freebsd-dev/lib/libc_r/uthread/uthread_sig.c
Daniel Eischen fbeb36e4bf Implement zero system call thread switching. Performance of
thread switches should be on par with that under scheduler
activations.

  o Timing is achieved through the use of a fixed interval
    timer (ITIMER_PROF) to count scheduling ticks instead
    of retrieving the time-of-day upon every thread switch
    and calculating elapsed real time.

  o Polling for I/O readiness is performed once for each
    scheduling tick instead of every thread switch.

  o The non-signal saving/restoring versions of setjmp/longjmp
    are used to save and restore thread contexts.  This may
    allow the removal of _THREAD_SAFE macros from setjmp()
    and longjmp() - needs more investigation.

Change signal handling so that signals are handled in the
context of the thread that is receiving the signal.  When
signals are dispatched to a thread, a special signal handling
frame is created on top of the target threads stack.  The
frame contains the threads saved state information and a new
context in which the thread can run.  The applications signal
handler is invoked through a wrapper routine that knows how
to restore the threads saved state and unwind to previous
frames.

Fix interruption of threads due to signals.  Some states
were being improperly interrupted while other states were
not being interrupted.  This should fix several PRs.

Signal handlers, which are invoked as a result of a process
signal (not by pthread_kill()), are now called with the
code (or siginfo_t if SA_SIGINFO was set in sa_flags) and
sigcontext_t as received from the process signal handler.

Modify the search for a thread to which a signal is delivered.
The search algorithm is now:

  o First thread found in sigwait() with signal in wait mask.
  o First thread found sigsuspend()'d on the signal.
  o Current thread if signal is unmasked.
  o First thread found with signal unmasked.

Collapse machine dependent support into macros defined in
pthread_private.h.  These should probably eventually be moved
into separate MD files.

Change the range of settable priorities to be compliant with
POSIX (0-31).  The threads library uses higher priorities
internally for real-time threads (not yet implemented) and
threads executing signal handlers.  Real-time threads and
threads running signal handlers add 64 and 32, respectively,
to a threads base priority.

Some other small changes and cleanups.

PR:		17757 18559 21943
Reviewed by:	jasone
2000-10-13 22:12:32 +00:00

1178 lines
31 KiB
C

/*
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/signalvar.h>
#include <signal.h>
#include <fcntl.h>
#include <unistd.h>
#include <setjmp.h>
#include <errno.h>
#ifdef _THREAD_SAFE
#include <pthread.h>
#include "pthread_private.h"
/* Prototypes: */
static void thread_sig_add(pthread_t pthread, int sig, int has_args);
static pthread_t thread_sig_find(int sig);
static void thread_sig_handle_special(int sig);
static void thread_sig_savecontext(pthread_t pthread, ucontext_t *ucp);
static void thread_sigframe_add(pthread_t thread, int sig);
static void thread_sigframe_leave(pthread_t thread, int frame);
static void thread_sigframe_restore(pthread_t thread, struct pthread_signal_frame *psf);
static void thread_sigframe_save(pthread_t thread, struct pthread_signal_frame *psf);
/* #define DEBUG_SIGNAL */
#ifdef DEBUG_SIGNAL
#define DBG_MSG stdout_debug
#else
#define DBG_MSG(x...)
#endif
#if defined(_PTHREADS_INVARIANTS)
#define SIG_SET_ACTIVE() _sig_in_handler = 1
#define SIG_SET_INACTIVE() _sig_in_handler = 0
#else
#define SIG_SET_ACTIVE()
#define SIG_SET_INACTIVE()
#endif
void
_thread_sig_handler(int sig, siginfo_t *info, ucontext_t *ucp)
{
pthread_t pthread;
int current_frame;
char c;
if (ucp == NULL)
PANIC("Thread signal handler received null context");
DBG_MSG("Got signal %d, current thread %p\n", sig, _thread_run);
/* Check if an interval timer signal: */
if (sig == _SCHED_SIGNAL) {
/* Update the scheduling clock: */
gettimeofday((struct timeval *)&_sched_tod, NULL);
_sched_ticks++;
if (_thread_kern_in_sched != 0) {
/*
* The scheduler is already running; ignore this
* signal.
*/
}
/*
* Check if the scheduler interrupt has come when
* the currently running thread has deferred thread
* signals.
*/
else if (_thread_run->sig_defer_count > 0)
_thread_run->yield_on_sig_undefer = 1;
else {
/*
* Save the context of the currently running thread:
*/
thread_sig_savecontext(_thread_run, ucp);
/*
* Schedule the next thread. This function is not
* expected to return because it will do a longjmp
* instead.
*/
_thread_kern_sched(ucp);
/*
* This point should not be reached, so abort the
* process:
*/
PANIC("Returned to signal function from scheduler");
}
}
/*
* Check if the kernel has been interrupted while the scheduler
* is accessing the scheduling queues or if there is a currently
* running thread that has deferred signals.
*/
else if ((_thread_kern_in_sched != 0) ||
(_thread_run->sig_defer_count > 0)) {
/* Cast the signal number to a character variable: */
c = sig;
/*
* Write the signal number to the kernel pipe so that it will
* be ready to read when this signal handler returns.
*/
if (_queue_signals != 0) {
_thread_sys_write(_thread_kern_pipe[1], &c, 1);
DBG_MSG("Got signal %d, queueing to kernel pipe\n", sig);
}
if (_thread_sigq[sig - 1].blocked == 0) {
DBG_MSG("Got signal %d, adding to _thread_sigq\n", sig);
/*
* Do not block this signal; it will be blocked
* when the pending signals are run down.
*/
/* _thread_sigq[sig - 1].blocked = 1; */
/*
* Queue the signal, saving siginfo and sigcontext
* (ucontext).
*
* XXX - Do we need to copy siginfo and ucp?
*/
_thread_sigq[sig - 1].signo = sig;
if (info != NULL)
memcpy(&_thread_sigq[sig - 1].siginfo, info,
sizeof(*info));
memcpy(&_thread_sigq[sig - 1].uc, ucp, sizeof(*ucp));
/* Indicate that there are queued signals: */
_thread_sigq[sig - 1].pending = 1;
_sigq_check_reqd = 1;
}
/* These signals need special handling: */
else if (sig == SIGCHLD || sig == SIGTSTP ||
sig == SIGTTIN || sig == SIGTTOU) {
_thread_sigq[sig - 1].pending = 1;
_thread_sigq[sig - 1].signo = sig;
_sigq_check_reqd = 1;
}
else
DBG_MSG("Got signal %d, ignored.\n", sig);
}
/*
* The signal handlers should have been installed so that they
* cannot be interrupted by other signals.
*/
else if (_thread_sigq[sig - 1].blocked == 0) {
/* The signal is not blocked; handle the signal: */
current_frame = _thread_run->sigframe_count;
/*
* Ignore subsequent occurrences of this signal
* until the current signal is handled:
*/
_thread_sigq[sig - 1].blocked = 1;
/* This signal will be handled; clear the pending flag: */
_thread_sigq[sig - 1].pending = 0;
/*
* Save siginfo and sigcontext (ucontext).
*
* XXX - Do we need to copy siginfo and ucp?
*/
_thread_sigq[sig - 1].signo = sig;
if (info != NULL)
memcpy(&_thread_sigq[sig - 1].siginfo, info,
sizeof(*info));
memcpy(&_thread_sigq[sig - 1].uc, ucp, sizeof(*ucp));
SIG_SET_ACTIVE();
/* Handle special signals: */
thread_sig_handle_special(sig);
if ((pthread = thread_sig_find(sig)) != NULL) {
DBG_MSG("Got signal %d, adding frame to thread %p\n",
sig, pthread);
/*
* A thread was found that can handle the signal.
* Save the context of the currently running thread
* so that we can switch to another thread without
* losing track of where the current thread left off.
* This also applies if the current thread is the
* thread to be signaled.
*/
thread_sig_savecontext(_thread_run, ucp);
/* Setup the target thread to receive the signal: */
thread_sig_add(pthread, sig, /*has_args*/ 1);
/* Take a peek at the next ready to run thread: */
pthread = PTHREAD_PRIOQ_FIRST();
DBG_MSG("Finished adding frame, head of prio list %p\n",
pthread);
}
else
DBG_MSG("No thread to handle signal %d\n", sig);
SIG_SET_INACTIVE();
/*
* Switch to a different context if the currently running
* thread takes a signal, or if another thread takes a
* signal and the currently running thread is not in a
* signal handler.
*/
if ((_thread_run->sigframe_count > current_frame) ||
((pthread != NULL) &&
(pthread->active_priority > _thread_run->active_priority))) {
/* Enter the kernel scheduler: */
DBG_MSG("Entering scheduler from signal handler\n");
_thread_kern_sched(ucp);
}
}
else {
SIG_SET_ACTIVE();
thread_sig_handle_special(sig);
SIG_SET_INACTIVE();
}
}
static void
thread_sig_savecontext(pthread_t pthread, ucontext_t *ucp)
{
struct pthread_signal_frame *psf;
psf = _thread_run->curframe;
memcpy(&psf->ctx.uc, ucp, sizeof(*ucp));
/* XXX - Save FP registers too? */
FP_SAVE_UC(&psf->ctx.uc);
/* Mark the context saved as a ucontext: */
psf->ctxtype = CTX_UC;
}
/*
* Find a thread that can handle the signal.
*/
pthread_t
thread_sig_find(int sig)
{
int handler_installed;
pthread_t pthread, pthread_next;
pthread_t suspended_thread, signaled_thread;
DBG_MSG("Looking for thread to handle signal %d\n", sig);
/* Check if the signal requires a dump of thread information: */
if (sig == SIGINFO)
/* Dump thread information to file: */
_thread_dump_info();
/* Check if an interval timer signal: */
else if (sig == _SCHED_SIGNAL) {
/*
* This shouldn't ever occur (should this panic?).
*/
} else {
/*
* Enter a loop to look for threads that have the signal
* unmasked. POSIX specifies that a thread in a sigwait
* will get the signal over any other threads. Second
* preference will be threads in in a sigsuspend. Third
* preference will be the current thread. If none of the
* above, then the signal is delivered to the first thread
* that is found. Note that if a custom handler is not
* installed, the signal only affects threads in sigwait.
*/
suspended_thread = NULL;
if ((_thread_run != &_thread_kern_thread) &&
!sigismember(&_thread_run->sigmask, sig))
signaled_thread = _thread_run;
else
signaled_thread = NULL;
if ((_thread_sigact[sig - 1].sa_handler == SIG_IGN) ||
(_thread_sigact[sig - 1].sa_handler == SIG_DFL))
handler_installed = 0;
else
handler_installed = 1;
for (pthread = TAILQ_FIRST(&_waitingq);
pthread != NULL; pthread = pthread_next) {
/*
* Grab the next thread before possibly destroying
* the link entry.
*/
pthread_next = TAILQ_NEXT(pthread, pqe);
if ((pthread->state == PS_SIGWAIT) &&
sigismember(pthread->data.sigwait, sig)) {
/* Change the state of the thread to run: */
PTHREAD_NEW_STATE(pthread,PS_RUNNING);
/*
* A signal handler is not invoked for threads
* in sigwait. Clear the blocked and pending
* flags.
*/
_thread_sigq[sig - 1].blocked = 0;
_thread_sigq[sig - 1].pending = 0;
/* Return the signal number: */
pthread->signo = sig;
/*
* POSIX doesn't doesn't specify which thread
* will get the signal if there are multiple
* waiters, so we give it to the first thread
* we find.
*
* Do not attempt to deliver this signal
* to other threads and do not add the signal
* to the process pending set.
*/
return (NULL);
}
else if ((handler_installed != 0) &&
!sigismember(&pthread->sigmask, sig)) {
if (pthread->state == PS_SIGSUSPEND) {
if (suspended_thread == NULL)
suspended_thread = pthread;
} else if (signaled_thread == NULL)
signaled_thread = pthread;
}
}
/*
* Only perform wakeups and signal delivery if there is a
* custom handler installed:
*/
if (handler_installed == 0) {
/*
* There is no handler installed. Unblock the
* signal so that if a handler _is_ installed, any
* subsequent signals can be handled.
*/
_thread_sigq[sig - 1].blocked = 0;
} else {
/*
* If we didn't find a thread in the waiting queue,
* check the all threads queue:
*/
if (suspended_thread == NULL &&
signaled_thread == NULL) {
/*
* Enter a loop to look for other threads
* capable of receiving the signal:
*/
TAILQ_FOREACH(pthread, &_thread_list, tle) {
if (!sigismember(&pthread->sigmask,
sig)) {
signaled_thread = pthread;
break;
}
}
}
if (suspended_thread == NULL &&
signaled_thread == NULL)
/*
* Add it to the set of signals pending
* on the process:
*/
sigaddset(&_process_sigpending, sig);
else {
/*
* We only deliver the signal to one thread;
* give preference to the suspended thread:
*/
if (suspended_thread != NULL)
pthread = suspended_thread;
else
pthread = signaled_thread;
return (pthread);
}
}
}
/* Returns nothing. */
return (NULL);
}
void
_thread_sig_check_pending(pthread_t pthread)
{
sigset_t sigset;
int i;
/*
* Check if there are pending signals for the running
* thread or process that aren't blocked:
*/
sigset = pthread->sigpend;
SIGSETOR(sigset, _process_sigpending);
SIGSETNAND(sigset, pthread->sigmask);
if (SIGNOTEMPTY(sigset)) {
for (i = 1; i < NSIG; i++) {
if (sigismember(&sigset, i) != 0) {
if (sigismember(&pthread->sigpend, i) != 0)
thread_sig_add(pthread, i,
/*has_args*/ 0);
else {
thread_sig_add(pthread, i,
/*has_args*/ 1);
sigdelset(&_process_sigpending, i);
}
}
}
}
}
/*
* This can only be called from the kernel scheduler. It assumes that
* all thread contexts are saved and that a signal frame can safely be
* added to any user thread.
*/
void
_thread_sig_handle_pending(void)
{
pthread_t pthread;
int i, sig;
PTHREAD_ASSERT(_thread_kern_in_sched != 0,
"_thread_sig_handle_pending called from outside kernel schedule");
/*
* Check the array of pending signals:
*/
for (i = 0; i < NSIG; i++) {
if (_thread_sigq[i].pending != 0) {
/* This signal is no longer pending. */
_thread_sigq[i].pending = 0;
sig = _thread_sigq[i].signo;
/* Some signals need special handling: */
thread_sig_handle_special(sig);
if (_thread_sigq[i].blocked == 0) {
/*
* Block future signals until this one
* is handled:
*/
_thread_sigq[i].blocked = 1;
if ((pthread = thread_sig_find(sig)) != NULL) {
/*
* Setup the target thread to receive
* the signal:
*/
thread_sig_add(pthread, sig,
/*has_args*/ 1);
}
}
}
}
}
static void
thread_sig_handle_special(int sig)
{
pthread_t pthread, pthread_next;
int i;
switch (sig) {
case SIGCHLD:
/*
* Go through the file list and set all files
* to non-blocking again in case the child
* set some of them to block. Sigh.
*/
for (i = 0; i < _thread_dtablesize; i++) {
/* Check if this file is used: */
if (_thread_fd_table[i] != NULL) {
/*
* Set the file descriptor to non-blocking:
*/
_thread_sys_fcntl(i, F_SETFL,
_thread_fd_table[i]->flags | O_NONBLOCK);
}
}
/*
* Enter a loop to wake up all threads waiting
* for a process to complete:
*/
for (pthread = TAILQ_FIRST(&_waitingq);
pthread != NULL; pthread = pthread_next) {
/*
* Grab the next thread before possibly
* destroying the link entry:
*/
pthread_next = TAILQ_NEXT(pthread, pqe);
/*
* If this thread is waiting for a child
* process to complete, wake it up:
*/
if (pthread->state == PS_WAIT_WAIT) {
/* Make the thread runnable: */
PTHREAD_NEW_STATE(pthread,PS_RUNNING);
/* Return the signal number: */
pthread->signo = sig;
}
}
break;
/*
* POSIX says that pending SIGCONT signals are
* discarded when one of these signals occurs.
*/
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
/*
* Enter a loop to discard pending SIGCONT
* signals:
*/
TAILQ_FOREACH(pthread, &_thread_list, tle) {
sigdelset(&pthread->sigpend, SIGCONT);
}
break;
default:
break;
}
}
/*
* Perform thread specific actions in response to a signal.
* This function is only called if there is a handler installed
* for the signal, and if the target thread has the signal
* unmasked.
*/
static void
thread_sig_add(pthread_t pthread, int sig, int has_args)
{
int restart, frame;
int block_signals = 0;
int suppress_handler = 0;
restart = _thread_sigact[sig - 1].sa_flags & SA_RESTART;
/*
* Process according to thread state:
*/
switch (pthread->state) {
/*
* States which do not change when a signal is trapped:
*/
case PS_DEAD:
case PS_DEADLOCK:
case PS_STATE_MAX:
case PS_SIGTHREAD:
/*
* You can't call a signal handler for threads in these
* states.
*/
suppress_handler = 1;
break;
/*
* States which do not need any cleanup handling when signals
* occur:
*/
case PS_RUNNING:
/*
* Remove the thread from the queue before changing its
* priority:
*/
if ((pthread->flags & PTHREAD_FLAGS_IN_PRIOQ) != 0)
PTHREAD_PRIOQ_REMOVE(pthread);
break;
case PS_SUSPENDED:
break;
case PS_SPINBLOCK:
/* Remove the thread from the workq and waitq: */
PTHREAD_WORKQ_REMOVE(pthread);
PTHREAD_WAITQ_REMOVE(pthread);
/* Make the thread runnable: */
PTHREAD_SET_STATE(pthread, PS_RUNNING);
break;
case PS_SIGWAIT:
/* The signal handler is not called for threads in SIGWAIT. */
suppress_handler = 1;
/* Wake up the thread if the signal is blocked. */
if (sigismember(pthread->data.sigwait, sig)) {
/* Change the state of the thread to run: */
PTHREAD_NEW_STATE(pthread, PS_RUNNING);
/* Return the signal number: */
pthread->signo = sig;
} else
/* Increment the pending signal count. */
sigaddset(&pthread->sigpend, sig);
break;
/*
* The wait state is a special case due to the handling of
* SIGCHLD signals.
*/
case PS_WAIT_WAIT:
if (sig == SIGCHLD) {
/* Change the state of the thread to run: */
PTHREAD_WAITQ_REMOVE(pthread);
PTHREAD_SET_STATE(pthread, PS_RUNNING);
/* Return the signal number: */
pthread->signo = sig;
}
else {
/*
* Mark the thread as interrupted only if the
* restart flag is not set on the signal action:
*/
if (restart == 0)
pthread->interrupted = 1;
PTHREAD_WAITQ_REMOVE(pthread);
PTHREAD_SET_STATE(pthread, PS_RUNNING);
}
break;
/*
* States which cannot be interrupted but still require the
* signal handler to run:
*/
case PS_COND_WAIT:
case PS_JOIN:
case PS_MUTEX_WAIT:
/*
* Remove the thread from the wait queue. It will
* be added back to the wait queue once all signal
* handlers have been invoked.
*/
PTHREAD_WAITQ_REMOVE(pthread);
break;
/*
* States which are interruptible but may need to be removed
* from queues before any signal handler is called.
*
* XXX - We may not need to handle this condition, but will
* mark it as a potential problem.
*/
case PS_FDLR_WAIT:
case PS_FDLW_WAIT:
case PS_FILE_WAIT:
if (restart == 0)
pthread->interrupted = 1;
/*
* Remove the thread from the wait queue. Our
* signal handler hook will remove this thread
* from the fd or file queue before invoking
* the actual handler.
*/
PTHREAD_WAITQ_REMOVE(pthread);
/*
* To ensure the thread is removed from the fd and file
* queues before any other signal interrupts it, set the
* signal mask to block all signals. As soon as the thread
* is removed from the queue the signal mask will be
* restored.
*/
block_signals = 1;
break;
/*
* States which are interruptible:
*/
case PS_FDR_WAIT:
case PS_FDW_WAIT:
if (restart == 0) {
/*
* Flag the operation as interrupted and
* set the state to running:
*/
pthread->interrupted = 1;
PTHREAD_SET_STATE(pthread, PS_RUNNING);
}
PTHREAD_WORKQ_REMOVE(pthread);
PTHREAD_WAITQ_REMOVE(pthread);
break;
case PS_POLL_WAIT:
case PS_SELECT_WAIT:
case PS_SLEEP_WAIT:
/*
* Unmasked signals always cause poll, select, and sleep
* to terminate early, regardless of SA_RESTART:
*/
pthread->interrupted = 1;
/* Remove threads in poll and select from the workq: */
if ((pthread->flags & PTHREAD_FLAGS_IN_WORKQ) != 0)
PTHREAD_WORKQ_REMOVE(pthread);
PTHREAD_WAITQ_REMOVE(pthread);
PTHREAD_SET_STATE(pthread, PS_RUNNING);
break;
case PS_SIGSUSPEND:
PTHREAD_WAITQ_REMOVE(pthread);
PTHREAD_SET_STATE(pthread, PS_RUNNING);
break;
}
if (suppress_handler == 0) {
/*
* Save the current state of the thread and add a
* new signal frame.
*/
frame = pthread->sigframe_count;
thread_sigframe_save(pthread, pthread->curframe);
thread_sigframe_add(pthread, sig);
pthread->sigframes[frame + 1]->sig_has_args = has_args;
SIGSETOR(pthread->sigmask, _thread_sigact[sig - 1].sa_mask);
if (block_signals != 0) {
/* Save the signal mask and block all signals: */
pthread->sigframes[frame + 1]->saved_state.psd_sigmask =
pthread->sigmask;
sigfillset(&pthread->sigmask);
}
/* Make sure the thread is runnable: */
if (pthread->state != PS_RUNNING)
PTHREAD_SET_STATE(pthread, PS_RUNNING);
/*
* The thread should be removed from all scheduling
* queues at this point. Raise the priority and place
* the thread in the run queue.
*/
pthread->active_priority |= PTHREAD_SIGNAL_PRIORITY;
if (pthread != _thread_run)
PTHREAD_PRIOQ_INSERT_TAIL(pthread);
}
}
/*
* Send a signal to a specific thread (ala pthread_kill):
*/
void
_thread_sig_send(pthread_t pthread, int sig)
{
/*
* Check that the signal is not being ignored:
*/
if (_thread_sigact[sig - 1].sa_handler != SIG_IGN) {
if (pthread->state == PS_SIGWAIT &&
sigismember(pthread->data.sigwait, sig)) {
/* Change the state of the thread to run: */
PTHREAD_NEW_STATE(pthread, PS_RUNNING);
/* Return the signal number: */
pthread->signo = sig;
} else if (pthread == _thread_run) {
/* Add the signal to the pending set: */
sigaddset(&pthread->sigpend, sig);
/*
* Deliver the signal to the process if a
* handler is not installed:
*/
if (_thread_sigact[sig - 1].sa_handler == SIG_DFL)
kill(getpid(), sig);
if (!sigismember(&pthread->sigmask, sig)) {
/*
* Call the kernel scheduler which will safely
* install a signal frame for this thread:
*/
_thread_kern_sched_sig();
}
} else {
if (pthread->state != PS_SIGWAIT &&
!sigismember(&pthread->sigmask, sig)) {
/* Protect the scheduling queues: */
_thread_kern_sig_defer();
/*
* Perform any state changes due to signal
* arrival:
*/
thread_sig_add(pthread, sig, /* has args */ 0);
/* Unprotect the scheduling queues: */
_thread_kern_sig_undefer();
}
else
/* Increment the pending signal count. */
sigaddset(&pthread->sigpend,sig);
/*
* Deliver the signal to the process if a
* handler is not installed:
*/
if (_thread_sigact[sig - 1].sa_handler == SIG_DFL)
kill(getpid(), sig);
}
}
}
/*
* User thread signal handler wrapper.
*
* thread - current running thread
*/
void
_thread_sig_wrapper(void)
{
void (*sigfunc)(int, siginfo_t *, void *);
struct pthread_signal_frame *psf;
pthread_t thread;
int dead = 0;
int i, sig, has_args;
int frame, dst_frame;
thread = _thread_run;
/* Get the current frame and state: */
frame = thread->sigframe_count;
PTHREAD_ASSERT(frame > 0, "Invalid signal frame in signal handler");
psf = thread->curframe;
/* Check the threads previous state: */
if (psf->saved_state.psd_state != PS_RUNNING) {
/*
* Do a little cleanup handling for those threads in
* queues before calling the signal handler. Signals
* for these threads are temporarily blocked until
* after cleanup handling.
*/
switch (psf->saved_state.psd_state) {
case PS_FDLR_WAIT:
case PS_FDLW_WAIT:
_fd_lock_backout(thread);
psf->saved_state.psd_state = PS_RUNNING;
/* Reenable signals: */
thread->sigmask = psf->saved_state.psd_sigmask;
break;
case PS_FILE_WAIT:
_flockfile_backout(thread);
psf->saved_state.psd_state = PS_RUNNING;
/* Reenable signals: */
thread->sigmask = psf->saved_state.psd_sigmask;
break;
default:
break;
}
}
/*
* Unless the thread exits or longjmps out of the signal handler,
* return to the previous frame:
*/
dst_frame = frame - 1;
/*
* Check that a custom handler is installed and if the signal
* is not blocked:
*/
sigfunc = _thread_sigact[psf->signo - 1].sa_sigaction;
if (((__sighandler_t *)sigfunc != SIG_DFL) &&
((__sighandler_t *)sigfunc != SIG_IGN)) {
/*
* The signal jump buffer is allocated off the stack.
* If the signal handler tries to [_][sig]longjmp() or
* setcontext(), our wrapped versions of these routines
* will copy the user supplied jump buffer or context
* to the destination signal frame, set the destination
* signal frame in psf->dst_frame, and _longjmp() back
* to here.
*/
jmp_buf jb;
/*
* Set up the context for abnormal returns out of signal
* handlers.
*/
psf->sig_jb = &jb;
if (_setjmp(jb) == 0) {
DBG_MSG("_thread_sig_wrapper: Entering frame %d, "
"stack 0x%lx\n", frame, GET_STACK_JB(jb));
/*
* Invalidate the destination frame before calling
* the signal handler.
*/
psf->dst_frame = -1;
/*
* Dispatch the signal via the custom signal
* handler:
*/
if (psf->sig_has_args == 0)
(*(sigfunc))(psf->signo, NULL, NULL);
else if ((_thread_sigact[psf->signo - 1].sa_flags &
SA_SIGINFO) != 0)
(*(sigfunc))(psf->signo,
&_thread_sigq[psf->signo - 1].siginfo,
&_thread_sigq[psf->signo - 1].uc);
else
(*(sigfunc))(psf->signo,
(siginfo_t *)_thread_sigq[psf->signo - 1].siginfo.si_code,
&_thread_sigq[psf->signo - 1].uc);
}
else {
/*
* The return from _setjmp() should only be non-zero
* when the signal handler wants to xxxlongjmp() or
* setcontext() to a different context, or if the
* thread has exited (via pthread_exit).
*/
/*
* Grab a copy of the destination frame before it
* gets clobbered after unwinding.
*/
dst_frame = psf->dst_frame;
DBG_MSG("Abnormal exit from handler for signal %d, "
"frame %d\n", psf->signo, frame);
/* Has the thread exited? */
if ((dead = thread->flags & PTHREAD_EXITING) != 0)
/* When exiting, unwind to frame 0. */
dst_frame = 0;
else if ((dst_frame < 0) || (dst_frame > frame))
PANIC("Attempt to unwind to invalid "
"signal frame");
/* Unwind to the target frame: */
for (i = frame; i > dst_frame; i--) {
DBG_MSG("Leaving frame %d, signal %d\n", i,
thread->sigframes[i]->signo);
/* Leave the current signal frame: */
thread_sigframe_leave(thread, i);
/*
* Save whatever is needed out of the state
* data; as soon as the frame count is
* is decremented, another signal can arrive
* and corrupt this view of the state data.
*/
sig = thread->sigframes[i]->signo;
has_args = thread->sigframes[i]->sig_has_args;
/*
* We're done with this signal frame:
*/
thread->curframe = thread->sigframes[i - 1];
thread->sigframe_count = i - 1;
/*
* Only unblock the signal if it was a
* process signal as opposed to a signal
* generated by pthread_kill().
*/
if (has_args != 0)
_thread_sigq[sig - 1].blocked = 0;
}
}
}
/*
* Call the kernel scheduler to schedule the next
* thread.
*/
if (dead == 0) {
/* Restore the threads state: */
thread_sigframe_restore(thread, thread->sigframes[dst_frame]);
_thread_kern_sched_frame(dst_frame);
}
else {
PTHREAD_ASSERT(dst_frame == 0,
"Invalid signal frame for dead thread");
/* Perform any necessary cleanup before exiting. */
thread_sigframe_leave(thread, 0);
/* This should never return: */
_thread_exit_finish();
PANIC("Return from _thread_exit_finish in signal wrapper");
}
}
static void
thread_sigframe_add(pthread_t thread, int sig)
{
unsigned long stackp = 0;
/* Get the top of the threads stack: */
switch (thread->curframe->ctxtype) {
case CTX_JB:
case CTX_JB_NOSIG:
stackp = GET_STACK_JB(thread->curframe->ctx.jb);
break;
case CTX_SJB:
stackp = GET_STACK_SJB(thread->curframe->ctx.sigjb);
break;
case CTX_UC:
stackp = GET_STACK_UC(&thread->curframe->ctx.uc);
break;
default:
PANIC("Invalid thread context type");
break;
}
/*
* Leave a little space on the stack and round down to the
* nearest aligned word:
*/
stackp -= sizeof(double);
stackp &= ~0x3UL;
/* Allocate room on top of the stack for a new signal frame: */
stackp -= sizeof(struct pthread_signal_frame);
/* Set up the new frame: */
thread->sigframe_count++;
thread->sigframes[thread->sigframe_count] =
(struct pthread_signal_frame *) stackp;
thread->curframe = thread->sigframes[thread->sigframe_count];
thread->curframe->stackp = stackp;
thread->curframe->ctxtype = CTX_JB;
thread->curframe->longjmp_val = 1;
thread->curframe->signo = sig;
/*
* Set up the context:
*/
_setjmp(thread->curframe->ctx.jb);
SET_STACK_JB(thread->curframe->ctx.jb, stackp);
SET_RETURN_ADDR_JB(thread->curframe->ctx.jb, _thread_sig_wrapper);
}
/*
* Locate the signal frame from the specified stack pointer.
*/
int
_thread_sigframe_find(pthread_t pthread, void *stackp)
{
int frame;
/*
* Find the destination of the target frame based on the
* given stack pointer.
*/
for (frame = pthread->sigframe_count; frame >= 0; frame--) {
if (stackp < (void *)pthread->sigframes[frame]->stackp)
break;
}
return (frame);
}
void
thread_sigframe_leave(pthread_t thread, int frame)
{
struct pthread_state_data *psd;
psd = &thread->sigframes[frame]->saved_state;
/*
* Perform any necessary cleanup for this signal frame:
*/
switch (psd->psd_state) {
case PS_DEAD:
case PS_DEADLOCK:
case PS_RUNNING:
case PS_SIGTHREAD:
case PS_STATE_MAX:
case PS_SUSPENDED:
break;
/*
* Threads in the following states need to be removed
* from queues.
*/
case PS_COND_WAIT:
_cond_wait_backout(thread);
if ((psd->psd_flags & PTHREAD_FLAGS_IN_WAITQ) != 0)
PTHREAD_WAITQ_REMOVE(thread);
break;
case PS_FDLR_WAIT:
case PS_FDLW_WAIT:
_fd_lock_backout(thread);
if ((psd->psd_flags & PTHREAD_FLAGS_IN_WAITQ) != 0)
PTHREAD_WAITQ_REMOVE(thread);
break;
case PS_FILE_WAIT:
_flockfile_backout(thread);
if ((psd->psd_flags & PTHREAD_FLAGS_IN_WAITQ) != 0)
PTHREAD_WAITQ_REMOVE(thread);
break;
case PS_JOIN:
_join_backout(thread);
if ((psd->psd_flags & PTHREAD_FLAGS_IN_WAITQ) != 0)
PTHREAD_WAITQ_REMOVE(thread);
break;
case PS_MUTEX_WAIT:
_mutex_lock_backout(thread);
if ((psd->psd_flags & PTHREAD_FLAGS_IN_WAITQ) != 0)
PTHREAD_WAITQ_REMOVE(thread);
break;
case PS_FDR_WAIT:
case PS_FDW_WAIT:
case PS_POLL_WAIT:
case PS_SELECT_WAIT:
case PS_SIGSUSPEND:
case PS_SIGWAIT:
case PS_SLEEP_WAIT:
case PS_SPINBLOCK:
case PS_WAIT_WAIT:
if ((psd->psd_flags & PTHREAD_FLAGS_IN_WAITQ) != 0) {
PTHREAD_WAITQ_REMOVE(thread);
if ((psd->psd_flags & PTHREAD_FLAGS_IN_WORKQ) != 0)
PTHREAD_WORKQ_REMOVE(thread);
}
break;
}
}
static void
thread_sigframe_restore(pthread_t thread, struct pthread_signal_frame *psf)
{
thread->interrupted = psf->saved_state.psd_interrupted;
thread->sigmask = psf->saved_state.psd_sigmask;
thread->state = psf->saved_state.psd_state;
thread->flags = psf->saved_state.psd_flags;
thread->wakeup_time = psf->saved_state.psd_wakeup_time;
thread->data = psf->saved_state.psd_wait_data;
}
static void
thread_sigframe_save(pthread_t thread, struct pthread_signal_frame *psf)
{
psf->saved_state.psd_interrupted = thread->interrupted;
psf->saved_state.psd_sigmask = thread->sigmask;
psf->saved_state.psd_state = thread->state;
psf->saved_state.psd_flags = thread->flags;
thread->flags &= PTHREAD_FLAGS_PRIVATE | PTHREAD_FLAGS_TRACE |
PTHREAD_FLAGS_IN_CONDQ | PTHREAD_FLAGS_IN_MUTEXQ |
PTHREAD_FLAGS_IN_JOINQ;
psf->saved_state.psd_wakeup_time = thread->wakeup_time;
psf->saved_state.psd_wait_data = thread->data;
}
#endif