97eb836f8b
Rework aw_sid so it can work with the nvmem interface. Each SoC expose a set of fuses (for now rootkey/boardid and, if available, the thermal calibration data). A fuse can be private or public, reading private fuse needs to be done via some registers instead of reading directly. Each fuse is exposed as a sysctl. For now leave the possibility for a driver to read any fuse without using the nvmem interface as the awg and emac driver use this to generate a mac address.
1967 lines
46 KiB
C
1967 lines
46 KiB
C
/*-
|
|
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Allwinner Gigabit Ethernet MAC (EMAC) controller
|
|
*/
|
|
|
|
#include "opt_device_polling.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/module.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/gpio.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_var.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/ofw/ofw_bus.h>
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
|
|
#include <arm/allwinner/if_awgreg.h>
|
|
#include <arm/allwinner/aw_sid.h>
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/extres/clk/clk.h>
|
|
#include <dev/extres/hwreset/hwreset.h>
|
|
#include <dev/extres/regulator/regulator.h>
|
|
#include <dev/extres/syscon/syscon.h>
|
|
|
|
#include "syscon_if.h"
|
|
#include "miibus_if.h"
|
|
#include "gpio_if.h"
|
|
|
|
#define RD4(sc, reg) bus_read_4((sc)->res[_RES_EMAC], (reg))
|
|
#define WR4(sc, reg, val) bus_write_4((sc)->res[_RES_EMAC], (reg), (val))
|
|
|
|
#define AWG_LOCK(sc) mtx_lock(&(sc)->mtx)
|
|
#define AWG_UNLOCK(sc) mtx_unlock(&(sc)->mtx);
|
|
#define AWG_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED)
|
|
#define AWG_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED)
|
|
|
|
#define DESC_ALIGN 4
|
|
#define TX_DESC_COUNT 1024
|
|
#define TX_DESC_SIZE (sizeof(struct emac_desc) * TX_DESC_COUNT)
|
|
#define RX_DESC_COUNT 256
|
|
#define RX_DESC_SIZE (sizeof(struct emac_desc) * RX_DESC_COUNT)
|
|
|
|
#define DESC_OFF(n) ((n) * sizeof(struct emac_desc))
|
|
#define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
|
|
#define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
|
|
#define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
|
|
|
|
#define TX_MAX_SEGS 20
|
|
|
|
#define SOFT_RST_RETRY 1000
|
|
#define MII_BUSY_RETRY 1000
|
|
#define MDIO_FREQ 2500000
|
|
|
|
#define BURST_LEN_DEFAULT 8
|
|
#define RX_TX_PRI_DEFAULT 0
|
|
#define PAUSE_TIME_DEFAULT 0x400
|
|
#define TX_INTERVAL_DEFAULT 64
|
|
#define RX_BATCH_DEFAULT 64
|
|
|
|
/* syscon EMAC clock register */
|
|
#define EMAC_CLK_REG 0x30
|
|
#define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
|
|
#define EMAC_CLK_EPHY_ADDR_SHIFT 20
|
|
#define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
|
|
#define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
|
|
#define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
|
|
#define EMAC_CLK_RMII_EN (1 << 13)
|
|
#define EMAC_CLK_ETXDC (0x7 << 10)
|
|
#define EMAC_CLK_ETXDC_SHIFT 10
|
|
#define EMAC_CLK_ERXDC (0x1f << 5)
|
|
#define EMAC_CLK_ERXDC_SHIFT 5
|
|
#define EMAC_CLK_PIT (0x1 << 2)
|
|
#define EMAC_CLK_PIT_MII (0 << 2)
|
|
#define EMAC_CLK_PIT_RGMII (1 << 2)
|
|
#define EMAC_CLK_SRC (0x3 << 0)
|
|
#define EMAC_CLK_SRC_MII (0 << 0)
|
|
#define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
|
|
#define EMAC_CLK_SRC_RGMII (2 << 0)
|
|
|
|
/* Burst length of RX and TX DMA transfers */
|
|
static int awg_burst_len = BURST_LEN_DEFAULT;
|
|
TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
|
|
|
|
/* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
|
|
static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
|
|
TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
|
|
|
|
/* Pause time field in the transmitted control frame */
|
|
static int awg_pause_time = PAUSE_TIME_DEFAULT;
|
|
TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
|
|
|
|
/* Request a TX interrupt every <n> descriptors */
|
|
static int awg_tx_interval = TX_INTERVAL_DEFAULT;
|
|
TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
|
|
|
|
/* Maximum number of mbufs to send to if_input */
|
|
static int awg_rx_batch = RX_BATCH_DEFAULT;
|
|
TUNABLE_INT("hw.awg.rx_batch", &awg_rx_batch);
|
|
|
|
enum awg_type {
|
|
EMAC_A83T = 1,
|
|
EMAC_H3,
|
|
EMAC_A64,
|
|
};
|
|
|
|
static struct ofw_compat_data compat_data[] = {
|
|
{ "allwinner,sun8i-a83t-emac", EMAC_A83T },
|
|
{ "allwinner,sun8i-h3-emac", EMAC_H3 },
|
|
{ "allwinner,sun50i-a64-emac", EMAC_A64 },
|
|
{ NULL, 0 }
|
|
};
|
|
|
|
struct awg_bufmap {
|
|
bus_dmamap_t map;
|
|
struct mbuf *mbuf;
|
|
};
|
|
|
|
struct awg_txring {
|
|
bus_dma_tag_t desc_tag;
|
|
bus_dmamap_t desc_map;
|
|
struct emac_desc *desc_ring;
|
|
bus_addr_t desc_ring_paddr;
|
|
bus_dma_tag_t buf_tag;
|
|
struct awg_bufmap buf_map[TX_DESC_COUNT];
|
|
u_int cur, next, queued;
|
|
u_int segs;
|
|
};
|
|
|
|
struct awg_rxring {
|
|
bus_dma_tag_t desc_tag;
|
|
bus_dmamap_t desc_map;
|
|
struct emac_desc *desc_ring;
|
|
bus_addr_t desc_ring_paddr;
|
|
bus_dma_tag_t buf_tag;
|
|
struct awg_bufmap buf_map[RX_DESC_COUNT];
|
|
bus_dmamap_t buf_spare_map;
|
|
u_int cur;
|
|
};
|
|
|
|
enum {
|
|
_RES_EMAC,
|
|
_RES_IRQ,
|
|
_RES_SYSCON,
|
|
_RES_NITEMS
|
|
};
|
|
|
|
struct awg_softc {
|
|
struct resource *res[_RES_NITEMS];
|
|
struct mtx mtx;
|
|
if_t ifp;
|
|
device_t dev;
|
|
device_t miibus;
|
|
struct callout stat_ch;
|
|
struct task link_task;
|
|
void *ih;
|
|
u_int mdc_div_ratio_m;
|
|
int link;
|
|
int if_flags;
|
|
enum awg_type type;
|
|
struct syscon *syscon;
|
|
|
|
struct awg_txring tx;
|
|
struct awg_rxring rx;
|
|
};
|
|
|
|
static struct resource_spec awg_spec[] = {
|
|
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE },
|
|
{ SYS_RES_MEMORY, 1, RF_ACTIVE | RF_OPTIONAL },
|
|
{ -1, 0 }
|
|
};
|
|
|
|
static void awg_txeof(struct awg_softc *sc);
|
|
|
|
static int awg_parse_delay(device_t dev, uint32_t *tx_delay,
|
|
uint32_t *rx_delay);
|
|
static uint32_t syscon_read_emac_clk_reg(device_t dev);
|
|
static void syscon_write_emac_clk_reg(device_t dev, uint32_t val);
|
|
static phandle_t awg_get_phy_node(device_t dev);
|
|
static bool awg_has_internal_phy(device_t dev);
|
|
|
|
static int
|
|
awg_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct awg_softc *sc;
|
|
int retry, val;
|
|
|
|
sc = device_get_softc(dev);
|
|
val = 0;
|
|
|
|
WR4(sc, EMAC_MII_CMD,
|
|
(sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
|
|
(phy << PHY_ADDR_SHIFT) |
|
|
(reg << PHY_REG_ADDR_SHIFT) |
|
|
MII_BUSY);
|
|
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
|
|
if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
|
|
val = RD4(sc, EMAC_MII_DATA);
|
|
break;
|
|
}
|
|
DELAY(10);
|
|
}
|
|
|
|
if (retry == 0)
|
|
device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
|
|
phy, reg);
|
|
|
|
return (val);
|
|
}
|
|
|
|
static int
|
|
awg_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct awg_softc *sc;
|
|
int retry;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
WR4(sc, EMAC_MII_DATA, val);
|
|
WR4(sc, EMAC_MII_CMD,
|
|
(sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
|
|
(phy << PHY_ADDR_SHIFT) |
|
|
(reg << PHY_REG_ADDR_SHIFT) |
|
|
MII_WR | MII_BUSY);
|
|
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
|
|
if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (retry == 0)
|
|
device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
|
|
phy, reg);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
awg_update_link_locked(struct awg_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
uint32_t val;
|
|
|
|
AWG_ASSERT_LOCKED(sc);
|
|
|
|
if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
mii = device_get_softc(sc->miibus);
|
|
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_T:
|
|
case IFM_1000_SX:
|
|
case IFM_100_TX:
|
|
case IFM_10_T:
|
|
sc->link = 1;
|
|
break;
|
|
default:
|
|
sc->link = 0;
|
|
break;
|
|
}
|
|
} else
|
|
sc->link = 0;
|
|
|
|
if (sc->link == 0)
|
|
return;
|
|
|
|
val = RD4(sc, EMAC_BASIC_CTL_0);
|
|
val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
|
|
val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
|
|
else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
|
|
val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
|
|
else
|
|
val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
|
|
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
|
|
val |= BASIC_CTL_DUPLEX;
|
|
|
|
WR4(sc, EMAC_BASIC_CTL_0, val);
|
|
|
|
val = RD4(sc, EMAC_RX_CTL_0);
|
|
val &= ~RX_FLOW_CTL_EN;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
|
|
val |= RX_FLOW_CTL_EN;
|
|
WR4(sc, EMAC_RX_CTL_0, val);
|
|
|
|
val = RD4(sc, EMAC_TX_FLOW_CTL);
|
|
val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
|
|
val |= TX_FLOW_CTL_EN;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
|
|
val |= awg_pause_time << PAUSE_TIME_SHIFT;
|
|
WR4(sc, EMAC_TX_FLOW_CTL, val);
|
|
}
|
|
|
|
static void
|
|
awg_link_task(void *arg, int pending)
|
|
{
|
|
struct awg_softc *sc;
|
|
|
|
sc = arg;
|
|
|
|
AWG_LOCK(sc);
|
|
awg_update_link_locked(sc);
|
|
AWG_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
awg_miibus_statchg(device_t dev)
|
|
{
|
|
struct awg_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
taskqueue_enqueue(taskqueue_swi, &sc->link_task);
|
|
}
|
|
|
|
static void
|
|
awg_media_status(if_t ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct awg_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
mii = device_get_softc(sc->miibus);
|
|
|
|
AWG_LOCK(sc);
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
AWG_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
awg_media_change(if_t ifp)
|
|
{
|
|
struct awg_softc *sc;
|
|
struct mii_data *mii;
|
|
int error;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
mii = device_get_softc(sc->miibus);
|
|
|
|
AWG_LOCK(sc);
|
|
error = mii_mediachg(mii);
|
|
AWG_UNLOCK(sc);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
awg_encap(struct awg_softc *sc, struct mbuf **mp)
|
|
{
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t segs[TX_MAX_SEGS];
|
|
int error, nsegs, cur, first, last, i;
|
|
u_int csum_flags;
|
|
uint32_t flags, status;
|
|
struct mbuf *m;
|
|
|
|
cur = first = sc->tx.cur;
|
|
map = sc->tx.buf_map[first].map;
|
|
|
|
m = *mp;
|
|
error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m, segs,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
|
|
if (m == NULL) {
|
|
device_printf(sc->dev, "awg_encap: m_collapse failed\n");
|
|
m_freem(*mp);
|
|
*mp = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*mp = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, map, m,
|
|
segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*mp);
|
|
*mp = NULL;
|
|
}
|
|
}
|
|
if (error != 0) {
|
|
device_printf(sc->dev, "awg_encap: bus_dmamap_load_mbuf_sg failed\n");
|
|
return (error);
|
|
}
|
|
if (nsegs == 0) {
|
|
m_freem(*mp);
|
|
*mp = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
if (sc->tx.queued + nsegs > TX_DESC_COUNT) {
|
|
bus_dmamap_unload(sc->tx.buf_tag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->tx.buf_tag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
flags = TX_FIR_DESC;
|
|
status = 0;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
|
|
if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
|
|
csum_flags = TX_CHECKSUM_CTL_FULL;
|
|
else
|
|
csum_flags = TX_CHECKSUM_CTL_IP;
|
|
flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
|
|
}
|
|
|
|
for (i = 0; i < nsegs; i++) {
|
|
sc->tx.segs++;
|
|
if (i == nsegs - 1) {
|
|
flags |= TX_LAST_DESC;
|
|
/*
|
|
* Can only request TX completion
|
|
* interrupt on last descriptor.
|
|
*/
|
|
if (sc->tx.segs >= awg_tx_interval) {
|
|
sc->tx.segs = 0;
|
|
flags |= TX_INT_CTL;
|
|
}
|
|
}
|
|
|
|
sc->tx.desc_ring[cur].addr = htole32((uint32_t)segs[i].ds_addr);
|
|
sc->tx.desc_ring[cur].size = htole32(flags | segs[i].ds_len);
|
|
sc->tx.desc_ring[cur].status = htole32(status);
|
|
|
|
flags &= ~TX_FIR_DESC;
|
|
/*
|
|
* Setting of the valid bit in the first descriptor is
|
|
* deferred until the whole chain is fully set up.
|
|
*/
|
|
status = TX_DESC_CTL;
|
|
|
|
++sc->tx.queued;
|
|
cur = TX_NEXT(cur);
|
|
}
|
|
|
|
sc->tx.cur = cur;
|
|
|
|
/* Store mapping and mbuf in the last segment */
|
|
last = TX_SKIP(cur, TX_DESC_COUNT - 1);
|
|
sc->tx.buf_map[first].map = sc->tx.buf_map[last].map;
|
|
sc->tx.buf_map[last].map = map;
|
|
sc->tx.buf_map[last].mbuf = m;
|
|
|
|
/*
|
|
* The whole mbuf chain has been DMA mapped,
|
|
* fix the first descriptor.
|
|
*/
|
|
sc->tx.desc_ring[first].status = htole32(TX_DESC_CTL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
awg_clean_txbuf(struct awg_softc *sc, int index)
|
|
{
|
|
struct awg_bufmap *bmap;
|
|
|
|
--sc->tx.queued;
|
|
|
|
bmap = &sc->tx.buf_map[index];
|
|
if (bmap->mbuf != NULL) {
|
|
bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
|
|
m_freem(bmap->mbuf);
|
|
bmap->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
|
|
{
|
|
uint32_t status, size;
|
|
|
|
status = RX_DESC_CTL;
|
|
size = MCLBYTES - 1;
|
|
|
|
sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
|
|
sc->rx.desc_ring[index].size = htole32(size);
|
|
sc->rx.desc_ring[index].status = htole32(status);
|
|
}
|
|
|
|
static void
|
|
awg_reuse_rxdesc(struct awg_softc *sc, int index)
|
|
{
|
|
|
|
sc->rx.desc_ring[index].status = htole32(RX_DESC_CTL);
|
|
}
|
|
|
|
static int
|
|
awg_newbuf_rx(struct awg_softc *sc, int index)
|
|
{
|
|
struct mbuf *m;
|
|
bus_dma_segment_t seg;
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_spare_map,
|
|
m, &seg, &nsegs, BUS_DMA_NOWAIT) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (sc->rx.buf_map[index].mbuf != NULL) {
|
|
bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
|
|
}
|
|
map = sc->rx.buf_map[index].map;
|
|
sc->rx.buf_map[index].map = sc->rx.buf_spare_map;
|
|
sc->rx.buf_spare_map = map;
|
|
bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
sc->rx.buf_map[index].mbuf = m;
|
|
awg_setup_rxdesc(sc, index, seg.ds_addr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
awg_start_locked(struct awg_softc *sc)
|
|
{
|
|
struct mbuf *m;
|
|
uint32_t val;
|
|
if_t ifp;
|
|
int cnt, err;
|
|
|
|
AWG_ASSERT_LOCKED(sc);
|
|
|
|
if (!sc->link)
|
|
return;
|
|
|
|
ifp = sc->ifp;
|
|
|
|
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
for (cnt = 0; ; cnt++) {
|
|
m = if_dequeue(ifp);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
err = awg_encap(sc, &m);
|
|
if (err != 0) {
|
|
if (err == ENOBUFS)
|
|
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
|
|
if (m != NULL)
|
|
if_sendq_prepend(ifp, m);
|
|
break;
|
|
}
|
|
if_bpfmtap(ifp, m);
|
|
}
|
|
|
|
if (cnt != 0) {
|
|
bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Start and run TX DMA */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
|
|
}
|
|
}
|
|
|
|
static void
|
|
awg_start(if_t ifp)
|
|
{
|
|
struct awg_softc *sc;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
|
|
AWG_LOCK(sc);
|
|
awg_start_locked(sc);
|
|
AWG_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
awg_tick(void *softc)
|
|
{
|
|
struct awg_softc *sc;
|
|
struct mii_data *mii;
|
|
if_t ifp;
|
|
int link;
|
|
|
|
sc = softc;
|
|
ifp = sc->ifp;
|
|
mii = device_get_softc(sc->miibus);
|
|
|
|
AWG_ASSERT_LOCKED(sc);
|
|
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
link = sc->link;
|
|
mii_tick(mii);
|
|
if (sc->link && !link)
|
|
awg_start_locked(sc);
|
|
|
|
callout_reset(&sc->stat_ch, hz, awg_tick, sc);
|
|
}
|
|
|
|
/* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
|
|
static uint32_t
|
|
bitrev32(uint32_t x)
|
|
{
|
|
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
|
|
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
|
|
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
|
|
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
|
|
|
|
return (x >> 16) | (x << 16);
|
|
}
|
|
|
|
static void
|
|
awg_setup_rxfilter(struct awg_softc *sc)
|
|
{
|
|
uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
|
|
int mc_count, mcnt, i;
|
|
uint8_t *eaddr, *mta;
|
|
if_t ifp;
|
|
|
|
AWG_ASSERT_LOCKED(sc);
|
|
|
|
ifp = sc->ifp;
|
|
val = 0;
|
|
hash[0] = hash[1] = 0;
|
|
|
|
mc_count = if_multiaddr_count(ifp, -1);
|
|
|
|
if (if_getflags(ifp) & IFF_PROMISC)
|
|
val |= DIS_ADDR_FILTER;
|
|
else if (if_getflags(ifp) & IFF_ALLMULTI) {
|
|
val |= RX_ALL_MULTICAST;
|
|
hash[0] = hash[1] = ~0;
|
|
} else if (mc_count > 0) {
|
|
val |= HASH_MULTICAST;
|
|
|
|
mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (mta == NULL) {
|
|
if_printf(ifp,
|
|
"failed to allocate temporary multicast list\n");
|
|
return;
|
|
}
|
|
|
|
if_multiaddr_array(ifp, mta, &mcnt, mc_count);
|
|
for (i = 0; i < mcnt; i++) {
|
|
crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
|
|
ETHER_ADDR_LEN) & 0x7f;
|
|
crc = bitrev32(~crc) >> 26;
|
|
hashreg = (crc >> 5);
|
|
hashbit = (crc & 0x1f);
|
|
hash[hashreg] |= (1 << hashbit);
|
|
}
|
|
|
|
free(mta, M_DEVBUF);
|
|
}
|
|
|
|
/* Write our unicast address */
|
|
eaddr = IF_LLADDR(ifp);
|
|
machi = (eaddr[5] << 8) | eaddr[4];
|
|
maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
|
|
(eaddr[0] << 0);
|
|
WR4(sc, EMAC_ADDR_HIGH(0), machi);
|
|
WR4(sc, EMAC_ADDR_LOW(0), maclo);
|
|
|
|
/* Multicast hash filters */
|
|
WR4(sc, EMAC_RX_HASH_0, hash[1]);
|
|
WR4(sc, EMAC_RX_HASH_1, hash[0]);
|
|
|
|
/* RX frame filter config */
|
|
WR4(sc, EMAC_RX_FRM_FLT, val);
|
|
}
|
|
|
|
static void
|
|
awg_enable_intr(struct awg_softc *sc)
|
|
{
|
|
/* Enable interrupts */
|
|
WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
|
|
}
|
|
|
|
static void
|
|
awg_disable_intr(struct awg_softc *sc)
|
|
{
|
|
/* Disable interrupts */
|
|
WR4(sc, EMAC_INT_EN, 0);
|
|
}
|
|
|
|
static void
|
|
awg_init_locked(struct awg_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
uint32_t val;
|
|
if_t ifp;
|
|
|
|
mii = device_get_softc(sc->miibus);
|
|
ifp = sc->ifp;
|
|
|
|
AWG_ASSERT_LOCKED(sc);
|
|
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
awg_setup_rxfilter(sc);
|
|
|
|
/* Configure DMA burst length and priorities */
|
|
val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
|
|
if (awg_rx_tx_pri)
|
|
val |= BASIC_CTL_RX_TX_PRI;
|
|
WR4(sc, EMAC_BASIC_CTL_1, val);
|
|
|
|
/* Enable interrupts */
|
|
#ifdef DEVICE_POLLING
|
|
if ((if_getcapenable(ifp) & IFCAP_POLLING) == 0)
|
|
awg_enable_intr(sc);
|
|
else
|
|
awg_disable_intr(sc);
|
|
#else
|
|
awg_enable_intr(sc);
|
|
#endif
|
|
|
|
/* Enable transmit DMA */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
|
|
|
|
/* Enable receive DMA */
|
|
val = RD4(sc, EMAC_RX_CTL_1);
|
|
WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
|
|
|
|
/* Enable transmitter */
|
|
val = RD4(sc, EMAC_TX_CTL_0);
|
|
WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
|
|
|
|
/* Enable receiver */
|
|
val = RD4(sc, EMAC_RX_CTL_0);
|
|
WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
|
|
|
|
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
|
|
|
|
mii_mediachg(mii);
|
|
callout_reset(&sc->stat_ch, hz, awg_tick, sc);
|
|
}
|
|
|
|
static void
|
|
awg_init(void *softc)
|
|
{
|
|
struct awg_softc *sc;
|
|
|
|
sc = softc;
|
|
|
|
AWG_LOCK(sc);
|
|
awg_init_locked(sc);
|
|
AWG_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
awg_stop(struct awg_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
AWG_ASSERT_LOCKED(sc);
|
|
|
|
ifp = sc->ifp;
|
|
|
|
callout_stop(&sc->stat_ch);
|
|
|
|
/* Stop transmit DMA and flush data in the TX FIFO */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
val &= ~TX_DMA_EN;
|
|
val |= FLUSH_TX_FIFO;
|
|
WR4(sc, EMAC_TX_CTL_1, val);
|
|
|
|
/* Disable transmitter */
|
|
val = RD4(sc, EMAC_TX_CTL_0);
|
|
WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
|
|
|
|
/* Disable receiver */
|
|
val = RD4(sc, EMAC_RX_CTL_0);
|
|
WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
|
|
|
|
/* Disable interrupts */
|
|
awg_disable_intr(sc);
|
|
|
|
/* Disable transmit DMA */
|
|
val = RD4(sc, EMAC_TX_CTL_1);
|
|
WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
|
|
|
|
/* Disable receive DMA */
|
|
val = RD4(sc, EMAC_RX_CTL_1);
|
|
WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
|
|
|
|
sc->link = 0;
|
|
|
|
/* Finish handling transmitted buffers */
|
|
awg_txeof(sc);
|
|
|
|
/* Release any untransmitted buffers. */
|
|
for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
|
|
val = le32toh(sc->tx.desc_ring[i].status);
|
|
if ((val & TX_DESC_CTL) != 0)
|
|
break;
|
|
awg_clean_txbuf(sc, i);
|
|
}
|
|
sc->tx.next = i;
|
|
for (; sc->tx.queued > 0; i = TX_NEXT(i)) {
|
|
sc->tx.desc_ring[i].status = 0;
|
|
awg_clean_txbuf(sc, i);
|
|
}
|
|
sc->tx.cur = sc->tx.next;
|
|
bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Setup RX buffers for reuse */
|
|
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
for (i = sc->rx.cur; ; i = RX_NEXT(i)) {
|
|
val = le32toh(sc->rx.desc_ring[i].status);
|
|
if ((val & RX_DESC_CTL) != 0)
|
|
break;
|
|
awg_reuse_rxdesc(sc, i);
|
|
}
|
|
sc->rx.cur = i;
|
|
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
}
|
|
|
|
static int
|
|
awg_rxintr(struct awg_softc *sc)
|
|
{
|
|
if_t ifp;
|
|
struct mbuf *m, *mh, *mt;
|
|
int error, index, len, cnt, npkt;
|
|
uint32_t status;
|
|
|
|
ifp = sc->ifp;
|
|
mh = mt = NULL;
|
|
cnt = 0;
|
|
npkt = 0;
|
|
|
|
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
|
|
status = le32toh(sc->rx.desc_ring[index].status);
|
|
if ((status & RX_DESC_CTL) != 0)
|
|
break;
|
|
|
|
len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
|
|
|
|
if (len == 0) {
|
|
if ((status & (RX_NO_ENOUGH_BUF_ERR | RX_OVERFLOW_ERR)) != 0)
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
awg_reuse_rxdesc(sc, index);
|
|
continue;
|
|
}
|
|
|
|
m = sc->rx.buf_map[index].mbuf;
|
|
|
|
error = awg_newbuf_rx(sc, index);
|
|
if (error != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
awg_reuse_rxdesc(sc, index);
|
|
continue;
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = len;
|
|
m->m_len = len;
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
|
|
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
|
|
(status & RX_FRM_TYPE) != 0) {
|
|
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
if ((status & RX_HEADER_ERR) == 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
if ((status & RX_PAYLOAD_ERR) == 0) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
m->m_nextpkt = NULL;
|
|
if (mh == NULL)
|
|
mh = m;
|
|
else
|
|
mt->m_nextpkt = m;
|
|
mt = m;
|
|
++cnt;
|
|
++npkt;
|
|
|
|
if (cnt == awg_rx_batch) {
|
|
AWG_UNLOCK(sc);
|
|
if_input(ifp, mh);
|
|
AWG_LOCK(sc);
|
|
mh = mt = NULL;
|
|
cnt = 0;
|
|
}
|
|
}
|
|
|
|
if (index != sc->rx.cur) {
|
|
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
if (mh != NULL) {
|
|
AWG_UNLOCK(sc);
|
|
if_input(ifp, mh);
|
|
AWG_LOCK(sc);
|
|
}
|
|
|
|
sc->rx.cur = index;
|
|
|
|
return (npkt);
|
|
}
|
|
|
|
static void
|
|
awg_txeof(struct awg_softc *sc)
|
|
{
|
|
struct emac_desc *desc;
|
|
uint32_t status, size;
|
|
if_t ifp;
|
|
int i, prog;
|
|
|
|
AWG_ASSERT_LOCKED(sc);
|
|
|
|
bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
ifp = sc->ifp;
|
|
|
|
prog = 0;
|
|
for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
|
|
desc = &sc->tx.desc_ring[i];
|
|
status = le32toh(desc->status);
|
|
if ((status & TX_DESC_CTL) != 0)
|
|
break;
|
|
size = le32toh(desc->size);
|
|
if (size & TX_LAST_DESC) {
|
|
if ((status & (TX_HEADER_ERR | TX_PAYLOAD_ERR)) != 0)
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
else
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
}
|
|
prog++;
|
|
awg_clean_txbuf(sc, i);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc->tx.next = i;
|
|
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
awg_intr(void *arg)
|
|
{
|
|
struct awg_softc *sc;
|
|
uint32_t val;
|
|
|
|
sc = arg;
|
|
|
|
AWG_LOCK(sc);
|
|
val = RD4(sc, EMAC_INT_STA);
|
|
WR4(sc, EMAC_INT_STA, val);
|
|
|
|
if (val & RX_INT)
|
|
awg_rxintr(sc);
|
|
|
|
if (val & TX_INT)
|
|
awg_txeof(sc);
|
|
|
|
if (val & (TX_INT | TX_BUF_UA_INT)) {
|
|
if (!if_sendq_empty(sc->ifp))
|
|
awg_start_locked(sc);
|
|
}
|
|
|
|
AWG_UNLOCK(sc);
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static int
|
|
awg_poll(if_t ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct awg_softc *sc;
|
|
uint32_t val;
|
|
int rx_npkts;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
rx_npkts = 0;
|
|
|
|
AWG_LOCK(sc);
|
|
|
|
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
|
|
AWG_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
rx_npkts = awg_rxintr(sc);
|
|
awg_txeof(sc);
|
|
if (!if_sendq_empty(ifp))
|
|
awg_start_locked(sc);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
val = RD4(sc, EMAC_INT_STA);
|
|
if (val != 0)
|
|
WR4(sc, EMAC_INT_STA, val);
|
|
}
|
|
|
|
AWG_UNLOCK(sc);
|
|
|
|
return (rx_npkts);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct awg_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifreq *ifr;
|
|
int flags, mask, error;
|
|
|
|
sc = if_getsoftc(ifp);
|
|
mii = device_get_softc(sc->miibus);
|
|
ifr = (struct ifreq *)data;
|
|
error = 0;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
AWG_LOCK(sc);
|
|
if (if_getflags(ifp) & IFF_UP) {
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
flags = if_getflags(ifp) ^ sc->if_flags;
|
|
if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
|
|
awg_setup_rxfilter(sc);
|
|
} else
|
|
awg_init_locked(sc);
|
|
} else {
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
|
|
awg_stop(sc);
|
|
}
|
|
sc->if_flags = if_getflags(ifp);
|
|
AWG_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
|
|
AWG_LOCK(sc);
|
|
awg_setup_rxfilter(sc);
|
|
AWG_UNLOCK(sc);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
|
|
error = ether_poll_register(awg_poll, ifp);
|
|
if (error != 0)
|
|
break;
|
|
AWG_LOCK(sc);
|
|
awg_disable_intr(sc);
|
|
if_setcapenablebit(ifp, IFCAP_POLLING, 0);
|
|
AWG_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
AWG_LOCK(sc);
|
|
awg_enable_intr(sc);
|
|
if_setcapenablebit(ifp, 0, IFCAP_POLLING);
|
|
AWG_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif
|
|
if (mask & IFCAP_VLAN_MTU)
|
|
if_togglecapenable(ifp, IFCAP_VLAN_MTU);
|
|
if (mask & IFCAP_RXCSUM)
|
|
if_togglecapenable(ifp, IFCAP_RXCSUM);
|
|
if (mask & IFCAP_TXCSUM)
|
|
if_togglecapenable(ifp, IFCAP_TXCSUM);
|
|
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
|
|
if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0);
|
|
else
|
|
if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static uint32_t
|
|
syscon_read_emac_clk_reg(device_t dev)
|
|
{
|
|
struct awg_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
if (sc->syscon != NULL)
|
|
return (SYSCON_READ_4(sc->syscon, EMAC_CLK_REG));
|
|
else if (sc->res[_RES_SYSCON] != NULL)
|
|
return (bus_read_4(sc->res[_RES_SYSCON], 0));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
syscon_write_emac_clk_reg(device_t dev, uint32_t val)
|
|
{
|
|
struct awg_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
if (sc->syscon != NULL)
|
|
SYSCON_WRITE_4(sc->syscon, EMAC_CLK_REG, val);
|
|
else if (sc->res[_RES_SYSCON] != NULL)
|
|
bus_write_4(sc->res[_RES_SYSCON], 0, val);
|
|
}
|
|
|
|
static phandle_t
|
|
awg_get_phy_node(device_t dev)
|
|
{
|
|
phandle_t node;
|
|
pcell_t phy_handle;
|
|
|
|
node = ofw_bus_get_node(dev);
|
|
if (OF_getencprop(node, "phy-handle", (void *)&phy_handle,
|
|
sizeof(phy_handle)) <= 0)
|
|
return (0);
|
|
|
|
return (OF_node_from_xref(phy_handle));
|
|
}
|
|
|
|
static bool
|
|
awg_has_internal_phy(device_t dev)
|
|
{
|
|
phandle_t node, phy_node;
|
|
|
|
node = ofw_bus_get_node(dev);
|
|
/* Legacy binding */
|
|
if (OF_hasprop(node, "allwinner,use-internal-phy"))
|
|
return (true);
|
|
|
|
phy_node = awg_get_phy_node(dev);
|
|
return (phy_node != 0 && ofw_bus_node_is_compatible(OF_parent(phy_node),
|
|
"allwinner,sun8i-h3-mdio-internal") != 0);
|
|
}
|
|
|
|
static int
|
|
awg_parse_delay(device_t dev, uint32_t *tx_delay, uint32_t *rx_delay)
|
|
{
|
|
phandle_t node;
|
|
uint32_t delay;
|
|
|
|
if (tx_delay == NULL || rx_delay == NULL)
|
|
return (EINVAL);
|
|
*tx_delay = *rx_delay = 0;
|
|
node = ofw_bus_get_node(dev);
|
|
|
|
if (OF_getencprop(node, "tx-delay", &delay, sizeof(delay)) >= 0)
|
|
*tx_delay = delay;
|
|
else if (OF_getencprop(node, "allwinner,tx-delay-ps", &delay,
|
|
sizeof(delay)) >= 0) {
|
|
if ((delay % 100) != 0) {
|
|
device_printf(dev, "tx-delay-ps is not a multiple of 100\n");
|
|
return (EDOM);
|
|
}
|
|
*tx_delay = delay / 100;
|
|
}
|
|
if (*tx_delay > 7) {
|
|
device_printf(dev, "tx-delay out of range\n");
|
|
return (ERANGE);
|
|
}
|
|
|
|
if (OF_getencprop(node, "rx-delay", &delay, sizeof(delay)) >= 0)
|
|
*rx_delay = delay;
|
|
else if (OF_getencprop(node, "allwinner,rx-delay-ps", &delay,
|
|
sizeof(delay)) >= 0) {
|
|
if ((delay % 100) != 0) {
|
|
device_printf(dev, "rx-delay-ps is not within documented domain\n");
|
|
return (EDOM);
|
|
}
|
|
*rx_delay = delay / 100;
|
|
}
|
|
if (*rx_delay > 31) {
|
|
device_printf(dev, "rx-delay out of range\n");
|
|
return (ERANGE);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
awg_setup_phy(device_t dev)
|
|
{
|
|
struct awg_softc *sc;
|
|
clk_t clk_tx, clk_tx_parent;
|
|
const char *tx_parent_name;
|
|
char *phy_type;
|
|
phandle_t node;
|
|
uint32_t reg, tx_delay, rx_delay;
|
|
int error;
|
|
bool use_syscon;
|
|
|
|
sc = device_get_softc(dev);
|
|
node = ofw_bus_get_node(dev);
|
|
use_syscon = false;
|
|
|
|
if (OF_getprop_alloc(node, "phy-mode", (void **)&phy_type) == 0)
|
|
return (0);
|
|
|
|
if (sc->syscon != NULL || sc->res[_RES_SYSCON] != NULL)
|
|
use_syscon = true;
|
|
|
|
if (bootverbose)
|
|
device_printf(dev, "PHY type: %s, conf mode: %s\n", phy_type,
|
|
use_syscon ? "reg" : "clk");
|
|
|
|
if (use_syscon) {
|
|
/*
|
|
* Abstract away writing to syscon for devices like the pine64.
|
|
* For the pine64, we get dtb from U-Boot and it still uses the
|
|
* legacy setup of specifying syscon register in emac node
|
|
* rather than as its own node and using an xref in emac.
|
|
* These abstractions can go away once U-Boot dts is up-to-date.
|
|
*/
|
|
reg = syscon_read_emac_clk_reg(dev);
|
|
reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
|
|
if (strncmp(phy_type, "rgmii", 5) == 0)
|
|
reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
|
|
else if (strcmp(phy_type, "rmii") == 0)
|
|
reg |= EMAC_CLK_RMII_EN;
|
|
else
|
|
reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
|
|
|
|
/*
|
|
* Fail attach if we fail to parse either of the delay
|
|
* parameters. If we don't have the proper delay to write to
|
|
* syscon, then awg likely won't function properly anyways.
|
|
* Lack of delay is not an error!
|
|
*/
|
|
error = awg_parse_delay(dev, &tx_delay, &rx_delay);
|
|
if (error != 0)
|
|
goto fail;
|
|
|
|
/* Default to 0 and we'll increase it if we need to. */
|
|
reg &= ~(EMAC_CLK_ETXDC | EMAC_CLK_ERXDC);
|
|
if (tx_delay > 0)
|
|
reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
|
|
if (rx_delay > 0)
|
|
reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
|
|
|
|
if (sc->type == EMAC_H3) {
|
|
if (awg_has_internal_phy(dev)) {
|
|
reg |= EMAC_CLK_EPHY_SELECT;
|
|
reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
|
|
if (OF_hasprop(node,
|
|
"allwinner,leds-active-low"))
|
|
reg |= EMAC_CLK_EPHY_LED_POL;
|
|
else
|
|
reg &= ~EMAC_CLK_EPHY_LED_POL;
|
|
|
|
/* Set internal PHY addr to 1 */
|
|
reg &= ~EMAC_CLK_EPHY_ADDR;
|
|
reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
|
|
} else {
|
|
reg &= ~EMAC_CLK_EPHY_SELECT;
|
|
}
|
|
}
|
|
|
|
if (bootverbose)
|
|
device_printf(dev, "EMAC clock: 0x%08x\n", reg);
|
|
syscon_write_emac_clk_reg(dev, reg);
|
|
} else {
|
|
if (strncmp(phy_type, "rgmii", 5) == 0)
|
|
tx_parent_name = "emac_int_tx";
|
|
else
|
|
tx_parent_name = "mii_phy_tx";
|
|
|
|
/* Get the TX clock */
|
|
error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot get tx clock\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Find the desired parent clock based on phy-mode property */
|
|
error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot get clock '%s'\n",
|
|
tx_parent_name);
|
|
goto fail;
|
|
}
|
|
|
|
/* Set TX clock parent */
|
|
error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot set tx clock parent\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Enable TX clock */
|
|
error = clk_enable(clk_tx);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot enable tx clock\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
error = 0;
|
|
|
|
fail:
|
|
OF_prop_free(phy_type);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
awg_setup_extres(device_t dev)
|
|
{
|
|
struct awg_softc *sc;
|
|
phandle_t node, phy_node;
|
|
hwreset_t rst_ahb, rst_ephy;
|
|
clk_t clk_ahb, clk_ephy;
|
|
regulator_t reg;
|
|
uint64_t freq;
|
|
int error, div;
|
|
|
|
sc = device_get_softc(dev);
|
|
rst_ahb = rst_ephy = NULL;
|
|
clk_ahb = clk_ephy = NULL;
|
|
reg = NULL;
|
|
node = ofw_bus_get_node(dev);
|
|
phy_node = awg_get_phy_node(dev);
|
|
|
|
if (phy_node == 0 && OF_hasprop(node, "phy-handle")) {
|
|
error = ENXIO;
|
|
device_printf(dev, "cannot get phy handle\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Get AHB clock and reset resources */
|
|
error = hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst_ahb);
|
|
if (error != 0)
|
|
error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot get ahb reset\n");
|
|
goto fail;
|
|
}
|
|
if (hwreset_get_by_ofw_name(dev, 0, "ephy", &rst_ephy) != 0)
|
|
if (phy_node == 0 || hwreset_get_by_ofw_idx(dev, phy_node, 0,
|
|
&rst_ephy) != 0)
|
|
rst_ephy = NULL;
|
|
error = clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk_ahb);
|
|
if (error != 0)
|
|
error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot get ahb clock\n");
|
|
goto fail;
|
|
}
|
|
if (clk_get_by_ofw_name(dev, 0, "ephy", &clk_ephy) != 0)
|
|
if (phy_node == 0 || clk_get_by_ofw_index(dev, phy_node, 0,
|
|
&clk_ephy) != 0)
|
|
clk_ephy = NULL;
|
|
|
|
if (OF_hasprop(node, "syscon") && syscon_get_by_ofw_property(dev, node,
|
|
"syscon", &sc->syscon) != 0) {
|
|
device_printf(dev, "cannot get syscon driver handle\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Configure PHY for MII or RGMII mode */
|
|
if (awg_setup_phy(dev) != 0)
|
|
goto fail;
|
|
|
|
/* Enable clocks */
|
|
error = clk_enable(clk_ahb);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot enable ahb clock\n");
|
|
goto fail;
|
|
}
|
|
if (clk_ephy != NULL) {
|
|
error = clk_enable(clk_ephy);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot enable ephy clock\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* De-assert reset */
|
|
error = hwreset_deassert(rst_ahb);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot de-assert ahb reset\n");
|
|
goto fail;
|
|
}
|
|
if (rst_ephy != NULL) {
|
|
error = hwreset_deassert(rst_ephy);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot de-assert ephy reset\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Enable PHY regulator if applicable */
|
|
if (regulator_get_by_ofw_property(dev, 0, "phy-supply", ®) == 0) {
|
|
error = regulator_enable(reg);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot enable PHY regulator\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Determine MDC clock divide ratio based on AHB clock */
|
|
error = clk_get_freq(clk_ahb, &freq);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot get AHB clock frequency\n");
|
|
goto fail;
|
|
}
|
|
div = freq / MDIO_FREQ;
|
|
if (div <= 16)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
|
|
else if (div <= 32)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
|
|
else if (div <= 64)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
|
|
else if (div <= 128)
|
|
sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
|
|
else {
|
|
device_printf(dev, "cannot determine MDC clock divide ratio\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
if (bootverbose)
|
|
device_printf(dev, "AHB frequency %ju Hz, MDC div: 0x%x\n",
|
|
(uintmax_t)freq, sc->mdc_div_ratio_m);
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
if (reg != NULL)
|
|
regulator_release(reg);
|
|
if (clk_ephy != NULL)
|
|
clk_release(clk_ephy);
|
|
if (clk_ahb != NULL)
|
|
clk_release(clk_ahb);
|
|
if (rst_ephy != NULL)
|
|
hwreset_release(rst_ephy);
|
|
if (rst_ahb != NULL)
|
|
hwreset_release(rst_ahb);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
awg_get_eaddr(device_t dev, uint8_t *eaddr)
|
|
{
|
|
struct awg_softc *sc;
|
|
uint32_t maclo, machi, rnd;
|
|
u_char rootkey[16];
|
|
uint32_t rootkey_size;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
|
|
maclo = RD4(sc, EMAC_ADDR_LOW(0));
|
|
|
|
rootkey_size = sizeof(rootkey);
|
|
if (maclo == 0xffffffff && machi == 0xffff) {
|
|
/* MAC address in hardware is invalid, create one */
|
|
if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
|
|
&rootkey_size) == 0 &&
|
|
(rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
|
|
rootkey[15]) != 0) {
|
|
/* MAC address is derived from the root key in SID */
|
|
maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
|
|
(rootkey[3] << 8) | 0x02;
|
|
machi = (rootkey[15] << 8) | rootkey[14];
|
|
} else {
|
|
/* Create one */
|
|
rnd = arc4random();
|
|
maclo = 0x00f2 | (rnd & 0xffff0000);
|
|
machi = rnd & 0xffff;
|
|
}
|
|
}
|
|
|
|
eaddr[0] = maclo & 0xff;
|
|
eaddr[1] = (maclo >> 8) & 0xff;
|
|
eaddr[2] = (maclo >> 16) & 0xff;
|
|
eaddr[3] = (maclo >> 24) & 0xff;
|
|
eaddr[4] = machi & 0xff;
|
|
eaddr[5] = (machi >> 8) & 0xff;
|
|
}
|
|
|
|
#ifdef AWG_DEBUG
|
|
static void
|
|
awg_dump_regs(device_t dev)
|
|
{
|
|
static const struct {
|
|
const char *name;
|
|
u_int reg;
|
|
} regs[] = {
|
|
{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
|
|
{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
|
|
{ "INT_STA", EMAC_INT_STA },
|
|
{ "INT_EN", EMAC_INT_EN },
|
|
{ "TX_CTL_0", EMAC_TX_CTL_0 },
|
|
{ "TX_CTL_1", EMAC_TX_CTL_1 },
|
|
{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
|
|
{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
|
|
{ "RX_CTL_0", EMAC_RX_CTL_0 },
|
|
{ "RX_CTL_1", EMAC_RX_CTL_1 },
|
|
{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
|
|
{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
|
|
{ "RX_HASH_0", EMAC_RX_HASH_0 },
|
|
{ "RX_HASH_1", EMAC_RX_HASH_1 },
|
|
{ "MII_CMD", EMAC_MII_CMD },
|
|
{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
|
|
{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
|
|
{ "TX_DMA_STA", EMAC_TX_DMA_STA },
|
|
{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
|
|
{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
|
|
{ "RX_DMA_STA", EMAC_RX_DMA_STA },
|
|
{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
|
|
{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
|
|
{ "RGMII_STA", EMAC_RGMII_STA },
|
|
};
|
|
struct awg_softc *sc;
|
|
unsigned int n;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
for (n = 0; n < nitems(regs); n++)
|
|
device_printf(dev, " %-20s %08x\n", regs[n].name,
|
|
RD4(sc, regs[n].reg));
|
|
}
|
|
#endif
|
|
|
|
#define GPIO_ACTIVE_LOW 1
|
|
|
|
static int
|
|
awg_phy_reset(device_t dev)
|
|
{
|
|
pcell_t gpio_prop[4], delay_prop[3];
|
|
phandle_t node, gpio_node;
|
|
device_t gpio;
|
|
uint32_t pin, flags;
|
|
uint32_t pin_value;
|
|
|
|
node = ofw_bus_get_node(dev);
|
|
if (OF_getencprop(node, "allwinner,reset-gpio", gpio_prop,
|
|
sizeof(gpio_prop)) <= 0)
|
|
return (0);
|
|
|
|
if (OF_getencprop(node, "allwinner,reset-delays-us", delay_prop,
|
|
sizeof(delay_prop)) <= 0)
|
|
return (ENXIO);
|
|
|
|
gpio_node = OF_node_from_xref(gpio_prop[0]);
|
|
if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL)
|
|
return (ENXIO);
|
|
|
|
if (GPIO_MAP_GPIOS(gpio, node, gpio_node, nitems(gpio_prop) - 1,
|
|
gpio_prop + 1, &pin, &flags) != 0)
|
|
return (ENXIO);
|
|
|
|
pin_value = GPIO_PIN_LOW;
|
|
if (OF_hasprop(node, "allwinner,reset-active-low"))
|
|
pin_value = GPIO_PIN_HIGH;
|
|
|
|
if (flags & GPIO_ACTIVE_LOW)
|
|
pin_value = !pin_value;
|
|
|
|
GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
|
|
GPIO_PIN_SET(gpio, pin, pin_value);
|
|
DELAY(delay_prop[0]);
|
|
GPIO_PIN_SET(gpio, pin, !pin_value);
|
|
DELAY(delay_prop[1]);
|
|
GPIO_PIN_SET(gpio, pin, pin_value);
|
|
DELAY(delay_prop[2]);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
awg_reset(device_t dev)
|
|
{
|
|
struct awg_softc *sc;
|
|
int retry;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Reset PHY if necessary */
|
|
if (awg_phy_reset(dev) != 0) {
|
|
device_printf(dev, "failed to reset PHY\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Soft reset all registers and logic */
|
|
WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
|
|
|
|
/* Wait for soft reset bit to self-clear */
|
|
for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
|
|
if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (retry == 0) {
|
|
device_printf(dev, "soft reset timed out\n");
|
|
#ifdef AWG_DEBUG
|
|
awg_dump_regs(dev);
|
|
#endif
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
if (error != 0)
|
|
return;
|
|
*(bus_addr_t *)arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
awg_setup_dma(device_t dev)
|
|
{
|
|
struct awg_softc *sc;
|
|
int error, i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Setup TX ring */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(dev), /* Parent tag */
|
|
DESC_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
TX_DESC_SIZE, 1, /* maxsize, nsegs */
|
|
TX_DESC_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->tx.desc_tag);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot create TX descriptor ring tag\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
|
|
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot allocate TX descriptor ring\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
|
|
sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
|
|
&sc->tx.desc_ring_paddr, 0);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot load TX descriptor ring\n");
|
|
return (error);
|
|
}
|
|
|
|
for (i = 0; i < TX_DESC_COUNT; i++)
|
|
sc->tx.desc_ring[i].next =
|
|
htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
|
|
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(dev), /* Parent tag */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, TX_MAX_SEGS, /* maxsize, nsegs */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->tx.buf_tag);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot create TX buffer tag\n");
|
|
return (error);
|
|
}
|
|
|
|
sc->tx.queued = 0;
|
|
for (i = 0; i < TX_DESC_COUNT; i++) {
|
|
error = bus_dmamap_create(sc->tx.buf_tag, 0,
|
|
&sc->tx.buf_map[i].map);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot create TX buffer map\n");
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* Setup RX ring */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(dev), /* Parent tag */
|
|
DESC_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
RX_DESC_SIZE, 1, /* maxsize, nsegs */
|
|
RX_DESC_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->rx.desc_tag);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot create RX descriptor ring tag\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
|
|
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot allocate RX descriptor ring\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
|
|
sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
|
|
&sc->rx.desc_ring_paddr, 0);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot load RX descriptor ring\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(dev), /* Parent tag */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, 1, /* maxsize, nsegs */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->rx.buf_tag);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot create RX buffer tag\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamap_create(sc->rx.buf_tag, 0, &sc->rx.buf_spare_map);
|
|
if (error != 0) {
|
|
device_printf(dev,
|
|
"cannot create RX buffer spare map\n");
|
|
return (error);
|
|
}
|
|
|
|
for (i = 0; i < RX_DESC_COUNT; i++) {
|
|
sc->rx.desc_ring[i].next =
|
|
htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(i)));
|
|
|
|
error = bus_dmamap_create(sc->rx.buf_tag, 0,
|
|
&sc->rx.buf_map[i].map);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot create RX buffer map\n");
|
|
return (error);
|
|
}
|
|
sc->rx.buf_map[i].mbuf = NULL;
|
|
error = awg_newbuf_rx(sc, i);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot create RX buffer\n");
|
|
return (error);
|
|
}
|
|
}
|
|
bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Write transmit and receive descriptor base address registers */
|
|
WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
|
|
WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
awg_probe(device_t dev)
|
|
{
|
|
if (!ofw_bus_status_okay(dev))
|
|
return (ENXIO);
|
|
|
|
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
|
|
return (ENXIO);
|
|
|
|
device_set_desc(dev, "Allwinner Gigabit Ethernet");
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
static int
|
|
awg_attach(device_t dev)
|
|
{
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
struct awg_softc *sc;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->dev = dev;
|
|
sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
|
|
|
|
if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
|
|
device_printf(dev, "cannot allocate resources for device\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
|
|
callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
|
|
TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
|
|
|
|
/* Setup clocks and regulators */
|
|
error = awg_setup_extres(dev);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Read MAC address before resetting the chip */
|
|
awg_get_eaddr(dev, eaddr);
|
|
|
|
/* Soft reset EMAC core */
|
|
error = awg_reset(dev);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Setup DMA descriptors */
|
|
error = awg_setup_dma(dev);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Install interrupt handler */
|
|
error = bus_setup_intr(dev, sc->res[_RES_IRQ],
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL, awg_intr, sc, &sc->ih);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot setup interrupt handler\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Setup ethernet interface */
|
|
sc->ifp = if_alloc(IFT_ETHER);
|
|
if_setsoftc(sc->ifp, sc);
|
|
if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
|
|
if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
|
|
if_setstartfn(sc->ifp, awg_start);
|
|
if_setioctlfn(sc->ifp, awg_ioctl);
|
|
if_setinitfn(sc->ifp, awg_init);
|
|
if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
|
|
if_setsendqready(sc->ifp);
|
|
if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
|
|
if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
|
|
if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
|
|
#ifdef DEVICE_POLLING
|
|
if_setcapabilitiesbit(sc->ifp, IFCAP_POLLING, 0);
|
|
#endif
|
|
|
|
/* Attach MII driver */
|
|
error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
|
|
awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
|
|
MIIF_DOPAUSE);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot attach PHY\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Attach ethernet interface */
|
|
ether_ifattach(sc->ifp, eaddr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static device_method_t awg_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, awg_probe),
|
|
DEVMETHOD(device_attach, awg_attach),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, awg_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, awg_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, awg_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t awg_driver = {
|
|
"awg",
|
|
awg_methods,
|
|
sizeof(struct awg_softc),
|
|
};
|
|
|
|
static devclass_t awg_devclass;
|
|
|
|
DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
MODULE_DEPEND(awg, ether, 1, 1, 1);
|
|
MODULE_DEPEND(awg, miibus, 1, 1, 1);
|