freebsd-dev/sys/compat/linux/linux_misc.c
Alan Somers 6040822c4e Make timespecadd(3) and friends public
The timespecadd(3) family of macros were imported from NetBSD back in
r35029. However, they were initially guarded by #ifdef _KERNEL. In the
meantime, we have grown at least 28 syscalls that use timespecs in some
way, leading many programs both inside and outside of the base system to
redefine those macros. It's better just to make the definitions public.

Our kernel currently defines two-argument versions of timespecadd and
timespecsub.  NetBSD, OpenBSD, and FreeDesktop.org's libbsd, however, define
three-argument versions.  Solaris also defines a three-argument version, but
only in its kernel.  This revision changes our definition to match the
common three-argument version.

Bump _FreeBSD_version due to the breaking KPI change.

Discussed with:	cem, jilles, ian, bde
Differential Revision:	https://reviews.freebsd.org/D14725
2018-07-30 15:46:40 +00:00

2594 lines
57 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2002 Doug Rabson
* Copyright (c) 1994-1995 Søren Schmidt
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/blist.h>
#include <sys/fcntl.h>
#if defined(__i386__)
#include <sys/imgact_aout.h>
#endif
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/racct.h>
#include <sys/random.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/stat.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#include <sys/cpuset.h>
#include <sys/uio.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/swap_pager.h>
#ifdef COMPAT_LINUX32
#include <machine/../linux32/linux.h>
#include <machine/../linux32/linux32_proto.h>
#else
#include <machine/../linux/linux.h>
#include <machine/../linux/linux_proto.h>
#endif
#include <compat/linux/linux_dtrace.h>
#include <compat/linux/linux_file.h>
#include <compat/linux/linux_mib.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_timer.h>
#include <compat/linux/linux_util.h>
#include <compat/linux/linux_sysproto.h>
#include <compat/linux/linux_emul.h>
#include <compat/linux/linux_misc.h>
/**
* Special DTrace provider for the linuxulator.
*
* In this file we define the provider for the entire linuxulator. All
* modules (= files of the linuxulator) use it.
*
* We define a different name depending on the emulated bitsize, see
* ../../<ARCH>/linux{,32}/linux.h, e.g.:
* native bitsize = linuxulator
* amd64, 32bit emulation = linuxulator32
*/
LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE);
int stclohz; /* Statistics clock frequency */
static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
RLIMIT_MEMLOCK, RLIMIT_AS
};
struct l_sysinfo {
l_long uptime; /* Seconds since boot */
l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
#define LINUX_SYSINFO_LOADS_SCALE 65536
l_ulong totalram; /* Total usable main memory size */
l_ulong freeram; /* Available memory size */
l_ulong sharedram; /* Amount of shared memory */
l_ulong bufferram; /* Memory used by buffers */
l_ulong totalswap; /* Total swap space size */
l_ulong freeswap; /* swap space still available */
l_ushort procs; /* Number of current processes */
l_ushort pads;
l_ulong totalbig;
l_ulong freebig;
l_uint mem_unit;
char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
};
struct l_pselect6arg {
l_uintptr_t ss;
l_size_t ss_len;
};
static int linux_utimensat_nsec_valid(l_long);
int
linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
{
struct l_sysinfo sysinfo;
vm_object_t object;
int i, j;
struct timespec ts;
bzero(&sysinfo, sizeof(sysinfo));
getnanouptime(&ts);
if (ts.tv_nsec != 0)
ts.tv_sec++;
sysinfo.uptime = ts.tv_sec;
/* Use the information from the mib to get our load averages */
for (i = 0; i < 3; i++)
sysinfo.loads[i] = averunnable.ldavg[i] *
LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
sysinfo.totalram = physmem * PAGE_SIZE;
sysinfo.freeram = sysinfo.totalram - vm_wire_count() * PAGE_SIZE;
sysinfo.sharedram = 0;
mtx_lock(&vm_object_list_mtx);
TAILQ_FOREACH(object, &vm_object_list, object_list)
if (object->shadow_count > 1)
sysinfo.sharedram += object->resident_page_count;
mtx_unlock(&vm_object_list_mtx);
sysinfo.sharedram *= PAGE_SIZE;
sysinfo.bufferram = 0;
swap_pager_status(&i, &j);
sysinfo.totalswap = i * PAGE_SIZE;
sysinfo.freeswap = (i - j) * PAGE_SIZE;
sysinfo.procs = nprocs;
/* The following are only present in newer Linux kernels. */
sysinfo.totalbig = 0;
sysinfo.freebig = 0;
sysinfo.mem_unit = 1;
return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_alarm(struct thread *td, struct linux_alarm_args *args)
{
struct itimerval it, old_it;
u_int secs;
int error;
#ifdef DEBUG
if (ldebug(alarm))
printf(ARGS(alarm, "%u"), args->secs);
#endif
secs = args->secs;
/*
* Linux alarm() is always successful. Limit secs to INT32_MAX / 2
* to match kern_setitimer()'s limit to avoid error from it.
*
* XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
* platforms.
*/
if (secs > INT32_MAX / 2)
secs = INT32_MAX / 2;
it.it_value.tv_sec = secs;
it.it_value.tv_usec = 0;
timevalclear(&it.it_interval);
error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
KASSERT(error == 0, ("kern_setitimer returns %d", error));
if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
old_it.it_value.tv_usec >= 500000)
old_it.it_value.tv_sec++;
td->td_retval[0] = old_it.it_value.tv_sec;
return (0);
}
#endif
int
linux_brk(struct thread *td, struct linux_brk_args *args)
{
struct vmspace *vm = td->td_proc->p_vmspace;
uintptr_t new, old;
#ifdef DEBUG
if (ldebug(brk))
printf(ARGS(brk, "%p"), (void *)(uintptr_t)args->dsend);
#endif
old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
new = (uintptr_t)args->dsend;
if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
td->td_retval[0] = (register_t)new;
else
td->td_retval[0] = (register_t)old;
return (0);
}
#if defined(__i386__)
/* XXX: what about amd64/linux32? */
int
linux_uselib(struct thread *td, struct linux_uselib_args *args)
{
struct nameidata ni;
struct vnode *vp;
struct exec *a_out;
struct vattr attr;
vm_offset_t vmaddr;
unsigned long file_offset;
unsigned long bss_size;
char *library;
ssize_t aresid;
int error, locked, writecount;
LCONVPATHEXIST(td, args->library, &library);
#ifdef DEBUG
if (ldebug(uselib))
printf(ARGS(uselib, "%s"), library);
#endif
a_out = NULL;
locked = 0;
vp = NULL;
NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
UIO_SYSSPACE, library, td);
error = namei(&ni);
LFREEPATH(library);
if (error)
goto cleanup;
vp = ni.ni_vp;
NDFREE(&ni, NDF_ONLY_PNBUF);
/*
* From here on down, we have a locked vnode that must be unlocked.
* XXX: The code below largely duplicates exec_check_permissions().
*/
locked = 1;
/* Writable? */
error = VOP_GET_WRITECOUNT(vp, &writecount);
if (error != 0)
goto cleanup;
if (writecount != 0) {
error = ETXTBSY;
goto cleanup;
}
/* Executable? */
error = VOP_GETATTR(vp, &attr, td->td_ucred);
if (error)
goto cleanup;
if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
/* EACCESS is what exec(2) returns. */
error = ENOEXEC;
goto cleanup;
}
/* Sensible size? */
if (attr.va_size == 0) {
error = ENOEXEC;
goto cleanup;
}
/* Can we access it? */
error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
if (error)
goto cleanup;
/*
* XXX: This should use vn_open() so that it is properly authorized,
* and to reduce code redundancy all over the place here.
* XXX: Not really, it duplicates far more of exec_check_permissions()
* than vn_open().
*/
#ifdef MAC
error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
if (error)
goto cleanup;
#endif
error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
if (error)
goto cleanup;
/* Pull in executable header into exec_map */
error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
if (error)
goto cleanup;
/* Is it a Linux binary ? */
if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
error = ENOEXEC;
goto cleanup;
}
/*
* While we are here, we should REALLY do some more checks
*/
/* Set file/virtual offset based on a.out variant. */
switch ((int)(a_out->a_magic & 0xffff)) {
case 0413: /* ZMAGIC */
file_offset = 1024;
break;
case 0314: /* QMAGIC */
file_offset = 0;
break;
default:
error = ENOEXEC;
goto cleanup;
}
bss_size = round_page(a_out->a_bss);
/* Check various fields in header for validity/bounds. */
if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
error = ENOEXEC;
goto cleanup;
}
/* text + data can't exceed file size */
if (a_out->a_data + a_out->a_text > attr.va_size) {
error = EFAULT;
goto cleanup;
}
/*
* text/data/bss must not exceed limits
* XXX - this is not complete. it should check current usage PLUS
* the resources needed by this library.
*/
PROC_LOCK(td->td_proc);
if (a_out->a_text > maxtsiz ||
a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
bss_size) != 0) {
PROC_UNLOCK(td->td_proc);
error = ENOMEM;
goto cleanup;
}
PROC_UNLOCK(td->td_proc);
/*
* Prevent more writers.
* XXX: Note that if any of the VM operations fail below we don't
* clear this flag.
*/
VOP_SET_TEXT(vp);
/*
* Lock no longer needed
*/
locked = 0;
VOP_UNLOCK(vp, 0);
/*
* Check if file_offset page aligned. Currently we cannot handle
* misalinged file offsets, and so we read in the entire image
* (what a waste).
*/
if (file_offset & PAGE_MASK) {
#ifdef DEBUG
printf("uselib: Non page aligned binary %lu\n", file_offset);
#endif
/* Map text+data read/write/execute */
/* a_entry is the load address and is page aligned */
vmaddr = trunc_page(a_out->a_entry);
/* get anon user mapping, read+write+execute */
error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
&vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
VM_PROT_ALL, VM_PROT_ALL, 0);
if (error)
goto cleanup;
error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
td->td_ucred, NOCRED, &aresid, td);
if (error != 0)
goto cleanup;
if (aresid != 0) {
error = ENOEXEC;
goto cleanup;
}
} else {
#ifdef DEBUG
printf("uselib: Page aligned binary %lu\n", file_offset);
#endif
/*
* for QMAGIC, a_entry is 20 bytes beyond the load address
* to skip the executable header
*/
vmaddr = trunc_page(a_out->a_entry);
/*
* Map it all into the process's space as a single
* copy-on-write "data" segment.
*/
error = vm_mmap(&td->td_proc->p_vmspace->vm_map, &vmaddr,
a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
if (error)
goto cleanup;
}
#ifdef DEBUG
printf("mem=%08lx = %08lx %08lx\n", (long)vmaddr, ((long *)vmaddr)[0],
((long *)vmaddr)[1]);
#endif
if (bss_size != 0) {
/* Calculate BSS start address */
vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
a_out->a_data;
/* allocate some 'anon' space */
error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
&vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
VM_PROT_ALL, 0);
if (error)
goto cleanup;
}
cleanup:
/* Unlock vnode if needed */
if (locked)
VOP_UNLOCK(vp, 0);
/* Release the temporary mapping. */
if (a_out)
kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
return (error);
}
#endif /* __i386__ */
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_select(struct thread *td, struct linux_select_args *args)
{
l_timeval ltv;
struct timeval tv0, tv1, utv, *tvp;
int error;
#ifdef DEBUG
if (ldebug(select))
printf(ARGS(select, "%d, %p, %p, %p, %p"), args->nfds,
(void *)args->readfds, (void *)args->writefds,
(void *)args->exceptfds, (void *)args->timeout);
#endif
/*
* Store current time for computation of the amount of
* time left.
*/
if (args->timeout) {
if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
goto select_out;
utv.tv_sec = ltv.tv_sec;
utv.tv_usec = ltv.tv_usec;
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("incoming timeout (%jd/%ld)"),
(intmax_t)utv.tv_sec, utv.tv_usec);
#endif
if (itimerfix(&utv)) {
/*
* The timeval was invalid. Convert it to something
* valid that will act as it does under Linux.
*/
utv.tv_sec += utv.tv_usec / 1000000;
utv.tv_usec %= 1000000;
if (utv.tv_usec < 0) {
utv.tv_sec -= 1;
utv.tv_usec += 1000000;
}
if (utv.tv_sec < 0)
timevalclear(&utv);
}
microtime(&tv0);
tvp = &utv;
} else
tvp = NULL;
error = kern_select(td, args->nfds, args->readfds, args->writefds,
args->exceptfds, tvp, LINUX_NFDBITS);
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("real select returns %d"), error);
#endif
if (error)
goto select_out;
if (args->timeout) {
if (td->td_retval[0]) {
/*
* Compute how much time was left of the timeout,
* by subtracting the current time and the time
* before we started the call, and subtracting
* that result from the user-supplied value.
*/
microtime(&tv1);
timevalsub(&tv1, &tv0);
timevalsub(&utv, &tv1);
if (utv.tv_sec < 0)
timevalclear(&utv);
} else
timevalclear(&utv);
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("outgoing timeout (%jd/%ld)"),
(intmax_t)utv.tv_sec, utv.tv_usec);
#endif
ltv.tv_sec = utv.tv_sec;
ltv.tv_usec = utv.tv_usec;
if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
goto select_out;
}
select_out:
#ifdef DEBUG
if (ldebug(select))
printf(LMSG("select_out -> %d"), error);
#endif
return (error);
}
#endif
int
linux_mremap(struct thread *td, struct linux_mremap_args *args)
{
uintptr_t addr;
size_t len;
int error = 0;
#ifdef DEBUG
if (ldebug(mremap))
printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"),
(void *)(uintptr_t)args->addr,
(unsigned long)args->old_len,
(unsigned long)args->new_len,
(unsigned long)args->flags);
#endif
if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
td->td_retval[0] = 0;
return (EINVAL);
}
/*
* Check for the page alignment.
* Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
*/
if (args->addr & PAGE_MASK) {
td->td_retval[0] = 0;
return (EINVAL);
}
args->new_len = round_page(args->new_len);
args->old_len = round_page(args->old_len);
if (args->new_len > args->old_len) {
td->td_retval[0] = 0;
return (ENOMEM);
}
if (args->new_len < args->old_len) {
addr = args->addr + args->new_len;
len = args->old_len - args->new_len;
error = kern_munmap(td, addr, len);
}
td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
return (error);
}
#define LINUX_MS_ASYNC 0x0001
#define LINUX_MS_INVALIDATE 0x0002
#define LINUX_MS_SYNC 0x0004
int
linux_msync(struct thread *td, struct linux_msync_args *args)
{
return (kern_msync(td, args->addr, args->len,
args->fl & ~LINUX_MS_SYNC));
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_time(struct thread *td, struct linux_time_args *args)
{
struct timeval tv;
l_time_t tm;
int error;
#ifdef DEBUG
if (ldebug(time))
printf(ARGS(time, "*"));
#endif
microtime(&tv);
tm = tv.tv_sec;
if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
return (error);
td->td_retval[0] = tm;
return (0);
}
#endif
struct l_times_argv {
l_clock_t tms_utime;
l_clock_t tms_stime;
l_clock_t tms_cutime;
l_clock_t tms_cstime;
};
/*
* Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
* Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
* auxiliary vector entry.
*/
#define CLK_TCK 100
#define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
#define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
#define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \
CONVNTCK(r) : CONVOTCK(r))
int
linux_times(struct thread *td, struct linux_times_args *args)
{
struct timeval tv, utime, stime, cutime, cstime;
struct l_times_argv tms;
struct proc *p;
int error;
#ifdef DEBUG
if (ldebug(times))
printf(ARGS(times, "*"));
#endif
if (args->buf != NULL) {
p = td->td_proc;
PROC_LOCK(p);
PROC_STATLOCK(p);
calcru(p, &utime, &stime);
PROC_STATUNLOCK(p);
calccru(p, &cutime, &cstime);
PROC_UNLOCK(p);
tms.tms_utime = CONVTCK(utime);
tms.tms_stime = CONVTCK(stime);
tms.tms_cutime = CONVTCK(cutime);
tms.tms_cstime = CONVTCK(cstime);
if ((error = copyout(&tms, args->buf, sizeof(tms))))
return (error);
}
microuptime(&tv);
td->td_retval[0] = (int)CONVTCK(tv);
return (0);
}
int
linux_newuname(struct thread *td, struct linux_newuname_args *args)
{
struct l_new_utsname utsname;
char osname[LINUX_MAX_UTSNAME];
char osrelease[LINUX_MAX_UTSNAME];
char *p;
#ifdef DEBUG
if (ldebug(newuname))
printf(ARGS(newuname, "*"));
#endif
linux_get_osname(td, osname);
linux_get_osrelease(td, osrelease);
bzero(&utsname, sizeof(utsname));
strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
for (p = utsname.version; *p != '\0'; ++p)
if (*p == '\n') {
*p = '\0';
break;
}
strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME);
return (copyout(&utsname, args->buf, sizeof(utsname)));
}
struct l_utimbuf {
l_time_t l_actime;
l_time_t l_modtime;
};
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_utime(struct thread *td, struct linux_utime_args *args)
{
struct timeval tv[2], *tvp;
struct l_utimbuf lut;
char *fname;
int error;
LCONVPATHEXIST(td, args->fname, &fname);
#ifdef DEBUG
if (ldebug(utime))
printf(ARGS(utime, "%s, *"), fname);
#endif
if (args->times) {
if ((error = copyin(args->times, &lut, sizeof lut))) {
LFREEPATH(fname);
return (error);
}
tv[0].tv_sec = lut.l_actime;
tv[0].tv_usec = 0;
tv[1].tv_sec = lut.l_modtime;
tv[1].tv_usec = 0;
tvp = tv;
} else
tvp = NULL;
error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
UIO_SYSSPACE);
LFREEPATH(fname);
return (error);
}
#endif
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_utimes(struct thread *td, struct linux_utimes_args *args)
{
l_timeval ltv[2];
struct timeval tv[2], *tvp = NULL;
char *fname;
int error;
LCONVPATHEXIST(td, args->fname, &fname);
#ifdef DEBUG
if (ldebug(utimes))
printf(ARGS(utimes, "%s, *"), fname);
#endif
if (args->tptr != NULL) {
if ((error = copyin(args->tptr, ltv, sizeof ltv))) {
LFREEPATH(fname);
return (error);
}
tv[0].tv_sec = ltv[0].tv_sec;
tv[0].tv_usec = ltv[0].tv_usec;
tv[1].tv_sec = ltv[1].tv_sec;
tv[1].tv_usec = ltv[1].tv_usec;
tvp = tv;
}
error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
tvp, UIO_SYSSPACE);
LFREEPATH(fname);
return (error);
}
#endif
static int
linux_utimensat_nsec_valid(l_long nsec)
{
if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW)
return (0);
if (nsec >= 0 && nsec <= 999999999)
return (0);
return (1);
}
int
linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
{
struct l_timespec l_times[2];
struct timespec times[2], *timesp = NULL;
char *path = NULL;
int error, dfd, flags = 0;
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
#ifdef DEBUG
if (ldebug(utimensat))
printf(ARGS(utimensat, "%d, *"), dfd);
#endif
if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW)
return (EINVAL);
if (args->times != NULL) {
error = copyin(args->times, l_times, sizeof(l_times));
if (error != 0)
return (error);
if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 ||
linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0)
return (EINVAL);
times[0].tv_sec = l_times[0].tv_sec;
switch (l_times[0].tv_nsec)
{
case LINUX_UTIME_OMIT:
times[0].tv_nsec = UTIME_OMIT;
break;
case LINUX_UTIME_NOW:
times[0].tv_nsec = UTIME_NOW;
break;
default:
times[0].tv_nsec = l_times[0].tv_nsec;
}
times[1].tv_sec = l_times[1].tv_sec;
switch (l_times[1].tv_nsec)
{
case LINUX_UTIME_OMIT:
times[1].tv_nsec = UTIME_OMIT;
break;
case LINUX_UTIME_NOW:
times[1].tv_nsec = UTIME_NOW;
break;
default:
times[1].tv_nsec = l_times[1].tv_nsec;
break;
}
timesp = times;
/* This breaks POSIX, but is what the Linux kernel does
* _on purpose_ (documented in the man page for utimensat(2)),
* so we must follow that behaviour. */
if (times[0].tv_nsec == UTIME_OMIT &&
times[1].tv_nsec == UTIME_OMIT)
return (0);
}
if (args->pathname != NULL)
LCONVPATHEXIST_AT(td, args->pathname, &path, dfd);
else if (args->flags != 0)
return (EINVAL);
if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW)
flags |= AT_SYMLINK_NOFOLLOW;
if (path == NULL)
error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
else {
error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
UIO_SYSSPACE, flags);
LFREEPATH(path);
}
return (error);
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
{
l_timeval ltv[2];
struct timeval tv[2], *tvp = NULL;
char *fname;
int error, dfd;
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
LCONVPATHEXIST_AT(td, args->filename, &fname, dfd);
#ifdef DEBUG
if (ldebug(futimesat))
printf(ARGS(futimesat, "%s, *"), fname);
#endif
if (args->utimes != NULL) {
if ((error = copyin(args->utimes, ltv, sizeof ltv))) {
LFREEPATH(fname);
return (error);
}
tv[0].tv_sec = ltv[0].tv_sec;
tv[0].tv_usec = ltv[0].tv_usec;
tv[1].tv_sec = ltv[1].tv_sec;
tv[1].tv_usec = ltv[1].tv_usec;
tvp = tv;
}
error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE);
LFREEPATH(fname);
return (error);
}
#endif
int
linux_common_wait(struct thread *td, int pid, int *status,
int options, struct rusage *ru)
{
int error, tmpstat;
error = kern_wait(td, pid, &tmpstat, options, ru);
if (error)
return (error);
if (status) {
tmpstat &= 0xffff;
if (WIFSIGNALED(tmpstat))
tmpstat = (tmpstat & 0xffffff80) |
bsd_to_linux_signal(WTERMSIG(tmpstat));
else if (WIFSTOPPED(tmpstat))
tmpstat = (tmpstat & 0xffff00ff) |
(bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
else if (WIFCONTINUED(tmpstat))
tmpstat = 0xffff;
error = copyout(&tmpstat, status, sizeof(int));
}
return (error);
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
{
struct linux_wait4_args wait4_args;
#ifdef DEBUG
if (ldebug(waitpid))
printf(ARGS(waitpid, "%d, %p, %d"),
args->pid, (void *)args->status, args->options);
#endif
wait4_args.pid = args->pid;
wait4_args.status = args->status;
wait4_args.options = args->options;
wait4_args.rusage = NULL;
return (linux_wait4(td, &wait4_args));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_wait4(struct thread *td, struct linux_wait4_args *args)
{
int error, options;
struct rusage ru, *rup;
#ifdef DEBUG
if (ldebug(wait4))
printf(ARGS(wait4, "%d, %p, %d, %p"),
args->pid, (void *)args->status, args->options,
(void *)args->rusage);
#endif
if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
return (EINVAL);
options = WEXITED;
linux_to_bsd_waitopts(args->options, &options);
if (args->rusage != NULL)
rup = &ru;
else
rup = NULL;
error = linux_common_wait(td, args->pid, args->status, options, rup);
if (error != 0)
return (error);
if (args->rusage != NULL)
error = linux_copyout_rusage(&ru, args->rusage);
return (error);
}
int
linux_waitid(struct thread *td, struct linux_waitid_args *args)
{
int status, options, sig;
struct __wrusage wru;
siginfo_t siginfo;
l_siginfo_t lsi;
idtype_t idtype;
struct proc *p;
int error;
options = 0;
linux_to_bsd_waitopts(args->options, &options);
if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED))
return (EINVAL);
if (!(options & (WEXITED | WUNTRACED | WCONTINUED)))
return (EINVAL);
switch (args->idtype) {
case LINUX_P_ALL:
idtype = P_ALL;
break;
case LINUX_P_PID:
if (args->id <= 0)
return (EINVAL);
idtype = P_PID;
break;
case LINUX_P_PGID:
if (args->id <= 0)
return (EINVAL);
idtype = P_PGID;
break;
default:
return (EINVAL);
}
error = kern_wait6(td, idtype, args->id, &status, options,
&wru, &siginfo);
if (error != 0)
return (error);
if (args->rusage != NULL) {
error = linux_copyout_rusage(&wru.wru_children,
args->rusage);
if (error != 0)
return (error);
}
if (args->info != NULL) {
p = td->td_proc;
if (td->td_retval[0] == 0)
bzero(&lsi, sizeof(lsi));
else {
sig = bsd_to_linux_signal(siginfo.si_signo);
siginfo_to_lsiginfo(&siginfo, &lsi, sig);
}
error = copyout(&lsi, args->info, sizeof(lsi));
}
td->td_retval[0] = 0;
return (error);
}
#ifdef LINUX_LEGACY_SYSCALLS
int
linux_mknod(struct thread *td, struct linux_mknod_args *args)
{
char *path;
int error;
LCONVPATHCREAT(td, args->path, &path);
#ifdef DEBUG
if (ldebug(mknod))
printf(ARGS(mknod, "%s, %d, %ju"), path, args->mode,
(uintmax_t)args->dev);
#endif
switch (args->mode & S_IFMT) {
case S_IFIFO:
case S_IFSOCK:
error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE,
args->mode);
break;
case S_IFCHR:
case S_IFBLK:
error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE,
args->mode, args->dev);
break;
case S_IFDIR:
error = EPERM;
break;
case 0:
args->mode |= S_IFREG;
/* FALLTHROUGH */
case S_IFREG:
error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE,
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
if (error == 0)
kern_close(td, td->td_retval[0]);
break;
default:
error = EINVAL;
break;
}
LFREEPATH(path);
return (error);
}
#endif
int
linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
{
char *path;
int error, dfd;
dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
LCONVPATHCREAT_AT(td, args->filename, &path, dfd);
#ifdef DEBUG
if (ldebug(mknodat))
printf(ARGS(mknodat, "%s, %d, %d"), path, args->mode, args->dev);
#endif
switch (args->mode & S_IFMT) {
case S_IFIFO:
case S_IFSOCK:
error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode);
break;
case S_IFCHR:
case S_IFBLK:
error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode,
args->dev);
break;
case S_IFDIR:
error = EPERM;
break;
case 0:
args->mode |= S_IFREG;
/* FALLTHROUGH */
case S_IFREG:
error = kern_openat(td, dfd, path, UIO_SYSSPACE,
O_WRONLY | O_CREAT | O_TRUNC, args->mode);
if (error == 0)
kern_close(td, td->td_retval[0]);
break;
default:
error = EINVAL;
break;
}
LFREEPATH(path);
return (error);
}
/*
* UGH! This is just about the dumbest idea I've ever heard!!
*/
int
linux_personality(struct thread *td, struct linux_personality_args *args)
{
struct linux_pemuldata *pem;
struct proc *p = td->td_proc;
uint32_t old;
#ifdef DEBUG
if (ldebug(personality))
printf(ARGS(personality, "%u"), args->per);
#endif
PROC_LOCK(p);
pem = pem_find(p);
old = pem->persona;
if (args->per != 0xffffffff)
pem->persona = args->per;
PROC_UNLOCK(p);
td->td_retval[0] = old;
return (0);
}
struct l_itimerval {
l_timeval it_interval;
l_timeval it_value;
};
#define B2L_ITIMERVAL(bip, lip) \
(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
(bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
int
linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
{
int error;
struct l_itimerval ls;
struct itimerval aitv, oitv;
#ifdef DEBUG
if (ldebug(setitimer))
printf(ARGS(setitimer, "%p, %p"),
(void *)uap->itv, (void *)uap->oitv);
#endif
if (uap->itv == NULL) {
uap->itv = uap->oitv;
return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
}
error = copyin(uap->itv, &ls, sizeof(ls));
if (error != 0)
return (error);
B2L_ITIMERVAL(&aitv, &ls);
#ifdef DEBUG
if (ldebug(setitimer)) {
printf("setitimer: value: sec: %jd, usec: %ld\n",
(intmax_t)aitv.it_value.tv_sec, aitv.it_value.tv_usec);
printf("setitimer: interval: sec: %jd, usec: %ld\n",
(intmax_t)aitv.it_interval.tv_sec, aitv.it_interval.tv_usec);
}
#endif
error = kern_setitimer(td, uap->which, &aitv, &oitv);
if (error != 0 || uap->oitv == NULL)
return (error);
B2L_ITIMERVAL(&ls, &oitv);
return (copyout(&ls, uap->oitv, sizeof(ls)));
}
int
linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
{
int error;
struct l_itimerval ls;
struct itimerval aitv;
#ifdef DEBUG
if (ldebug(getitimer))
printf(ARGS(getitimer, "%p"), (void *)uap->itv);
#endif
error = kern_getitimer(td, uap->which, &aitv);
if (error != 0)
return (error);
B2L_ITIMERVAL(&ls, &aitv);
return (copyout(&ls, uap->itv, sizeof(ls)));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_nice(struct thread *td, struct linux_nice_args *args)
{
struct setpriority_args bsd_args;
bsd_args.which = PRIO_PROCESS;
bsd_args.who = 0; /* current process */
bsd_args.prio = args->inc;
return (sys_setpriority(td, &bsd_args));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
{
struct ucred *newcred, *oldcred;
l_gid_t *linux_gidset;
gid_t *bsd_gidset;
int ngrp, error;
struct proc *p;
ngrp = args->gidsetsize;
if (ngrp < 0 || ngrp >= ngroups_max + 1)
return (EINVAL);
linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
if (error)
goto out;
newcred = crget();
crextend(newcred, ngrp + 1);
p = td->td_proc;
PROC_LOCK(p);
oldcred = p->p_ucred;
crcopy(newcred, oldcred);
/*
* cr_groups[0] holds egid. Setting the whole set from
* the supplied set will cause egid to be changed too.
* Keep cr_groups[0] unchanged to prevent that.
*/
if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0)) != 0) {
PROC_UNLOCK(p);
crfree(newcred);
goto out;
}
if (ngrp > 0) {
newcred->cr_ngroups = ngrp + 1;
bsd_gidset = newcred->cr_groups;
ngrp--;
while (ngrp >= 0) {
bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
ngrp--;
}
} else
newcred->cr_ngroups = 1;
setsugid(p);
proc_set_cred(p, newcred);
PROC_UNLOCK(p);
crfree(oldcred);
error = 0;
out:
free(linux_gidset, M_LINUX);
return (error);
}
int
linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
{
struct ucred *cred;
l_gid_t *linux_gidset;
gid_t *bsd_gidset;
int bsd_gidsetsz, ngrp, error;
cred = td->td_ucred;
bsd_gidset = cred->cr_groups;
bsd_gidsetsz = cred->cr_ngroups - 1;
/*
* cr_groups[0] holds egid. Returning the whole set
* here will cause a duplicate. Exclude cr_groups[0]
* to prevent that.
*/
if ((ngrp = args->gidsetsize) == 0) {
td->td_retval[0] = bsd_gidsetsz;
return (0);
}
if (ngrp < bsd_gidsetsz)
return (EINVAL);
ngrp = 0;
linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
M_LINUX, M_WAITOK);
while (ngrp < bsd_gidsetsz) {
linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
ngrp++;
}
error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
free(linux_gidset, M_LINUX);
if (error)
return (error);
td->td_retval[0] = ngrp;
return (0);
}
int
linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
{
struct rlimit bsd_rlim;
struct l_rlimit rlim;
u_int which;
int error;
#ifdef DEBUG
if (ldebug(setrlimit))
printf(ARGS(setrlimit, "%d, %p"),
args->resource, (void *)args->rlim);
#endif
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
error = copyin(args->rlim, &rlim, sizeof(rlim));
if (error)
return (error);
bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
return (kern_setrlimit(td, which, &bsd_rlim));
}
#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
int
linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
{
struct l_rlimit rlim;
struct rlimit bsd_rlim;
u_int which;
#ifdef DEBUG
if (ldebug(old_getrlimit))
printf(ARGS(old_getrlimit, "%d, %p"),
args->resource, (void *)args->rlim);
#endif
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
lim_rlimit(td, which, &bsd_rlim);
#ifdef COMPAT_LINUX32
rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
if (rlim.rlim_cur == UINT_MAX)
rlim.rlim_cur = INT_MAX;
rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
if (rlim.rlim_max == UINT_MAX)
rlim.rlim_max = INT_MAX;
#else
rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
if (rlim.rlim_cur == ULONG_MAX)
rlim.rlim_cur = LONG_MAX;
rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
if (rlim.rlim_max == ULONG_MAX)
rlim.rlim_max = LONG_MAX;
#endif
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
#endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
int
linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
{
struct l_rlimit rlim;
struct rlimit bsd_rlim;
u_int which;
#ifdef DEBUG
if (ldebug(getrlimit))
printf(ARGS(getrlimit, "%d, %p"),
args->resource, (void *)args->rlim);
#endif
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
lim_rlimit(td, which, &bsd_rlim);
rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
return (copyout(&rlim, args->rlim, sizeof(rlim)));
}
int
linux_sched_setscheduler(struct thread *td,
struct linux_sched_setscheduler_args *args)
{
struct sched_param sched_param;
struct thread *tdt;
int error, policy;
#ifdef DEBUG
if (ldebug(sched_setscheduler))
printf(ARGS(sched_setscheduler, "%d, %d, %p"),
args->pid, args->policy, (const void *)args->param);
#endif
switch (args->policy) {
case LINUX_SCHED_OTHER:
policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
policy = SCHED_RR;
break;
default:
return (EINVAL);
}
error = copyin(args->param, &sched_param, sizeof(sched_param));
if (error)
return (error);
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
PROC_UNLOCK(tdt->td_proc);
return (error);
}
int
linux_sched_getscheduler(struct thread *td,
struct linux_sched_getscheduler_args *args)
{
struct thread *tdt;
int error, policy;
#ifdef DEBUG
if (ldebug(sched_getscheduler))
printf(ARGS(sched_getscheduler, "%d"), args->pid);
#endif
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_getscheduler(td, tdt, &policy);
PROC_UNLOCK(tdt->td_proc);
switch (policy) {
case SCHED_OTHER:
td->td_retval[0] = LINUX_SCHED_OTHER;
break;
case SCHED_FIFO:
td->td_retval[0] = LINUX_SCHED_FIFO;
break;
case SCHED_RR:
td->td_retval[0] = LINUX_SCHED_RR;
break;
}
return (error);
}
int
linux_sched_get_priority_max(struct thread *td,
struct linux_sched_get_priority_max_args *args)
{
struct sched_get_priority_max_args bsd;
#ifdef DEBUG
if (ldebug(sched_get_priority_max))
printf(ARGS(sched_get_priority_max, "%d"), args->policy);
#endif
switch (args->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return (EINVAL);
}
return (sys_sched_get_priority_max(td, &bsd));
}
int
linux_sched_get_priority_min(struct thread *td,
struct linux_sched_get_priority_min_args *args)
{
struct sched_get_priority_min_args bsd;
#ifdef DEBUG
if (ldebug(sched_get_priority_min))
printf(ARGS(sched_get_priority_min, "%d"), args->policy);
#endif
switch (args->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return (EINVAL);
}
return (sys_sched_get_priority_min(td, &bsd));
}
#define REBOOT_CAD_ON 0x89abcdef
#define REBOOT_CAD_OFF 0
#define REBOOT_HALT 0xcdef0123
#define REBOOT_RESTART 0x01234567
#define REBOOT_RESTART2 0xA1B2C3D4
#define REBOOT_POWEROFF 0x4321FEDC
#define REBOOT_MAGIC1 0xfee1dead
#define REBOOT_MAGIC2 0x28121969
#define REBOOT_MAGIC2A 0x05121996
#define REBOOT_MAGIC2B 0x16041998
int
linux_reboot(struct thread *td, struct linux_reboot_args *args)
{
struct reboot_args bsd_args;
#ifdef DEBUG
if (ldebug(reboot))
printf(ARGS(reboot, "0x%x"), args->cmd);
#endif
if (args->magic1 != REBOOT_MAGIC1)
return (EINVAL);
switch (args->magic2) {
case REBOOT_MAGIC2:
case REBOOT_MAGIC2A:
case REBOOT_MAGIC2B:
break;
default:
return (EINVAL);
}
switch (args->cmd) {
case REBOOT_CAD_ON:
case REBOOT_CAD_OFF:
return (priv_check(td, PRIV_REBOOT));
case REBOOT_HALT:
bsd_args.opt = RB_HALT;
break;
case REBOOT_RESTART:
case REBOOT_RESTART2:
bsd_args.opt = 0;
break;
case REBOOT_POWEROFF:
bsd_args.opt = RB_POWEROFF;
break;
default:
return (EINVAL);
}
return (sys_reboot(td, &bsd_args));
}
/*
* The FreeBSD native getpid(2), getgid(2) and getuid(2) also modify
* td->td_retval[1] when COMPAT_43 is defined. This clobbers registers that
* are assumed to be preserved. The following lightweight syscalls fixes
* this. See also linux_getgid16() and linux_getuid16() in linux_uid16.c
*
* linux_getpid() - MP SAFE
* linux_getgid() - MP SAFE
* linux_getuid() - MP SAFE
*/
int
linux_getpid(struct thread *td, struct linux_getpid_args *args)
{
#ifdef DEBUG
if (ldebug(getpid))
printf(ARGS(getpid, ""));
#endif
td->td_retval[0] = td->td_proc->p_pid;
return (0);
}
int
linux_gettid(struct thread *td, struct linux_gettid_args *args)
{
struct linux_emuldata *em;
#ifdef DEBUG
if (ldebug(gettid))
printf(ARGS(gettid, ""));
#endif
em = em_find(td);
KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
td->td_retval[0] = em->em_tid;
return (0);
}
int
linux_getppid(struct thread *td, struct linux_getppid_args *args)
{
#ifdef DEBUG
if (ldebug(getppid))
printf(ARGS(getppid, ""));
#endif
td->td_retval[0] = kern_getppid(td);
return (0);
}
int
linux_getgid(struct thread *td, struct linux_getgid_args *args)
{
#ifdef DEBUG
if (ldebug(getgid))
printf(ARGS(getgid, ""));
#endif
td->td_retval[0] = td->td_ucred->cr_rgid;
return (0);
}
int
linux_getuid(struct thread *td, struct linux_getuid_args *args)
{
#ifdef DEBUG
if (ldebug(getuid))
printf(ARGS(getuid, ""));
#endif
td->td_retval[0] = td->td_ucred->cr_ruid;
return (0);
}
int
linux_getsid(struct thread *td, struct linux_getsid_args *args)
{
struct getsid_args bsd;
#ifdef DEBUG
if (ldebug(getsid))
printf(ARGS(getsid, "%i"), args->pid);
#endif
bsd.pid = args->pid;
return (sys_getsid(td, &bsd));
}
int
linux_nosys(struct thread *td, struct nosys_args *ignore)
{
return (ENOSYS);
}
int
linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
{
struct getpriority_args bsd_args;
int error;
#ifdef DEBUG
if (ldebug(getpriority))
printf(ARGS(getpriority, "%i, %i"), args->which, args->who);
#endif
bsd_args.which = args->which;
bsd_args.who = args->who;
error = sys_getpriority(td, &bsd_args);
td->td_retval[0] = 20 - td->td_retval[0];
return (error);
}
int
linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
{
int name[2];
#ifdef DEBUG
if (ldebug(sethostname))
printf(ARGS(sethostname, "*, %i"), args->len);
#endif
name[0] = CTL_KERN;
name[1] = KERN_HOSTNAME;
return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
args->len, 0, 0));
}
int
linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
{
int name[2];
#ifdef DEBUG
if (ldebug(setdomainname))
printf(ARGS(setdomainname, "*, %i"), args->len);
#endif
name[0] = CTL_KERN;
name[1] = KERN_NISDOMAINNAME;
return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
args->len, 0, 0));
}
int
linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
{
#ifdef DEBUG
if (ldebug(exit_group))
printf(ARGS(exit_group, "%i"), args->error_code);
#endif
LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
args->error_code);
/*
* XXX: we should send a signal to the parent if
* SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
* as it doesnt occur often.
*/
exit1(td, args->error_code, 0);
/* NOTREACHED */
}
#define _LINUX_CAPABILITY_VERSION_1 0x19980330
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
#define _LINUX_CAPABILITY_VERSION_3 0x20080522
struct l_user_cap_header {
l_int version;
l_int pid;
};
struct l_user_cap_data {
l_int effective;
l_int permitted;
l_int inheritable;
};
int
linux_capget(struct thread *td, struct linux_capget_args *uap)
{
struct l_user_cap_header luch;
struct l_user_cap_data lucd[2];
int error, u32s;
if (uap->hdrp == NULL)
return (EFAULT);
error = copyin(uap->hdrp, &luch, sizeof(luch));
if (error != 0)
return (error);
switch (luch.version) {
case _LINUX_CAPABILITY_VERSION_1:
u32s = 1;
break;
case _LINUX_CAPABILITY_VERSION_2:
case _LINUX_CAPABILITY_VERSION_3:
u32s = 2;
break;
default:
#ifdef DEBUG
if (ldebug(capget))
printf(LMSG("invalid capget capability version 0x%x"),
luch.version);
#endif
luch.version = _LINUX_CAPABILITY_VERSION_1;
error = copyout(&luch, uap->hdrp, sizeof(luch));
if (error)
return (error);
return (EINVAL);
}
if (luch.pid)
return (EPERM);
if (uap->datap) {
/*
* The current implementation doesn't support setting
* a capability (it's essentially a stub) so indicate
* that no capabilities are currently set or available
* to request.
*/
memset(&lucd, 0, u32s * sizeof(lucd[0]));
error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
}
return (error);
}
int
linux_capset(struct thread *td, struct linux_capset_args *uap)
{
struct l_user_cap_header luch;
struct l_user_cap_data lucd[2];
int error, i, u32s;
if (uap->hdrp == NULL || uap->datap == NULL)
return (EFAULT);
error = copyin(uap->hdrp, &luch, sizeof(luch));
if (error != 0)
return (error);
switch (luch.version) {
case _LINUX_CAPABILITY_VERSION_1:
u32s = 1;
break;
case _LINUX_CAPABILITY_VERSION_2:
case _LINUX_CAPABILITY_VERSION_3:
u32s = 2;
break;
default:
#ifdef DEBUG
if (ldebug(capset))
printf(LMSG("invalid capset capability version 0x%x"),
luch.version);
#endif
luch.version = _LINUX_CAPABILITY_VERSION_1;
error = copyout(&luch, uap->hdrp, sizeof(luch));
if (error)
return (error);
return (EINVAL);
}
if (luch.pid)
return (EPERM);
error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
if (error != 0)
return (error);
/* We currently don't support setting any capabilities. */
for (i = 0; i < u32s; i++) {
if (lucd[i].effective || lucd[i].permitted ||
lucd[i].inheritable) {
linux_msg(td,
"capset[%d] effective=0x%x, permitted=0x%x, "
"inheritable=0x%x is not implemented", i,
(int)lucd[i].effective, (int)lucd[i].permitted,
(int)lucd[i].inheritable);
return (EPERM);
}
}
return (0);
}
int
linux_prctl(struct thread *td, struct linux_prctl_args *args)
{
int error = 0, max_size;
struct proc *p = td->td_proc;
char comm[LINUX_MAX_COMM_LEN];
struct linux_emuldata *em;
int pdeath_signal;
#ifdef DEBUG
if (ldebug(prctl))
printf(ARGS(prctl, "%d, %ju, %ju, %ju, %ju"), args->option,
(uintmax_t)args->arg2, (uintmax_t)args->arg3,
(uintmax_t)args->arg4, (uintmax_t)args->arg5);
#endif
switch (args->option) {
case LINUX_PR_SET_PDEATHSIG:
if (!LINUX_SIG_VALID(args->arg2))
return (EINVAL);
em = em_find(td);
KASSERT(em != NULL, ("prctl: emuldata not found.\n"));
em->pdeath_signal = args->arg2;
break;
case LINUX_PR_GET_PDEATHSIG:
em = em_find(td);
KASSERT(em != NULL, ("prctl: emuldata not found.\n"));
pdeath_signal = em->pdeath_signal;
error = copyout(&pdeath_signal,
(void *)(register_t)args->arg2,
sizeof(pdeath_signal));
break;
case LINUX_PR_GET_KEEPCAPS:
/*
* Indicate that we always clear the effective and
* permitted capability sets when the user id becomes
* non-zero (actually the capability sets are simply
* always zero in the current implementation).
*/
td->td_retval[0] = 0;
break;
case LINUX_PR_SET_KEEPCAPS:
/*
* Ignore requests to keep the effective and permitted
* capability sets when the user id becomes non-zero.
*/
break;
case LINUX_PR_SET_NAME:
/*
* To be on the safe side we need to make sure to not
* overflow the size a Linux program expects. We already
* do this here in the copyin, so that we don't need to
* check on copyout.
*/
max_size = MIN(sizeof(comm), sizeof(p->p_comm));
error = copyinstr((void *)(register_t)args->arg2, comm,
max_size, NULL);
/* Linux silently truncates the name if it is too long. */
if (error == ENAMETOOLONG) {
/*
* XXX: copyinstr() isn't documented to populate the
* array completely, so do a copyin() to be on the
* safe side. This should be changed in case
* copyinstr() is changed to guarantee this.
*/
error = copyin((void *)(register_t)args->arg2, comm,
max_size - 1);
comm[max_size - 1] = '\0';
}
if (error)
return (error);
PROC_LOCK(p);
strlcpy(p->p_comm, comm, sizeof(p->p_comm));
PROC_UNLOCK(p);
break;
case LINUX_PR_GET_NAME:
PROC_LOCK(p);
strlcpy(comm, p->p_comm, sizeof(comm));
PROC_UNLOCK(p);
error = copyout(comm, (void *)(register_t)args->arg2,
strlen(comm) + 1);
break;
default:
error = EINVAL;
break;
}
return (error);
}
int
linux_sched_setparam(struct thread *td,
struct linux_sched_setparam_args *uap)
{
struct sched_param sched_param;
struct thread *tdt;
int error;
#ifdef DEBUG
if (ldebug(sched_setparam))
printf(ARGS(sched_setparam, "%d, *"), uap->pid);
#endif
error = copyin(uap->param, &sched_param, sizeof(sched_param));
if (error)
return (error);
tdt = linux_tdfind(td, uap->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_setparam(td, tdt, &sched_param);
PROC_UNLOCK(tdt->td_proc);
return (error);
}
int
linux_sched_getparam(struct thread *td,
struct linux_sched_getparam_args *uap)
{
struct sched_param sched_param;
struct thread *tdt;
int error;
#ifdef DEBUG
if (ldebug(sched_getparam))
printf(ARGS(sched_getparam, "%d, *"), uap->pid);
#endif
tdt = linux_tdfind(td, uap->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_getparam(td, tdt, &sched_param);
PROC_UNLOCK(tdt->td_proc);
if (error == 0)
error = copyout(&sched_param, uap->param,
sizeof(sched_param));
return (error);
}
/*
* Get affinity of a process.
*/
int
linux_sched_getaffinity(struct thread *td,
struct linux_sched_getaffinity_args *args)
{
int error;
struct thread *tdt;
#ifdef DEBUG
if (ldebug(sched_getaffinity))
printf(ARGS(sched_getaffinity, "%d, %d, *"), args->pid,
args->len);
#endif
if (args->len < sizeof(cpuset_t))
return (EINVAL);
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
PROC_UNLOCK(tdt->td_proc);
error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr);
if (error == 0)
td->td_retval[0] = sizeof(cpuset_t);
return (error);
}
/*
* Set affinity of a process.
*/
int
linux_sched_setaffinity(struct thread *td,
struct linux_sched_setaffinity_args *args)
{
struct thread *tdt;
#ifdef DEBUG
if (ldebug(sched_setaffinity))
printf(ARGS(sched_setaffinity, "%d, %d, *"), args->pid,
args->len);
#endif
if (args->len < sizeof(cpuset_t))
return (EINVAL);
tdt = linux_tdfind(td, args->pid, -1);
if (tdt == NULL)
return (ESRCH);
PROC_UNLOCK(tdt->td_proc);
return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr));
}
struct linux_rlimit64 {
uint64_t rlim_cur;
uint64_t rlim_max;
};
int
linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
{
struct rlimit rlim, nrlim;
struct linux_rlimit64 lrlim;
struct proc *p;
u_int which;
int flags;
int error;
#ifdef DEBUG
if (ldebug(prlimit64))
printf(ARGS(prlimit64, "%d, %d, %p, %p"), args->pid,
args->resource, (void *)args->new, (void *)args->old);
#endif
if (args->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
which = linux_to_bsd_resource[args->resource];
if (which == -1)
return (EINVAL);
if (args->new != NULL) {
/*
* Note. Unlike FreeBSD where rlim is signed 64-bit Linux
* rlim is unsigned 64-bit. FreeBSD treats negative limits
* as INFINITY so we do not need a conversion even.
*/
error = copyin(args->new, &nrlim, sizeof(nrlim));
if (error != 0)
return (error);
}
flags = PGET_HOLD | PGET_NOTWEXIT;
if (args->new != NULL)
flags |= PGET_CANDEBUG;
else
flags |= PGET_CANSEE;
error = pget(args->pid, flags, &p);
if (error != 0)
return (error);
if (args->old != NULL) {
PROC_LOCK(p);
lim_rlimit_proc(p, which, &rlim);
PROC_UNLOCK(p);
if (rlim.rlim_cur == RLIM_INFINITY)
lrlim.rlim_cur = LINUX_RLIM_INFINITY;
else
lrlim.rlim_cur = rlim.rlim_cur;
if (rlim.rlim_max == RLIM_INFINITY)
lrlim.rlim_max = LINUX_RLIM_INFINITY;
else
lrlim.rlim_max = rlim.rlim_max;
error = copyout(&lrlim, args->old, sizeof(lrlim));
if (error != 0)
goto out;
}
if (args->new != NULL)
error = kern_proc_setrlimit(td, p, which, &nrlim);
out:
PRELE(p);
return (error);
}
int
linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
{
struct timeval utv, tv0, tv1, *tvp;
struct l_pselect6arg lpse6;
struct l_timespec lts;
struct timespec uts;
l_sigset_t l_ss;
sigset_t *ssp;
sigset_t ss;
int error;
ssp = NULL;
if (args->sig != NULL) {
error = copyin(args->sig, &lpse6, sizeof(lpse6));
if (error != 0)
return (error);
if (lpse6.ss_len != sizeof(l_ss))
return (EINVAL);
if (lpse6.ss != 0) {
error = copyin(PTRIN(lpse6.ss), &l_ss,
sizeof(l_ss));
if (error != 0)
return (error);
linux_to_bsd_sigset(&l_ss, &ss);
ssp = &ss;
}
}
/*
* Currently glibc changes nanosecond number to microsecond.
* This mean losing precision but for now it is hardly seen.
*/
if (args->tsp != NULL) {
error = copyin(args->tsp, &lts, sizeof(lts));
if (error != 0)
return (error);
error = linux_to_native_timespec(&uts, &lts);
if (error != 0)
return (error);
TIMESPEC_TO_TIMEVAL(&utv, &uts);
if (itimerfix(&utv))
return (EINVAL);
microtime(&tv0);
tvp = &utv;
} else
tvp = NULL;
error = kern_pselect(td, args->nfds, args->readfds, args->writefds,
args->exceptfds, tvp, ssp, LINUX_NFDBITS);
if (error == 0 && args->tsp != NULL) {
if (td->td_retval[0] != 0) {
/*
* Compute how much time was left of the timeout,
* by subtracting the current time and the time
* before we started the call, and subtracting
* that result from the user-supplied value.
*/
microtime(&tv1);
timevalsub(&tv1, &tv0);
timevalsub(&utv, &tv1);
if (utv.tv_sec < 0)
timevalclear(&utv);
} else
timevalclear(&utv);
TIMEVAL_TO_TIMESPEC(&utv, &uts);
error = native_to_linux_timespec(&lts, &uts);
if (error == 0)
error = copyout(&lts, args->tsp, sizeof(lts));
}
return (error);
}
int
linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
{
struct timespec ts0, ts1;
struct l_timespec lts;
struct timespec uts, *tsp;
l_sigset_t l_ss;
sigset_t *ssp;
sigset_t ss;
int error;
if (args->sset != NULL) {
if (args->ssize != sizeof(l_ss))
return (EINVAL);
error = copyin(args->sset, &l_ss, sizeof(l_ss));
if (error)
return (error);
linux_to_bsd_sigset(&l_ss, &ss);
ssp = &ss;
} else
ssp = NULL;
if (args->tsp != NULL) {
error = copyin(args->tsp, &lts, sizeof(lts));
if (error)
return (error);
error = linux_to_native_timespec(&uts, &lts);
if (error != 0)
return (error);
nanotime(&ts0);
tsp = &uts;
} else
tsp = NULL;
error = kern_poll(td, args->fds, args->nfds, tsp, ssp);
if (error == 0 && args->tsp != NULL) {
if (td->td_retval[0]) {
nanotime(&ts1);
timespecsub(&ts1, &ts0, &ts1);
timespecsub(&uts, &ts1, &uts);
if (uts.tv_sec < 0)
timespecclear(&uts);
} else
timespecclear(&uts);
error = native_to_linux_timespec(&lts, &uts);
if (error == 0)
error = copyout(&lts, args->tsp, sizeof(lts));
}
return (error);
}
#if defined(DEBUG) || defined(KTR)
/* XXX: can be removed when every ldebug(...) and KTR stuff are removed. */
#ifdef COMPAT_LINUX32
#define L_MAXSYSCALL LINUX32_SYS_MAXSYSCALL
#else
#define L_MAXSYSCALL LINUX_SYS_MAXSYSCALL
#endif
u_char linux_debug_map[howmany(L_MAXSYSCALL, sizeof(u_char))];
static int
linux_debug(int syscall, int toggle, int global)
{
if (global) {
char c = toggle ? 0 : 0xff;
memset(linux_debug_map, c, sizeof(linux_debug_map));
return (0);
}
if (syscall < 0 || syscall >= L_MAXSYSCALL)
return (EINVAL);
if (toggle)
clrbit(linux_debug_map, syscall);
else
setbit(linux_debug_map, syscall);
return (0);
}
#undef L_MAXSYSCALL
/*
* Usage: sysctl linux.debug=<syscall_nr>.<0/1>
*
* E.g.: sysctl linux.debug=21.0
*
* As a special case, syscall "all" will apply to all syscalls globally.
*/
#define LINUX_MAX_DEBUGSTR 16
int
linux_sysctl_debug(SYSCTL_HANDLER_ARGS)
{
char value[LINUX_MAX_DEBUGSTR], *p;
int error, sysc, toggle;
int global = 0;
value[0] = '\0';
error = sysctl_handle_string(oidp, value, LINUX_MAX_DEBUGSTR, req);
if (error || req->newptr == NULL)
return (error);
for (p = value; *p != '\0' && *p != '.'; p++);
if (*p == '\0')
return (EINVAL);
*p++ = '\0';
sysc = strtol(value, NULL, 0);
toggle = strtol(p, NULL, 0);
if (strcmp(value, "all") == 0)
global = 1;
error = linux_debug(sysc, toggle, global);
return (error);
}
#endif /* DEBUG || KTR */
int
linux_sched_rr_get_interval(struct thread *td,
struct linux_sched_rr_get_interval_args *uap)
{
struct timespec ts;
struct l_timespec lts;
struct thread *tdt;
int error;
/*
* According to man in case the invalid pid specified
* EINVAL should be returned.
*/
if (uap->pid < 0)
return (EINVAL);
tdt = linux_tdfind(td, uap->pid, -1);
if (tdt == NULL)
return (ESRCH);
error = kern_sched_rr_get_interval_td(td, tdt, &ts);
PROC_UNLOCK(tdt->td_proc);
if (error != 0)
return (error);
error = native_to_linux_timespec(&lts, &ts);
if (error != 0)
return (error);
return (copyout(&lts, uap->interval, sizeof(lts)));
}
/*
* In case when the Linux thread is the initial thread in
* the thread group thread id is equal to the process id.
* Glibc depends on this magic (assert in pthread_getattr_np.c).
*/
struct thread *
linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
{
struct linux_emuldata *em;
struct thread *tdt;
struct proc *p;
tdt = NULL;
if (tid == 0 || tid == td->td_tid) {
tdt = td;
PROC_LOCK(tdt->td_proc);
} else if (tid > PID_MAX)
tdt = tdfind(tid, pid);
else {
/*
* Initial thread where the tid equal to the pid.
*/
p = pfind(tid);
if (p != NULL) {
if (SV_PROC_ABI(p) != SV_ABI_LINUX) {
/*
* p is not a Linuxulator process.
*/
PROC_UNLOCK(p);
return (NULL);
}
FOREACH_THREAD_IN_PROC(p, tdt) {
em = em_find(tdt);
if (tid == em->em_tid)
return (tdt);
}
PROC_UNLOCK(p);
}
return (NULL);
}
return (tdt);
}
void
linux_to_bsd_waitopts(int options, int *bsdopts)
{
if (options & LINUX_WNOHANG)
*bsdopts |= WNOHANG;
if (options & LINUX_WUNTRACED)
*bsdopts |= WUNTRACED;
if (options & LINUX_WEXITED)
*bsdopts |= WEXITED;
if (options & LINUX_WCONTINUED)
*bsdopts |= WCONTINUED;
if (options & LINUX_WNOWAIT)
*bsdopts |= WNOWAIT;
if (options & __WCLONE)
*bsdopts |= WLINUXCLONE;
}
int
linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
{
struct uio uio;
struct iovec iov;
int error;
if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
return (EINVAL);
if (args->count > INT_MAX)
args->count = INT_MAX;
iov.iov_base = args->buf;
iov.iov_len = args->count;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_resid = iov.iov_len;
uio.uio_segflg = UIO_USERSPACE;
uio.uio_rw = UIO_READ;
uio.uio_td = td;
error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
if (error == 0)
td->td_retval[0] = args->count - uio.uio_resid;
return (error);
}
int
linux_mincore(struct thread *td, struct linux_mincore_args *args)
{
/* Needs to be page-aligned */
if (args->start & PAGE_MASK)
return (EINVAL);
return (kern_mincore(td, args->start, args->len, args->vec));
}