freebsd-dev/sys/arm/allwinner/if_emac.c
Emmanuel Vadot 97eb836f8b aw_sid: Add nvmem interface
Rework aw_sid so it can work with the nvmem interface.
Each SoC expose a set of fuses (for now rootkey/boardid and, if available,
the thermal calibration data). A fuse can be private or public, reading private
fuse needs to be done via some registers instead of reading directly.
Each fuse is exposed as a sysctl.
For now leave the possibility for a driver to read any fuse without using
the nvmem interface as the awg and emac driver use this to generate a mac
address.
2018-08-06 05:35:24 +00:00

1203 lines
28 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 Ganbold Tsagaankhuu <ganbold@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/* A10/A20 EMAC driver */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/gpio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_mib.h>
#include <net/ethernet.h>
#include <net/if_vlan_var.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <arm/allwinner/if_emacreg.h>
#include <arm/allwinner/aw_sid.h>
#include <dev/extres/clk/clk.h>
#include "miibus_if.h"
#include "gpio_if.h"
#include "a10_sramc.h"
struct emac_softc {
struct ifnet *emac_ifp;
device_t emac_dev;
device_t emac_miibus;
bus_space_handle_t emac_handle;
bus_space_tag_t emac_tag;
struct resource *emac_res;
struct resource *emac_irq;
void *emac_intrhand;
clk_t emac_clk;
int emac_if_flags;
struct mtx emac_mtx;
struct callout emac_tick_ch;
int emac_watchdog_timer;
int emac_rx_process_limit;
int emac_link;
uint32_t emac_fifo_mask;
};
static int emac_probe(device_t);
static int emac_attach(device_t);
static int emac_detach(device_t);
static int emac_shutdown(device_t);
static int emac_suspend(device_t);
static int emac_resume(device_t);
static int emac_sys_setup(struct emac_softc *);
static void emac_reset(struct emac_softc *);
static void emac_init_locked(struct emac_softc *);
static void emac_start_locked(struct ifnet *);
static void emac_init(void *);
static void emac_stop_locked(struct emac_softc *);
static void emac_intr(void *);
static int emac_ioctl(struct ifnet *, u_long, caddr_t);
static void emac_rxeof(struct emac_softc *, int);
static void emac_txeof(struct emac_softc *, uint32_t);
static int emac_miibus_readreg(device_t, int, int);
static int emac_miibus_writereg(device_t, int, int, int);
static void emac_miibus_statchg(device_t);
static int emac_ifmedia_upd(struct ifnet *);
static void emac_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_emac_proc_limit(SYSCTL_HANDLER_ARGS);
#define EMAC_READ_REG(sc, reg) \
bus_space_read_4(sc->emac_tag, sc->emac_handle, reg)
#define EMAC_WRITE_REG(sc, reg, val) \
bus_space_write_4(sc->emac_tag, sc->emac_handle, reg, val)
static int
emac_sys_setup(struct emac_softc *sc)
{
int error;
/* Activate EMAC clock. */
error = clk_get_by_ofw_index(sc->emac_dev, 0, 0, &sc->emac_clk);
if (error != 0) {
device_printf(sc->emac_dev, "cannot get clock\n");
return (error);
}
error = clk_enable(sc->emac_clk);
if (error != 0) {
device_printf(sc->emac_dev, "cannot enable clock\n");
return (error);
}
/* Map sram. */
a10_map_to_emac();
return (0);
}
static void
emac_get_hwaddr(struct emac_softc *sc, uint8_t *hwaddr)
{
uint32_t val0, val1, rnd;
u_char rootkey[16];
size_t rootkey_size;
/*
* Try to get MAC address from running hardware.
* If there is something non-zero there just use it.
*
* Otherwise set the address to a convenient locally assigned address,
* using the SID rootkey.
* This is was uboot does so we end up with the same mac as if uboot
* did set it.
* If we can't get the root key, generate a random one,
* 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally
* assigned bit set, and the broadcast/multicast bit clear.
*/
val0 = EMAC_READ_REG(sc, EMAC_MAC_A0);
val1 = EMAC_READ_REG(sc, EMAC_MAC_A1);
if ((val0 | val1) != 0 && (val0 | val1) != 0xffffff) {
hwaddr[0] = (val1 >> 16) & 0xff;
hwaddr[1] = (val1 >> 8) & 0xff;
hwaddr[2] = (val1 >> 0) & 0xff;
hwaddr[3] = (val0 >> 16) & 0xff;
hwaddr[4] = (val0 >> 8) & 0xff;
hwaddr[5] = (val0 >> 0) & 0xff;
} else {
rootkey_size = sizeof(rootkey);
if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
&rootkey_size) == 0) {
hwaddr[0] = 0x2;
hwaddr[1] = rootkey[3];
hwaddr[2] = rootkey[12];
hwaddr[3] = rootkey[13];
hwaddr[4] = rootkey[14];
hwaddr[5] = rootkey[15];
}
else {
rnd = arc4random() & 0x00ffffff;
hwaddr[0] = 'b';
hwaddr[1] = 's';
hwaddr[2] = 'd';
hwaddr[3] = (rnd >> 16) & 0xff;
hwaddr[4] = (rnd >> 8) & 0xff;
hwaddr[5] = (rnd >> 0) & 0xff;
}
}
if (bootverbose)
printf("MAC address: %s\n", ether_sprintf(hwaddr));
}
static void
emac_set_rx_mode(struct emac_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t h, hashes[2];
uint32_t rcr = 0;
EMAC_ASSERT_LOCKED(sc);
ifp = sc->emac_ifp;
rcr = EMAC_READ_REG(sc, EMAC_RX_CTL);
/* Unicast packet and DA filtering */
rcr |= EMAC_RX_UCAD;
rcr |= EMAC_RX_DAF;
hashes[0] = 0;
hashes[1] = 0;
if (ifp->if_flags & IFF_ALLMULTI) {
hashes[0] = 0xffffffff;
hashes[1] = 0xffffffff;
} else {
if_maddr_rlock(ifp);
CK_STAILQ_FOREACH(ifma, &sc->emac_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
hashes[h >> 5] |= 1 << (h & 0x1f);
}
if_maddr_runlock(ifp);
}
rcr |= EMAC_RX_MCO;
rcr |= EMAC_RX_MHF;
EMAC_WRITE_REG(sc, EMAC_RX_HASH0, hashes[0]);
EMAC_WRITE_REG(sc, EMAC_RX_HASH1, hashes[1]);
if (ifp->if_flags & IFF_BROADCAST) {
rcr |= EMAC_RX_BCO;
rcr |= EMAC_RX_MCO;
}
if (ifp->if_flags & IFF_PROMISC)
rcr |= EMAC_RX_PA;
else
rcr |= EMAC_RX_UCAD;
EMAC_WRITE_REG(sc, EMAC_RX_CTL, rcr);
}
static void
emac_reset(struct emac_softc *sc)
{
EMAC_WRITE_REG(sc, EMAC_CTL, 0);
DELAY(200);
EMAC_WRITE_REG(sc, EMAC_CTL, 1);
DELAY(200);
}
static void
emac_drain_rxfifo(struct emac_softc *sc)
{
uint32_t data;
while (EMAC_READ_REG(sc, EMAC_RX_FBC) > 0)
data = EMAC_READ_REG(sc, EMAC_RX_IO_DATA);
}
static void
emac_txeof(struct emac_softc *sc, uint32_t status)
{
struct ifnet *ifp;
EMAC_ASSERT_LOCKED(sc);
ifp = sc->emac_ifp;
status &= (EMAC_TX_FIFO0 | EMAC_TX_FIFO1);
sc->emac_fifo_mask &= ~status;
if (status == (EMAC_TX_FIFO0 | EMAC_TX_FIFO1))
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 2);
else
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* Unarm watchdog timer if no TX */
sc->emac_watchdog_timer = 0;
}
static void
emac_rxeof(struct emac_softc *sc, int count)
{
struct ifnet *ifp;
struct mbuf *m, *m0;
uint32_t reg_val, rxcount;
int16_t len;
uint16_t status;
int i;
ifp = sc->emac_ifp;
for (; count > 0 &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; count--) {
/*
* Race warning: The first packet might arrive with
* the interrupts disabled, but the second will fix
*/
rxcount = EMAC_READ_REG(sc, EMAC_RX_FBC);
if (!rxcount) {
/* Had one stuck? */
rxcount = EMAC_READ_REG(sc, EMAC_RX_FBC);
if (!rxcount)
return;
}
/* Check packet header */
reg_val = EMAC_READ_REG(sc, EMAC_RX_IO_DATA);
if (reg_val != EMAC_PACKET_HEADER) {
/* Packet header is wrong */
if (bootverbose)
if_printf(ifp, "wrong packet header\n");
/* Disable RX */
reg_val = EMAC_READ_REG(sc, EMAC_CTL);
reg_val &= ~EMAC_CTL_RX_EN;
EMAC_WRITE_REG(sc, EMAC_CTL, reg_val);
/* Flush RX FIFO */
reg_val = EMAC_READ_REG(sc, EMAC_RX_CTL);
reg_val |= EMAC_RX_FLUSH_FIFO;
EMAC_WRITE_REG(sc, EMAC_RX_CTL, reg_val);
for (i = 100; i > 0; i--) {
DELAY(100);
if ((EMAC_READ_REG(sc, EMAC_RX_CTL) &
EMAC_RX_FLUSH_FIFO) == 0)
break;
}
if (i == 0) {
device_printf(sc->emac_dev,
"flush FIFO timeout\n");
/* Reinitialize controller */
emac_init_locked(sc);
return;
}
/* Enable RX */
reg_val = EMAC_READ_REG(sc, EMAC_CTL);
reg_val |= EMAC_CTL_RX_EN;
EMAC_WRITE_REG(sc, EMAC_CTL, reg_val);
return;
}
/* Get packet size and status */
reg_val = EMAC_READ_REG(sc, EMAC_RX_IO_DATA);
len = reg_val & 0xffff;
status = (reg_val >> 16) & 0xffff;
if (len < 64 || (status & EMAC_PKT_OK) == 0) {
if (bootverbose)
if_printf(ifp,
"bad packet: len = %i status = %i\n",
len, status);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
emac_drain_rxfifo(sc);
continue;
}
#if 0
if (status & (EMAC_CRCERR | EMAC_LENERR)) {
good_packet = 0;
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
if (status & EMAC_CRCERR)
if_printf(ifp, "crc error\n");
if (status & EMAC_LENERR)
if_printf(ifp, "length error\n");
}
#endif
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
emac_drain_rxfifo(sc);
return;
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
/* Copy entire frame to mbuf first. */
bus_space_read_multi_4(sc->emac_tag, sc->emac_handle,
EMAC_RX_IO_DATA, mtod(m, uint32_t *), roundup2(len, 4) / 4);
m->m_pkthdr.rcvif = ifp;
m->m_len = m->m_pkthdr.len = len - ETHER_CRC_LEN;
/*
* Emac controller needs strict aligment, so to avoid
* copying over an entire frame to align, we allocate
* a new mbuf and copy ethernet header + IP header to
* the new mbuf. The new mbuf is prepended into the
* existing mbuf chain.
*/
if (m->m_len <= (MHLEN - ETHER_HDR_LEN)) {
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
m->m_data += ETHER_HDR_LEN;
} else if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN) &&
m->m_len > (MHLEN - ETHER_HDR_LEN)) {
MGETHDR(m0, M_NOWAIT, MT_DATA);
if (m0 != NULL) {
len = ETHER_HDR_LEN + m->m_pkthdr.l2hlen;
bcopy(m->m_data, m0->m_data, len);
m->m_data += len;
m->m_len -= len;
m0->m_len = len;
M_MOVE_PKTHDR(m0, m);
m0->m_next = m;
m = m0;
} else {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
m_freem(m);
m = NULL;
continue;
}
} else if (m->m_len > EMAC_MAC_MAXF) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
m_freem(m);
m = NULL;
continue;
}
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
EMAC_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
EMAC_LOCK(sc);
}
}
static void
emac_watchdog(struct emac_softc *sc)
{
struct ifnet *ifp;
EMAC_ASSERT_LOCKED(sc);
if (sc->emac_watchdog_timer == 0 || --sc->emac_watchdog_timer)
return;
ifp = sc->emac_ifp;
if (sc->emac_link == 0) {
if (bootverbose)
if_printf(sc->emac_ifp, "watchdog timeout "
"(missed link)\n");
} else
if_printf(sc->emac_ifp, "watchdog timeout -- resetting\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
emac_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
emac_start_locked(ifp);
}
static void
emac_tick(void *arg)
{
struct emac_softc *sc;
struct mii_data *mii;
sc = (struct emac_softc *)arg;
mii = device_get_softc(sc->emac_miibus);
mii_tick(mii);
emac_watchdog(sc);
callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
}
static void
emac_init(void *xcs)
{
struct emac_softc *sc;
sc = (struct emac_softc *)xcs;
EMAC_LOCK(sc);
emac_init_locked(sc);
EMAC_UNLOCK(sc);
}
static void
emac_init_locked(struct emac_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint32_t reg_val;
uint8_t *eaddr;
EMAC_ASSERT_LOCKED(sc);
ifp = sc->emac_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/* Flush RX FIFO */
reg_val = EMAC_READ_REG(sc, EMAC_RX_CTL);
reg_val |= EMAC_RX_FLUSH_FIFO;
EMAC_WRITE_REG(sc, EMAC_RX_CTL, reg_val);
DELAY(1);
/* Soft reset MAC */
reg_val = EMAC_READ_REG(sc, EMAC_MAC_CTL0);
reg_val &= (~EMAC_MAC_CTL0_SOFT_RST);
EMAC_WRITE_REG(sc, EMAC_MAC_CTL0, reg_val);
/* Set MII clock */
reg_val = EMAC_READ_REG(sc, EMAC_MAC_MCFG);
reg_val &= (~(0xf << 2));
reg_val |= (0xd << 2);
EMAC_WRITE_REG(sc, EMAC_MAC_MCFG, reg_val);
/* Clear RX counter */
EMAC_WRITE_REG(sc, EMAC_RX_FBC, 0);
/* Disable all interrupt and clear interrupt status */
EMAC_WRITE_REG(sc, EMAC_INT_CTL, 0);
reg_val = EMAC_READ_REG(sc, EMAC_INT_STA);
EMAC_WRITE_REG(sc, EMAC_INT_STA, reg_val);
DELAY(1);
/* Set up TX */
reg_val = EMAC_READ_REG(sc, EMAC_TX_MODE);
reg_val |= EMAC_TX_AB_M;
reg_val &= EMAC_TX_TM;
EMAC_WRITE_REG(sc, EMAC_TX_MODE, reg_val);
/* Set up RX */
reg_val = EMAC_READ_REG(sc, EMAC_RX_CTL);
reg_val |= EMAC_RX_SETUP;
reg_val &= EMAC_RX_TM;
EMAC_WRITE_REG(sc, EMAC_RX_CTL, reg_val);
/* Set up MAC CTL0. */
reg_val = EMAC_READ_REG(sc, EMAC_MAC_CTL0);
reg_val |= EMAC_MAC_CTL0_SETUP;
EMAC_WRITE_REG(sc, EMAC_MAC_CTL0, reg_val);
/* Set up MAC CTL1. */
reg_val = EMAC_READ_REG(sc, EMAC_MAC_CTL1);
reg_val |= EMAC_MAC_CTL1_SETUP;
EMAC_WRITE_REG(sc, EMAC_MAC_CTL1, reg_val);
/* Set up IPGT */
EMAC_WRITE_REG(sc, EMAC_MAC_IPGT, EMAC_MAC_IPGT_FD);
/* Set up IPGR */
EMAC_WRITE_REG(sc, EMAC_MAC_IPGR, EMAC_MAC_NBTB_IPG2 |
(EMAC_MAC_NBTB_IPG1 << 8));
/* Set up Collison window */
EMAC_WRITE_REG(sc, EMAC_MAC_CLRT, EMAC_MAC_RM | (EMAC_MAC_CW << 8));
/* Set up Max Frame Length */
EMAC_WRITE_REG(sc, EMAC_MAC_MAXF, EMAC_MAC_MFL);
/* Setup ethernet address */
eaddr = IF_LLADDR(ifp);
EMAC_WRITE_REG(sc, EMAC_MAC_A1, eaddr[0] << 16 |
eaddr[1] << 8 | eaddr[2]);
EMAC_WRITE_REG(sc, EMAC_MAC_A0, eaddr[3] << 16 |
eaddr[4] << 8 | eaddr[5]);
/* Setup rx filter */
emac_set_rx_mode(sc);
/* Enable RX/TX0/RX Hlevel interrupt */
reg_val = EMAC_READ_REG(sc, EMAC_INT_CTL);
reg_val |= EMAC_INT_EN;
EMAC_WRITE_REG(sc, EMAC_INT_CTL, reg_val);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->emac_link = 0;
/* Switch to the current media. */
mii = device_get_softc(sc->emac_miibus);
mii_mediachg(mii);
callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
}
static void
emac_start(struct ifnet *ifp)
{
struct emac_softc *sc;
sc = ifp->if_softc;
EMAC_LOCK(sc);
emac_start_locked(ifp);
EMAC_UNLOCK(sc);
}
static void
emac_start_locked(struct ifnet *ifp)
{
struct emac_softc *sc;
struct mbuf *m, *m0;
uint32_t fifo, reg;
sc = ifp->if_softc;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
if (sc->emac_fifo_mask == (EMAC_TX_FIFO0 | EMAC_TX_FIFO1))
return;
if (sc->emac_link == 0)
return;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
return;
/* Select channel */
if (sc->emac_fifo_mask & EMAC_TX_FIFO0)
fifo = 1;
else
fifo = 0;
sc->emac_fifo_mask |= (1 << fifo);
if (sc->emac_fifo_mask == (EMAC_TX_FIFO0 | EMAC_TX_FIFO1))
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
EMAC_WRITE_REG(sc, EMAC_TX_INS, fifo);
/*
* Emac controller wants 4 byte aligned TX buffers.
* We have to copy pretty much all the time.
*/
if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0) {
m0 = m_defrag(m, M_NOWAIT);
if (m0 == NULL) {
m_freem(m);
m = NULL;
return;
}
m = m0;
}
/* Write data */
bus_space_write_multi_4(sc->emac_tag, sc->emac_handle,
EMAC_TX_IO_DATA, mtod(m, uint32_t *),
roundup2(m->m_len, 4) / 4);
/* Send the data lengh. */
reg = (fifo == 0) ? EMAC_TX_PL0 : EMAC_TX_PL1;
EMAC_WRITE_REG(sc, reg, m->m_len);
/* Start translate from fifo to phy. */
reg = (fifo == 0) ? EMAC_TX_CTL0 : EMAC_TX_CTL1;
EMAC_WRITE_REG(sc, reg, EMAC_READ_REG(sc, reg) | 1);
/* Set timeout */
sc->emac_watchdog_timer = 5;
/* Data have been sent to hardware, it is okay to free the mbuf now. */
BPF_MTAP(ifp, m);
m_freem(m);
}
static void
emac_stop_locked(struct emac_softc *sc)
{
struct ifnet *ifp;
uint32_t reg_val;
EMAC_ASSERT_LOCKED(sc);
ifp = sc->emac_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->emac_link = 0;
/* Disable all interrupt and clear interrupt status */
EMAC_WRITE_REG(sc, EMAC_INT_CTL, 0);
reg_val = EMAC_READ_REG(sc, EMAC_INT_STA);
EMAC_WRITE_REG(sc, EMAC_INT_STA, reg_val);
/* Disable RX/TX */
reg_val = EMAC_READ_REG(sc, EMAC_CTL);
reg_val &= ~(EMAC_CTL_RST | EMAC_CTL_TX_EN | EMAC_CTL_RX_EN);
EMAC_WRITE_REG(sc, EMAC_CTL, reg_val);
callout_stop(&sc->emac_tick_ch);
}
static void
emac_intr(void *arg)
{
struct emac_softc *sc;
struct ifnet *ifp;
uint32_t reg_val;
sc = (struct emac_softc *)arg;
EMAC_LOCK(sc);
/* Disable all interrupts */
EMAC_WRITE_REG(sc, EMAC_INT_CTL, 0);
/* Get EMAC interrupt status */
reg_val = EMAC_READ_REG(sc, EMAC_INT_STA);
/* Clear ISR status */
EMAC_WRITE_REG(sc, EMAC_INT_STA, reg_val);
/* Received incoming packet */
if (reg_val & EMAC_INT_STA_RX)
emac_rxeof(sc, sc->emac_rx_process_limit);
/* Transmit Interrupt check */
if (reg_val & EMAC_INT_STA_TX) {
emac_txeof(sc, reg_val);
ifp = sc->emac_ifp;
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
emac_start_locked(ifp);
}
/* Re-enable interrupt mask */
reg_val = EMAC_READ_REG(sc, EMAC_INT_CTL);
reg_val |= EMAC_INT_EN;
EMAC_WRITE_REG(sc, EMAC_INT_CTL, reg_val);
EMAC_UNLOCK(sc);
}
static int
emac_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct emac_softc *sc;
struct mii_data *mii;
struct ifreq *ifr;
int error = 0;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFFLAGS:
EMAC_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((ifp->if_flags ^ sc->emac_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
emac_set_rx_mode(sc);
} else
emac_init_locked(sc);
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
emac_stop_locked(sc);
}
sc->emac_if_flags = ifp->if_flags;
EMAC_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
EMAC_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
emac_set_rx_mode(sc);
}
EMAC_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->emac_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
emac_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "allwinner,sun4i-a10-emac"))
return (ENXIO);
device_set_desc(dev, "A10/A20 EMAC ethernet controller");
return (BUS_PROBE_DEFAULT);
}
static int
emac_detach(device_t dev)
{
struct emac_softc *sc;
sc = device_get_softc(dev);
sc->emac_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
if (device_is_attached(dev)) {
ether_ifdetach(sc->emac_ifp);
EMAC_LOCK(sc);
emac_stop_locked(sc);
EMAC_UNLOCK(sc);
callout_drain(&sc->emac_tick_ch);
}
if (sc->emac_intrhand != NULL)
bus_teardown_intr(sc->emac_dev, sc->emac_irq,
sc->emac_intrhand);
if (sc->emac_miibus != NULL) {
device_delete_child(sc->emac_dev, sc->emac_miibus);
bus_generic_detach(sc->emac_dev);
}
if (sc->emac_clk != NULL)
clk_disable(sc->emac_clk);
if (sc->emac_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->emac_res);
if (sc->emac_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->emac_irq);
if (sc->emac_ifp != NULL)
if_free(sc->emac_ifp);
if (mtx_initialized(&sc->emac_mtx))
mtx_destroy(&sc->emac_mtx);
return (0);
}
static int
emac_shutdown(device_t dev)
{
return (emac_suspend(dev));
}
static int
emac_suspend(device_t dev)
{
struct emac_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
EMAC_LOCK(sc);
ifp = sc->emac_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
emac_stop_locked(sc);
EMAC_UNLOCK(sc);
return (0);
}
static int
emac_resume(device_t dev)
{
struct emac_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
EMAC_LOCK(sc);
ifp = sc->emac_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
emac_init_locked(sc);
}
EMAC_UNLOCK(sc);
return (0);
}
static int
emac_attach(device_t dev)
{
struct emac_softc *sc;
struct ifnet *ifp;
int error, rid;
uint8_t eaddr[ETHER_ADDR_LEN];
sc = device_get_softc(dev);
sc->emac_dev = dev;
error = 0;
mtx_init(&sc->emac_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->emac_tick_ch, &sc->emac_mtx, 0);
rid = 0;
sc->emac_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->emac_res == NULL) {
device_printf(dev, "unable to map memory\n");
error = ENXIO;
goto fail;
}
sc->emac_tag = rman_get_bustag(sc->emac_res);
sc->emac_handle = rman_get_bushandle(sc->emac_res);
rid = 0;
sc->emac_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->emac_irq == NULL) {
device_printf(dev, "cannot allocate IRQ resources.\n");
error = ENXIO;
goto fail;
}
/* Create device sysctl node. */
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
&sc->emac_rx_process_limit, 0, sysctl_hw_emac_proc_limit, "I",
"max number of Rx events to process");
sc->emac_rx_process_limit = EMAC_PROC_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"process_limit", &sc->emac_rx_process_limit);
if (error == 0) {
if (sc->emac_rx_process_limit < EMAC_PROC_MIN ||
sc->emac_rx_process_limit > EMAC_PROC_MAX) {
device_printf(dev, "process_limit value out of range; "
"using default: %d\n", EMAC_PROC_DEFAULT);
sc->emac_rx_process_limit = EMAC_PROC_DEFAULT;
}
}
/* Setup EMAC */
error = emac_sys_setup(sc);
if (error != 0)
goto fail;
emac_reset(sc);
ifp = sc->emac_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "unable to allocate ifp\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
/* Setup MII */
error = mii_attach(dev, &sc->emac_miibus, ifp, emac_ifmedia_upd,
emac_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "PHY probe failed\n");
goto fail;
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = emac_start;
ifp->if_ioctl = emac_ioctl;
ifp->if_init = emac_init;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
/* Get MAC address */
emac_get_hwaddr(sc, eaddr);
ether_ifattach(ifp, eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer we support VLAN over-sized frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
error = bus_setup_intr(dev, sc->emac_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, emac_intr, sc, &sc->emac_intrhand);
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
emac_detach(dev);
return (error);
}
static boolean_t
emac_miibus_iowait(struct emac_softc *sc)
{
uint32_t timeout;
for (timeout = 100; timeout != 0; --timeout) {
DELAY(100);
if ((EMAC_READ_REG(sc, EMAC_MAC_MIND) & 0x1) == 0)
return (true);
}
return (false);
}
/*
* The MII bus interface
*/
static int
emac_miibus_readreg(device_t dev, int phy, int reg)
{
struct emac_softc *sc;
int rval;
sc = device_get_softc(dev);
/* Issue phy address and reg */
EMAC_WRITE_REG(sc, EMAC_MAC_MADR, (phy << 8) | reg);
/* Pull up the phy io line */
EMAC_WRITE_REG(sc, EMAC_MAC_MCMD, 0x1);
if (!emac_miibus_iowait(sc)) {
device_printf(dev, "timeout waiting for mii read\n");
return (0);
}
/* Push down the phy io line */
EMAC_WRITE_REG(sc, EMAC_MAC_MCMD, 0x0);
/* Read data */
rval = EMAC_READ_REG(sc, EMAC_MAC_MRDD);
return (rval);
}
static int
emac_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct emac_softc *sc;
sc = device_get_softc(dev);
/* Issue phy address and reg */
EMAC_WRITE_REG(sc, EMAC_MAC_MADR, (phy << 8) | reg);
/* Write data */
EMAC_WRITE_REG(sc, EMAC_MAC_MWTD, data);
/* Pull up the phy io line */
EMAC_WRITE_REG(sc, EMAC_MAC_MCMD, 0x1);
if (!emac_miibus_iowait(sc)) {
device_printf(dev, "timeout waiting for mii write\n");
return (0);
}
/* Push down the phy io line */
EMAC_WRITE_REG(sc, EMAC_MAC_MCMD, 0x0);
return (0);
}
static void
emac_miibus_statchg(device_t dev)
{
struct emac_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t reg_val;
sc = device_get_softc(dev);
mii = device_get_softc(sc->emac_miibus);
ifp = sc->emac_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->emac_link = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->emac_link = 1;
break;
default:
break;
}
}
/* Program MACs with resolved speed/duplex. */
if (sc->emac_link != 0) {
reg_val = EMAC_READ_REG(sc, EMAC_MAC_IPGT);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg_val &= ~EMAC_MAC_IPGT_HD;
reg_val |= EMAC_MAC_IPGT_FD;
} else {
reg_val &= ~EMAC_MAC_IPGT_FD;
reg_val |= EMAC_MAC_IPGT_HD;
}
EMAC_WRITE_REG(sc, EMAC_MAC_IPGT, reg_val);
/* Enable RX/TX */
reg_val = EMAC_READ_REG(sc, EMAC_CTL);
reg_val |= EMAC_CTL_RST | EMAC_CTL_TX_EN | EMAC_CTL_RX_EN;
EMAC_WRITE_REG(sc, EMAC_CTL, reg_val);
} else {
/* Disable RX/TX */
reg_val = EMAC_READ_REG(sc, EMAC_CTL);
reg_val &= ~(EMAC_CTL_RST | EMAC_CTL_TX_EN | EMAC_CTL_RX_EN);
EMAC_WRITE_REG(sc, EMAC_CTL, reg_val);
}
}
static int
emac_ifmedia_upd(struct ifnet *ifp)
{
struct emac_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
mii = device_get_softc(sc->emac_miibus);
EMAC_LOCK(sc);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
EMAC_UNLOCK(sc);
return (error);
}
static void
emac_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct emac_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->emac_miibus);
EMAC_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
EMAC_UNLOCK(sc);
}
static device_method_t emac_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, emac_probe),
DEVMETHOD(device_attach, emac_attach),
DEVMETHOD(device_detach, emac_detach),
DEVMETHOD(device_shutdown, emac_shutdown),
DEVMETHOD(device_suspend, emac_suspend),
DEVMETHOD(device_resume, emac_resume),
/* bus interface, for miibus */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, emac_miibus_readreg),
DEVMETHOD(miibus_writereg, emac_miibus_writereg),
DEVMETHOD(miibus_statchg, emac_miibus_statchg),
DEVMETHOD_END
};
static driver_t emac_driver = {
"emac",
emac_methods,
sizeof(struct emac_softc)
};
static devclass_t emac_devclass;
DRIVER_MODULE(emac, simplebus, emac_driver, emac_devclass, 0, 0);
DRIVER_MODULE(miibus, emac, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(emac, miibus, 1, 1, 1);
MODULE_DEPEND(emac, ether, 1, 1, 1);
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_emac_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
EMAC_PROC_MIN, EMAC_PROC_MAX));
}