freebsd-dev/sys/opencrypto/cryptosoft.c
Conrad Meyer 9ebbebe4f7 cryptosoft: Reduce generality of supported algorithm composition
Fix a regression introduced in r336439.

Rather than allowing any linked list of algorithms, allow at most two
(typically, some combination of encrypt and/or MAC).  Removes a WAITOK
malloc in an unsleepable context (classic LOR) by placing both software
algorithm contexts within the OCF-managed session object.

Tested with 'cryptocheck -a all -d cryptosoft0', which includes some
encrypt-and-MAC modes.

PR:		230304
Reported by:	sef@
2018-08-17 04:40:01 +00:00

1330 lines
31 KiB
C

/* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
/*-
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
* Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by John-Mark Gurney
* under sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/random.h>
#include <sys/kernel.h>
#include <sys/uio.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/endian.h>
#include <sys/limits.h>
#include <crypto/blowfish/blowfish.h>
#include <crypto/sha1.h>
#include <opencrypto/rmd160.h>
#include <opencrypto/cast.h>
#include <opencrypto/skipjack.h>
#include <sys/md5.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <opencrypto/xform.h>
#include <sys/kobj.h>
#include <sys/bus.h>
#include "cryptodev_if.h"
static int32_t swcr_id;
u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN];
u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN];
static int swcr_encdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
static int swcr_authcompute(struct cryptodesc *, struct swcr_data *, caddr_t, int);
static int swcr_authenc(struct cryptop *crp);
static int swcr_compdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
static void swcr_freesession(device_t dev, crypto_session_t cses);
/*
* Apply a symmetric encryption/decryption algorithm.
*/
static int
swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
int flags)
{
unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN];
unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN];
struct enc_xform *exf;
int i, j, k, blks, ind, count, ivlen;
struct uio *uio, uiolcl;
struct iovec iovlcl[4];
struct iovec *iov;
int iovcnt, iovalloc;
int error;
error = 0;
exf = sw->sw_exf;
blks = exf->blocksize;
ivlen = exf->ivsize;
/* Check for non-padded data */
if (crd->crd_len % blks)
return EINVAL;
if (crd->crd_alg == CRYPTO_AES_ICM &&
(crd->crd_flags & CRD_F_IV_EXPLICIT) == 0)
return (EINVAL);
/* Initialize the IV */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, iv, ivlen);
else
arc4rand(iv, ivlen, 0);
/* Do we need to write the IV */
if (!(crd->crd_flags & CRD_F_IV_PRESENT))
crypto_copyback(flags, buf, crd->crd_inject, ivlen, iv);
} else { /* Decryption */
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, iv, ivlen);
else {
/* Get IV off buf */
crypto_copydata(flags, buf, crd->crd_inject, ivlen, iv);
}
}
if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
int error;
if (sw->sw_kschedule)
exf->zerokey(&(sw->sw_kschedule));
error = exf->setkey(&sw->sw_kschedule,
crd->crd_key, crd->crd_klen / 8);
if (error)
return (error);
}
iov = iovlcl;
iovcnt = nitems(iovlcl);
iovalloc = 0;
uio = &uiolcl;
if ((flags & CRYPTO_F_IMBUF) != 0) {
error = crypto_mbuftoiov((struct mbuf *)buf, &iov, &iovcnt,
&iovalloc);
if (error)
return (error);
uio->uio_iov = iov;
uio->uio_iovcnt = iovcnt;
} else if ((flags & CRYPTO_F_IOV) != 0)
uio = (struct uio *)buf;
else {
iov[0].iov_base = buf;
iov[0].iov_len = crd->crd_skip + crd->crd_len;
uio->uio_iov = iov;
uio->uio_iovcnt = 1;
}
ivp = iv;
if (exf->reinit) {
/*
* xforms that provide a reinit method perform all IV
* handling themselves.
*/
exf->reinit(sw->sw_kschedule, iv);
}
count = crd->crd_skip;
ind = cuio_getptr(uio, count, &k);
if (ind == -1) {
error = EINVAL;
goto out;
}
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end of
* an iovec, we have to do some copying.
*/
if (uio->uio_iov[ind].iov_len < k + blks &&
uio->uio_iov[ind].iov_len != k) {
cuio_copydata(uio, count, blks, blk);
/* Actual encryption/decryption */
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
blk);
} else {
exf->decrypt(sw->sw_kschedule,
blk);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
bcopy(blk, iv, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
nivp = (ivp == iv) ? iv2 : iv;
bcopy(blk, nivp, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
ivp = nivp;
}
/* Copy back decrypted block */
cuio_copyback(uio, count, blks, blk);
count += blks;
/* Advance pointer */
ind = cuio_getptr(uio, count, &k);
if (ind == -1) {
error = EINVAL;
goto out;
}
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
while (uio->uio_iov[ind].iov_len >= k + blks && i > 0) {
uint8_t *idat;
size_t nb, rem;
nb = blks;
rem = MIN((size_t)i,
uio->uio_iov[ind].iov_len - (size_t)k);
idat = (uint8_t *)uio->uio_iov[ind].iov_base + k;
if (exf->reinit) {
if ((crd->crd_flags & CRD_F_ENCRYPT) != 0 &&
exf->encrypt_multi == NULL)
exf->encrypt(sw->sw_kschedule,
idat);
else if ((crd->crd_flags & CRD_F_ENCRYPT) != 0) {
nb = rounddown(rem, blks);
exf->encrypt_multi(sw->sw_kschedule,
idat, nb);
} else if (exf->decrypt_multi == NULL)
exf->decrypt(sw->sw_kschedule,
idat);
else {
nb = rounddown(rem, blks);
exf->decrypt_multi(sw->sw_kschedule,
idat, nb);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
nivp = (ivp == iv) ? iv2 : iv;
bcopy(idat, nivp, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
ivp = nivp;
}
count += nb;
k += nb;
i -= nb;
}
/*
* Advance to the next iov if the end of the current iov
* is aligned with the end of a cipher block.
* Note that the code is equivalent to calling:
* ind = cuio_getptr(uio, count, &k);
*/
if (i > 0 && k == uio->uio_iov[ind].iov_len) {
k = 0;
ind++;
if (ind >= uio->uio_iovcnt) {
error = EINVAL;
goto out;
}
}
}
out:
if (iovalloc)
free(iov, M_CRYPTO_DATA);
return (error);
}
static int __result_use_check
swcr_authprepare(struct auth_hash *axf, struct swcr_data *sw, u_char *key,
int klen)
{
int k;
klen /= 8;
switch (axf->type) {
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_224_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_NULL_HMAC:
case CRYPTO_RIPEMD160_HMAC:
for (k = 0; k < klen; k++)
key[k] ^= HMAC_IPAD_VAL;
axf->Init(sw->sw_ictx);
axf->Update(sw->sw_ictx, key, klen);
axf->Update(sw->sw_ictx, hmac_ipad_buffer, axf->blocksize - klen);
for (k = 0; k < klen; k++)
key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
axf->Init(sw->sw_octx);
axf->Update(sw->sw_octx, key, klen);
axf->Update(sw->sw_octx, hmac_opad_buffer, axf->blocksize - klen);
for (k = 0; k < klen; k++)
key[k] ^= HMAC_OPAD_VAL;
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
{
/*
* We need a buffer that can hold an md5 and a sha1 result
* just to throw it away.
* What we do here is the initial part of:
* ALGO( key, keyfill, .. )
* adding the key to sw_ictx and abusing Final() to get the
* "keyfill" padding.
* In addition we abuse the sw_octx to save the key to have
* it to be able to append it at the end in swcr_authcompute().
*/
u_char buf[SHA1_RESULTLEN];
sw->sw_klen = klen;
bcopy(key, sw->sw_octx, klen);
axf->Init(sw->sw_ictx);
axf->Update(sw->sw_ictx, key, klen);
axf->Final(buf, sw->sw_ictx);
break;
}
case CRYPTO_POLY1305:
if (klen != POLY1305_KEY_LEN) {
CRYPTDEB("bad poly1305 key size %d", klen);
return EINVAL;
}
/* FALLTHROUGH */
case CRYPTO_BLAKE2B:
case CRYPTO_BLAKE2S:
axf->Setkey(sw->sw_ictx, key, klen);
axf->Init(sw->sw_ictx);
break;
default:
printf("%s: CRD_F_KEY_EXPLICIT flag given, but algorithm %d "
"doesn't use keys.\n", __func__, axf->type);
return EINVAL;
}
return 0;
}
/*
* Compute keyed-hash authenticator.
*/
static int
swcr_authcompute(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
int flags)
{
unsigned char aalg[HASH_MAX_LEN];
struct auth_hash *axf;
union authctx ctx;
int err;
if (sw->sw_ictx == 0)
return EINVAL;
axf = sw->sw_axf;
if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
err = swcr_authprepare(axf, sw, crd->crd_key, crd->crd_klen);
if (err != 0)
return err;
}
bcopy(sw->sw_ictx, &ctx, axf->ctxsize);
err = crypto_apply(flags, buf, crd->crd_skip, crd->crd_len,
(int (*)(void *, void *, unsigned int))axf->Update, (caddr_t)&ctx);
if (err)
return err;
switch (sw->sw_alg) {
case CRYPTO_SHA1:
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_256:
case CRYPTO_SHA2_384:
case CRYPTO_SHA2_512:
axf->Final(aalg, &ctx);
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_224_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Final(aalg, &ctx);
bcopy(sw->sw_octx, &ctx, axf->ctxsize);
axf->Update(&ctx, aalg, axf->hashsize);
axf->Final(aalg, &ctx);
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
/* If we have no key saved, return error. */
if (sw->sw_octx == NULL)
return EINVAL;
/*
* Add the trailing copy of the key (see comment in
* swcr_authprepare()) after the data:
* ALGO( .., key, algofill )
* and let Final() do the proper, natural "algofill"
* padding.
*/
axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
axf->Final(aalg, &ctx);
break;
case CRYPTO_BLAKE2B:
case CRYPTO_BLAKE2S:
case CRYPTO_NULL_HMAC:
case CRYPTO_POLY1305:
axf->Final(aalg, &ctx);
break;
}
/* Inject the authentication data */
crypto_copyback(flags, buf, crd->crd_inject,
sw->sw_mlen == 0 ? axf->hashsize : sw->sw_mlen, aalg);
return 0;
}
CTASSERT(INT_MAX <= (1ll<<39) - 256); /* GCM: plain text < 2^39-256 */
CTASSERT(INT_MAX <= (uint64_t)-1); /* GCM: associated data <= 2^64-1 */
/*
* Apply a combined encryption-authentication transformation
*/
static int
swcr_authenc(struct cryptop *crp)
{
uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
u_char *blk = (u_char *)blkbuf;
u_char aalg[AALG_MAX_RESULT_LEN];
u_char uaalg[AALG_MAX_RESULT_LEN];
u_char iv[EALG_MAX_BLOCK_LEN];
union authctx ctx;
struct swcr_session *ses;
struct cryptodesc *crd, *crda = NULL, *crde = NULL;
struct swcr_data *sw, *swa, *swe = NULL;
struct auth_hash *axf = NULL;
struct enc_xform *exf = NULL;
caddr_t buf = (caddr_t)crp->crp_buf;
uint32_t *blkp;
int aadlen, blksz, i, ivlen, len, iskip, oskip, r;
ivlen = blksz = iskip = oskip = 0;
ses = crypto_get_driver_session(crp->crp_session);
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
for (i = 0; i < nitems(ses->swcr_algorithms) &&
ses->swcr_algorithms[i].sw_alg != crd->crd_alg; i++)
;
if (i == nitems(ses->swcr_algorithms))
return (EINVAL);
sw = &ses->swcr_algorithms[i];
switch (sw->sw_alg) {
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_NIST_GMAC:
swe = sw;
crde = crd;
exf = swe->sw_exf;
ivlen = 12;
break;
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
swa = sw;
crda = crd;
axf = swa->sw_axf;
if (swa->sw_ictx == 0)
return (EINVAL);
bcopy(swa->sw_ictx, &ctx, axf->ctxsize);
blksz = axf->blocksize;
break;
default:
return (EINVAL);
}
}
if (crde == NULL || crda == NULL)
return (EINVAL);
if (crde->crd_alg == CRYPTO_AES_NIST_GCM_16 &&
(crde->crd_flags & CRD_F_IV_EXPLICIT) == 0)
return (EINVAL);
if (crde->crd_klen != crda->crd_klen)
return (EINVAL);
/* Initialize the IV */
if (crde->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crde->crd_iv, iv, ivlen);
else
arc4rand(iv, ivlen, 0);
/* Do we need to write the IV */
if (!(crde->crd_flags & CRD_F_IV_PRESENT))
crypto_copyback(crp->crp_flags, buf, crde->crd_inject,
ivlen, iv);
} else { /* Decryption */
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crde->crd_iv, iv, ivlen);
else {
/* Get IV off buf */
crypto_copydata(crp->crp_flags, buf, crde->crd_inject,
ivlen, iv);
}
}
/* Supply MAC with IV */
if (axf->Reinit)
axf->Reinit(&ctx, iv, ivlen);
/* Supply MAC with AAD */
aadlen = crda->crd_len;
for (i = iskip; i < crda->crd_len; i += blksz) {
len = MIN(crda->crd_len - i, blksz - oskip);
crypto_copydata(crp->crp_flags, buf, crda->crd_skip + i, len,
blk + oskip);
bzero(blk + len + oskip, blksz - len - oskip);
axf->Update(&ctx, blk, blksz);
oskip = 0; /* reset initial output offset */
}
if (exf->reinit)
exf->reinit(swe->sw_kschedule, iv);
/* Do encryption/decryption with MAC */
for (i = 0; i < crde->crd_len; i += len) {
if (exf->encrypt_multi != NULL) {
len = rounddown(crde->crd_len - i, blksz);
if (len == 0)
len = blksz;
else
len = MIN(len, sizeof(blkbuf));
} else
len = blksz;
len = MIN(crde->crd_len - i, len);
if (len < blksz)
bzero(blk, blksz);
crypto_copydata(crp->crp_flags, buf, crde->crd_skip + i, len,
blk);
if (crde->crd_flags & CRD_F_ENCRYPT) {
if (exf->encrypt_multi != NULL)
exf->encrypt_multi(swe->sw_kschedule, blk,
len);
else
exf->encrypt(swe->sw_kschedule, blk);
axf->Update(&ctx, blk, len);
crypto_copyback(crp->crp_flags, buf,
crde->crd_skip + i, len, blk);
} else {
axf->Update(&ctx, blk, len);
}
}
/* Do any required special finalization */
switch (crda->crd_alg) {
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
/* length block */
bzero(blk, blksz);
blkp = (uint32_t *)blk + 1;
*blkp = htobe32(aadlen * 8);
blkp = (uint32_t *)blk + 3;
*blkp = htobe32(crde->crd_len * 8);
axf->Update(&ctx, blk, blksz);
break;
}
/* Finalize MAC */
axf->Final(aalg, &ctx);
/* Validate tag */
if (!(crde->crd_flags & CRD_F_ENCRYPT)) {
crypto_copydata(crp->crp_flags, buf, crda->crd_inject,
axf->hashsize, uaalg);
r = timingsafe_bcmp(aalg, uaalg, axf->hashsize);
if (r == 0) {
/* tag matches, decrypt data */
for (i = 0; i < crde->crd_len; i += blksz) {
len = MIN(crde->crd_len - i, blksz);
if (len < blksz)
bzero(blk, blksz);
crypto_copydata(crp->crp_flags, buf,
crde->crd_skip + i, len, blk);
exf->decrypt(swe->sw_kschedule, blk);
crypto_copyback(crp->crp_flags, buf,
crde->crd_skip + i, len, blk);
}
} else
return (EBADMSG);
} else {
/* Inject the authentication data */
crypto_copyback(crp->crp_flags, buf, crda->crd_inject,
axf->hashsize, aalg);
}
return (0);
}
/*
* Apply a compression/decompression algorithm
*/
static int
swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
caddr_t buf, int flags)
{
u_int8_t *data, *out;
struct comp_algo *cxf;
int adj;
u_int32_t result;
cxf = sw->sw_cxf;
/* We must handle the whole buffer of data in one time
* then if there is not all the data in the mbuf, we must
* copy in a buffer.
*/
data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
if (data == NULL)
return (EINVAL);
crypto_copydata(flags, buf, crd->crd_skip, crd->crd_len, data);
if (crd->crd_flags & CRD_F_COMP)
result = cxf->compress(data, crd->crd_len, &out);
else
result = cxf->decompress(data, crd->crd_len, &out);
free(data, M_CRYPTO_DATA);
if (result == 0)
return EINVAL;
/* Copy back the (de)compressed data. m_copyback is
* extending the mbuf as necessary.
*/
sw->sw_size = result;
/* Check the compressed size when doing compression */
if (crd->crd_flags & CRD_F_COMP) {
if (result >= crd->crd_len) {
/* Compression was useless, we lost time */
free(out, M_CRYPTO_DATA);
return 0;
}
}
crypto_copyback(flags, buf, crd->crd_skip, result, out);
if (result < crd->crd_len) {
adj = result - crd->crd_len;
if (flags & CRYPTO_F_IMBUF) {
adj = result - crd->crd_len;
m_adj((struct mbuf *)buf, adj);
} else if (flags & CRYPTO_F_IOV) {
struct uio *uio = (struct uio *)buf;
int ind;
adj = crd->crd_len - result;
ind = uio->uio_iovcnt - 1;
while (adj > 0 && ind >= 0) {
if (adj < uio->uio_iov[ind].iov_len) {
uio->uio_iov[ind].iov_len -= adj;
break;
}
adj -= uio->uio_iov[ind].iov_len;
uio->uio_iov[ind].iov_len = 0;
ind--;
uio->uio_iovcnt--;
}
}
}
free(out, M_CRYPTO_DATA);
return 0;
}
/*
* Generate a new software session.
*/
static int
swcr_newsession(device_t dev, crypto_session_t cses, struct cryptoini *cri)
{
struct swcr_session *ses;
struct swcr_data *swd;
struct auth_hash *axf;
struct enc_xform *txf;
struct comp_algo *cxf;
size_t i;
int len;
int error;
if (cses == NULL || cri == NULL)
return EINVAL;
ses = crypto_get_driver_session(cses);
for (i = 0; cri != NULL && i < nitems(ses->swcr_algorithms); i++) {
swd = &ses->swcr_algorithms[i];
switch (cri->cri_alg) {
case CRYPTO_DES_CBC:
txf = &enc_xform_des;
goto enccommon;
case CRYPTO_3DES_CBC:
txf = &enc_xform_3des;
goto enccommon;
case CRYPTO_BLF_CBC:
txf = &enc_xform_blf;
goto enccommon;
case CRYPTO_CAST_CBC:
txf = &enc_xform_cast5;
goto enccommon;
case CRYPTO_SKIPJACK_CBC:
txf = &enc_xform_skipjack;
goto enccommon;
case CRYPTO_RIJNDAEL128_CBC:
txf = &enc_xform_rijndael128;
goto enccommon;
case CRYPTO_AES_XTS:
txf = &enc_xform_aes_xts;
goto enccommon;
case CRYPTO_AES_ICM:
txf = &enc_xform_aes_icm;
goto enccommon;
case CRYPTO_AES_NIST_GCM_16:
txf = &enc_xform_aes_nist_gcm;
goto enccommon;
case CRYPTO_AES_NIST_GMAC:
txf = &enc_xform_aes_nist_gmac;
swd->sw_exf = txf;
break;
case CRYPTO_CAMELLIA_CBC:
txf = &enc_xform_camellia;
goto enccommon;
case CRYPTO_NULL_CBC:
txf = &enc_xform_null;
goto enccommon;
case CRYPTO_CHACHA20:
txf = &enc_xform_chacha20;
goto enccommon;
enccommon:
if (cri->cri_key != NULL) {
error = txf->setkey(&swd->sw_kschedule,
cri->cri_key, cri->cri_klen / 8);
if (error) {
swcr_freesession(dev, cses);
return error;
}
}
swd->sw_exf = txf;
break;
case CRYPTO_MD5_HMAC:
axf = &auth_hash_hmac_md5;
goto authcommon;
case CRYPTO_SHA1_HMAC:
axf = &auth_hash_hmac_sha1;
goto authcommon;
case CRYPTO_SHA2_224_HMAC:
axf = &auth_hash_hmac_sha2_224;
goto authcommon;
case CRYPTO_SHA2_256_HMAC:
axf = &auth_hash_hmac_sha2_256;
goto authcommon;
case CRYPTO_SHA2_384_HMAC:
axf = &auth_hash_hmac_sha2_384;
goto authcommon;
case CRYPTO_SHA2_512_HMAC:
axf = &auth_hash_hmac_sha2_512;
goto authcommon;
case CRYPTO_NULL_HMAC:
axf = &auth_hash_null;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC:
axf = &auth_hash_hmac_ripemd_160;
authcommon:
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
swcr_freesession(dev, cses);
return ENOBUFS;
}
swd->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_octx == NULL) {
swcr_freesession(dev, cses);
return ENOBUFS;
}
if (cri->cri_key != NULL) {
error = swcr_authprepare(axf, swd,
cri->cri_key, cri->cri_klen);
if (error != 0) {
swcr_freesession(dev, cses);
return error;
}
}
swd->sw_mlen = cri->cri_mlen;
swd->sw_axf = axf;
break;
case CRYPTO_MD5_KPDK:
axf = &auth_hash_key_md5;
goto auth2common;
case CRYPTO_SHA1_KPDK:
axf = &auth_hash_key_sha1;
auth2common:
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
swcr_freesession(dev, cses);
return ENOBUFS;
}
swd->sw_octx = malloc(cri->cri_klen / 8,
M_CRYPTO_DATA, M_NOWAIT);
if (swd->sw_octx == NULL) {
swcr_freesession(dev, cses);
return ENOBUFS;
}
/* Store the key so we can "append" it to the payload */
if (cri->cri_key != NULL) {
error = swcr_authprepare(axf, swd,
cri->cri_key, cri->cri_klen);
if (error != 0) {
swcr_freesession(dev, cses);
return error;
}
}
swd->sw_mlen = cri->cri_mlen;
swd->sw_axf = axf;
break;
#ifdef notdef
case CRYPTO_MD5:
axf = &auth_hash_md5;
goto auth3common;
#endif
case CRYPTO_SHA1:
axf = &auth_hash_sha1;
goto auth3common;
case CRYPTO_SHA2_224:
axf = &auth_hash_sha2_224;
goto auth3common;
case CRYPTO_SHA2_256:
axf = &auth_hash_sha2_256;
goto auth3common;
case CRYPTO_SHA2_384:
axf = &auth_hash_sha2_384;
goto auth3common;
case CRYPTO_SHA2_512:
axf = &auth_hash_sha2_512;
auth3common:
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
swcr_freesession(dev, cses);
return ENOBUFS;
}
axf->Init(swd->sw_ictx);
swd->sw_mlen = cri->cri_mlen;
swd->sw_axf = axf;
break;
case CRYPTO_AES_128_NIST_GMAC:
axf = &auth_hash_nist_gmac_aes_128;
goto auth4common;
case CRYPTO_AES_192_NIST_GMAC:
axf = &auth_hash_nist_gmac_aes_192;
goto auth4common;
case CRYPTO_AES_256_NIST_GMAC:
axf = &auth_hash_nist_gmac_aes_256;
auth4common:
len = cri->cri_klen / 8;
if (len != 16 && len != 24 && len != 32) {
swcr_freesession(dev, cses);
return EINVAL;
}
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
swcr_freesession(dev, cses);
return ENOBUFS;
}
axf->Init(swd->sw_ictx);
axf->Setkey(swd->sw_ictx, cri->cri_key, len);
swd->sw_axf = axf;
break;
case CRYPTO_BLAKE2B:
axf = &auth_hash_blake2b;
goto auth5common;
case CRYPTO_BLAKE2S:
axf = &auth_hash_blake2s;
goto auth5common;
case CRYPTO_POLY1305:
axf = &auth_hash_poly1305;
auth5common:
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
swcr_freesession(dev, cses);
return ENOBUFS;
}
axf->Setkey(swd->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Init(swd->sw_ictx);
swd->sw_axf = axf;
break;
case CRYPTO_DEFLATE_COMP:
cxf = &comp_algo_deflate;
swd->sw_cxf = cxf;
break;
default:
swcr_freesession(dev, cses);
return EINVAL;
}
swd->sw_alg = cri->cri_alg;
cri = cri->cri_next;
ses->swcr_nalgs++;
}
if (cri != NULL) {
CRYPTDEB("Bogus session request for three or more algorithms");
return EINVAL;
}
return 0;
}
static void
swcr_freesession(device_t dev, crypto_session_t cses)
{
struct swcr_session *ses;
struct swcr_data *swd;
struct enc_xform *txf;
struct auth_hash *axf;
size_t i;
ses = crypto_get_driver_session(cses);
for (i = 0; i < nitems(ses->swcr_algorithms); i++) {
swd = &ses->swcr_algorithms[i];
switch (swd->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_AES_XTS:
case CRYPTO_AES_ICM:
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_NIST_GMAC:
case CRYPTO_CAMELLIA_CBC:
case CRYPTO_NULL_CBC:
case CRYPTO_CHACHA20:
txf = swd->sw_exf;
if (swd->sw_kschedule)
txf->zerokey(&(swd->sw_kschedule));
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_224_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_NULL_HMAC:
axf = swd->sw_axf;
if (swd->sw_ictx) {
bzero(swd->sw_ictx, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA);
}
if (swd->sw_octx) {
bzero(swd->sw_octx, axf->ctxsize);
free(swd->sw_octx, M_CRYPTO_DATA);
}
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
axf = swd->sw_axf;
if (swd->sw_ictx) {
bzero(swd->sw_ictx, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA);
}
if (swd->sw_octx) {
bzero(swd->sw_octx, swd->sw_klen);
free(swd->sw_octx, M_CRYPTO_DATA);
}
break;
case CRYPTO_BLAKE2B:
case CRYPTO_BLAKE2S:
case CRYPTO_MD5:
case CRYPTO_POLY1305:
case CRYPTO_SHA1:
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_256:
case CRYPTO_SHA2_384:
case CRYPTO_SHA2_512:
axf = swd->sw_axf;
if (swd->sw_ictx) {
explicit_bzero(swd->sw_ictx, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA);
}
break;
case CRYPTO_DEFLATE_COMP:
/* Nothing to do */
break;
}
}
}
/*
* Process a software request.
*/
static int
swcr_process(device_t dev, struct cryptop *crp, int hint)
{
struct swcr_session *ses;
struct cryptodesc *crd;
struct swcr_data *sw;
size_t i;
/* Sanity check */
if (crp == NULL)
return EINVAL;
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
crp->crp_etype = EINVAL;
goto done;
}
ses = crypto_get_driver_session(crp->crp_session);
/* Go through crypto descriptors, processing as we go */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
/*
* Find the crypto context.
*
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
for (i = 0; i < nitems(ses->swcr_algorithms) &&
ses->swcr_algorithms[i].sw_alg != crd->crd_alg; i++)
;
/* No such context ? */
if (i == nitems(ses->swcr_algorithms)) {
crp->crp_etype = EINVAL;
goto done;
}
sw = &ses->swcr_algorithms[i];
switch (sw->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_AES_XTS:
case CRYPTO_AES_ICM:
case CRYPTO_CAMELLIA_CBC:
case CRYPTO_CHACHA20:
if ((crp->crp_etype = swcr_encdec(crd, sw,
crp->crp_buf, crp->crp_flags)) != 0)
goto done;
break;
case CRYPTO_NULL_CBC:
crp->crp_etype = 0;
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_224_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_256:
case CRYPTO_SHA2_384:
case CRYPTO_SHA2_512:
case CRYPTO_BLAKE2B:
case CRYPTO_BLAKE2S:
case CRYPTO_POLY1305:
if ((crp->crp_etype = swcr_authcompute(crd, sw,
crp->crp_buf, crp->crp_flags)) != 0)
goto done;
break;
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_NIST_GMAC:
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
crp->crp_etype = swcr_authenc(crp);
goto done;
case CRYPTO_DEFLATE_COMP:
if ((crp->crp_etype = swcr_compdec(crd, sw,
crp->crp_buf, crp->crp_flags)) != 0)
goto done;
else
crp->crp_olen = (int)sw->sw_size;
break;
default:
/* Unknown/unsupported algorithm */
crp->crp_etype = EINVAL;
goto done;
}
}
done:
crypto_done(crp);
return 0;
}
static void
swcr_identify(driver_t *drv, device_t parent)
{
/* NB: order 10 is so we get attached after h/w devices */
if (device_find_child(parent, "cryptosoft", -1) == NULL &&
BUS_ADD_CHILD(parent, 10, "cryptosoft", 0) == 0)
panic("cryptosoft: could not attach");
}
static int
swcr_probe(device_t dev)
{
device_set_desc(dev, "software crypto");
return (BUS_PROBE_NOWILDCARD);
}
static int
swcr_attach(device_t dev)
{
memset(hmac_ipad_buffer, HMAC_IPAD_VAL, HMAC_MAX_BLOCK_LEN);
memset(hmac_opad_buffer, HMAC_OPAD_VAL, HMAC_MAX_BLOCK_LEN);
swcr_id = crypto_get_driverid(dev, sizeof(struct swcr_session),
CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC);
if (swcr_id < 0) {
device_printf(dev, "cannot initialize!");
return ENOMEM;
}
#define REGISTER(alg) \
crypto_register(swcr_id, alg, 0,0)
REGISTER(CRYPTO_DES_CBC);
REGISTER(CRYPTO_3DES_CBC);
REGISTER(CRYPTO_BLF_CBC);
REGISTER(CRYPTO_CAST_CBC);
REGISTER(CRYPTO_SKIPJACK_CBC);
REGISTER(CRYPTO_NULL_CBC);
REGISTER(CRYPTO_MD5_HMAC);
REGISTER(CRYPTO_SHA1_HMAC);
REGISTER(CRYPTO_SHA2_224_HMAC);
REGISTER(CRYPTO_SHA2_256_HMAC);
REGISTER(CRYPTO_SHA2_384_HMAC);
REGISTER(CRYPTO_SHA2_512_HMAC);
REGISTER(CRYPTO_RIPEMD160_HMAC);
REGISTER(CRYPTO_NULL_HMAC);
REGISTER(CRYPTO_MD5_KPDK);
REGISTER(CRYPTO_SHA1_KPDK);
REGISTER(CRYPTO_MD5);
REGISTER(CRYPTO_SHA1);
REGISTER(CRYPTO_SHA2_224);
REGISTER(CRYPTO_SHA2_256);
REGISTER(CRYPTO_SHA2_384);
REGISTER(CRYPTO_SHA2_512);
REGISTER(CRYPTO_RIJNDAEL128_CBC);
REGISTER(CRYPTO_AES_XTS);
REGISTER(CRYPTO_AES_ICM);
REGISTER(CRYPTO_AES_NIST_GCM_16);
REGISTER(CRYPTO_AES_NIST_GMAC);
REGISTER(CRYPTO_AES_128_NIST_GMAC);
REGISTER(CRYPTO_AES_192_NIST_GMAC);
REGISTER(CRYPTO_AES_256_NIST_GMAC);
REGISTER(CRYPTO_CAMELLIA_CBC);
REGISTER(CRYPTO_DEFLATE_COMP);
REGISTER(CRYPTO_BLAKE2B);
REGISTER(CRYPTO_BLAKE2S);
REGISTER(CRYPTO_CHACHA20);
REGISTER(CRYPTO_POLY1305);
#undef REGISTER
return 0;
}
static int
swcr_detach(device_t dev)
{
crypto_unregister_all(swcr_id);
return 0;
}
static device_method_t swcr_methods[] = {
DEVMETHOD(device_identify, swcr_identify),
DEVMETHOD(device_probe, swcr_probe),
DEVMETHOD(device_attach, swcr_attach),
DEVMETHOD(device_detach, swcr_detach),
DEVMETHOD(cryptodev_newsession, swcr_newsession),
DEVMETHOD(cryptodev_freesession,swcr_freesession),
DEVMETHOD(cryptodev_process, swcr_process),
{0, 0},
};
static driver_t swcr_driver = {
"cryptosoft",
swcr_methods,
0, /* NB: no softc */
};
static devclass_t swcr_devclass;
/*
* NB: We explicitly reference the crypto module so we
* get the necessary ordering when built as a loadable
* module. This is required because we bundle the crypto
* module code together with the cryptosoft driver (otherwise
* normal module dependencies would handle things).
*/
extern int crypto_modevent(struct module *, int, void *);
/* XXX where to attach */
DRIVER_MODULE(cryptosoft, nexus, swcr_driver, swcr_devclass, crypto_modevent,0);
MODULE_VERSION(cryptosoft, 1);
MODULE_DEPEND(cryptosoft, crypto, 1, 1, 1);