)
{
CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
return;
/* Store the time the ccb was in the sim */
done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
xpt_done_process(&done_ccb->ccb_h);
}
union ccb *
xpt_alloc_ccb()
{
union ccb *new_ccb;
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
return (new_ccb);
}
union ccb *
xpt_alloc_ccb_nowait()
{
union ccb *new_ccb;
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
return (new_ccb);
}
void
xpt_free_ccb(union ccb *free_ccb)
{
free(free_ccb, M_CAMCCB);
}
/* Private XPT functions */
/*
* Get a CAM control block for the caller. Charge the structure to the device
* referenced by the path. If we don't have sufficient resources to allocate
* more ccbs, we return NULL.
*/
static union ccb *
xpt_get_ccb_nowait(struct cam_periph *periph)
{
union ccb *new_ccb;
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
if (new_ccb == NULL)
return (NULL);
periph->periph_allocated++;
cam_ccbq_take_opening(&periph->path->device->ccbq);
return (new_ccb);
}
static union ccb *
xpt_get_ccb(struct cam_periph *periph)
{
union ccb *new_ccb;
cam_periph_unlock(periph);
new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
cam_periph_lock(periph);
periph->periph_allocated++;
cam_ccbq_take_opening(&periph->path->device->ccbq);
return (new_ccb);
}
union ccb *
cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
{
struct ccb_hdr *ccb_h;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
cam_periph_assert(periph, MA_OWNED);
while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
ccb_h->pinfo.priority != priority) {
if (priority < periph->immediate_priority) {
periph->immediate_priority = priority;
xpt_run_allocq(periph, 0);
} else
cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
"cgticb", 0);
}
SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
return ((union ccb *)ccb_h);
}
static void
xpt_acquire_bus(struct cam_eb *bus)
{
xpt_lock_buses();
bus->refcount++;
xpt_unlock_buses();
}
static void
xpt_release_bus(struct cam_eb *bus)
{
xpt_lock_buses();
KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
if (--bus->refcount > 0) {
xpt_unlock_buses();
return;
}
TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
xsoftc.bus_generation++;
xpt_unlock_buses();
KASSERT(TAILQ_EMPTY(&bus->et_entries),
("destroying bus, but target list is not empty"));
cam_sim_release(bus->sim);
mtx_destroy(&bus->eb_mtx);
free(bus, M_CAMXPT);
}
static struct cam_et *
xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
{
struct cam_et *cur_target, *target;
mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
mtx_assert(&bus->eb_mtx, MA_OWNED);
target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
M_NOWAIT|M_ZERO);
if (target == NULL)
return (NULL);
TAILQ_INIT(&target->ed_entries);
target->bus = bus;
target->target_id = target_id;
target->refcount = 1;
target->generation = 0;
target->luns = NULL;
mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
timevalclear(&target->last_reset);
/*
* Hold a reference to our parent bus so it
* will not go away before we do.
*/
bus->refcount++;
/* Insertion sort into our bus's target list */
cur_target = TAILQ_FIRST(&bus->et_entries);
while (cur_target != NULL && cur_target->target_id < target_id)
cur_target = TAILQ_NEXT(cur_target, links);
if (cur_target != NULL) {
TAILQ_INSERT_BEFORE(cur_target, target, links);
} else {
TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
}
bus->generation++;
return (target);
}
static void
xpt_acquire_target(struct cam_et *target)
{
struct cam_eb *bus = target->bus;
mtx_lock(&bus->eb_mtx);
target->refcount++;
mtx_unlock(&bus->eb_mtx);
}
static void
xpt_release_target(struct cam_et *target)
{
struct cam_eb *bus = target->bus;
mtx_lock(&bus->eb_mtx);
if (--target->refcount > 0) {
mtx_unlock(&bus->eb_mtx);
return;
}
TAILQ_REMOVE(&bus->et_entries, target, links);
bus->generation++;
mtx_unlock(&bus->eb_mtx);
KASSERT(TAILQ_EMPTY(&target->ed_entries),
("destroying target, but device list is not empty"));
xpt_release_bus(bus);
mtx_destroy(&target->luns_mtx);
if (target->luns)
free(target->luns, M_CAMXPT);
free(target, M_CAMXPT);
}
static struct cam_ed *
xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
lun_id_t lun_id)
{
struct cam_ed *device;
device = xpt_alloc_device(bus, target, lun_id);
if (device == NULL)
return (NULL);
device->mintags = 1;
device->maxtags = 1;
return (device);
}
static void
xpt_destroy_device(void *context, int pending)
{
struct cam_ed *device = context;
mtx_lock(&device->device_mtx);
mtx_destroy(&device->device_mtx);
free(device, M_CAMDEV);
}
struct cam_ed *
xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
{
struct cam_ed *cur_device, *device;
struct cam_devq *devq;
cam_status status;
mtx_assert(&bus->eb_mtx, MA_OWNED);
/* Make space for us in the device queue on our bus */
devq = bus->sim->devq;
mtx_lock(&devq->send_mtx);
status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
mtx_unlock(&devq->send_mtx);
if (status != CAM_REQ_CMP)
return (NULL);
device = (struct cam_ed *)malloc(sizeof(*device),
M_CAMDEV, M_NOWAIT|M_ZERO);
if (device == NULL)
return (NULL);
cam_init_pinfo(&device->devq_entry);
device->target = target;
device->lun_id = lun_id;
device->sim = bus->sim;
if (cam_ccbq_init(&device->ccbq,
bus->sim->max_dev_openings) != 0) {
free(device, M_CAMDEV);
return (NULL);
}
SLIST_INIT(&device->asyncs);
SLIST_INIT(&device->periphs);
device->generation = 0;
device->flags = CAM_DEV_UNCONFIGURED;
device->tag_delay_count = 0;
device->tag_saved_openings = 0;
device->refcount = 1;
mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
callout_init_mtx(&device->callout, &devq->send_mtx, 0);
TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
/*
* Hold a reference to our parent bus so it
* will not go away before we do.
*/
target->refcount++;
cur_device = TAILQ_FIRST(&target->ed_entries);
while (cur_device != NULL && cur_device->lun_id < lun_id)
cur_device = TAILQ_NEXT(cur_device, links);
if (cur_device != NULL)
TAILQ_INSERT_BEFORE(cur_device, device, links);
else
TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
target->generation++;
return (device);
}
void
xpt_acquire_device(struct cam_ed *device)
{
struct cam_eb *bus = device->target->bus;
mtx_lock(&bus->eb_mtx);
device->refcount++;
mtx_unlock(&bus->eb_mtx);
}
void
xpt_release_device(struct cam_ed *device)
{
struct cam_eb *bus = device->target->bus;
struct cam_devq *devq;
mtx_lock(&bus->eb_mtx);
if (--device->refcount > 0) {
mtx_unlock(&bus->eb_mtx);
return;
}
TAILQ_REMOVE(&device->target->ed_entries, device,links);
device->target->generation++;
mtx_unlock(&bus->eb_mtx);
/* Release our slot in the devq */
devq = bus->sim->devq;
mtx_lock(&devq->send_mtx);
cam_devq_resize(devq, devq->send_queue.array_size - 1);
mtx_unlock(&devq->send_mtx);
KASSERT(SLIST_EMPTY(&device->periphs),
("destroying device, but periphs list is not empty"));
KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
("destroying device while still queued for ccbs"));
if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
callout_stop(&device->callout);
xpt_release_target(device->target);
cam_ccbq_fini(&device->ccbq);
/*
* Free allocated memory. free(9) does nothing if the
* supplied pointer is NULL, so it is safe to call without
* checking.
*/
free(device->supported_vpds, M_CAMXPT);
free(device->device_id, M_CAMXPT);
free(device->ext_inq, M_CAMXPT);
free(device->physpath, M_CAMXPT);
free(device->rcap_buf, M_CAMXPT);
free(device->serial_num, M_CAMXPT);
taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
}
u_int32_t
xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
{
int result;
struct cam_ed *dev;
dev = path->device;
mtx_lock(&dev->sim->devq->send_mtx);
result = cam_ccbq_resize(&dev->ccbq, newopenings);
mtx_unlock(&dev->sim->devq->send_mtx);
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
|| (dev->inq_flags & SID_CmdQue) != 0)
dev->tag_saved_openings = newopenings;
return (result);
}
static struct cam_eb *
xpt_find_bus(path_id_t path_id)
{
struct cam_eb *bus;
xpt_lock_buses();
for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
bus != NULL;
bus = TAILQ_NEXT(bus, links)) {
if (bus->path_id == path_id) {
bus->refcount++;
break;
}
}
xpt_unlock_buses();
return (bus);
}
static struct cam_et *
xpt_find_target(struct cam_eb *bus, target_id_t target_id)
{
struct cam_et *target;
mtx_assert(&bus->eb_mtx, MA_OWNED);
for (target = TAILQ_FIRST(&bus->et_entries);
target != NULL;
target = TAILQ_NEXT(target, links)) {
if (target->target_id == target_id) {
target->refcount++;
break;
}
}
return (target);
}
static struct cam_ed *
xpt_find_device(struct cam_et *target, lun_id_t lun_id)
{
struct cam_ed *device;
mtx_assert(&target->bus->eb_mtx, MA_OWNED);
for (device = TAILQ_FIRST(&target->ed_entries);
device != NULL;
device = TAILQ_NEXT(device, links)) {
if (device->lun_id == lun_id) {
device->refcount++;
break;
}
}
return (device);
}
void
xpt_start_tags(struct cam_path *path)
{
struct ccb_relsim crs;
struct cam_ed *device;
struct cam_sim *sim;
int newopenings;
device = path->device;
sim = path->bus->sim;
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
xpt_freeze_devq(path, /*count*/1);
device->inq_flags |= SID_CmdQue;
if (device->tag_saved_openings != 0)
newopenings = device->tag_saved_openings;
else
newopenings = min(device->maxtags,
sim->max_tagged_dev_openings);
xpt_dev_ccbq_resize(path, newopenings);
xpt_async(AC_GETDEV_CHANGED, path, NULL);
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
crs.openings
= crs.release_timeout
= crs.qfrozen_cnt
= 0;
xpt_action((union ccb *)&crs);
}
void
xpt_stop_tags(struct cam_path *path)
{
struct ccb_relsim crs;
struct cam_ed *device;
struct cam_sim *sim;
device = path->device;
sim = path->bus->sim;
device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
device->tag_delay_count = 0;
xpt_freeze_devq(path, /*count*/1);
device->inq_flags &= ~SID_CmdQue;
xpt_dev_ccbq_resize(path, sim->max_dev_openings);
xpt_async(AC_GETDEV_CHANGED, path, NULL);
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
crs.openings
= crs.release_timeout
= crs.qfrozen_cnt
= 0;
xpt_action((union ccb *)&crs);
}
static void
xpt_boot_delay(void *arg)
{
xpt_release_boot();
}
static void
xpt_config(void *arg)
{
/*
* Now that interrupts are enabled, go find our devices
*/
if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
printf("xpt_config: failed to create taskqueue thread.\n");
/* Setup debugging path */
if (cam_dflags != CAM_DEBUG_NONE) {
if (xpt_create_path(&cam_dpath, NULL,
CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
CAM_DEBUG_LUN) != CAM_REQ_CMP) {
printf("xpt_config: xpt_create_path() failed for debug"
" target %d:%d:%d, debugging disabled\n",
CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
cam_dflags = CAM_DEBUG_NONE;
}
} else
cam_dpath = NULL;
periphdriver_init(1);
xpt_hold_boot();
callout_init(&xsoftc.boot_callout, 1);
callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
xpt_boot_delay, NULL, 0);
/* Fire up rescan thread. */
if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
"cam", "scanner")) {
printf("xpt_config: failed to create rescan thread.\n");
}
}
void
xpt_hold_boot(void)
{
xpt_lock_buses();
xsoftc.buses_to_config++;
xpt_unlock_buses();
}
void
xpt_release_boot(void)
{
xpt_lock_buses();
xsoftc.buses_to_config--;
if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
struct xpt_task *task;
xsoftc.buses_config_done = 1;
xpt_unlock_buses();
/* Call manually because we don't have any buses */
task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
if (task != NULL) {
TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
taskqueue_enqueue(taskqueue_thread, &task->task);
}
} else
xpt_unlock_buses();
}
/*
* If the given device only has one peripheral attached to it, and if that
* peripheral is the passthrough driver, announce it. This insures that the
* user sees some sort of announcement for every peripheral in their system.
*/
static int
xptpassannouncefunc(struct cam_ed *device, void *arg)
{
struct cam_periph *periph;
int i;
for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
periph = SLIST_NEXT(periph, periph_links), i++);
periph = SLIST_FIRST(&device->periphs);
if ((i == 1)
&& (strncmp(periph->periph_name, "pass", 4) == 0))
xpt_announce_periph(periph, NULL);
return(1);
}
static void
xpt_finishconfig_task(void *context, int pending)
{
periphdriver_init(2);
/*
* Check for devices with no "standard" peripheral driver
* attached. For any devices like that, announce the
* passthrough driver so the user will see something.
*/
if (!bootverbose)
xpt_for_all_devices(xptpassannouncefunc, NULL);
/* Release our hook so that the boot can continue. */
config_intrhook_disestablish(xsoftc.xpt_config_hook);
free(xsoftc.xpt_config_hook, M_CAMXPT);
xsoftc.xpt_config_hook = NULL;
free(context, M_CAMXPT);
}
cam_status
xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
struct cam_path *path)
{
struct ccb_setasync csa;
cam_status status;
int xptpath = 0;
if (path == NULL) {
status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
if (status != CAM_REQ_CMP)
return (status);
xpt_path_lock(path);
xptpath = 1;
}
xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = event;
csa.callback = cbfunc;
csa.callback_arg = cbarg;
xpt_action((union ccb *)&csa);
status = csa.ccb_h.status;
CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
("xpt_register_async: func %p\n", cbfunc));
if (xptpath) {
xpt_path_unlock(path);
xpt_free_path(path);
}
if ((status == CAM_REQ_CMP) &&
(csa.event_enable & AC_FOUND_DEVICE)) {
/*
* Get this peripheral up to date with all
* the currently existing devices.
*/
xpt_for_all_devices(xptsetasyncfunc, &csa);
}
if ((status == CAM_REQ_CMP) &&
(csa.event_enable & AC_PATH_REGISTERED)) {
/*
* Get this peripheral up to date with all
* the currently existing buses.
*/
xpt_for_all_busses(xptsetasyncbusfunc, &csa);
}
return (status);
}
static void
xptaction(struct cam_sim *sim, union ccb *work_ccb)
{
CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
switch (work_ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi;
cpi = &work_ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = 0;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = 0;
strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(cpi->hba_vid, "", HBA_IDLEN);
strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
cpi->unit_number = sim->unit_number;
cpi->bus_id = sim->bus_id;
cpi->base_transfer_speed = 0;
cpi->protocol = PROTO_UNSPECIFIED;
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
cpi->transport = XPORT_UNSPECIFIED;
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(work_ccb);
break;
}
default:
work_ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(work_ccb);
break;
}
}
/*
* The xpt as a "controller" has no interrupt sources, so polling
* is a no-op.
*/
static void
xptpoll(struct cam_sim *sim)
{
}
void
xpt_lock_buses(void)
{
mtx_lock(&xsoftc.xpt_topo_lock);
}
void
xpt_unlock_buses(void)
{
mtx_unlock(&xsoftc.xpt_topo_lock);
}
struct mtx *
xpt_path_mtx(struct cam_path *path)
{
return (&path->device->device_mtx);
}
static void
xpt_done_process(struct ccb_hdr *ccb_h)
{
struct cam_sim *sim;
struct cam_devq *devq;
struct mtx *mtx = NULL;
#if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
struct ccb_scsiio *csio;
if (ccb_h->func_code == XPT_SCSI_IO) {
csio = &((union ccb *)ccb_h)->csio;
if (csio->bio != NULL)
biotrack(csio->bio, __func__);
}
#endif
if (ccb_h->flags & CAM_HIGH_POWER) {
struct highpowerlist *hphead;
struct cam_ed *device;
mtx_lock(&xsoftc.xpt_highpower_lock);
hphead = &xsoftc.highpowerq;
device = STAILQ_FIRST(hphead);
/*
* Increment the count since this command is done.
*/
xsoftc.num_highpower++;
/*
* Any high powered commands queued up?
*/
if (device != NULL) {
STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
mtx_unlock(&xsoftc.xpt_highpower_lock);
mtx_lock(&device->sim->devq->send_mtx);
xpt_release_devq_device(device,
/*count*/1, /*runqueue*/TRUE);
mtx_unlock(&device->sim->devq->send_mtx);
} else
mtx_unlock(&xsoftc.xpt_highpower_lock);
}
sim = ccb_h->path->bus->sim;
if (ccb_h->status & CAM_RELEASE_SIMQ) {
xpt_release_simq(sim, /*run_queue*/FALSE);
ccb_h->status &= ~CAM_RELEASE_SIMQ;
}
if ((ccb_h->flags & CAM_DEV_QFRZDIS)
&& (ccb_h->status & CAM_DEV_QFRZN)) {
xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
ccb_h->status &= ~CAM_DEV_QFRZN;
}
devq = sim->devq;
if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
struct cam_ed *dev = ccb_h->path->device;
mtx_lock(&devq->send_mtx);
devq->send_active--;
devq->send_openings++;
cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
&& (dev->ccbq.dev_active == 0))) {
dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
xpt_release_devq_device(dev, /*count*/1,
/*run_queue*/FALSE);
}
if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
&& (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
xpt_release_devq_device(dev, /*count*/1,
/*run_queue*/FALSE);
}
if (!device_is_queued(dev))
(void)xpt_schedule_devq(devq, dev);
xpt_run_devq(devq);
mtx_unlock(&devq->send_mtx);
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
mtx = xpt_path_mtx(ccb_h->path);
mtx_lock(mtx);
if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
&& (--dev->tag_delay_count == 0))
xpt_start_tags(ccb_h->path);
}
}
if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
if (mtx == NULL) {
mtx = xpt_path_mtx(ccb_h->path);
mtx_lock(mtx);
}
} else {
if (mtx != NULL) {
mtx_unlock(mtx);
mtx = NULL;
}
}
/* Call the peripheral driver's callback */
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
if (mtx != NULL)
mtx_unlock(mtx);
}
void
xpt_done_td(void *arg)
{
struct cam_doneq *queue = arg;
struct ccb_hdr *ccb_h;
STAILQ_HEAD(, ccb_hdr) doneq;
STAILQ_INIT(&doneq);
mtx_lock(&queue->cam_doneq_mtx);
while (1) {
while (STAILQ_EMPTY(&queue->cam_doneq)) {
queue->cam_doneq_sleep = 1;
msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
PRIBIO, "-", 0);
queue->cam_doneq_sleep = 0;
}
STAILQ_CONCAT(&doneq, &queue->cam_doneq);
mtx_unlock(&queue->cam_doneq_mtx);
THREAD_NO_SLEEPING();
while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
xpt_done_process(ccb_h);
}
THREAD_SLEEPING_OK();
mtx_lock(&queue->cam_doneq_mtx);
}
}
static void
camisr_runqueue(void)
{
struct ccb_hdr *ccb_h;
struct cam_doneq *queue;
int i;
/* Process global queues. */
for (i = 0; i < cam_num_doneqs; i++) {
queue = &cam_doneqs[i];
mtx_lock(&queue->cam_doneq_mtx);
while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
mtx_unlock(&queue->cam_doneq_mtx);
xpt_done_process(ccb_h);
mtx_lock(&queue->cam_doneq_mtx);
}
mtx_unlock(&queue->cam_doneq_mtx);
}
}
struct kv
{
uint32_t v;
const char *name;
};
static struct kv map[] = {
{ XPT_NOOP, "XPT_NOOP" },
{ XPT_SCSI_IO, "XPT_SCSI_IO" },
{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
{ XPT_GDEVLIST, "XPT_GDEVLIST" },
{ XPT_PATH_INQ, "XPT_PATH_INQ" },
{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
{ XPT_DEBUG, "XPT_DEBUG" },
{ XPT_PATH_STATS, "XPT_PATH_STATS" },
{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
{ XPT_ASYNC, "XPT_ASYNC" },
{ XPT_ABORT, "XPT_ABORT" },
{ XPT_RESET_BUS, "XPT_RESET_BUS" },
{ XPT_RESET_DEV, "XPT_RESET_DEV" },
{ XPT_TERM_IO, "XPT_TERM_IO" },
{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
{ XPT_ATA_IO, "XPT_ATA_IO" },
{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
{ XPT_NVME_IO, "XPT_NVME_IO" },
{ XPT_MMCSD_IO, "XPT_MMCSD_IO" },
{ XPT_SMP_IO, "XPT_SMP_IO" },
{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
{ XPT_ENG_INQ, "XPT_ENG_INQ" },
{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
{ XPT_EN_LUN, "XPT_EN_LUN" },
{ XPT_TARGET_IO, "XPT_TARGET_IO" },
{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
{ 0, 0 }
};
static const char *
xpt_action_name(uint32_t action)
{
static char buffer[32]; /* Only for unknown messages -- racy */
struct kv *walker = map;
while (walker->name != NULL) {
if (walker->v == action)
return (walker->name);
walker++;
}
snprintf(buffer, sizeof(buffer), "%#x", action);
return (buffer);
}