freebsd-dev/sys/arm/allwinner/aw_mmc.c
Emmanuel Vadot 94d3675ea0 arm: allwinner: aw_mmc: Check if the regulator support the voltage
Don't blindy say that we support both 3.3V and 1.8V.
If we have a regulator for the data lines, check that the voltage is
supported before adding the signaling caps.
If we don't have a regulator, just assume that the data lines are 3.3V
This unbreak eMMC on some allwinner boards.

Reported by:	ganbold
MFC after:	1 month
X-MFC-With:	r354396
2019-11-06 14:58:25 +00:00

1549 lines
38 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2018 Emmanuel Vadot <manu@FreeBSD.org>
* Copyright (c) 2013 Alexander Fedorov
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcbrvar.h>
#include <arm/allwinner/aw_mmc.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/regulator/regulator.h>
#include "opt_mmccam.h"
#ifdef MMCCAM
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#endif
#define AW_MMC_MEMRES 0
#define AW_MMC_IRQRES 1
#define AW_MMC_RESSZ 2
#define AW_MMC_DMA_SEGS (PAGE_SIZE / sizeof(struct aw_mmc_dma_desc))
#define AW_MMC_DMA_DESC_SIZE (sizeof(struct aw_mmc_dma_desc) * AW_MMC_DMA_SEGS)
#define AW_MMC_DMA_FTRGLEVEL 0x20070008
#define AW_MMC_RESET_RETRY 1000
#define CARD_ID_FREQUENCY 400000
struct aw_mmc_conf {
uint32_t dma_xferlen;
bool mask_data0;
bool can_calibrate;
bool new_timing;
};
static const struct aw_mmc_conf a10_mmc_conf = {
.dma_xferlen = 0x2000,
};
static const struct aw_mmc_conf a13_mmc_conf = {
.dma_xferlen = 0x10000,
};
static const struct aw_mmc_conf a64_mmc_conf = {
.dma_xferlen = 0x10000,
.mask_data0 = true,
.can_calibrate = true,
.new_timing = true,
};
static const struct aw_mmc_conf a64_emmc_conf = {
.dma_xferlen = 0x2000,
.can_calibrate = true,
};
static struct ofw_compat_data compat_data[] = {
{"allwinner,sun4i-a10-mmc", (uintptr_t)&a10_mmc_conf},
{"allwinner,sun5i-a13-mmc", (uintptr_t)&a13_mmc_conf},
{"allwinner,sun7i-a20-mmc", (uintptr_t)&a13_mmc_conf},
{"allwinner,sun50i-a64-mmc", (uintptr_t)&a64_mmc_conf},
{"allwinner,sun50i-a64-emmc", (uintptr_t)&a64_emmc_conf},
{NULL, 0}
};
struct aw_mmc_softc {
device_t aw_dev;
clk_t aw_clk_ahb;
clk_t aw_clk_mmc;
hwreset_t aw_rst_ahb;
int aw_bus_busy;
int aw_resid;
int aw_timeout;
struct callout aw_timeoutc;
struct mmc_host aw_host;
#ifdef MMCCAM
union ccb * ccb;
struct cam_devq * devq;
struct cam_sim * sim;
struct mtx sim_mtx;
#else
struct mmc_request * aw_req;
#endif
struct mtx aw_mtx;
struct resource * aw_res[AW_MMC_RESSZ];
struct aw_mmc_conf * aw_mmc_conf;
uint32_t aw_intr;
uint32_t aw_intr_wait;
void * aw_intrhand;
regulator_t aw_reg_vmmc;
regulator_t aw_reg_vqmmc;
unsigned int aw_clock;
/* Fields required for DMA access. */
bus_addr_t aw_dma_desc_phys;
bus_dmamap_t aw_dma_map;
bus_dma_tag_t aw_dma_tag;
void * aw_dma_desc;
bus_dmamap_t aw_dma_buf_map;
bus_dma_tag_t aw_dma_buf_tag;
int aw_dma_map_err;
};
static struct resource_spec aw_mmc_res_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static int aw_mmc_probe(device_t);
static int aw_mmc_attach(device_t);
static int aw_mmc_detach(device_t);
static int aw_mmc_setup_dma(struct aw_mmc_softc *);
static int aw_mmc_reset(struct aw_mmc_softc *);
static int aw_mmc_init(struct aw_mmc_softc *);
static void aw_mmc_intr(void *);
static int aw_mmc_update_clock(struct aw_mmc_softc *, uint32_t);
static void aw_mmc_print_error(uint32_t);
static int aw_mmc_update_ios(device_t, device_t);
static int aw_mmc_request(device_t, device_t, struct mmc_request *);
static int aw_mmc_get_ro(device_t, device_t);
static int aw_mmc_acquire_host(device_t, device_t);
static int aw_mmc_release_host(device_t, device_t);
#ifdef MMCCAM
static void aw_mmc_cam_action(struct cam_sim *, union ccb *);
static void aw_mmc_cam_poll(struct cam_sim *);
static int aw_mmc_cam_settran_settings(struct aw_mmc_softc *, union ccb *);
static int aw_mmc_cam_request(struct aw_mmc_softc *, union ccb *);
static void aw_mmc_cam_handle_mmcio(struct cam_sim *, union ccb *);
#endif
#define AW_MMC_LOCK(_sc) mtx_lock(&(_sc)->aw_mtx)
#define AW_MMC_UNLOCK(_sc) mtx_unlock(&(_sc)->aw_mtx)
#define AW_MMC_READ_4(_sc, _reg) \
bus_read_4((_sc)->aw_res[AW_MMC_MEMRES], _reg)
#define AW_MMC_WRITE_4(_sc, _reg, _value) \
bus_write_4((_sc)->aw_res[AW_MMC_MEMRES], _reg, _value)
#ifdef MMCCAM
static void
aw_mmc_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb)
{
struct aw_mmc_softc *sc;
sc = cam_sim_softc(sim);
aw_mmc_cam_request(sc, ccb);
}
static void
aw_mmc_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct aw_mmc_softc *sc;
sc = cam_sim_softc(sim);
if (sc == NULL) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
mtx_assert(&sc->sim_mtx, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi;
cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = 0;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = 1;
cpi->maxio = (sc->aw_mmc_conf->dma_xferlen *
AW_MMC_DMA_SEGS) / MMC_SECTOR_SIZE;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Deglitch Networks", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->protocol = PROTO_MMCSD;
cpi->protocol_version = SCSI_REV_0;
cpi->transport = XPORT_MMCSD;
cpi->transport_version = 1;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
if (bootverbose)
device_printf(sc->aw_dev, "Got XPT_GET_TRAN_SETTINGS\n");
cts->protocol = PROTO_MMCSD;
cts->protocol_version = 1;
cts->transport = XPORT_MMCSD;
cts->transport_version = 1;
cts->xport_specific.valid = 0;
cts->proto_specific.mmc.host_ocr = sc->aw_host.host_ocr;
cts->proto_specific.mmc.host_f_min = sc->aw_host.f_min;
cts->proto_specific.mmc.host_f_max = sc->aw_host.f_max;
cts->proto_specific.mmc.host_caps = sc->aw_host.caps;
cts->proto_specific.mmc.host_max_data = (sc->aw_mmc_conf->dma_xferlen *
AW_MMC_DMA_SEGS) / MMC_SECTOR_SIZE;
memcpy(&cts->proto_specific.mmc.ios, &sc->aw_host.ios, sizeof(struct mmc_ios));
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SET_TRAN_SETTINGS:
{
if (bootverbose)
device_printf(sc->aw_dev, "Got XPT_SET_TRAN_SETTINGS\n");
aw_mmc_cam_settran_settings(sc, ccb);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS:
if (bootverbose)
device_printf(sc->aw_dev, "Got XPT_RESET_BUS, ACK it...\n");
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_MMC_IO:
/*
* Here is the HW-dependent part of
* sending the command to the underlying h/w
* At some point in the future an interrupt comes.
* Then the request will be marked as completed.
*/
ccb->ccb_h.status = CAM_REQ_INPROG;
aw_mmc_cam_handle_mmcio(sim, ccb);
return;
/* NOTREACHED */
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void
aw_mmc_cam_poll(struct cam_sim *sim)
{
return;
}
static int
aw_mmc_cam_settran_settings(struct aw_mmc_softc *sc, union ccb *ccb)
{
struct mmc_ios *ios;
struct mmc_ios *new_ios;
struct ccb_trans_settings_mmc *cts;
ios = &sc->aw_host.ios;
cts = &ccb->cts.proto_specific.mmc;
new_ios = &cts->ios;
/* Update only requested fields */
if (cts->ios_valid & MMC_CLK) {
ios->clock = new_ios->clock;
device_printf(sc->aw_dev, "Clock => %d\n", ios->clock);
}
if (cts->ios_valid & MMC_VDD) {
ios->vdd = new_ios->vdd;
device_printf(sc->aw_dev, "VDD => %d\n", ios->vdd);
}
if (cts->ios_valid & MMC_CS) {
ios->chip_select = new_ios->chip_select;
device_printf(sc->aw_dev, "CS => %d\n", ios->chip_select);
}
if (cts->ios_valid & MMC_BW) {
ios->bus_width = new_ios->bus_width;
device_printf(sc->aw_dev, "Bus width => %d\n", ios->bus_width);
}
if (cts->ios_valid & MMC_PM) {
ios->power_mode = new_ios->power_mode;
device_printf(sc->aw_dev, "Power mode => %d\n", ios->power_mode);
}
if (cts->ios_valid & MMC_BT) {
ios->timing = new_ios->timing;
device_printf(sc->aw_dev, "Timing => %d\n", ios->timing);
}
if (cts->ios_valid & MMC_BM) {
ios->bus_mode = new_ios->bus_mode;
device_printf(sc->aw_dev, "Bus mode => %d\n", ios->bus_mode);
}
return (aw_mmc_update_ios(sc->aw_dev, NULL));
}
static int
aw_mmc_cam_request(struct aw_mmc_softc *sc, union ccb *ccb)
{
struct ccb_mmcio *mmcio;
mmcio = &ccb->mmcio;
AW_MMC_LOCK(sc);
#ifdef DEBUG
if (__predict_false(bootverbose)) {
device_printf(sc->aw_dev, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags,
mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0,
mmcio->cmd.data != NULL ? mmcio->cmd.data->flags: 0);
}
#endif
if (mmcio->cmd.data != NULL) {
if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0)
panic("data->len = %d, data->flags = %d -- something is b0rked",
(int)mmcio->cmd.data->len, mmcio->cmd.data->flags);
}
if (sc->ccb != NULL) {
device_printf(sc->aw_dev, "Controller still has an active command\n");
return (EBUSY);
}
sc->ccb = ccb;
/* aw_mmc_request locks again */
AW_MMC_UNLOCK(sc);
aw_mmc_request(sc->aw_dev, NULL, NULL);
return (0);
}
#endif /* MMCCAM */
static int
aw_mmc_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Allwinner Integrated MMC/SD controller");
return (BUS_PROBE_DEFAULT);
}
static int
aw_mmc_attach(device_t dev)
{
device_t child;
struct aw_mmc_softc *sc;
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *tree;
uint32_t bus_width, max_freq;
phandle_t node;
int error;
node = ofw_bus_get_node(dev);
sc = device_get_softc(dev);
sc->aw_dev = dev;
sc->aw_mmc_conf = (struct aw_mmc_conf *)ofw_bus_search_compatible(dev, compat_data)->ocd_data;
#ifndef MMCCAM
sc->aw_req = NULL;
#endif
if (bus_alloc_resources(dev, aw_mmc_res_spec, sc->aw_res) != 0) {
device_printf(dev, "cannot allocate device resources\n");
return (ENXIO);
}
if (bus_setup_intr(dev, sc->aw_res[AW_MMC_IRQRES],
INTR_TYPE_MISC | INTR_MPSAFE, NULL, aw_mmc_intr, sc,
&sc->aw_intrhand)) {
bus_release_resources(dev, aw_mmc_res_spec, sc->aw_res);
device_printf(dev, "cannot setup interrupt handler\n");
return (ENXIO);
}
mtx_init(&sc->aw_mtx, device_get_nameunit(sc->aw_dev), "aw_mmc",
MTX_DEF);
callout_init_mtx(&sc->aw_timeoutc, &sc->aw_mtx, 0);
/* De-assert reset */
if (hwreset_get_by_ofw_name(dev, 0, "ahb", &sc->aw_rst_ahb) == 0) {
error = hwreset_deassert(sc->aw_rst_ahb);
if (error != 0) {
device_printf(dev, "cannot de-assert reset\n");
goto fail;
}
}
/* Activate the module clock. */
error = clk_get_by_ofw_name(dev, 0, "ahb", &sc->aw_clk_ahb);
if (error != 0) {
device_printf(dev, "cannot get ahb clock\n");
goto fail;
}
error = clk_enable(sc->aw_clk_ahb);
if (error != 0) {
device_printf(dev, "cannot enable ahb clock\n");
goto fail;
}
error = clk_get_by_ofw_name(dev, 0, "mmc", &sc->aw_clk_mmc);
if (error != 0) {
device_printf(dev, "cannot get mmc clock\n");
goto fail;
}
error = clk_set_freq(sc->aw_clk_mmc, CARD_ID_FREQUENCY,
CLK_SET_ROUND_DOWN);
if (error != 0) {
device_printf(dev, "cannot init mmc clock\n");
goto fail;
}
error = clk_enable(sc->aw_clk_mmc);
if (error != 0) {
device_printf(dev, "cannot enable mmc clock\n");
goto fail;
}
sc->aw_timeout = 10;
ctx = device_get_sysctl_ctx(dev);
tree = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "req_timeout", CTLFLAG_RW,
&sc->aw_timeout, 0, "Request timeout in seconds");
/* Soft Reset controller. */
if (aw_mmc_reset(sc) != 0) {
device_printf(dev, "cannot reset the controller\n");
goto fail;
}
if (aw_mmc_setup_dma(sc) != 0) {
device_printf(sc->aw_dev, "Couldn't setup DMA!\n");
goto fail;
}
if (OF_getencprop(node, "bus-width", &bus_width, sizeof(uint32_t)) <= 0)
bus_width = 4;
if (regulator_get_by_ofw_property(dev, 0, "vmmc-supply",
&sc->aw_reg_vmmc) == 0) {
if (bootverbose)
device_printf(dev, "vmmc-supply regulator found\n");
}
if (regulator_get_by_ofw_property(dev, 0, "vqmmc-supply",
&sc->aw_reg_vqmmc) == 0 && bootverbose) {
if (bootverbose)
device_printf(dev, "vqmmc-supply regulator found\n");
}
sc->aw_host.f_min = 400000;
if (OF_getencprop(node, "max-frequency", &max_freq,
sizeof(uint32_t)) <= 0)
max_freq = 52000000;
sc->aw_host.f_max = max_freq;
sc->aw_host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340;
sc->aw_host.caps = MMC_CAP_HSPEED | MMC_CAP_UHS_SDR12 |
MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 |
MMC_CAP_UHS_DDR50 | MMC_CAP_MMC_DDR52;
if (sc->aw_reg_vqmmc != NULL) {
if (regulator_check_voltage(sc->aw_reg_vqmmc, 1800000) == 0)
sc->aw_host.caps |= MMC_CAP_SIGNALING_180;
if (regulator_check_voltage(sc->aw_reg_vqmmc, 3300000) == 0)
sc->aw_host.caps |= MMC_CAP_SIGNALING_330;
} else
sc->aw_host.caps |= MMC_CAP_SIGNALING_330;
if (bus_width >= 4)
sc->aw_host.caps |= MMC_CAP_4_BIT_DATA;
if (bus_width >= 8)
sc->aw_host.caps |= MMC_CAP_8_BIT_DATA;
#ifdef MMCCAM
child = NULL; /* Not used by MMCCAM, need to silence compiler warnings */
sc->ccb = NULL;
if ((sc->devq = cam_simq_alloc(1)) == NULL) {
goto fail;
}
mtx_init(&sc->sim_mtx, "awmmcsim", NULL, MTX_DEF);
sc->sim = cam_sim_alloc_dev(aw_mmc_cam_action, aw_mmc_cam_poll,
"aw_mmc_sim", sc, dev,
&sc->sim_mtx, 1, 1, sc->devq);
if (sc->sim == NULL) {
cam_simq_free(sc->devq);
device_printf(dev, "cannot allocate CAM SIM\n");
goto fail;
}
mtx_lock(&sc->sim_mtx);
if (xpt_bus_register(sc->sim, sc->aw_dev, 0) != 0) {
device_printf(dev, "cannot register SCSI pass-through bus\n");
cam_sim_free(sc->sim, FALSE);
cam_simq_free(sc->devq);
mtx_unlock(&sc->sim_mtx);
goto fail;
}
mtx_unlock(&sc->sim_mtx);
#else /* !MMCCAM */
child = device_add_child(dev, "mmc", -1);
if (child == NULL) {
device_printf(dev, "attaching MMC bus failed!\n");
goto fail;
}
if (device_probe_and_attach(child) != 0) {
device_printf(dev, "attaching MMC child failed!\n");
device_delete_child(dev, child);
goto fail;
}
#endif /* MMCCAM */
return (0);
fail:
callout_drain(&sc->aw_timeoutc);
mtx_destroy(&sc->aw_mtx);
bus_teardown_intr(dev, sc->aw_res[AW_MMC_IRQRES], sc->aw_intrhand);
bus_release_resources(dev, aw_mmc_res_spec, sc->aw_res);
#ifdef MMCCAM
if (sc->sim != NULL) {
mtx_lock(&sc->sim_mtx);
xpt_bus_deregister(cam_sim_path(sc->sim));
cam_sim_free(sc->sim, FALSE);
mtx_unlock(&sc->sim_mtx);
}
if (sc->devq != NULL)
cam_simq_free(sc->devq);
#endif
return (ENXIO);
}
static int
aw_mmc_detach(device_t dev)
{
return (EBUSY);
}
static void
aw_dma_desc_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int err)
{
struct aw_mmc_softc *sc;
sc = (struct aw_mmc_softc *)arg;
if (err) {
sc->aw_dma_map_err = err;
return;
}
sc->aw_dma_desc_phys = segs[0].ds_addr;
}
static int
aw_mmc_setup_dma(struct aw_mmc_softc *sc)
{
int error;
/* Allocate the DMA descriptor memory. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->aw_dev), /* parent */
AW_MMC_DMA_ALIGN, 0, /* align, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg*/
AW_MMC_DMA_DESC_SIZE, 1, /* maxsize, nsegment */
AW_MMC_DMA_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lock, lockarg*/
&sc->aw_dma_tag);
if (error)
return (error);
error = bus_dmamem_alloc(sc->aw_dma_tag, &sc->aw_dma_desc,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO,
&sc->aw_dma_map);
if (error)
return (error);
error = bus_dmamap_load(sc->aw_dma_tag,
sc->aw_dma_map,
sc->aw_dma_desc, AW_MMC_DMA_DESC_SIZE,
aw_dma_desc_cb, sc, 0);
if (error)
return (error);
if (sc->aw_dma_map_err)
return (sc->aw_dma_map_err);
/* Create the DMA map for data transfers. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->aw_dev), /* parent */
AW_MMC_DMA_ALIGN, 0, /* align, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg*/
sc->aw_mmc_conf->dma_xferlen *
AW_MMC_DMA_SEGS, AW_MMC_DMA_SEGS, /* maxsize, nsegments */
sc->aw_mmc_conf->dma_xferlen, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lock, lockarg*/
&sc->aw_dma_buf_tag);
if (error)
return (error);
error = bus_dmamap_create(sc->aw_dma_buf_tag, 0,
&sc->aw_dma_buf_map);
if (error)
return (error);
return (0);
}
static void
aw_dma_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int err)
{
int i;
struct aw_mmc_dma_desc *dma_desc;
struct aw_mmc_softc *sc;
sc = (struct aw_mmc_softc *)arg;
sc->aw_dma_map_err = err;
if (err)
return;
dma_desc = sc->aw_dma_desc;
for (i = 0; i < nsegs; i++) {
if (segs[i].ds_len == sc->aw_mmc_conf->dma_xferlen)
dma_desc[i].buf_size = 0; /* Size of 0 indicate max len */
else
dma_desc[i].buf_size = segs[i].ds_len;
dma_desc[i].buf_addr = segs[i].ds_addr;
dma_desc[i].config = AW_MMC_DMA_CONFIG_CH |
AW_MMC_DMA_CONFIG_OWN | AW_MMC_DMA_CONFIG_DIC;
dma_desc[i].next = sc->aw_dma_desc_phys +
((i + 1) * sizeof(struct aw_mmc_dma_desc));
}
dma_desc[0].config |= AW_MMC_DMA_CONFIG_FD;
dma_desc[nsegs - 1].config |= AW_MMC_DMA_CONFIG_LD |
AW_MMC_DMA_CONFIG_ER;
dma_desc[nsegs - 1].config &= ~AW_MMC_DMA_CONFIG_DIC;
dma_desc[nsegs - 1].next = 0;
}
static int
aw_mmc_prepare_dma(struct aw_mmc_softc *sc)
{
bus_dmasync_op_t sync_op;
int error;
struct mmc_command *cmd;
uint32_t val;
#ifdef MMCCAM
cmd = &sc->ccb->mmcio.cmd;
#else
cmd = sc->aw_req->cmd;
#endif
if (cmd->data->len > (sc->aw_mmc_conf->dma_xferlen * AW_MMC_DMA_SEGS))
return (EFBIG);
error = bus_dmamap_load(sc->aw_dma_buf_tag, sc->aw_dma_buf_map,
cmd->data->data, cmd->data->len, aw_dma_cb, sc, 0);
if (error)
return (error);
if (sc->aw_dma_map_err)
return (sc->aw_dma_map_err);
if (cmd->data->flags & MMC_DATA_WRITE)
sync_op = BUS_DMASYNC_PREWRITE;
else
sync_op = BUS_DMASYNC_PREREAD;
bus_dmamap_sync(sc->aw_dma_buf_tag, sc->aw_dma_buf_map, sync_op);
bus_dmamap_sync(sc->aw_dma_tag, sc->aw_dma_map, BUS_DMASYNC_PREWRITE);
/* Enable DMA */
val = AW_MMC_READ_4(sc, AW_MMC_GCTL);
val &= ~AW_MMC_GCTL_FIFO_AC_MOD;
val |= AW_MMC_GCTL_DMA_ENB;
AW_MMC_WRITE_4(sc, AW_MMC_GCTL, val);
/* Reset DMA */
val |= AW_MMC_GCTL_DMA_RST;
AW_MMC_WRITE_4(sc, AW_MMC_GCTL, val);
AW_MMC_WRITE_4(sc, AW_MMC_DMAC, AW_MMC_DMAC_IDMAC_SOFT_RST);
AW_MMC_WRITE_4(sc, AW_MMC_DMAC,
AW_MMC_DMAC_IDMAC_IDMA_ON | AW_MMC_DMAC_IDMAC_FIX_BURST);
/* Enable RX or TX DMA interrupt */
val = AW_MMC_READ_4(sc, AW_MMC_IDIE);
if (cmd->data->flags & MMC_DATA_WRITE)
val |= AW_MMC_IDST_TX_INT;
else
val |= AW_MMC_IDST_RX_INT;
AW_MMC_WRITE_4(sc, AW_MMC_IDIE, val);
/* Set DMA descritptor list address */
AW_MMC_WRITE_4(sc, AW_MMC_DLBA, sc->aw_dma_desc_phys);
/* FIFO trigger level */
AW_MMC_WRITE_4(sc, AW_MMC_FWLR, AW_MMC_DMA_FTRGLEVEL);
return (0);
}
static int
aw_mmc_reset(struct aw_mmc_softc *sc)
{
uint32_t reg;
int timeout;
reg = AW_MMC_READ_4(sc, AW_MMC_GCTL);
reg |= AW_MMC_GCTL_RESET;
AW_MMC_WRITE_4(sc, AW_MMC_GCTL, reg);
timeout = AW_MMC_RESET_RETRY;
while (--timeout > 0) {
if ((AW_MMC_READ_4(sc, AW_MMC_GCTL) & AW_MMC_GCTL_RESET) == 0)
break;
DELAY(100);
}
if (timeout == 0)
return (ETIMEDOUT);
return (0);
}
static int
aw_mmc_init(struct aw_mmc_softc *sc)
{
uint32_t reg;
int ret;
ret = aw_mmc_reset(sc);
if (ret != 0)
return (ret);
/* Set the timeout. */
AW_MMC_WRITE_4(sc, AW_MMC_TMOR,
AW_MMC_TMOR_DTO_LMT_SHIFT(AW_MMC_TMOR_DTO_LMT_MASK) |
AW_MMC_TMOR_RTO_LMT_SHIFT(AW_MMC_TMOR_RTO_LMT_MASK));
/* Unmask interrupts. */
AW_MMC_WRITE_4(sc, AW_MMC_IMKR, 0);
/* Clear pending interrupts. */
AW_MMC_WRITE_4(sc, AW_MMC_RISR, 0xffffffff);
/* Debug register, undocumented */
AW_MMC_WRITE_4(sc, AW_MMC_DBGC, 0xdeb);
/* Function select register */
AW_MMC_WRITE_4(sc, AW_MMC_FUNS, 0xceaa0000);
AW_MMC_WRITE_4(sc, AW_MMC_IDST, 0xffffffff);
/* Enable interrupts and disable AHB access. */
reg = AW_MMC_READ_4(sc, AW_MMC_GCTL);
reg |= AW_MMC_GCTL_INT_ENB;
reg &= ~AW_MMC_GCTL_FIFO_AC_MOD;
reg &= ~AW_MMC_GCTL_WAIT_MEM_ACCESS;
AW_MMC_WRITE_4(sc, AW_MMC_GCTL, reg);
return (0);
}
static void
aw_mmc_req_done(struct aw_mmc_softc *sc)
{
struct mmc_command *cmd;
#ifdef MMCCAM
union ccb *ccb;
#else
struct mmc_request *req;
#endif
uint32_t val, mask;
int retry;
#ifdef MMCCAM
ccb = sc->ccb;
cmd = &ccb->mmcio.cmd;
#else
cmd = sc->aw_req->cmd;
#endif
#ifdef DEBUG
if (bootverbose) {
device_printf(sc->aw_dev, "%s: cmd %d err %d\n", __func__, cmd->opcode, cmd->error);
}
#endif
if (cmd->error != MMC_ERR_NONE) {
/* Reset the FIFO and DMA engines. */
mask = AW_MMC_GCTL_FIFO_RST | AW_MMC_GCTL_DMA_RST;
val = AW_MMC_READ_4(sc, AW_MMC_GCTL);
AW_MMC_WRITE_4(sc, AW_MMC_GCTL, val | mask);
retry = AW_MMC_RESET_RETRY;
while (--retry > 0) {
if ((AW_MMC_READ_4(sc, AW_MMC_GCTL) &
AW_MMC_GCTL_RESET) == 0)
break;
DELAY(100);
}
if (retry == 0)
device_printf(sc->aw_dev,
"timeout resetting DMA/FIFO\n");
aw_mmc_update_clock(sc, 1);
}
callout_stop(&sc->aw_timeoutc);
sc->aw_intr = 0;
sc->aw_resid = 0;
sc->aw_dma_map_err = 0;
sc->aw_intr_wait = 0;
#ifdef MMCCAM
sc->ccb = NULL;
ccb->ccb_h.status =
(ccb->mmcio.cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
xpt_done(ccb);
#else
req = sc->aw_req;
sc->aw_req = NULL;
req->done(req);
#endif
}
static void
aw_mmc_req_ok(struct aw_mmc_softc *sc)
{
int timeout;
struct mmc_command *cmd;
uint32_t status;
timeout = 1000;
while (--timeout > 0) {
status = AW_MMC_READ_4(sc, AW_MMC_STAR);
if ((status & AW_MMC_STAR_CARD_BUSY) == 0)
break;
DELAY(1000);
}
#ifdef MMCCAM
cmd = &sc->ccb->mmcio.cmd;
#else
cmd = sc->aw_req->cmd;
#endif
if (timeout == 0) {
cmd->error = MMC_ERR_FAILED;
aw_mmc_req_done(sc);
return;
}
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = AW_MMC_READ_4(sc, AW_MMC_RESP3);
cmd->resp[1] = AW_MMC_READ_4(sc, AW_MMC_RESP2);
cmd->resp[2] = AW_MMC_READ_4(sc, AW_MMC_RESP1);
cmd->resp[3] = AW_MMC_READ_4(sc, AW_MMC_RESP0);
} else
cmd->resp[0] = AW_MMC_READ_4(sc, AW_MMC_RESP0);
}
/* All data has been transferred ? */
if (cmd->data != NULL && (sc->aw_resid << 2) < cmd->data->len)
cmd->error = MMC_ERR_FAILED;
aw_mmc_req_done(sc);
}
static inline void
set_mmc_error(struct aw_mmc_softc *sc, int error_code)
{
#ifdef MMCCAM
sc->ccb->mmcio.cmd.error = error_code;
#else
sc->aw_req->cmd->error = error_code;
#endif
}
static void
aw_mmc_timeout(void *arg)
{
struct aw_mmc_softc *sc;
sc = (struct aw_mmc_softc *)arg;
#ifdef MMCCAM
if (sc->ccb != NULL) {
#else
if (sc->aw_req != NULL) {
#endif
device_printf(sc->aw_dev, "controller timeout\n");
set_mmc_error(sc, MMC_ERR_TIMEOUT);
aw_mmc_req_done(sc);
} else
device_printf(sc->aw_dev,
"Spurious timeout - no active request\n");
}
static void
aw_mmc_print_error(uint32_t err)
{
if(err & AW_MMC_INT_RESP_ERR)
printf("AW_MMC_INT_RESP_ERR ");
if (err & AW_MMC_INT_RESP_CRC_ERR)
printf("AW_MMC_INT_RESP_CRC_ERR ");
if (err & AW_MMC_INT_DATA_CRC_ERR)
printf("AW_MMC_INT_DATA_CRC_ERR ");
if (err & AW_MMC_INT_RESP_TIMEOUT)
printf("AW_MMC_INT_RESP_TIMEOUT ");
if (err & AW_MMC_INT_FIFO_RUN_ERR)
printf("AW_MMC_INT_FIFO_RUN_ERR ");
if (err & AW_MMC_INT_CMD_BUSY)
printf("AW_MMC_INT_CMD_BUSY ");
if (err & AW_MMC_INT_DATA_START_ERR)
printf("AW_MMC_INT_DATA_START_ERR ");
if (err & AW_MMC_INT_DATA_END_BIT_ERR)
printf("AW_MMC_INT_DATA_END_BIT_ERR");
printf("\n");
}
static void
aw_mmc_intr(void *arg)
{
bus_dmasync_op_t sync_op;
struct aw_mmc_softc *sc;
struct mmc_data *data;
uint32_t idst, imask, rint;
sc = (struct aw_mmc_softc *)arg;
AW_MMC_LOCK(sc);
rint = AW_MMC_READ_4(sc, AW_MMC_RISR);
idst = AW_MMC_READ_4(sc, AW_MMC_IDST);
imask = AW_MMC_READ_4(sc, AW_MMC_IMKR);
if (idst == 0 && imask == 0 && rint == 0) {
AW_MMC_UNLOCK(sc);
return;
}
#ifdef DEBUG
device_printf(sc->aw_dev, "idst: %#x, imask: %#x, rint: %#x\n",
idst, imask, rint);
#endif
#ifdef MMCCAM
if (sc->ccb == NULL) {
#else
if (sc->aw_req == NULL) {
#endif
device_printf(sc->aw_dev,
"Spurious interrupt - no active request, rint: 0x%08X\n",
rint);
aw_mmc_print_error(rint);
goto end;
}
if (rint & AW_MMC_INT_ERR_BIT) {
if (bootverbose)
device_printf(sc->aw_dev, "error rint: 0x%08X\n", rint);
aw_mmc_print_error(rint);
if (rint & AW_MMC_INT_RESP_TIMEOUT)
set_mmc_error(sc, MMC_ERR_TIMEOUT);
else
set_mmc_error(sc, MMC_ERR_FAILED);
aw_mmc_req_done(sc);
goto end;
}
if (idst & AW_MMC_IDST_ERROR) {
device_printf(sc->aw_dev, "error idst: 0x%08x\n", idst);
set_mmc_error(sc, MMC_ERR_FAILED);
aw_mmc_req_done(sc);
goto end;
}
sc->aw_intr |= rint;
#ifdef MMCCAM
data = sc->ccb->mmcio.cmd.data;
#else
data = sc->aw_req->cmd->data;
#endif
if (data != NULL && (idst & AW_MMC_IDST_COMPLETE) != 0) {
if (data->flags & MMC_DATA_WRITE)
sync_op = BUS_DMASYNC_POSTWRITE;
else
sync_op = BUS_DMASYNC_POSTREAD;
bus_dmamap_sync(sc->aw_dma_buf_tag, sc->aw_dma_buf_map,
sync_op);
bus_dmamap_sync(sc->aw_dma_tag, sc->aw_dma_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->aw_dma_buf_tag, sc->aw_dma_buf_map);
sc->aw_resid = data->len >> 2;
}
if ((sc->aw_intr & sc->aw_intr_wait) == sc->aw_intr_wait)
aw_mmc_req_ok(sc);
end:
AW_MMC_WRITE_4(sc, AW_MMC_IDST, idst);
AW_MMC_WRITE_4(sc, AW_MMC_RISR, rint);
AW_MMC_UNLOCK(sc);
}
static int
aw_mmc_request(device_t bus, device_t child, struct mmc_request *req)
{
int blksz;
struct aw_mmc_softc *sc;
struct mmc_command *cmd;
uint32_t cmdreg, imask;
int err;
sc = device_get_softc(bus);
AW_MMC_LOCK(sc);
#ifdef MMCCAM
KASSERT(req == NULL, ("req should be NULL in MMCCAM case!"));
/*
* For MMCCAM, sc->ccb has been NULL-checked and populated
* by aw_mmc_cam_request() already.
*/
cmd = &sc->ccb->mmcio.cmd;
#else
if (sc->aw_req) {
AW_MMC_UNLOCK(sc);
return (EBUSY);
}
sc->aw_req = req;
cmd = req->cmd;
#ifdef DEBUG
if (bootverbose)
device_printf(sc->aw_dev, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
cmd->opcode, cmd->arg, cmd->flags,
cmd->data != NULL ? (unsigned int)cmd->data->len : 0,
cmd->data != NULL ? cmd->data->flags: 0);
#endif
#endif
cmdreg = AW_MMC_CMDR_LOAD;
imask = AW_MMC_INT_ERR_BIT;
sc->aw_intr_wait = 0;
sc->aw_intr = 0;
sc->aw_resid = 0;
cmd->error = MMC_ERR_NONE;
if (cmd->opcode == MMC_GO_IDLE_STATE)
cmdreg |= AW_MMC_CMDR_SEND_INIT_SEQ;
if (cmd->flags & MMC_RSP_PRESENT)
cmdreg |= AW_MMC_CMDR_RESP_RCV;
if (cmd->flags & MMC_RSP_136)
cmdreg |= AW_MMC_CMDR_LONG_RESP;
if (cmd->flags & MMC_RSP_CRC)
cmdreg |= AW_MMC_CMDR_CHK_RESP_CRC;
if (cmd->data) {
cmdreg |= AW_MMC_CMDR_DATA_TRANS | AW_MMC_CMDR_WAIT_PRE_OVER;
if (cmd->data->flags & MMC_DATA_MULTI) {
cmdreg |= AW_MMC_CMDR_STOP_CMD_FLAG;
imask |= AW_MMC_INT_AUTO_STOP_DONE;
sc->aw_intr_wait |= AW_MMC_INT_AUTO_STOP_DONE;
} else {
sc->aw_intr_wait |= AW_MMC_INT_DATA_OVER;
imask |= AW_MMC_INT_DATA_OVER;
}
if (cmd->data->flags & MMC_DATA_WRITE)
cmdreg |= AW_MMC_CMDR_DIR_WRITE;
#ifdef MMCCAM
if (cmd->data->flags & MMC_DATA_BLOCK_SIZE) {
AW_MMC_WRITE_4(sc, AW_MMC_BKSR, cmd->data->block_size);
AW_MMC_WRITE_4(sc, AW_MMC_BYCR, cmd->data->len);
} else
#endif
{
blksz = min(cmd->data->len, MMC_SECTOR_SIZE);
AW_MMC_WRITE_4(sc, AW_MMC_BKSR, blksz);
AW_MMC_WRITE_4(sc, AW_MMC_BYCR, cmd->data->len);
}
} else {
imask |= AW_MMC_INT_CMD_DONE;
}
/* Enable the interrupts we are interested in */
AW_MMC_WRITE_4(sc, AW_MMC_IMKR, imask);
AW_MMC_WRITE_4(sc, AW_MMC_RISR, 0xffffffff);
/* Enable auto stop if needed */
AW_MMC_WRITE_4(sc, AW_MMC_A12A,
cmdreg & AW_MMC_CMDR_STOP_CMD_FLAG ? 0 : 0xffff);
/* Write the command argument */
AW_MMC_WRITE_4(sc, AW_MMC_CAGR, cmd->arg);
/*
* If we don't have data start the request
* if we do prepare the dma request and start the request
*/
if (cmd->data == NULL) {
AW_MMC_WRITE_4(sc, AW_MMC_CMDR, cmdreg | cmd->opcode);
} else {
err = aw_mmc_prepare_dma(sc);
if (err != 0)
device_printf(sc->aw_dev, "prepare_dma failed: %d\n", err);
AW_MMC_WRITE_4(sc, AW_MMC_CMDR, cmdreg | cmd->opcode);
}
callout_reset(&sc->aw_timeoutc, sc->aw_timeout * hz,
aw_mmc_timeout, sc);
AW_MMC_UNLOCK(sc);
return (0);
}
static int
aw_mmc_read_ivar(device_t bus, device_t child, int which,
uintptr_t *result)
{
struct aw_mmc_softc *sc;
sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
*(int *)result = sc->aw_host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = sc->aw_host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = sc->aw_host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = sc->aw_host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = sc->aw_host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = sc->aw_host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = sc->aw_host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = sc->aw_host.mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = sc->aw_host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = sc->aw_host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = sc->aw_host.ios.vdd;
break;
case MMCBR_IVAR_VCCQ:
*(int *)result = sc->aw_host.ios.vccq;
break;
case MMCBR_IVAR_CAPS:
*(int *)result = sc->aw_host.caps;
break;
case MMCBR_IVAR_TIMING:
*(int *)result = sc->aw_host.ios.timing;
break;
case MMCBR_IVAR_MAX_DATA:
*(int *)result = (sc->aw_mmc_conf->dma_xferlen *
AW_MMC_DMA_SEGS) / MMC_SECTOR_SIZE;
break;
case MMCBR_IVAR_RETUNE_REQ:
*(int *)result = retune_req_none;
break;
}
return (0);
}
static int
aw_mmc_write_ivar(device_t bus, device_t child, int which,
uintptr_t value)
{
struct aw_mmc_softc *sc;
sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
sc->aw_host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
sc->aw_host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
sc->aw_host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
sc->aw_host.ios.clock = value;
break;
case MMCBR_IVAR_MODE:
sc->aw_host.mode = value;
break;
case MMCBR_IVAR_OCR:
sc->aw_host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
sc->aw_host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
sc->aw_host.ios.vdd = value;
break;
case MMCBR_IVAR_VCCQ:
sc->aw_host.ios.vccq = value;
break;
case MMCBR_IVAR_TIMING:
sc->aw_host.ios.timing = value;
break;
/* These are read-only */
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
return (EINVAL);
}
return (0);
}
static int
aw_mmc_update_clock(struct aw_mmc_softc *sc, uint32_t clkon)
{
uint32_t reg;
int retry;
reg = AW_MMC_READ_4(sc, AW_MMC_CKCR);
reg &= ~(AW_MMC_CKCR_ENB | AW_MMC_CKCR_LOW_POWER |
AW_MMC_CKCR_MASK_DATA0);
if (clkon)
reg |= AW_MMC_CKCR_ENB;
if (sc->aw_mmc_conf->mask_data0)
reg |= AW_MMC_CKCR_MASK_DATA0;
AW_MMC_WRITE_4(sc, AW_MMC_CKCR, reg);
reg = AW_MMC_CMDR_LOAD | AW_MMC_CMDR_PRG_CLK |
AW_MMC_CMDR_WAIT_PRE_OVER;
AW_MMC_WRITE_4(sc, AW_MMC_CMDR, reg);
retry = 0xfffff;
while (reg & AW_MMC_CMDR_LOAD && --retry > 0) {
reg = AW_MMC_READ_4(sc, AW_MMC_CMDR);
DELAY(10);
}
AW_MMC_WRITE_4(sc, AW_MMC_RISR, 0xffffffff);
if (reg & AW_MMC_CMDR_LOAD) {
device_printf(sc->aw_dev, "timeout updating clock\n");
return (ETIMEDOUT);
}
if (sc->aw_mmc_conf->mask_data0) {
reg = AW_MMC_READ_4(sc, AW_MMC_CKCR);
reg &= ~AW_MMC_CKCR_MASK_DATA0;
AW_MMC_WRITE_4(sc, AW_MMC_CKCR, reg);
}
return (0);
}
static int
aw_mmc_switch_vccq(device_t bus, device_t child)
{
struct aw_mmc_softc *sc;
int uvolt, err;
sc = device_get_softc(bus);
if (sc->aw_reg_vqmmc == NULL)
return EOPNOTSUPP;
switch (sc->aw_host.ios.vccq) {
case vccq_180:
uvolt = 1800000;
break;
case vccq_330:
uvolt = 3300000;
break;
default:
return EINVAL;
}
err = regulator_set_voltage(sc->aw_reg_vqmmc, uvolt, uvolt);
if (err != 0) {
device_printf(sc->aw_dev,
"Cannot set vqmmc to %d<->%d\n",
uvolt,
uvolt);
return (err);
}
return (0);
}
static int
aw_mmc_update_ios(device_t bus, device_t child)
{
int error;
struct aw_mmc_softc *sc;
struct mmc_ios *ios;
unsigned int clock;
uint32_t reg, div = 1;
sc = device_get_softc(bus);
ios = &sc->aw_host.ios;
/* Set the bus width. */
switch (ios->bus_width) {
case bus_width_1:
AW_MMC_WRITE_4(sc, AW_MMC_BWDR, AW_MMC_BWDR1);
break;
case bus_width_4:
AW_MMC_WRITE_4(sc, AW_MMC_BWDR, AW_MMC_BWDR4);
break;
case bus_width_8:
AW_MMC_WRITE_4(sc, AW_MMC_BWDR, AW_MMC_BWDR8);
break;
}
switch (ios->power_mode) {
case power_on:
break;
case power_off:
if (bootverbose)
device_printf(sc->aw_dev, "Powering down sd/mmc\n");
if (sc->aw_reg_vmmc)
regulator_disable(sc->aw_reg_vmmc);
if (sc->aw_reg_vqmmc)
regulator_disable(sc->aw_reg_vqmmc);
aw_mmc_reset(sc);
break;
case power_up:
if (bootverbose)
device_printf(sc->aw_dev, "Powering up sd/mmc\n");
if (sc->aw_reg_vmmc)
regulator_enable(sc->aw_reg_vmmc);
if (sc->aw_reg_vqmmc)
regulator_enable(sc->aw_reg_vqmmc);
aw_mmc_init(sc);
break;
};
/* Enable ddr mode if needed */
reg = AW_MMC_READ_4(sc, AW_MMC_GCTL);
if (ios->timing == bus_timing_uhs_ddr50 ||
ios->timing == bus_timing_mmc_ddr52)
reg |= AW_MMC_GCTL_DDR_MOD_SEL;
else
reg &= ~AW_MMC_GCTL_DDR_MOD_SEL;
AW_MMC_WRITE_4(sc, AW_MMC_GCTL, reg);
if (ios->clock && ios->clock != sc->aw_clock) {
sc->aw_clock = clock = ios->clock;
/* Disable clock */
error = aw_mmc_update_clock(sc, 0);
if (error != 0)
return (error);
if (ios->timing == bus_timing_mmc_ddr52 &&
(sc->aw_mmc_conf->new_timing ||
ios->bus_width == bus_width_8)) {
div = 2;
clock <<= 1;
}
/* Reset the divider. */
reg = AW_MMC_READ_4(sc, AW_MMC_CKCR);
reg &= ~AW_MMC_CKCR_DIV;
reg |= div - 1;
AW_MMC_WRITE_4(sc, AW_MMC_CKCR, reg);
/* New timing mode if needed */
if (sc->aw_mmc_conf->new_timing) {
reg = AW_MMC_READ_4(sc, AW_MMC_NTSR);
reg |= AW_MMC_NTSR_MODE_SELECT;
AW_MMC_WRITE_4(sc, AW_MMC_NTSR, reg);
}
/* Set the MMC clock. */
error = clk_disable(sc->aw_clk_mmc);
if (error != 0 && bootverbose)
device_printf(sc->aw_dev,
"failed to disable mmc clock: %d\n", error);
error = clk_set_freq(sc->aw_clk_mmc, clock,
CLK_SET_ROUND_DOWN);
if (error != 0) {
device_printf(sc->aw_dev,
"failed to set frequency to %u Hz: %d\n",
clock, error);
return (error);
}
error = clk_enable(sc->aw_clk_mmc);
if (error != 0 && bootverbose)
device_printf(sc->aw_dev,
"failed to re-enable mmc clock: %d\n", error);
if (sc->aw_mmc_conf->can_calibrate)
AW_MMC_WRITE_4(sc, AW_MMC_SAMP_DL, AW_MMC_SAMP_DL_SW_EN);
/* Enable clock. */
error = aw_mmc_update_clock(sc, 1);
if (error != 0)
return (error);
}
return (0);
}
static int
aw_mmc_get_ro(device_t bus, device_t child)
{
return (0);
}
static int
aw_mmc_acquire_host(device_t bus, device_t child)
{
struct aw_mmc_softc *sc;
int error;
sc = device_get_softc(bus);
AW_MMC_LOCK(sc);
while (sc->aw_bus_busy) {
error = msleep(sc, &sc->aw_mtx, PCATCH, "mmchw", 0);
if (error != 0) {
AW_MMC_UNLOCK(sc);
return (error);
}
}
sc->aw_bus_busy++;
AW_MMC_UNLOCK(sc);
return (0);
}
static int
aw_mmc_release_host(device_t bus, device_t child)
{
struct aw_mmc_softc *sc;
sc = device_get_softc(bus);
AW_MMC_LOCK(sc);
sc->aw_bus_busy--;
wakeup(sc);
AW_MMC_UNLOCK(sc);
return (0);
}
static device_method_t aw_mmc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aw_mmc_probe),
DEVMETHOD(device_attach, aw_mmc_attach),
DEVMETHOD(device_detach, aw_mmc_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, aw_mmc_read_ivar),
DEVMETHOD(bus_write_ivar, aw_mmc_write_ivar),
DEVMETHOD(bus_add_child, bus_generic_add_child),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, aw_mmc_update_ios),
DEVMETHOD(mmcbr_request, aw_mmc_request),
DEVMETHOD(mmcbr_get_ro, aw_mmc_get_ro),
DEVMETHOD(mmcbr_switch_vccq, aw_mmc_switch_vccq),
DEVMETHOD(mmcbr_acquire_host, aw_mmc_acquire_host),
DEVMETHOD(mmcbr_release_host, aw_mmc_release_host),
DEVMETHOD_END
};
static devclass_t aw_mmc_devclass;
static driver_t aw_mmc_driver = {
"aw_mmc",
aw_mmc_methods,
sizeof(struct aw_mmc_softc),
};
DRIVER_MODULE(aw_mmc, simplebus, aw_mmc_driver, aw_mmc_devclass, NULL,
NULL);
#ifndef MMCCAM
MMC_DECLARE_BRIDGE(aw_mmc);
#endif