freebsd-dev/sys/arm/amlogic/aml8726/aml8726_sdxc-m8.c
Oleksandr Tymoshenko 217d17bcd3 Clean up OF_getprop_alloc API
OF_getprop_alloc takes element size argument and returns number of
elements in the property. There are valid use cases for such behavior
but mostly API consumers pass 1 as element size to get string
properties. What API users would expect from OF_getprop_alloc is to be
a combination of malloc + OF_getprop with the same semantic of return
value. This patch modifies API signature to match these expectations.

For the valid use cases with element size != 1 and to reduce
modification scope new OF_getprop_alloc_multi function has been
introduced that behaves the same way OF_getprop_alloc behaved prior to
this patch.

Reviewed by:	ian, manu
Differential Revision:	https://reviews.freebsd.org/D14850
2018-04-08 22:59:34 +00:00

1379 lines
32 KiB
C

/*-
* Copyright 2015 John Wehle <john@feith.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Amlogic aml8726-m8 (and later) SDXC host controller driver.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/gpio.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#include <arm/amlogic/aml8726/aml8726_soc.h>
#include <arm/amlogic/aml8726/aml8726_sdxc-m8.h>
#include "gpio_if.h"
#include "mmcbr_if.h"
/*
* The table is sorted from highest to lowest and
* last entry in the table is mark by freq == 0.
*/
struct {
uint32_t voltage;
uint32_t freq;
uint32_t rx_phase;
} aml8726_sdxc_clk_phases[] = {
{
MMC_OCR_LOW_VOLTAGE | MMC_OCR_320_330 | MMC_OCR_330_340,
100000000,
1
},
{
MMC_OCR_320_330 | MMC_OCR_330_340,
45000000,
15
},
{
MMC_OCR_LOW_VOLTAGE,
45000000,
11
},
{
MMC_OCR_LOW_VOLTAGE | MMC_OCR_320_330 | MMC_OCR_330_340,
24999999,
15
},
{
MMC_OCR_LOW_VOLTAGE | MMC_OCR_320_330 | MMC_OCR_330_340,
5000000,
23
},
{
MMC_OCR_LOW_VOLTAGE | MMC_OCR_320_330 | MMC_OCR_330_340,
1000000,
55
},
{
MMC_OCR_LOW_VOLTAGE | MMC_OCR_320_330 | MMC_OCR_330_340,
0,
1061
},
};
struct aml8726_sdxc_gpio {
device_t dev;
uint32_t pin;
uint32_t pol;
};
struct aml8726_sdxc_softc {
device_t dev;
boolean_t auto_fill_flush;
struct resource *res[2];
struct mtx mtx;
struct callout ch;
unsigned int ref_freq;
struct aml8726_sdxc_gpio pwr_en;
int voltages[2];
struct aml8726_sdxc_gpio vselect;
struct aml8726_sdxc_gpio card_rst;
bus_dma_tag_t dmatag;
bus_dmamap_t dmamap;
void *ih_cookie;
struct mmc_host host;
int bus_busy;
struct {
uint32_t time;
uint32_t error;
} busy;
struct mmc_command *cmd;
};
static struct resource_spec aml8726_sdxc_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define AML_SDXC_LOCK(sc) mtx_lock(&(sc)->mtx)
#define AML_SDXC_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
#define AML_SDXC_LOCK_ASSERT(sc) mtx_assert(&(sc)->mtx, MA_OWNED)
#define AML_SDXC_LOCK_INIT(sc) \
mtx_init(&(sc)->mtx, device_get_nameunit((sc)->dev), \
"sdxc", MTX_DEF)
#define AML_SDXC_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx);
#define CSR_WRITE_4(sc, reg, val) bus_write_4((sc)->res[0], reg, (val))
#define CSR_READ_4(sc, reg) bus_read_4((sc)->res[0], reg)
#define CSR_BARRIER(sc, reg) bus_barrier((sc)->res[0], reg, 4, \
(BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE))
#define PIN_ON_FLAG(pol) ((pol) == 0 ? \
GPIO_PIN_LOW : GPIO_PIN_HIGH)
#define PIN_OFF_FLAG(pol) ((pol) == 0 ? \
GPIO_PIN_HIGH : GPIO_PIN_LOW)
#define msecs_to_ticks(ms) (((ms)*hz)/1000 + 1)
static void aml8726_sdxc_timeout(void *arg);
static void
aml8726_sdxc_mapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *busaddrp;
/*
* There should only be one bus space address since
* bus_dma_tag_create was called with nsegments = 1.
*/
busaddrp = (bus_addr_t *)arg;
*busaddrp = segs->ds_addr;
}
static int
aml8726_sdxc_power_off(struct aml8726_sdxc_softc *sc)
{
if (sc->pwr_en.dev == NULL)
return (0);
return (GPIO_PIN_SET(sc->pwr_en.dev, sc->pwr_en.pin,
PIN_OFF_FLAG(sc->pwr_en.pol)));
}
static int
aml8726_sdxc_power_on(struct aml8726_sdxc_softc *sc)
{
if (sc->pwr_en.dev == NULL)
return (0);
return (GPIO_PIN_SET(sc->pwr_en.dev, sc->pwr_en.pin,
PIN_ON_FLAG(sc->pwr_en.pol)));
}
static void
aml8726_sdxc_soft_reset(struct aml8726_sdxc_softc *sc)
{
CSR_WRITE_4(sc, AML_SDXC_SOFT_RESET_REG, AML_SDXC_SOFT_RESET);
CSR_BARRIER(sc, AML_SDXC_SOFT_RESET_REG);
DELAY(5);
}
static void
aml8726_sdxc_engage_dma(struct aml8726_sdxc_softc *sc)
{
int i;
uint32_t pdmar;
uint32_t sr;
struct mmc_data *data;
data = sc->cmd->data;
if (data == NULL || data->len == 0)
return;
/*
* Engaging the DMA hardware is recommended before writing
* to AML_SDXC_SEND_REG so that the FIFOs are ready to go.
*
* Presumably AML_SDXC_CNTRL_REG and AML_SDXC_DMA_ADDR_REG
* must be set up prior to this happening.
*/
pdmar = CSR_READ_4(sc, AML_SDXC_PDMA_REG);
pdmar &= ~AML_SDXC_PDMA_RX_FLUSH_MODE_SW;
pdmar |= AML_SDXC_PDMA_DMA_EN;
if (sc->auto_fill_flush == true) {
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
CSR_BARRIER(sc, AML_SDXC_PDMA_REG);
return;
}
if ((data->flags & MMC_DATA_READ) != 0) {
pdmar |= AML_SDXC_PDMA_RX_FLUSH_MODE_SW;
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
CSR_BARRIER(sc, AML_SDXC_PDMA_REG);
} else {
pdmar |= AML_SDXC_PDMA_TX_FILL;
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
CSR_BARRIER(sc, AML_SDXC_PDMA_REG);
/*
* Wait up to 100us for data to show up.
*/
for (i = 0; i < 100; i++) {
sr = CSR_READ_4(sc, AML_SDXC_STATUS_REG);
if ((sr & AML_SDXC_STATUS_TX_CNT_MASK) != 0)
break;
DELAY(1);
}
if (i >= 100)
device_printf(sc->dev, "TX FIFO fill timeout\n");
}
}
static void
aml8726_sdxc_disengage_dma(struct aml8726_sdxc_softc *sc)
{
int i;
uint32_t pdmar;
uint32_t sr;
struct mmc_data *data;
data = sc->cmd->data;
if (data == NULL || data->len == 0)
return;
pdmar = CSR_READ_4(sc, AML_SDXC_PDMA_REG);
if (sc->auto_fill_flush == true) {
pdmar &= ~AML_SDXC_PDMA_DMA_EN;
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
CSR_BARRIER(sc, AML_SDXC_PDMA_REG);
return;
}
if ((data->flags & MMC_DATA_READ) != 0) {
pdmar |= AML_SDXC_PDMA_RX_FLUSH_NOW;
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
CSR_BARRIER(sc, AML_SDXC_PDMA_REG);
/*
* Wait up to 100us for data to drain.
*/
for (i = 0; i < 100; i++) {
sr = CSR_READ_4(sc, AML_SDXC_STATUS_REG);
if ((sr & AML_SDXC_STATUS_RX_CNT_MASK) == 0)
break;
DELAY(1);
}
if (i >= 100)
device_printf(sc->dev, "RX FIFO drain timeout\n");
}
pdmar &= ~(AML_SDXC_PDMA_DMA_EN | AML_SDXC_PDMA_RX_FLUSH_MODE_SW);
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
CSR_BARRIER(sc, AML_SDXC_PDMA_REG);
}
static int
aml8726_sdxc_start_command(struct aml8726_sdxc_softc *sc,
struct mmc_command *cmd)
{
bus_addr_t baddr;
uint32_t block_size;
uint32_t ctlr;
uint32_t ier;
uint32_t sndr;
uint32_t timeout;
int error;
struct mmc_data *data;
AML_SDXC_LOCK_ASSERT(sc);
if (cmd->opcode > 0x3f)
return (MMC_ERR_INVALID);
/*
* Ensure the hardware state machine is in a known state.
*/
aml8726_sdxc_soft_reset(sc);
sndr = cmd->opcode;
if ((cmd->flags & MMC_RSP_136) != 0) {
sndr |= AML_SDXC_SEND_CMD_HAS_RESP;
sndr |= AML_SDXC_SEND_RESP_136;
/*
* According to the SD spec the 136 bit response is
* used for getting the CID or CSD in which case the
* CRC7 is embedded in the contents rather than being
* calculated over the entire response (the controller
* always checks the CRC7 over the entire response).
*/
sndr |= AML_SDXC_SEND_RESP_NO_CRC7_CHECK;
} else if ((cmd->flags & MMC_RSP_PRESENT) != 0)
sndr |= AML_SDXC_SEND_CMD_HAS_RESP;
if ((cmd->flags & MMC_RSP_CRC) == 0)
sndr |= AML_SDXC_SEND_RESP_NO_CRC7_CHECK;
if (cmd->opcode == MMC_STOP_TRANSMISSION)
sndr |= AML_SDXC_SEND_DATA_STOP;
data = cmd->data;
baddr = 0;
ctlr = CSR_READ_4(sc, AML_SDXC_CNTRL_REG);
ier = AML_SDXC_IRQ_ENABLE_STANDARD;
timeout = AML_SDXC_CMD_TIMEOUT;
ctlr &= ~AML_SDXC_CNTRL_PKG_LEN_MASK;
if (data && data->len &&
(data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) != 0) {
block_size = data->len;
if ((data->flags & MMC_DATA_MULTI) != 0) {
block_size = MMC_SECTOR_SIZE;
if ((data->len % block_size) != 0)
return (MMC_ERR_INVALID);
}
if (block_size > 512)
return (MMC_ERR_INVALID);
sndr |= AML_SDXC_SEND_CMD_HAS_DATA;
sndr |= ((data->flags & MMC_DATA_WRITE) != 0) ?
AML_SDXC_SEND_DATA_WRITE : 0;
sndr |= (((data->len / block_size) - 1) <<
AML_SDXC_SEND_REP_PKG_CNT_SHIFT);
ctlr |= ((block_size < 512) ? block_size : 0) <<
AML_SDXC_CNTRL_PKG_LEN_SHIFT;
ier &= ~AML_SDXC_IRQ_ENABLE_RESP_OK;
ier |= (sc->auto_fill_flush == true ||
(data->flags & MMC_DATA_WRITE) != 0) ?
AML_SDXC_IRQ_ENABLE_DMA_DONE :
AML_SDXC_IRQ_ENABLE_TRANSFER_DONE_OK;
error = bus_dmamap_load(sc->dmatag, sc->dmamap,
data->data, data->len, aml8726_sdxc_mapmem, &baddr,
BUS_DMA_NOWAIT);
if (error)
return (MMC_ERR_NO_MEMORY);
if ((data->flags & MMC_DATA_READ) != 0) {
bus_dmamap_sync(sc->dmatag, sc->dmamap,
BUS_DMASYNC_PREREAD);
timeout = AML_SDXC_READ_TIMEOUT *
(data->len / block_size);
} else {
bus_dmamap_sync(sc->dmatag, sc->dmamap,
BUS_DMASYNC_PREWRITE);
timeout = AML_SDXC_WRITE_TIMEOUT *
(data->len / block_size);
}
}
sc->cmd = cmd;
cmd->error = MMC_ERR_NONE;
sc->busy.time = 0;
sc->busy.error = MMC_ERR_NONE;
if (timeout > AML_SDXC_MAX_TIMEOUT)
timeout = AML_SDXC_MAX_TIMEOUT;
callout_reset(&sc->ch, msecs_to_ticks(timeout),
aml8726_sdxc_timeout, sc);
CSR_WRITE_4(sc, AML_SDXC_IRQ_ENABLE_REG, ier);
CSR_WRITE_4(sc, AML_SDXC_CNTRL_REG, ctlr);
CSR_WRITE_4(sc, AML_SDXC_DMA_ADDR_REG, (uint32_t)baddr);
CSR_WRITE_4(sc, AML_SDXC_CMD_ARGUMENT_REG, cmd->arg);
aml8726_sdxc_engage_dma(sc);
CSR_WRITE_4(sc, AML_SDXC_SEND_REG, sndr);
CSR_BARRIER(sc, AML_SDXC_SEND_REG);
return (MMC_ERR_NONE);
}
static void
aml8726_sdxc_finish_command(struct aml8726_sdxc_softc *sc, int mmc_error)
{
int mmc_stop_error;
struct mmc_command *cmd;
struct mmc_command *stop_cmd;
struct mmc_data *data;
AML_SDXC_LOCK_ASSERT(sc);
/* Clear all interrupts since the request is no longer in flight. */
CSR_WRITE_4(sc, AML_SDXC_IRQ_STATUS_REG, AML_SDXC_IRQ_STATUS_CLEAR);
CSR_BARRIER(sc, AML_SDXC_IRQ_STATUS_REG);
/* In some cases (e.g. finish called via timeout) this is a NOP. */
callout_stop(&sc->ch);
cmd = sc->cmd;
sc->cmd = NULL;
cmd->error = mmc_error;
data = cmd->data;
if (data && data->len
&& (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) != 0) {
if ((data->flags & MMC_DATA_READ) != 0)
bus_dmamap_sync(sc->dmatag, sc->dmamap,
BUS_DMASYNC_POSTREAD);
else
bus_dmamap_sync(sc->dmatag, sc->dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->dmatag, sc->dmamap);
}
/*
* If there's a linked stop command, then start the stop command.
* In order to establish a known state attempt the stop command
* even if the original request encountered an error.
*/
stop_cmd = (cmd->mrq->stop != cmd) ? cmd->mrq->stop : NULL;
if (stop_cmd != NULL) {
/*
* If the original command executed successfully, then
* the hardware will also have automatically executed
* a stop command so don't bother with the one supplied
* with the original request.
*/
if (mmc_error == MMC_ERR_NONE) {
stop_cmd->error = MMC_ERR_NONE;
stop_cmd->resp[0] = cmd->resp[0];
stop_cmd->resp[1] = cmd->resp[1];
stop_cmd->resp[2] = cmd->resp[2];
stop_cmd->resp[3] = cmd->resp[3];
} else {
mmc_stop_error = aml8726_sdxc_start_command(sc,
stop_cmd);
if (mmc_stop_error == MMC_ERR_NONE) {
AML_SDXC_UNLOCK(sc);
return;
}
stop_cmd->error = mmc_stop_error;
}
}
AML_SDXC_UNLOCK(sc);
/* Execute the callback after dropping the lock. */
if (cmd->mrq != NULL)
cmd->mrq->done(cmd->mrq);
}
static void
aml8726_sdxc_timeout(void *arg)
{
struct aml8726_sdxc_softc *sc = (struct aml8726_sdxc_softc *)arg;
/*
* The command failed to complete in time so forcefully
* terminate it.
*/
aml8726_sdxc_soft_reset(sc);
/*
* Ensure the command has terminated before continuing on
* to things such as bus_dmamap_sync / bus_dmamap_unload.
*/
while ((CSR_READ_4(sc, AML_SDXC_STATUS_REG) &
AML_SDXC_STATUS_BUSY) != 0)
cpu_spinwait();
aml8726_sdxc_finish_command(sc, MMC_ERR_TIMEOUT);
}
static void
aml8726_sdxc_busy_check(void *arg)
{
struct aml8726_sdxc_softc *sc = (struct aml8726_sdxc_softc *)arg;
uint32_t sr;
sc->busy.time += AML_SDXC_BUSY_POLL_INTVL;
sr = CSR_READ_4(sc, AML_SDXC_STATUS_REG);
if ((sr & AML_SDXC_STATUS_DAT0) == 0) {
if (sc->busy.time < AML_SDXC_BUSY_TIMEOUT) {
callout_reset(&sc->ch,
msecs_to_ticks(AML_SDXC_BUSY_POLL_INTVL),
aml8726_sdxc_busy_check, sc);
AML_SDXC_UNLOCK(sc);
return;
}
if (sc->busy.error == MMC_ERR_NONE)
sc->busy.error = MMC_ERR_TIMEOUT;
}
aml8726_sdxc_finish_command(sc, sc->busy.error);
}
static void
aml8726_sdxc_intr(void *arg)
{
struct aml8726_sdxc_softc *sc = (struct aml8726_sdxc_softc *)arg;
uint32_t isr;
uint32_t pdmar;
uint32_t sndr;
uint32_t sr;
int i;
int mmc_error;
int start;
int stop;
AML_SDXC_LOCK(sc);
isr = CSR_READ_4(sc, AML_SDXC_IRQ_STATUS_REG);
sndr = CSR_READ_4(sc, AML_SDXC_SEND_REG);
sr = CSR_READ_4(sc, AML_SDXC_STATUS_REG);
if (sc->cmd == NULL)
goto spurious;
mmc_error = MMC_ERR_NONE;
if ((isr & (AML_SDXC_IRQ_STATUS_TX_FIFO_EMPTY |
AML_SDXC_IRQ_STATUS_RX_FIFO_FULL)) != 0)
mmc_error = MMC_ERR_FIFO;
else if ((isr & (AML_SDXC_IRQ_ENABLE_A_PKG_CRC_ERR |
AML_SDXC_IRQ_ENABLE_RESP_CRC_ERR)) != 0)
mmc_error = MMC_ERR_BADCRC;
else if ((isr & (AML_SDXC_IRQ_ENABLE_A_PKG_TIMEOUT_ERR |
AML_SDXC_IRQ_ENABLE_RESP_TIMEOUT_ERR)) != 0)
mmc_error = MMC_ERR_TIMEOUT;
else if ((isr & (AML_SDXC_IRQ_STATUS_RESP_OK |
AML_SDXC_IRQ_STATUS_DMA_DONE |
AML_SDXC_IRQ_STATUS_TRANSFER_DONE_OK)) != 0) {
;
}
else {
spurious:
/*
* Clear spurious interrupts while leaving intacted any
* interrupts that may have occurred after we read the
* interrupt status register.
*/
CSR_WRITE_4(sc, AML_SDXC_IRQ_STATUS_REG,
(AML_SDXC_IRQ_STATUS_CLEAR & isr));
CSR_BARRIER(sc, AML_SDXC_IRQ_STATUS_REG);
AML_SDXC_UNLOCK(sc);
return;
}
aml8726_sdxc_disengage_dma(sc);
if ((sndr & AML_SDXC_SEND_CMD_HAS_RESP) != 0) {
start = 0;
stop = 1;
if ((sndr & AML_SDXC_SEND_RESP_136) != 0) {
start = 1;
stop = start + 4;
}
for (i = start; i < stop; i++) {
pdmar = CSR_READ_4(sc, AML_SDXC_PDMA_REG);
pdmar &= ~(AML_SDXC_PDMA_DMA_EN |
AML_SDXC_PDMA_RESP_INDEX_MASK);
pdmar |= i << AML_SDXC_PDMA_RESP_INDEX_SHIFT;
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
sc->cmd->resp[(stop - 1) - i] = CSR_READ_4(sc,
AML_SDXC_CMD_ARGUMENT_REG);
}
}
if ((sr & AML_SDXC_STATUS_BUSY) != 0 &&
/*
* A multiblock operation may keep the hardware
* busy until stop transmission is executed.
*/
(isr & (AML_SDXC_IRQ_STATUS_DMA_DONE |
AML_SDXC_IRQ_STATUS_TRANSFER_DONE_OK)) == 0) {
if (mmc_error == MMC_ERR_NONE)
mmc_error = MMC_ERR_FAILED;
/*
* Issue a soft reset to terminate the command.
*
* Ensure the command has terminated before continuing on
* to things such as bus_dmamap_sync / bus_dmamap_unload.
*/
aml8726_sdxc_soft_reset(sc);
while ((CSR_READ_4(sc, AML_SDXC_STATUS_REG) &
AML_SDXC_STATUS_BUSY) != 0)
cpu_spinwait();
}
/*
* The stop command can be generated either manually or
* automatically by the hardware if MISC_MANUAL_STOP_MODE
* has not been set. In either case check for busy.
*/
if (((sc->cmd->flags & MMC_RSP_BUSY) != 0 ||
(sndr & AML_SDXC_SEND_INDEX_MASK) == MMC_STOP_TRANSMISSION) &&
(sr & AML_SDXC_STATUS_DAT0) == 0) {
sc->busy.error = mmc_error;
callout_reset(&sc->ch,
msecs_to_ticks(AML_SDXC_BUSY_POLL_INTVL),
aml8726_sdxc_busy_check, sc);
CSR_WRITE_4(sc, AML_SDXC_IRQ_STATUS_REG,
(AML_SDXC_IRQ_STATUS_CLEAR & isr));
CSR_BARRIER(sc, AML_SDXC_IRQ_STATUS_REG);
AML_SDXC_UNLOCK(sc);
return;
}
aml8726_sdxc_finish_command(sc, mmc_error);
}
static int
aml8726_sdxc_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "amlogic,aml8726-sdxc-m8"))
return (ENXIO);
device_set_desc(dev, "Amlogic aml8726-m8 SDXC");
return (BUS_PROBE_DEFAULT);
}
static int
aml8726_sdxc_attach(device_t dev)
{
struct aml8726_sdxc_softc *sc = device_get_softc(dev);
char *voltages;
char *voltage;
int error;
int nvoltages;
pcell_t prop[3];
phandle_t node;
ssize_t len;
device_t child;
uint32_t ectlr;
uint32_t miscr;
uint32_t pdmar;
sc->dev = dev;
sc->auto_fill_flush = false;
pdmar = AML_SDXC_PDMA_DMA_URGENT |
(49 << AML_SDXC_PDMA_TX_THOLD_SHIFT) |
(7 << AML_SDXC_PDMA_RX_THOLD_SHIFT) |
(15 << AML_SDXC_PDMA_RD_BURST_SHIFT) |
(7 << AML_SDXC_PDMA_WR_BURST_SHIFT);
miscr = (2 << AML_SDXC_MISC_WCRC_OK_PAT_SHIFT) |
(5 << AML_SDXC_MISC_WCRC_ERR_PAT_SHIFT);
ectlr = (12 << AML_SDXC_ENH_CNTRL_SDIO_IRQ_PERIOD_SHIFT);
/*
* Certain bitfields are dependent on the hardware revision.
*/
switch (aml8726_soc_hw_rev) {
case AML_SOC_HW_REV_M8:
switch (aml8726_soc_metal_rev) {
case AML_SOC_M8_METAL_REV_M2_A:
sc->auto_fill_flush = true;
miscr |= (6 << AML_SDXC_MISC_TXSTART_THOLD_SHIFT);
ectlr |= (64 << AML_SDXC_ENH_CNTRL_RX_FULL_THOLD_SHIFT) |
AML_SDXC_ENH_CNTRL_WR_RESP_MODE_SKIP_M8M2;
break;
default:
miscr |= (7 << AML_SDXC_MISC_TXSTART_THOLD_SHIFT);
ectlr |= (63 << AML_SDXC_ENH_CNTRL_RX_FULL_THOLD_SHIFT) |
AML_SDXC_ENH_CNTRL_DMA_NO_WR_RESP_CHECK_M8 |
(255 << AML_SDXC_ENH_CNTRL_RX_TIMEOUT_SHIFT_M8);
break;
}
break;
case AML_SOC_HW_REV_M8B:
miscr |= (7 << AML_SDXC_MISC_TXSTART_THOLD_SHIFT);
ectlr |= (63 << AML_SDXC_ENH_CNTRL_RX_FULL_THOLD_SHIFT) |
AML_SDXC_ENH_CNTRL_DMA_NO_WR_RESP_CHECK_M8 |
(255 << AML_SDXC_ENH_CNTRL_RX_TIMEOUT_SHIFT_M8);
break;
default:
device_printf(dev, "unsupported SoC\n");
return (ENXIO);
/* NOTREACHED */
}
node = ofw_bus_get_node(dev);
len = OF_getencprop(node, "clock-frequency", prop, sizeof(prop));
if ((len / sizeof(prop[0])) != 1 || prop[0] == 0) {
device_printf(dev,
"missing clock-frequency attribute in FDT\n");
return (ENXIO);
}
sc->ref_freq = prop[0];
sc->pwr_en.dev = NULL;
len = OF_getencprop(node, "mmc-pwr-en", prop, sizeof(prop));
if (len > 0) {
if ((len / sizeof(prop[0])) == 3) {
sc->pwr_en.dev = OF_device_from_xref(prop[0]);
sc->pwr_en.pin = prop[1];
sc->pwr_en.pol = prop[2];
}
if (sc->pwr_en.dev == NULL) {
device_printf(dev,
"unable to process mmc-pwr-en attribute in FDT\n");
return (ENXIO);
}
/* Turn off power and then configure the output driver. */
if (aml8726_sdxc_power_off(sc) != 0 ||
GPIO_PIN_SETFLAGS(sc->pwr_en.dev, sc->pwr_en.pin,
GPIO_PIN_OUTPUT) != 0) {
device_printf(dev,
"could not use gpio to control power\n");
return (ENXIO);
}
}
len = OF_getprop_alloc(node, "mmc-voltages",
(void **)&voltages);
if (len < 0) {
device_printf(dev, "missing mmc-voltages attribute in FDT\n");
return (ENXIO);
}
sc->voltages[0] = 0;
sc->voltages[1] = 0;
voltage = voltages;
nvoltages = 0;
while (len && nvoltages < 2) {
if (strncmp("1.8", voltage, len) == 0)
sc->voltages[nvoltages] = MMC_OCR_LOW_VOLTAGE;
else if (strncmp("3.3", voltage, len) == 0)
sc->voltages[nvoltages] = MMC_OCR_320_330 |
MMC_OCR_330_340;
else {
device_printf(dev,
"unknown voltage attribute %.*s in FDT\n",
len, voltage);
OF_prop_free(voltages);
return (ENXIO);
}
nvoltages++;
/* queue up next string */
while (*voltage && len) {
voltage++;
len--;
}
if (len) {
voltage++;
len--;
}
}
OF_prop_free(voltages);
sc->vselect.dev = NULL;
len = OF_getencprop(node, "mmc-vselect", prop, sizeof(prop));
if (len > 0) {
if ((len / sizeof(prop[0])) == 2) {
sc->vselect.dev = OF_device_from_xref(prop[0]);
sc->vselect.pin = prop[1];
sc->vselect.pol = 1;
}
if (sc->vselect.dev == NULL) {
device_printf(dev,
"unable to process mmc-vselect attribute in FDT\n");
return (ENXIO);
}
/*
* With the power off select voltage 0 and then
* configure the output driver.
*/
if (GPIO_PIN_SET(sc->vselect.dev, sc->vselect.pin, 0) != 0 ||
GPIO_PIN_SETFLAGS(sc->vselect.dev, sc->vselect.pin,
GPIO_PIN_OUTPUT) != 0) {
device_printf(dev,
"could not use gpio to set voltage\n");
return (ENXIO);
}
}
if (nvoltages == 0) {
device_printf(dev, "no voltages in FDT\n");
return (ENXIO);
} else if (nvoltages == 1 && sc->vselect.dev != NULL) {
device_printf(dev, "only one voltage in FDT\n");
return (ENXIO);
} else if (nvoltages == 2 && sc->vselect.dev == NULL) {
device_printf(dev, "too many voltages in FDT\n");
return (ENXIO);
}
sc->card_rst.dev = NULL;
len = OF_getencprop(node, "mmc-rst", prop, sizeof(prop));
if (len > 0) {
if ((len / sizeof(prop[0])) == 3) {
sc->card_rst.dev = OF_device_from_xref(prop[0]);
sc->card_rst.pin = prop[1];
sc->card_rst.pol = prop[2];
}
if (sc->card_rst.dev == NULL) {
device_printf(dev,
"unable to process mmc-rst attribute in FDT\n");
return (ENXIO);
}
}
if (bus_alloc_resources(dev, aml8726_sdxc_spec, sc->res)) {
device_printf(dev, "could not allocate resources for device\n");
return (ENXIO);
}
AML_SDXC_LOCK_INIT(sc);
error = bus_dma_tag_create(bus_get_dma_tag(dev), AML_SDXC_ALIGN_DMA, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
AML_SDXC_MAX_DMA, 1, AML_SDXC_MAX_DMA, 0, NULL, NULL, &sc->dmatag);
if (error)
goto fail;
error = bus_dmamap_create(sc->dmatag, 0, &sc->dmamap);
if (error)
goto fail;
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, aml8726_sdxc_intr, sc, &sc->ih_cookie);
if (error) {
device_printf(dev, "could not setup interrupt handler\n");
goto fail;
}
callout_init_mtx(&sc->ch, &sc->mtx, CALLOUT_RETURNUNLOCKED);
sc->host.f_min = 200000;
sc->host.f_max = 100000000;
sc->host.host_ocr = sc->voltages[0] | sc->voltages[1];
sc->host.caps = MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA |
MMC_CAP_HSPEED;
aml8726_sdxc_soft_reset(sc);
CSR_WRITE_4(sc, AML_SDXC_PDMA_REG, pdmar);
CSR_WRITE_4(sc, AML_SDXC_MISC_REG, miscr);
CSR_WRITE_4(sc, AML_SDXC_ENH_CNTRL_REG, ectlr);
child = device_add_child(dev, "mmc", -1);
if (!child) {
device_printf(dev, "could not add mmc\n");
error = ENXIO;
goto fail;
}
error = device_probe_and_attach(child);
if (error) {
device_printf(dev, "could not attach mmc\n");
goto fail;
}
return (0);
fail:
if (sc->ih_cookie)
bus_teardown_intr(dev, sc->res[1], sc->ih_cookie);
if (sc->dmamap)
bus_dmamap_destroy(sc->dmatag, sc->dmamap);
if (sc->dmatag)
bus_dma_tag_destroy(sc->dmatag);
AML_SDXC_LOCK_DESTROY(sc);
(void)aml8726_sdxc_power_off(sc);
bus_release_resources(dev, aml8726_sdxc_spec, sc->res);
return (error);
}
static int
aml8726_sdxc_detach(device_t dev)
{
struct aml8726_sdxc_softc *sc = device_get_softc(dev);
AML_SDXC_LOCK(sc);
if (sc->cmd != NULL) {
AML_SDXC_UNLOCK(sc);
return (EBUSY);
}
/*
* Turn off the power, reset the hardware state machine,
* and disable the interrupts.
*/
aml8726_sdxc_power_off(sc);
aml8726_sdxc_soft_reset(sc);
CSR_WRITE_4(sc, AML_SDXC_IRQ_ENABLE_REG, 0);
AML_SDXC_UNLOCK(sc);
bus_generic_detach(dev);
bus_teardown_intr(dev, sc->res[1], sc->ih_cookie);
bus_dmamap_destroy(sc->dmatag, sc->dmamap);
bus_dma_tag_destroy(sc->dmatag);
AML_SDXC_LOCK_DESTROY(sc);
bus_release_resources(dev, aml8726_sdxc_spec, sc->res);
return (0);
}
static int
aml8726_sdxc_shutdown(device_t dev)
{
struct aml8726_sdxc_softc *sc = device_get_softc(dev);
/*
* Turn off the power, reset the hardware state machine,
* and disable the interrupts.
*/
aml8726_sdxc_power_off(sc);
aml8726_sdxc_soft_reset(sc);
CSR_WRITE_4(sc, AML_SDXC_IRQ_ENABLE_REG, 0);
return (0);
}
static int
aml8726_sdxc_update_ios(device_t bus, device_t child)
{
struct aml8726_sdxc_softc *sc = device_get_softc(bus);
struct mmc_ios *ios = &sc->host.ios;
unsigned int divisor;
int error;
int i;
uint32_t cctlr;
uint32_t clk2r;
uint32_t ctlr;
uint32_t freq;
ctlr = (7 << AML_SDXC_CNTRL_TX_ENDIAN_SHIFT) |
(7 << AML_SDXC_CNTRL_RX_ENDIAN_SHIFT) |
(0xf << AML_SDXC_CNTRL_RX_PERIOD_SHIFT) |
(0x7f << AML_SDXC_CNTRL_RX_TIMEOUT_SHIFT);
switch (ios->bus_width) {
case bus_width_8:
ctlr |= AML_SDXC_CNTRL_BUS_WIDTH_8;
break;
case bus_width_4:
ctlr |= AML_SDXC_CNTRL_BUS_WIDTH_4;
break;
case bus_width_1:
ctlr |= AML_SDXC_CNTRL_BUS_WIDTH_1;
break;
default:
return (EINVAL);
}
CSR_WRITE_4(sc, AML_SDXC_CNTRL_REG, ctlr);
/*
* Disable clocks and then clock module prior to setting desired values.
*/
cctlr = CSR_READ_4(sc, AML_SDXC_CLK_CNTRL_REG);
cctlr &= ~(AML_SDXC_CLK_CNTRL_TX_CLK_EN | AML_SDXC_CLK_CNTRL_RX_CLK_EN |
AML_SDXC_CLK_CNTRL_SD_CLK_EN);
CSR_WRITE_4(sc, AML_SDXC_CLK_CNTRL_REG, cctlr);
CSR_BARRIER(sc, AML_SDXC_CLK_CNTRL_REG);
cctlr &= ~AML_SDXC_CLK_CNTRL_CLK_MODULE_EN;
CSR_WRITE_4(sc, AML_SDXC_CLK_CNTRL_REG, cctlr);
CSR_BARRIER(sc, AML_SDXC_CLK_CNTRL_REG);
/*
* aml8726-m8
*
* Clock select 1 fclk_div2 (1.275 GHz)
*/
cctlr &= ~AML_SDXC_CLK_CNTRL_CLK_SEL_MASK;
cctlr |= (1 << AML_SDXC_CLK_CNTRL_CLK_SEL_SHIFT);
divisor = sc->ref_freq / ios->clock - 1;
if (divisor == 0 || divisor == -1)
divisor = 1;
if ((sc->ref_freq / (divisor + 1)) > ios->clock)
divisor += 1;
if (divisor > (AML_SDXC_CLK_CNTRL_CLK_DIV_MASK >>
AML_SDXC_CLK_CNTRL_CLK_DIV_SHIFT))
divisor = AML_SDXC_CLK_CNTRL_CLK_DIV_MASK >>
AML_SDXC_CLK_CNTRL_CLK_DIV_SHIFT;
cctlr &= ~AML_SDXC_CLK_CNTRL_CLK_DIV_MASK;
cctlr |= divisor << AML_SDXC_CLK_CNTRL_CLK_DIV_SHIFT;
cctlr &= ~AML_SDXC_CLK_CNTRL_MEM_PWR_MASK;
cctlr |= AML_SDXC_CLK_CNTRL_MEM_PWR_ON;
CSR_WRITE_4(sc, AML_SDXC_CLK_CNTRL_REG, cctlr);
CSR_BARRIER(sc, AML_SDXC_CLK_CNTRL_REG);
/*
* Enable clock module and then clocks after setting desired values.
*/
cctlr |= AML_SDXC_CLK_CNTRL_CLK_MODULE_EN;
CSR_WRITE_4(sc, AML_SDXC_CLK_CNTRL_REG, cctlr);
CSR_BARRIER(sc, AML_SDXC_CLK_CNTRL_REG);
cctlr |= AML_SDXC_CLK_CNTRL_TX_CLK_EN | AML_SDXC_CLK_CNTRL_RX_CLK_EN |
AML_SDXC_CLK_CNTRL_SD_CLK_EN;
CSR_WRITE_4(sc, AML_SDXC_CLK_CNTRL_REG, cctlr);
CSR_BARRIER(sc, AML_SDXC_CLK_CNTRL_REG);
freq = sc->ref_freq / divisor;
for (i = 0; aml8726_sdxc_clk_phases[i].voltage; i++) {
if ((aml8726_sdxc_clk_phases[i].voltage &
(1 << ios->vdd)) != 0 &&
freq > aml8726_sdxc_clk_phases[i].freq)
break;
if (aml8726_sdxc_clk_phases[i].freq == 0)
break;
}
clk2r = (1 << AML_SDXC_CLK2_SD_PHASE_SHIFT) |
(aml8726_sdxc_clk_phases[i].rx_phase <<
AML_SDXC_CLK2_RX_PHASE_SHIFT);
CSR_WRITE_4(sc, AML_SDXC_CLK2_REG, clk2r);
CSR_BARRIER(sc, AML_SDXC_CLK2_REG);
error = 0;
switch (ios->power_mode) {
case power_up:
/*
* Configure and power on the regulator so that the
* voltage stabilizes prior to powering on the card.
*/
if (sc->vselect.dev != NULL) {
for (i = 0; i < 2; i++)
if ((sc->voltages[i] & (1 << ios->vdd)) != 0)
break;
if (i >= 2)
return (EINVAL);
error = GPIO_PIN_SET(sc->vselect.dev,
sc->vselect.pin, i);
}
break;
case power_on:
error = aml8726_sdxc_power_on(sc);
if (error)
break;
if (sc->card_rst.dev != NULL) {
if (GPIO_PIN_SET(sc->card_rst.dev, sc->card_rst.pin,
PIN_ON_FLAG(sc->card_rst.pol)) != 0 ||
GPIO_PIN_SETFLAGS(sc->card_rst.dev,
sc->card_rst.pin,
GPIO_PIN_OUTPUT) != 0)
error = ENXIO;
DELAY(5);
if (GPIO_PIN_SET(sc->card_rst.dev, sc->card_rst.pin,
PIN_OFF_FLAG(sc->card_rst.pol)) != 0)
error = ENXIO;
DELAY(5);
if (error) {
device_printf(sc->dev,
"could not use gpio to reset card\n");
break;
}
}
break;
case power_off:
error = aml8726_sdxc_power_off(sc);
break;
default:
return (EINVAL);
}
return (error);
}
static int
aml8726_sdxc_request(device_t bus, device_t child, struct mmc_request *req)
{
struct aml8726_sdxc_softc *sc = device_get_softc(bus);
int mmc_error;
AML_SDXC_LOCK(sc);
if (sc->cmd != NULL) {
AML_SDXC_UNLOCK(sc);
return (EBUSY);
}
mmc_error = aml8726_sdxc_start_command(sc, req->cmd);
AML_SDXC_UNLOCK(sc);
/* Execute the callback after dropping the lock. */
if (mmc_error != MMC_ERR_NONE) {
req->cmd->error = mmc_error;
req->done(req);
}
return (0);
}
static int
aml8726_sdxc_read_ivar(device_t bus, device_t child,
int which, uintptr_t *result)
{
struct aml8726_sdxc_softc *sc = device_get_softc(bus);
switch (which) {
case MMCBR_IVAR_BUS_MODE:
*(int *)result = sc->host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = sc->host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = sc->host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = sc->host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = sc->host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = sc->host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = sc->host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = sc->host.mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = sc->host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = sc->host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = sc->host.ios.vdd;
break;
case MMCBR_IVAR_CAPS:
*(int *)result = sc->host.caps;
break;
case MMCBR_IVAR_MAX_DATA:
*(int *)result = AML_SDXC_MAX_DMA / MMC_SECTOR_SIZE;
break;
default:
return (EINVAL);
}
return (0);
}
static int
aml8726_sdxc_write_ivar(device_t bus, device_t child,
int which, uintptr_t value)
{
struct aml8726_sdxc_softc *sc = device_get_softc(bus);
switch (which) {
case MMCBR_IVAR_BUS_MODE:
sc->host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
sc->host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
sc->host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
sc->host.ios.clock = value;
break;
case MMCBR_IVAR_MODE:
sc->host.mode = value;
break;
case MMCBR_IVAR_OCR:
sc->host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
sc->host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
sc->host.ios.vdd = value;
break;
/* These are read-only */
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
default:
return (EINVAL);
}
return (0);
}
static int
aml8726_sdxc_get_ro(device_t bus, device_t child)
{
return (0);
}
static int
aml8726_sdxc_acquire_host(device_t bus, device_t child)
{
struct aml8726_sdxc_softc *sc = device_get_softc(bus);
AML_SDXC_LOCK(sc);
while (sc->bus_busy)
mtx_sleep(sc, &sc->mtx, PZERO, "sdxc", hz / 5);
sc->bus_busy++;
AML_SDXC_UNLOCK(sc);
return (0);
}
static int
aml8726_sdxc_release_host(device_t bus, device_t child)
{
struct aml8726_sdxc_softc *sc = device_get_softc(bus);
AML_SDXC_LOCK(sc);
sc->bus_busy--;
wakeup(sc);
AML_SDXC_UNLOCK(sc);
return (0);
}
static device_method_t aml8726_sdxc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aml8726_sdxc_probe),
DEVMETHOD(device_attach, aml8726_sdxc_attach),
DEVMETHOD(device_detach, aml8726_sdxc_detach),
DEVMETHOD(device_shutdown, aml8726_sdxc_shutdown),
/* Bus interface */
DEVMETHOD(bus_read_ivar, aml8726_sdxc_read_ivar),
DEVMETHOD(bus_write_ivar, aml8726_sdxc_write_ivar),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, aml8726_sdxc_update_ios),
DEVMETHOD(mmcbr_request, aml8726_sdxc_request),
DEVMETHOD(mmcbr_get_ro, aml8726_sdxc_get_ro),
DEVMETHOD(mmcbr_acquire_host, aml8726_sdxc_acquire_host),
DEVMETHOD(mmcbr_release_host, aml8726_sdxc_release_host),
DEVMETHOD_END
};
static driver_t aml8726_sdxc_driver = {
"aml8726_sdxc",
aml8726_sdxc_methods,
sizeof(struct aml8726_sdxc_softc),
};
static devclass_t aml8726_sdxc_devclass;
DRIVER_MODULE(aml8726_sdxc, simplebus, aml8726_sdxc_driver,
aml8726_sdxc_devclass, NULL, NULL);
MODULE_DEPEND(aml8726_sdxc, aml8726_gpio, 1, 1, 1);
MMC_DECLARE_BRIDGE(aml8726_sdxc);