freebsd-dev/sys/arm/broadcom/bcm2835/bcm2835_sdhci.c
2016-10-12 03:00:42 +00:00

683 lines
18 KiB
C

/*-
* Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/sdhci/sdhci.h>
#include "sdhci_if.h"
#include "bcm2835_dma.h"
#include <arm/broadcom/bcm2835/bcm2835_mbox_prop.h>
#include "bcm2835_vcbus.h"
#define BCM2835_DEFAULT_SDHCI_FREQ 50
#define BCM_SDHCI_BUFFER_SIZE 512
#define NUM_DMA_SEGS 2
#ifdef DEBUG
#define dprintf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define dprintf(fmt, args...)
#endif
static int bcm2835_sdhci_hs = 1;
static int bcm2835_sdhci_pio_mode = 0;
static struct ofw_compat_data compat_data[] = {
{"broadcom,bcm2835-sdhci", 1},
{"brcm,bcm2835-mmc", 1},
{NULL, 0}
};
TUNABLE_INT("hw.bcm2835.sdhci.hs", &bcm2835_sdhci_hs);
TUNABLE_INT("hw.bcm2835.sdhci.pio_mode", &bcm2835_sdhci_pio_mode);
struct bcm_sdhci_softc {
device_t sc_dev;
struct resource * sc_mem_res;
struct resource * sc_irq_res;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
void * sc_intrhand;
struct mmc_request * sc_req;
struct sdhci_slot sc_slot;
int sc_dma_ch;
bus_dma_tag_t sc_dma_tag;
bus_dmamap_t sc_dma_map;
vm_paddr_t sc_sdhci_buffer_phys;
uint32_t cmd_and_mode;
bus_addr_t dmamap_seg_addrs[NUM_DMA_SEGS];
bus_size_t dmamap_seg_sizes[NUM_DMA_SEGS];
int dmamap_seg_count;
int dmamap_seg_index;
int dmamap_status;
};
static int bcm_sdhci_probe(device_t);
static int bcm_sdhci_attach(device_t);
static int bcm_sdhci_detach(device_t);
static void bcm_sdhci_intr(void *);
static int bcm_sdhci_get_ro(device_t, device_t);
static void bcm_sdhci_dma_intr(int ch, void *arg);
static void
bcm_sdhci_dmacb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
struct bcm_sdhci_softc *sc = arg;
int i;
sc->dmamap_status = err;
sc->dmamap_seg_count = nseg;
/* Note nseg is guaranteed to be zero if err is non-zero. */
for (i = 0; i < nseg; i++) {
sc->dmamap_seg_addrs[i] = segs[i].ds_addr;
sc->dmamap_seg_sizes[i] = segs[i].ds_len;
}
}
static int
bcm_sdhci_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Broadcom 2708 SDHCI controller");
return (BUS_PROBE_DEFAULT);
}
static int
bcm_sdhci_attach(device_t dev)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
int rid, err;
phandle_t node;
pcell_t cell;
u_int default_freq;
sc->sc_dev = dev;
sc->sc_req = NULL;
err = bcm2835_mbox_set_power_state(BCM2835_MBOX_POWER_ID_EMMC,
TRUE);
if (err != 0) {
if (bootverbose)
device_printf(dev, "Unable to enable the power\n");
return (err);
}
default_freq = 0;
err = bcm2835_mbox_get_clock_rate(BCM2835_MBOX_CLOCK_ID_EMMC,
&default_freq);
if (err == 0) {
/* Convert to MHz */
default_freq /= 1000000;
}
if (default_freq == 0) {
node = ofw_bus_get_node(sc->sc_dev);
if ((OF_getencprop(node, "clock-frequency", &cell,
sizeof(cell))) > 0)
default_freq = cell / 1000000;
}
if (default_freq == 0)
default_freq = BCM2835_DEFAULT_SDHCI_FREQ;
if (bootverbose)
device_printf(dev, "SDHCI frequency: %dMHz\n", default_freq);
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->sc_mem_res) {
device_printf(dev, "cannot allocate memory window\n");
err = ENXIO;
goto fail;
}
sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->sc_irq_res) {
device_printf(dev, "cannot allocate interrupt\n");
err = ENXIO;
goto fail;
}
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
NULL, bcm_sdhci_intr, sc, &sc->sc_intrhand)) {
device_printf(dev, "cannot setup interrupt handler\n");
err = ENXIO;
goto fail;
}
if (!bcm2835_sdhci_pio_mode)
sc->sc_slot.opt = SDHCI_PLATFORM_TRANSFER;
sc->sc_slot.caps = SDHCI_CAN_VDD_330 | SDHCI_CAN_VDD_180;
if (bcm2835_sdhci_hs)
sc->sc_slot.caps |= SDHCI_CAN_DO_HISPD;
sc->sc_slot.caps |= (default_freq << SDHCI_CLOCK_BASE_SHIFT);
sc->sc_slot.quirks = SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK
| SDHCI_QUIRK_BROKEN_TIMEOUT_VAL
| SDHCI_QUIRK_DONT_SET_HISPD_BIT
| SDHCI_QUIRK_MISSING_CAPS;
sdhci_init_slot(dev, &sc->sc_slot, 0);
sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_ANY);
if (sc->sc_dma_ch == BCM_DMA_CH_INVALID)
goto fail;
bcm_dma_setup_intr(sc->sc_dma_ch, bcm_sdhci_dma_intr, sc);
/* Allocate bus_dma resources. */
err = bus_dma_tag_create(bus_get_dma_tag(dev),
1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
BCM_SDHCI_BUFFER_SIZE, NUM_DMA_SEGS, BCM_SDHCI_BUFFER_SIZE,
BUS_DMA_ALLOCNOW, NULL, NULL,
&sc->sc_dma_tag);
if (err) {
device_printf(dev, "failed allocate DMA tag");
goto fail;
}
err = bus_dmamap_create(sc->sc_dma_tag, 0, &sc->sc_dma_map);
if (err) {
device_printf(dev, "bus_dmamap_create failed\n");
goto fail;
}
sc->sc_sdhci_buffer_phys = BUS_SPACE_PHYSADDR(sc->sc_mem_res,
SDHCI_BUFFER);
bus_generic_probe(dev);
bus_generic_attach(dev);
sdhci_start_slot(&sc->sc_slot);
return (0);
fail:
if (sc->sc_intrhand)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
if (sc->sc_irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
return (err);
}
static int
bcm_sdhci_detach(device_t dev)
{
return (EBUSY);
}
static void
bcm_sdhci_intr(void *arg)
{
struct bcm_sdhci_softc *sc = arg;
sdhci_generic_intr(&sc->sc_slot);
}
static int
bcm_sdhci_get_ro(device_t bus, device_t child)
{
return (0);
}
static inline uint32_t
RD4(struct bcm_sdhci_softc *sc, bus_size_t off)
{
uint32_t val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
return val;
}
static inline void
WR4(struct bcm_sdhci_softc *sc, bus_size_t off, uint32_t val)
{
bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, val);
/*
* The Arasan HC has a bug where it may lose the content of
* consecutive writes to registers that are within two SD-card
* clock cycles of each other (a clock domain crossing problem).
*/
if (sc->sc_slot.clock > 0)
DELAY(((2 * 1000000) / sc->sc_slot.clock) + 1);
}
static uint8_t
bcm_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val = RD4(sc, off & ~3);
return ((val >> (off & 3)*8) & 0xff);
}
static uint16_t
bcm_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val = RD4(sc, off & ~3);
/*
* Standard 32-bit handling of command and transfer mode.
*/
if (off == SDHCI_TRANSFER_MODE) {
return (sc->cmd_and_mode >> 16);
} else if (off == SDHCI_COMMAND_FLAGS) {
return (sc->cmd_and_mode & 0x0000ffff);
}
return ((val >> (off & 3)*8) & 0xffff);
}
static uint32_t
bcm_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
return RD4(sc, off);
}
static void
bcm_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
bus_space_read_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count);
}
static void
bcm_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32 = RD4(sc, off & ~3);
val32 &= ~(0xff << (off & 3)*8);
val32 |= (val << (off & 3)*8);
WR4(sc, off & ~3, val32);
}
static void
bcm_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
uint32_t val32;
if (off == SDHCI_COMMAND_FLAGS)
val32 = sc->cmd_and_mode;
else
val32 = RD4(sc, off & ~3);
val32 &= ~(0xffff << (off & 3)*8);
val32 |= (val << (off & 3)*8);
if (off == SDHCI_TRANSFER_MODE)
sc->cmd_and_mode = val32;
else {
WR4(sc, off & ~3, val32);
if (off == SDHCI_COMMAND_FLAGS)
sc->cmd_and_mode = val32;
}
}
static void
bcm_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
WR4(sc, off, val);
}
static void
bcm_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct bcm_sdhci_softc *sc = device_get_softc(dev);
bus_space_write_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count);
}
static void
bcm_sdhci_start_dma_seg(struct bcm_sdhci_softc *sc)
{
struct sdhci_slot *slot;
vm_paddr_t pdst, psrc;
int err, idx, len, sync_op;
slot = &sc->sc_slot;
idx = sc->dmamap_seg_index++;
len = sc->dmamap_seg_sizes[idx];
slot->offset += len;
if (slot->curcmd->data->flags & MMC_DATA_READ) {
bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_EMMC,
BCM_DMA_SAME_ADDR, BCM_DMA_32BIT);
bcm_dma_setup_dst(sc->sc_dma_ch, BCM_DMA_DREQ_NONE,
BCM_DMA_INC_ADDR,
(len & 0xf) ? BCM_DMA_32BIT : BCM_DMA_128BIT);
psrc = sc->sc_sdhci_buffer_phys;
pdst = sc->dmamap_seg_addrs[idx];
sync_op = BUS_DMASYNC_PREREAD;
} else {
bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_NONE,
BCM_DMA_INC_ADDR,
(len & 0xf) ? BCM_DMA_32BIT : BCM_DMA_128BIT);
bcm_dma_setup_dst(sc->sc_dma_ch, BCM_DMA_DREQ_EMMC,
BCM_DMA_SAME_ADDR, BCM_DMA_32BIT);
psrc = sc->dmamap_seg_addrs[idx];
pdst = sc->sc_sdhci_buffer_phys;
sync_op = BUS_DMASYNC_PREWRITE;
}
/*
* When starting a new DMA operation do the busdma sync operation, and
* disable SDCHI data interrrupts because we'll be driven by DMA
* interrupts (or SDHCI error interrupts) until the IO is done.
*/
if (idx == 0) {
bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map, sync_op);
slot->intmask &= ~(SDHCI_INT_DATA_AVAIL |
SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END);
bcm_sdhci_write_4(sc->sc_dev, &sc->sc_slot, SDHCI_SIGNAL_ENABLE,
slot->intmask);
}
/*
* Start the DMA transfer. Only programming errors (like failing to
* allocate a channel) cause a non-zero return from bcm_dma_start().
*/
err = bcm_dma_start(sc->sc_dma_ch, psrc, pdst, len);
KASSERT((err == 0), ("bcm2835_sdhci: failed DMA start"));
}
static void
bcm_sdhci_dma_intr(int ch, void *arg)
{
struct bcm_sdhci_softc *sc = (struct bcm_sdhci_softc *)arg;
struct sdhci_slot *slot = &sc->sc_slot;
uint32_t reg, mask;
int left, sync_op;
mtx_lock(&slot->mtx);
/*
* If there are more segments for the current dma, start the next one.
* Otherwise unload the dma map and decide what to do next based on the
* status of the sdhci controller and whether there's more data left.
*/
if (sc->dmamap_seg_index < sc->dmamap_seg_count) {
bcm_sdhci_start_dma_seg(sc);
mtx_unlock(&slot->mtx);
return;
}
if (slot->curcmd->data->flags & MMC_DATA_READ) {
sync_op = BUS_DMASYNC_POSTREAD;
mask = SDHCI_INT_DATA_AVAIL;
} else {
sync_op = BUS_DMASYNC_POSTWRITE;
mask = SDHCI_INT_SPACE_AVAIL;
}
bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map, sync_op);
bus_dmamap_unload(sc->sc_dma_tag, sc->sc_dma_map);
sc->dmamap_seg_count = 0;
sc->dmamap_seg_index = 0;
left = min(BCM_SDHCI_BUFFER_SIZE,
slot->curcmd->data->len - slot->offset);
/* DATA END? */
reg = bcm_sdhci_read_4(slot->bus, slot, SDHCI_INT_STATUS);
if (reg & SDHCI_INT_DATA_END) {
/* ACK for all outstanding interrupts */
bcm_sdhci_write_4(slot->bus, slot, SDHCI_INT_STATUS, reg);
/* enable INT */
slot->intmask |= SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL
| SDHCI_INT_DATA_END;
bcm_sdhci_write_4(slot->bus, slot, SDHCI_SIGNAL_ENABLE,
slot->intmask);
/* finish this data */
sdhci_finish_data(slot);
}
else {
/* already available? */
if (reg & mask) {
/* ACK for DATA_AVAIL or SPACE_AVAIL */
bcm_sdhci_write_4(slot->bus, slot,
SDHCI_INT_STATUS, mask);
/* continue next DMA transfer */
if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map,
(uint8_t *)slot->curcmd->data->data +
slot->offset, left, bcm_sdhci_dmacb, sc,
BUS_DMA_NOWAIT) != 0 || sc->dmamap_status != 0) {
slot->curcmd->error = MMC_ERR_NO_MEMORY;
sdhci_finish_data(slot);
} else {
bcm_sdhci_start_dma_seg(sc);
}
} else {
/* wait for next data by INT */
/* enable INT */
slot->intmask |= SDHCI_INT_DATA_AVAIL |
SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END;
bcm_sdhci_write_4(slot->bus, slot, SDHCI_SIGNAL_ENABLE,
slot->intmask);
}
}
mtx_unlock(&slot->mtx);
}
static void
bcm_sdhci_read_dma(device_t dev, struct sdhci_slot *slot)
{
struct bcm_sdhci_softc *sc = device_get_softc(slot->bus);
size_t left;
if (sc->dmamap_seg_count != 0) {
device_printf(sc->sc_dev, "DMA in use\n");
return;
}
left = min(BCM_SDHCI_BUFFER_SIZE,
slot->curcmd->data->len - slot->offset);
KASSERT((left & 3) == 0,
("%s: len = %d, not word-aligned", __func__, left));
if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map,
(uint8_t *)slot->curcmd->data->data + slot->offset, left,
bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 ||
sc->dmamap_status != 0) {
slot->curcmd->error = MMC_ERR_NO_MEMORY;
return;
}
/* DMA start */
bcm_sdhci_start_dma_seg(sc);
}
static void
bcm_sdhci_write_dma(device_t dev, struct sdhci_slot *slot)
{
struct bcm_sdhci_softc *sc = device_get_softc(slot->bus);
size_t left;
if (sc->dmamap_seg_count != 0) {
device_printf(sc->sc_dev, "DMA in use\n");
return;
}
left = min(BCM_SDHCI_BUFFER_SIZE,
slot->curcmd->data->len - slot->offset);
KASSERT((left & 3) == 0,
("%s: len = %d, not word-aligned", __func__, left));
if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map,
(uint8_t *)slot->curcmd->data->data + slot->offset, left,
bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 ||
sc->dmamap_status != 0) {
slot->curcmd->error = MMC_ERR_NO_MEMORY;
return;
}
/* DMA start */
bcm_sdhci_start_dma_seg(sc);
}
static int
bcm_sdhci_will_handle_transfer(device_t dev, struct sdhci_slot *slot)
{
size_t left;
/*
* Do not use DMA for transfers less than block size or with a length
* that is not a multiple of four.
*/
left = min(BCM_DMA_BLOCK_SIZE,
slot->curcmd->data->len - slot->offset);
if (left < BCM_DMA_BLOCK_SIZE)
return (0);
if (left & 0x03)
return (0);
return (1);
}
static void
bcm_sdhci_start_transfer(device_t dev, struct sdhci_slot *slot,
uint32_t *intmask)
{
/* DMA transfer FIFO 1KB */
if (slot->curcmd->data->flags & MMC_DATA_READ)
bcm_sdhci_read_dma(dev, slot);
else
bcm_sdhci_write_dma(dev, slot);
}
static void
bcm_sdhci_finish_transfer(device_t dev, struct sdhci_slot *slot)
{
sdhci_finish_data(slot);
}
static device_method_t bcm_sdhci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bcm_sdhci_probe),
DEVMETHOD(device_attach, bcm_sdhci_attach),
DEVMETHOD(device_detach, bcm_sdhci_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
DEVMETHOD(bus_print_child, bus_generic_print_child),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios),
DEVMETHOD(mmcbr_request, sdhci_generic_request),
DEVMETHOD(mmcbr_get_ro, bcm_sdhci_get_ro),
DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
/* Platform transfer methods */
DEVMETHOD(sdhci_platform_will_handle, bcm_sdhci_will_handle_transfer),
DEVMETHOD(sdhci_platform_start_transfer, bcm_sdhci_start_transfer),
DEVMETHOD(sdhci_platform_finish_transfer, bcm_sdhci_finish_transfer),
/* SDHCI registers accessors */
DEVMETHOD(sdhci_read_1, bcm_sdhci_read_1),
DEVMETHOD(sdhci_read_2, bcm_sdhci_read_2),
DEVMETHOD(sdhci_read_4, bcm_sdhci_read_4),
DEVMETHOD(sdhci_read_multi_4, bcm_sdhci_read_multi_4),
DEVMETHOD(sdhci_write_1, bcm_sdhci_write_1),
DEVMETHOD(sdhci_write_2, bcm_sdhci_write_2),
DEVMETHOD(sdhci_write_4, bcm_sdhci_write_4),
DEVMETHOD(sdhci_write_multi_4, bcm_sdhci_write_multi_4),
{ 0, 0 }
};
static devclass_t bcm_sdhci_devclass;
static driver_t bcm_sdhci_driver = {
"sdhci_bcm",
bcm_sdhci_methods,
sizeof(struct bcm_sdhci_softc),
};
DRIVER_MODULE(sdhci_bcm, simplebus, bcm_sdhci_driver, bcm_sdhci_devclass, 0, 0);
MODULE_DEPEND(sdhci_bcm, sdhci, 1, 1, 1);
DRIVER_MODULE(mmc, sdhci_bcm, mmc_driver, mmc_devclass, NULL, NULL);
MODULE_DEPEND(sdhci_bcm, mmc, 1, 1, 1);