freebsd-dev/sys/arm/allwinner/axp81x.c
Emmanuel Vadot 9c3a56d076 regulator: Add regulator_check_voltage function
This function will call the regnode_check_voltage method for a given regulator
and check if the desired voltage in reachable by it.
Also adds a default method that check the std_param and which should be enough
for most regulators and add it as the method for axp* rk805 and fixed regulators.

Reviewed by:	mmel
MFC after:	1 month
Differential Revision:	https://reviews.freebsd.org/D22260
2019-11-06 14:55:24 +00:00

1617 lines
39 KiB
C

/*-
* Copyright (c) 2018 Emmanuel Vadot <manu@freebsd.org>
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* X-Powers AXP803/813/818 PMU for Allwinner SoCs
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/gpio.h>
#include <sys/module.h>
#include <machine/bus.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#include <dev/gpio/gpiobusvar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/extres/regulator/regulator.h>
#include "gpio_if.h"
#include "iicbus_if.h"
#include "regdev_if.h"
MALLOC_DEFINE(M_AXP8XX_REG, "AXP8xx regulator", "AXP8xx power regulator");
#define AXP_POWERSRC 0x00
#define AXP_POWERSRC_ACIN (1 << 7)
#define AXP_POWERSRC_VBUS (1 << 5)
#define AXP_POWERSRC_VBAT (1 << 3)
#define AXP_POWERSRC_CHARING (1 << 2) /* Charging Direction */
#define AXP_POWERSRC_SHORTED (1 << 1)
#define AXP_POWERSRC_STARTUP (1 << 0)
#define AXP_POWERMODE 0x01
#define AXP_POWERMODE_BAT_CHARGING (1 << 6)
#define AXP_POWERMODE_BAT_PRESENT (1 << 5)
#define AXP_POWERMODE_BAT_VALID (1 << 4)
#define AXP_ICTYPE 0x03
#define AXP_POWERCTL1 0x10
#define AXP_POWERCTL1_DCDC7 (1 << 6) /* AXP813/818 only */
#define AXP_POWERCTL1_DCDC6 (1 << 5)
#define AXP_POWERCTL1_DCDC5 (1 << 4)
#define AXP_POWERCTL1_DCDC4 (1 << 3)
#define AXP_POWERCTL1_DCDC3 (1 << 2)
#define AXP_POWERCTL1_DCDC2 (1 << 1)
#define AXP_POWERCTL1_DCDC1 (1 << 0)
#define AXP_POWERCTL2 0x12
#define AXP_POWERCTL2_DC1SW (1 << 7) /* AXP803 only */
#define AXP_POWERCTL2_DLDO4 (1 << 6)
#define AXP_POWERCTL2_DLDO3 (1 << 5)
#define AXP_POWERCTL2_DLDO2 (1 << 4)
#define AXP_POWERCTL2_DLDO1 (1 << 3)
#define AXP_POWERCTL2_ELDO3 (1 << 2)
#define AXP_POWERCTL2_ELDO2 (1 << 1)
#define AXP_POWERCTL2_ELDO1 (1 << 0)
#define AXP_POWERCTL3 0x13
#define AXP_POWERCTL3_ALDO3 (1 << 7)
#define AXP_POWERCTL3_ALDO2 (1 << 6)
#define AXP_POWERCTL3_ALDO1 (1 << 5)
#define AXP_POWERCTL3_FLDO3 (1 << 4) /* AXP813/818 only */
#define AXP_POWERCTL3_FLDO2 (1 << 3)
#define AXP_POWERCTL3_FLDO1 (1 << 2)
#define AXP_VOLTCTL_DLDO1 0x15
#define AXP_VOLTCTL_DLDO2 0x16
#define AXP_VOLTCTL_DLDO3 0x17
#define AXP_VOLTCTL_DLDO4 0x18
#define AXP_VOLTCTL_ELDO1 0x19
#define AXP_VOLTCTL_ELDO2 0x1A
#define AXP_VOLTCTL_ELDO3 0x1B
#define AXP_VOLTCTL_FLDO1 0x1C
#define AXP_VOLTCTL_FLDO2 0x1D
#define AXP_VOLTCTL_DCDC1 0x20
#define AXP_VOLTCTL_DCDC2 0x21
#define AXP_VOLTCTL_DCDC3 0x22
#define AXP_VOLTCTL_DCDC4 0x23
#define AXP_VOLTCTL_DCDC5 0x24
#define AXP_VOLTCTL_DCDC6 0x25
#define AXP_VOLTCTL_DCDC7 0x26
#define AXP_VOLTCTL_ALDO1 0x28
#define AXP_VOLTCTL_ALDO2 0x29
#define AXP_VOLTCTL_ALDO3 0x2A
#define AXP_VOLTCTL_STATUS (1 << 7)
#define AXP_VOLTCTL_MASK 0x7f
#define AXP_POWERBAT 0x32
#define AXP_POWERBAT_SHUTDOWN (1 << 7)
#define AXP_CHARGERCTL1 0x33
#define AXP_CHARGERCTL1_MIN 0
#define AXP_CHARGERCTL1_MAX 13
#define AXP_CHARGERCTL1_CMASK 0xf
#define AXP_IRQEN1 0x40
#define AXP_IRQEN1_ACIN_HI (1 << 6)
#define AXP_IRQEN1_ACIN_LO (1 << 5)
#define AXP_IRQEN1_VBUS_HI (1 << 3)
#define AXP_IRQEN1_VBUS_LO (1 << 2)
#define AXP_IRQEN2 0x41
#define AXP_IRQEN2_BAT_IN (1 << 7)
#define AXP_IRQEN2_BAT_NO (1 << 6)
#define AXP_IRQEN2_BATCHGC (1 << 3)
#define AXP_IRQEN2_BATCHGD (1 << 2)
#define AXP_IRQEN3 0x42
#define AXP_IRQEN4 0x43
#define AXP_IRQEN4_BATLVL_LO1 (1 << 1)
#define AXP_IRQEN4_BATLVL_LO0 (1 << 0)
#define AXP_IRQEN5 0x44
#define AXP_IRQEN5_POKSIRQ (1 << 4)
#define AXP_IRQEN5_POKLIRQ (1 << 3)
#define AXP_IRQEN6 0x45
#define AXP_IRQSTAT1 0x48
#define AXP_IRQSTAT1_ACIN_HI (1 << 6)
#define AXP_IRQSTAT1_ACIN_LO (1 << 5)
#define AXP_IRQSTAT1_VBUS_HI (1 << 3)
#define AXP_IRQSTAT1_VBUS_LO (1 << 2)
#define AXP_IRQSTAT2 0x49
#define AXP_IRQSTAT2_BAT_IN (1 << 7)
#define AXP_IRQSTAT2_BAT_NO (1 << 6)
#define AXP_IRQSTAT2_BATCHGC (1 << 3)
#define AXP_IRQSTAT2_BATCHGD (1 << 2)
#define AXP_IRQSTAT3 0x4a
#define AXP_IRQSTAT4 0x4b
#define AXP_IRQSTAT4_BATLVL_LO1 (1 << 1)
#define AXP_IRQSTAT4_BATLVL_LO0 (1 << 0)
#define AXP_IRQSTAT5 0x4c
#define AXP_IRQSTAT5_POKSIRQ (1 << 4)
#define AXP_IRQEN5_POKLIRQ (1 << 3)
#define AXP_IRQSTAT6 0x4d
#define AXP_BATSENSE_HI 0x78
#define AXP_BATSENSE_LO 0x79
#define AXP_BATCHG_HI 0x7a
#define AXP_BATCHG_LO 0x7b
#define AXP_BATDISCHG_HI 0x7c
#define AXP_BATDISCHG_LO 0x7d
#define AXP_GPIO0_CTRL 0x90
#define AXP_GPIO0LDO_CTRL 0x91
#define AXP_GPIO1_CTRL 0x92
#define AXP_GPIO1LDO_CTRL 0x93
#define AXP_GPIO_FUNC (0x7 << 0)
#define AXP_GPIO_FUNC_SHIFT 0
#define AXP_GPIO_FUNC_DRVLO 0
#define AXP_GPIO_FUNC_DRVHI 1
#define AXP_GPIO_FUNC_INPUT 2
#define AXP_GPIO_FUNC_LDO_ON 3
#define AXP_GPIO_FUNC_LDO_OFF 4
#define AXP_GPIO_SIGBIT 0x94
#define AXP_GPIO_PD 0x97
#define AXP_FUEL_GAUGECTL 0xb8
#define AXP_FUEL_GAUGECTL_EN (1 << 7)
#define AXP_BAT_CAP 0xb9
#define AXP_BAT_CAP_VALID (1 << 7)
#define AXP_BAT_CAP_PERCENT 0x7f
#define AXP_BAT_MAX_CAP_HI 0xe0
#define AXP_BAT_MAX_CAP_VALID (1 << 7)
#define AXP_BAT_MAX_CAP_LO 0xe1
#define AXP_BAT_COULOMB_HI 0xe2
#define AXP_BAT_COULOMB_VALID (1 << 7)
#define AXP_BAT_COULOMB_LO 0xe3
#define AXP_BAT_CAP_WARN 0xe6
#define AXP_BAT_CAP_WARN_LV1 0xf0 /* Bits 4, 5, 6, 7 */
#define AXP_BAP_CAP_WARN_LV1BASE 5 /* 5-20%, 1% per step */
#define AXP_BAT_CAP_WARN_LV2 0xf /* Bits 0, 1, 2, 3 */
/* Sensor conversion macros */
#define AXP_SENSOR_BAT_H(hi) ((hi) << 4)
#define AXP_SENSOR_BAT_L(lo) ((lo) & 0xf)
#define AXP_SENSOR_COULOMB(hi, lo) (((hi & ~(1 << 7)) << 8) | (lo))
static const struct {
const char *name;
uint8_t ctrl_reg;
} axp8xx_pins[] = {
{ "GPIO0", AXP_GPIO0_CTRL },
{ "GPIO1", AXP_GPIO1_CTRL },
};
enum AXP8XX_TYPE {
AXP803 = 1,
AXP813,
};
static struct ofw_compat_data compat_data[] = {
{ "x-powers,axp803", AXP803 },
{ "x-powers,axp813", AXP813 },
{ "x-powers,axp818", AXP813 },
{ NULL, 0 }
};
static struct resource_spec axp8xx_spec[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
struct axp8xx_regdef {
intptr_t id;
char *name;
char *supply_name;
uint8_t enable_reg;
uint8_t enable_mask;
uint8_t enable_value;
uint8_t disable_value;
uint8_t voltage_reg;
int voltage_min;
int voltage_max;
int voltage_step1;
int voltage_nstep1;
int voltage_step2;
int voltage_nstep2;
};
enum axp8xx_reg_id {
AXP8XX_REG_ID_DCDC1 = 100,
AXP8XX_REG_ID_DCDC2,
AXP8XX_REG_ID_DCDC3,
AXP8XX_REG_ID_DCDC4,
AXP8XX_REG_ID_DCDC5,
AXP8XX_REG_ID_DCDC6,
AXP813_REG_ID_DCDC7,
AXP803_REG_ID_DC1SW,
AXP8XX_REG_ID_DLDO1,
AXP8XX_REG_ID_DLDO2,
AXP8XX_REG_ID_DLDO3,
AXP8XX_REG_ID_DLDO4,
AXP8XX_REG_ID_ELDO1,
AXP8XX_REG_ID_ELDO2,
AXP8XX_REG_ID_ELDO3,
AXP8XX_REG_ID_ALDO1,
AXP8XX_REG_ID_ALDO2,
AXP8XX_REG_ID_ALDO3,
AXP8XX_REG_ID_FLDO1,
AXP8XX_REG_ID_FLDO2,
AXP813_REG_ID_FLDO3,
AXP8XX_REG_ID_GPIO0_LDO,
AXP8XX_REG_ID_GPIO1_LDO,
};
static struct axp8xx_regdef axp803_regdefs[] = {
{
.id = AXP803_REG_ID_DC1SW,
.name = "dc1sw",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_DC1SW,
.enable_value = AXP_POWERCTL2_DC1SW,
},
};
static struct axp8xx_regdef axp813_regdefs[] = {
{
.id = AXP813_REG_ID_DCDC7,
.name = "dcdc7",
.enable_reg = AXP_POWERCTL1,
.enable_mask = (uint8_t) AXP_POWERCTL1_DCDC7,
.enable_value = AXP_POWERCTL1_DCDC7,
.voltage_reg = AXP_VOLTCTL_DCDC7,
.voltage_min = 600,
.voltage_max = 1520,
.voltage_step1 = 10,
.voltage_nstep1 = 50,
.voltage_step2 = 20,
.voltage_nstep2 = 21,
},
};
static struct axp8xx_regdef axp8xx_common_regdefs[] = {
{
.id = AXP8XX_REG_ID_DCDC1,
.name = "dcdc1",
.enable_reg = AXP_POWERCTL1,
.enable_mask = (uint8_t) AXP_POWERCTL1_DCDC1,
.enable_value = AXP_POWERCTL1_DCDC1,
.voltage_reg = AXP_VOLTCTL_DCDC1,
.voltage_min = 1600,
.voltage_max = 3400,
.voltage_step1 = 100,
.voltage_nstep1 = 18,
},
{
.id = AXP8XX_REG_ID_DCDC2,
.name = "dcdc2",
.enable_reg = AXP_POWERCTL1,
.enable_mask = (uint8_t) AXP_POWERCTL1_DCDC2,
.enable_value = AXP_POWERCTL1_DCDC2,
.voltage_reg = AXP_VOLTCTL_DCDC2,
.voltage_min = 500,
.voltage_max = 1300,
.voltage_step1 = 10,
.voltage_nstep1 = 70,
.voltage_step2 = 20,
.voltage_nstep2 = 5,
},
{
.id = AXP8XX_REG_ID_DCDC3,
.name = "dcdc3",
.enable_reg = AXP_POWERCTL1,
.enable_mask = (uint8_t) AXP_POWERCTL1_DCDC3,
.enable_value = AXP_POWERCTL1_DCDC3,
.voltage_reg = AXP_VOLTCTL_DCDC3,
.voltage_min = 500,
.voltage_max = 1300,
.voltage_step1 = 10,
.voltage_nstep1 = 70,
.voltage_step2 = 20,
.voltage_nstep2 = 5,
},
{
.id = AXP8XX_REG_ID_DCDC4,
.name = "dcdc4",
.enable_reg = AXP_POWERCTL1,
.enable_mask = (uint8_t) AXP_POWERCTL1_DCDC4,
.enable_value = AXP_POWERCTL1_DCDC4,
.voltage_reg = AXP_VOLTCTL_DCDC4,
.voltage_min = 500,
.voltage_max = 1300,
.voltage_step1 = 10,
.voltage_nstep1 = 70,
.voltage_step2 = 20,
.voltage_nstep2 = 5,
},
{
.id = AXP8XX_REG_ID_DCDC5,
.name = "dcdc5",
.enable_reg = AXP_POWERCTL1,
.enable_mask = (uint8_t) AXP_POWERCTL1_DCDC5,
.enable_value = AXP_POWERCTL1_DCDC5,
.voltage_reg = AXP_VOLTCTL_DCDC5,
.voltage_min = 800,
.voltage_max = 1840,
.voltage_step1 = 10,
.voltage_nstep1 = 42,
.voltage_step2 = 20,
.voltage_nstep2 = 36,
},
{
.id = AXP8XX_REG_ID_DCDC6,
.name = "dcdc6",
.enable_reg = AXP_POWERCTL1,
.enable_mask = (uint8_t) AXP_POWERCTL1_DCDC6,
.enable_value = AXP_POWERCTL1_DCDC6,
.voltage_reg = AXP_VOLTCTL_DCDC6,
.voltage_min = 600,
.voltage_max = 1520,
.voltage_step1 = 10,
.voltage_nstep1 = 50,
.voltage_step2 = 20,
.voltage_nstep2 = 21,
},
{
.id = AXP8XX_REG_ID_DLDO1,
.name = "dldo1",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_DLDO1,
.enable_value = AXP_POWERCTL2_DLDO1,
.voltage_reg = AXP_VOLTCTL_DLDO1,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
{
.id = AXP8XX_REG_ID_DLDO2,
.name = "dldo2",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_DLDO2,
.enable_value = AXP_POWERCTL2_DLDO2,
.voltage_reg = AXP_VOLTCTL_DLDO2,
.voltage_min = 700,
.voltage_max = 4200,
.voltage_step1 = 100,
.voltage_nstep1 = 27,
.voltage_step2 = 200,
.voltage_nstep2 = 4,
},
{
.id = AXP8XX_REG_ID_DLDO3,
.name = "dldo3",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_DLDO3,
.enable_value = AXP_POWERCTL2_DLDO3,
.voltage_reg = AXP_VOLTCTL_DLDO3,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
{
.id = AXP8XX_REG_ID_DLDO4,
.name = "dldo4",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_DLDO4,
.enable_value = AXP_POWERCTL2_DLDO4,
.voltage_reg = AXP_VOLTCTL_DLDO4,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
{
.id = AXP8XX_REG_ID_ALDO1,
.name = "aldo1",
.enable_reg = AXP_POWERCTL3,
.enable_mask = (uint8_t) AXP_POWERCTL3_ALDO1,
.enable_value = AXP_POWERCTL3_ALDO1,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
{
.id = AXP8XX_REG_ID_ALDO2,
.name = "aldo2",
.enable_reg = AXP_POWERCTL3,
.enable_mask = (uint8_t) AXP_POWERCTL3_ALDO2,
.enable_value = AXP_POWERCTL3_ALDO2,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
{
.id = AXP8XX_REG_ID_ALDO3,
.name = "aldo3",
.enable_reg = AXP_POWERCTL3,
.enable_mask = (uint8_t) AXP_POWERCTL3_ALDO3,
.enable_value = AXP_POWERCTL3_ALDO3,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
{
.id = AXP8XX_REG_ID_ELDO1,
.name = "eldo1",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_ELDO1,
.enable_value = AXP_POWERCTL2_ELDO1,
.voltage_min = 700,
.voltage_max = 1900,
.voltage_step1 = 50,
.voltage_nstep1 = 24,
},
{
.id = AXP8XX_REG_ID_ELDO2,
.name = "eldo2",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_ELDO2,
.enable_value = AXP_POWERCTL2_ELDO2,
.voltage_min = 700,
.voltage_max = 1900,
.voltage_step1 = 50,
.voltage_nstep1 = 24,
},
{
.id = AXP8XX_REG_ID_ELDO3,
.name = "eldo3",
.enable_reg = AXP_POWERCTL2,
.enable_mask = (uint8_t) AXP_POWERCTL2_ELDO3,
.enable_value = AXP_POWERCTL2_ELDO3,
.voltage_min = 700,
.voltage_max = 1900,
.voltage_step1 = 50,
.voltage_nstep1 = 24,
},
{
.id = AXP8XX_REG_ID_FLDO1,
.name = "fldo1",
.enable_reg = AXP_POWERCTL3,
.enable_mask = (uint8_t) AXP_POWERCTL3_FLDO1,
.enable_value = AXP_POWERCTL3_FLDO1,
.voltage_min = 700,
.voltage_max = 1450,
.voltage_step1 = 50,
.voltage_nstep1 = 15,
},
{
.id = AXP8XX_REG_ID_FLDO2,
.name = "fldo2",
.enable_reg = AXP_POWERCTL3,
.enable_mask = (uint8_t) AXP_POWERCTL3_FLDO2,
.enable_value = AXP_POWERCTL3_FLDO2,
.voltage_min = 700,
.voltage_max = 1450,
.voltage_step1 = 50,
.voltage_nstep1 = 15,
},
{
.id = AXP8XX_REG_ID_GPIO0_LDO,
.name = "ldo-io0",
.enable_reg = AXP_GPIO0_CTRL,
.enable_mask = (uint8_t) AXP_GPIO_FUNC,
.enable_value = AXP_GPIO_FUNC_LDO_ON,
.disable_value = AXP_GPIO_FUNC_LDO_OFF,
.voltage_reg = AXP_GPIO0LDO_CTRL,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
{
.id = AXP8XX_REG_ID_GPIO1_LDO,
.name = "ldo-io1",
.enable_reg = AXP_GPIO1_CTRL,
.enable_mask = (uint8_t) AXP_GPIO_FUNC,
.enable_value = AXP_GPIO_FUNC_LDO_ON,
.disable_value = AXP_GPIO_FUNC_LDO_OFF,
.voltage_reg = AXP_GPIO1LDO_CTRL,
.voltage_min = 700,
.voltage_max = 3300,
.voltage_step1 = 100,
.voltage_nstep1 = 26,
},
};
enum axp8xx_sensor {
AXP_SENSOR_ACIN_PRESENT,
AXP_SENSOR_VBUS_PRESENT,
AXP_SENSOR_BATT_PRESENT,
AXP_SENSOR_BATT_CHARGING,
AXP_SENSOR_BATT_CHARGE_STATE,
AXP_SENSOR_BATT_VOLTAGE,
AXP_SENSOR_BATT_CHARGE_CURRENT,
AXP_SENSOR_BATT_DISCHARGE_CURRENT,
AXP_SENSOR_BATT_CAPACITY_PERCENT,
AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
AXP_SENSOR_BATT_CURRENT_CAPACITY,
};
enum battery_capacity_state {
BATT_CAPACITY_NORMAL = 1, /* normal cap in battery */
BATT_CAPACITY_WARNING, /* warning cap in battery */
BATT_CAPACITY_CRITICAL, /* critical cap in battery */
BATT_CAPACITY_HIGH, /* high cap in battery */
BATT_CAPACITY_MAX, /* maximum cap in battery */
BATT_CAPACITY_LOW /* low cap in battery */
};
struct axp8xx_sensors {
int id;
const char *name;
const char *desc;
const char *format;
};
static const struct axp8xx_sensors axp8xx_common_sensors[] = {
{
.id = AXP_SENSOR_ACIN_PRESENT,
.name = "acin",
.format = "I",
.desc = "ACIN Present",
},
{
.id = AXP_SENSOR_VBUS_PRESENT,
.name = "vbus",
.format = "I",
.desc = "VBUS Present",
},
{
.id = AXP_SENSOR_BATT_PRESENT,
.name = "bat",
.format = "I",
.desc = "Battery Present",
},
{
.id = AXP_SENSOR_BATT_CHARGING,
.name = "batcharging",
.format = "I",
.desc = "Battery Charging",
},
{
.id = AXP_SENSOR_BATT_CHARGE_STATE,
.name = "batchargestate",
.format = "I",
.desc = "Battery Charge State",
},
{
.id = AXP_SENSOR_BATT_VOLTAGE,
.name = "batvolt",
.format = "I",
.desc = "Battery Voltage",
},
{
.id = AXP_SENSOR_BATT_CHARGE_CURRENT,
.name = "batchargecurrent",
.format = "I",
.desc = "Average Battery Charging Current",
},
{
.id = AXP_SENSOR_BATT_DISCHARGE_CURRENT,
.name = "batdischargecurrent",
.format = "I",
.desc = "Average Battery Discharging Current",
},
{
.id = AXP_SENSOR_BATT_CAPACITY_PERCENT,
.name = "batcapacitypercent",
.format = "I",
.desc = "Battery Capacity Percentage",
},
{
.id = AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
.name = "batmaxcapacity",
.format = "I",
.desc = "Battery Maximum Capacity",
},
{
.id = AXP_SENSOR_BATT_CURRENT_CAPACITY,
.name = "batcurrentcapacity",
.format = "I",
.desc = "Battery Current Capacity",
},
};
struct axp8xx_config {
const char *name;
int batsense_step; /* uV */
int charge_step; /* uA */
int discharge_step; /* uA */
int maxcap_step; /* uAh */
int coulomb_step; /* uAh */
};
static struct axp8xx_config axp803_config = {
.name = "AXP803",
.batsense_step = 1100,
.charge_step = 1000,
.discharge_step = 1000,
.maxcap_step = 1456,
.coulomb_step = 1456,
};
struct axp8xx_softc;
struct axp8xx_reg_sc {
struct regnode *regnode;
device_t base_dev;
struct axp8xx_regdef *def;
phandle_t xref;
struct regnode_std_param *param;
};
struct axp8xx_softc {
struct resource *res;
uint16_t addr;
void *ih;
device_t gpiodev;
struct mtx mtx;
int busy;
int type;
/* Configs */
const struct axp8xx_config *config;
/* Sensors */
const struct axp8xx_sensors *sensors;
int nsensors;
/* Regulators */
struct axp8xx_reg_sc **regs;
int nregs;
/* Warning, shutdown thresholds */
int warn_thres;
int shut_thres;
};
#define AXP_LOCK(sc) mtx_lock(&(sc)->mtx)
#define AXP_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
static int
axp8xx_read(device_t dev, uint8_t reg, uint8_t *data, uint8_t size)
{
struct axp8xx_softc *sc;
struct iic_msg msg[2];
sc = device_get_softc(dev);
msg[0].slave = sc->addr;
msg[0].flags = IIC_M_WR;
msg[0].len = 1;
msg[0].buf = &reg;
msg[1].slave = sc->addr;
msg[1].flags = IIC_M_RD;
msg[1].len = size;
msg[1].buf = data;
return (iicbus_transfer(dev, msg, 2));
}
static int
axp8xx_write(device_t dev, uint8_t reg, uint8_t val)
{
struct axp8xx_softc *sc;
struct iic_msg msg[2];
sc = device_get_softc(dev);
msg[0].slave = sc->addr;
msg[0].flags = IIC_M_WR;
msg[0].len = 1;
msg[0].buf = &reg;
msg[1].slave = sc->addr;
msg[1].flags = IIC_M_WR;
msg[1].len = 1;
msg[1].buf = &val;
return (iicbus_transfer(dev, msg, 2));
}
static int
axp8xx_regnode_enable(struct regnode *regnode, bool enable, int *udelay)
{
struct axp8xx_reg_sc *sc;
uint8_t val;
sc = regnode_get_softc(regnode);
if (bootverbose)
device_printf(sc->base_dev, "%sable %s (%s)\n",
enable ? "En" : "Dis",
regnode_get_name(regnode),
sc->def->name);
axp8xx_read(sc->base_dev, sc->def->enable_reg, &val, 1);
val &= ~sc->def->enable_mask;
if (enable)
val |= sc->def->enable_value;
else {
if (sc->def->disable_value)
val |= sc->def->disable_value;
else
val &= ~sc->def->enable_value;
}
axp8xx_write(sc->base_dev, sc->def->enable_reg, val);
*udelay = 0;
return (0);
}
static void
axp8xx_regnode_reg_to_voltage(struct axp8xx_reg_sc *sc, uint8_t val, int *uv)
{
if (val < sc->def->voltage_nstep1)
*uv = sc->def->voltage_min + val * sc->def->voltage_step1;
else
*uv = sc->def->voltage_min +
(sc->def->voltage_nstep1 * sc->def->voltage_step1) +
((val - sc->def->voltage_nstep1) * sc->def->voltage_step2);
*uv *= 1000;
}
static int
axp8xx_regnode_voltage_to_reg(struct axp8xx_reg_sc *sc, int min_uvolt,
int max_uvolt, uint8_t *val)
{
uint8_t nval;
int nstep, uvolt;
nval = 0;
uvolt = sc->def->voltage_min * 1000;
for (nstep = 0; nstep < sc->def->voltage_nstep1 && uvolt < min_uvolt;
nstep++) {
++nval;
uvolt += (sc->def->voltage_step1 * 1000);
}
for (nstep = 0; nstep < sc->def->voltage_nstep2 && uvolt < min_uvolt;
nstep++) {
++nval;
uvolt += (sc->def->voltage_step2 * 1000);
}
if (uvolt > max_uvolt)
return (EINVAL);
*val = nval;
return (0);
}
static int
axp8xx_regnode_set_voltage(struct regnode *regnode, int min_uvolt,
int max_uvolt, int *udelay)
{
struct axp8xx_reg_sc *sc;
uint8_t val;
sc = regnode_get_softc(regnode);
if (bootverbose)
device_printf(sc->base_dev, "Setting %s (%s) to %d<->%d\n",
regnode_get_name(regnode),
sc->def->name,
min_uvolt, max_uvolt);
if (sc->def->voltage_step1 == 0)
return (ENXIO);
if (axp8xx_regnode_voltage_to_reg(sc, min_uvolt, max_uvolt, &val) != 0)
return (ERANGE);
axp8xx_write(sc->base_dev, sc->def->voltage_reg, val);
*udelay = 0;
return (0);
}
static int
axp8xx_regnode_get_voltage(struct regnode *regnode, int *uvolt)
{
struct axp8xx_reg_sc *sc;
uint8_t val;
sc = regnode_get_softc(regnode);
if (!sc->def->voltage_step1 || !sc->def->voltage_step2)
return (ENXIO);
axp8xx_read(sc->base_dev, sc->def->voltage_reg, &val, 1);
axp8xx_regnode_reg_to_voltage(sc, val & AXP_VOLTCTL_MASK, uvolt);
return (0);
}
static regnode_method_t axp8xx_regnode_methods[] = {
/* Regulator interface */
REGNODEMETHOD(regnode_enable, axp8xx_regnode_enable),
REGNODEMETHOD(regnode_set_voltage, axp8xx_regnode_set_voltage),
REGNODEMETHOD(regnode_get_voltage, axp8xx_regnode_get_voltage),
REGNODEMETHOD(regnode_check_voltage, regnode_method_check_voltage),
REGNODEMETHOD_END
};
DEFINE_CLASS_1(axp8xx_regnode, axp8xx_regnode_class, axp8xx_regnode_methods,
sizeof(struct axp8xx_reg_sc), regnode_class);
static void
axp8xx_shutdown(void *devp, int howto)
{
device_t dev;
if ((howto & RB_POWEROFF) == 0)
return;
dev = devp;
if (bootverbose)
device_printf(dev, "Shutdown Axp8xx\n");
axp8xx_write(dev, AXP_POWERBAT, AXP_POWERBAT_SHUTDOWN);
}
static int
axp8xx_sysctl_chargecurrent(SYSCTL_HANDLER_ARGS)
{
device_t dev = arg1;
uint8_t data;
int val, error;
error = axp8xx_read(dev, AXP_CHARGERCTL1, &data, 1);
if (error != 0)
return (error);
if (bootverbose)
device_printf(dev, "Raw CHARGECTL1 val: 0x%0x\n", data);
val = (data & AXP_CHARGERCTL1_CMASK);
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || !req->newptr) /* error || read request */
return (error);
if ((val < AXP_CHARGERCTL1_MIN) || (val > AXP_CHARGERCTL1_MAX))
return (EINVAL);
val |= (data & (AXP_CHARGERCTL1_CMASK << 4));
axp8xx_write(dev, AXP_CHARGERCTL1, val);
return (0);
}
static int
axp8xx_sysctl(SYSCTL_HANDLER_ARGS)
{
struct axp8xx_softc *sc;
device_t dev = arg1;
enum axp8xx_sensor sensor = arg2;
const struct axp8xx_config *c;
uint8_t data;
int val, i, found, batt_val;
uint8_t lo, hi;
sc = device_get_softc(dev);
c = sc->config;
for (found = 0, i = 0; i < sc->nsensors; i++) {
if (sc->sensors[i].id == sensor) {
found = 1;
break;
}
}
if (found == 0)
return (ENOENT);
switch (sensor) {
case AXP_SENSOR_ACIN_PRESENT:
if (axp8xx_read(dev, AXP_POWERSRC, &data, 1) == 0)
val = !!(data & AXP_POWERSRC_ACIN);
break;
case AXP_SENSOR_VBUS_PRESENT:
if (axp8xx_read(dev, AXP_POWERSRC, &data, 1) == 0)
val = !!(data & AXP_POWERSRC_VBUS);
break;
case AXP_SENSOR_BATT_PRESENT:
if (axp8xx_read(dev, AXP_POWERMODE, &data, 1) == 0) {
if (data & AXP_POWERMODE_BAT_VALID)
val = !!(data & AXP_POWERMODE_BAT_PRESENT);
}
break;
case AXP_SENSOR_BATT_CHARGING:
if (axp8xx_read(dev, AXP_POWERMODE, &data, 1) == 0)
val = !!(data & AXP_POWERMODE_BAT_CHARGING);
break;
case AXP_SENSOR_BATT_CHARGE_STATE:
if (axp8xx_read(dev, AXP_BAT_CAP, &data, 1) == 0 &&
(data & AXP_BAT_CAP_VALID) != 0) {
batt_val = (data & AXP_BAT_CAP_PERCENT);
if (batt_val <= sc->shut_thres)
val = BATT_CAPACITY_CRITICAL;
else if (batt_val <= sc->warn_thres)
val = BATT_CAPACITY_WARNING;
else
val = BATT_CAPACITY_NORMAL;
}
break;
case AXP_SENSOR_BATT_CAPACITY_PERCENT:
if (axp8xx_read(dev, AXP_BAT_CAP, &data, 1) == 0 &&
(data & AXP_BAT_CAP_VALID) != 0)
val = (data & AXP_BAT_CAP_PERCENT);
break;
case AXP_SENSOR_BATT_VOLTAGE:
if (axp8xx_read(dev, AXP_BATSENSE_HI, &hi, 1) == 0 &&
axp8xx_read(dev, AXP_BATSENSE_LO, &lo, 1) == 0) {
val = (AXP_SENSOR_BAT_H(hi) | AXP_SENSOR_BAT_L(lo));
val *= c->batsense_step;
}
break;
case AXP_SENSOR_BATT_CHARGE_CURRENT:
if (axp8xx_read(dev, AXP_POWERSRC, &data, 1) == 0 &&
(data & AXP_POWERSRC_CHARING) != 0 &&
axp8xx_read(dev, AXP_BATCHG_HI, &hi, 1) == 0 &&
axp8xx_read(dev, AXP_BATCHG_LO, &lo, 1) == 0) {
val = (AXP_SENSOR_BAT_H(hi) | AXP_SENSOR_BAT_L(lo));
val *= c->charge_step;
}
break;
case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
if (axp8xx_read(dev, AXP_POWERSRC, &data, 1) == 0 &&
(data & AXP_POWERSRC_CHARING) == 0 &&
axp8xx_read(dev, AXP_BATDISCHG_HI, &hi, 1) == 0 &&
axp8xx_read(dev, AXP_BATDISCHG_LO, &lo, 1) == 0) {
val = (AXP_SENSOR_BAT_H(hi) | AXP_SENSOR_BAT_L(lo));
val *= c->discharge_step;
}
break;
case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
if (axp8xx_read(dev, AXP_BAT_MAX_CAP_HI, &hi, 1) == 0 &&
axp8xx_read(dev, AXP_BAT_MAX_CAP_LO, &lo, 1) == 0) {
val = AXP_SENSOR_COULOMB(hi, lo);
val *= c->maxcap_step;
}
break;
case AXP_SENSOR_BATT_CURRENT_CAPACITY:
if (axp8xx_read(dev, AXP_BAT_COULOMB_HI, &hi, 1) == 0 &&
axp8xx_read(dev, AXP_BAT_COULOMB_LO, &lo, 1) == 0) {
val = AXP_SENSOR_COULOMB(hi, lo);
val *= c->coulomb_step;
}
break;
}
return sysctl_handle_opaque(oidp, &val, sizeof(val), req);
}
static void
axp8xx_intr(void *arg)
{
device_t dev;
uint8_t val;
int error;
dev = arg;
error = axp8xx_read(dev, AXP_IRQSTAT1, &val, 1);
if (error != 0)
return;
if (val) {
if (bootverbose)
device_printf(dev, "AXP_IRQSTAT1 val: %x\n", val);
if (val & AXP_IRQSTAT1_ACIN_HI)
devctl_notify("PMU", "AC", "plugged", NULL);
if (val & AXP_IRQSTAT1_ACIN_LO)
devctl_notify("PMU", "AC", "unplugged", NULL);
if (val & AXP_IRQSTAT1_VBUS_HI)
devctl_notify("PMU", "USB", "plugged", NULL);
if (val & AXP_IRQSTAT1_VBUS_LO)
devctl_notify("PMU", "USB", "unplugged", NULL);
/* Acknowledge */
axp8xx_write(dev, AXP_IRQSTAT1, val);
}
error = axp8xx_read(dev, AXP_IRQSTAT2, &val, 1);
if (error != 0)
return;
if (val) {
if (bootverbose)
device_printf(dev, "AXP_IRQSTAT2 val: %x\n", val);
if (val & AXP_IRQSTAT2_BATCHGD)
devctl_notify("PMU", "Battery", "charged", NULL);
if (val & AXP_IRQSTAT2_BATCHGC)
devctl_notify("PMU", "Battery", "charging", NULL);
if (val & AXP_IRQSTAT2_BAT_NO)
devctl_notify("PMU", "Battery", "absent", NULL);
if (val & AXP_IRQSTAT2_BAT_IN)
devctl_notify("PMU", "Battery", "plugged", NULL);
/* Acknowledge */
axp8xx_write(dev, AXP_IRQSTAT2, val);
}
error = axp8xx_read(dev, AXP_IRQSTAT3, &val, 1);
if (error != 0)
return;
if (val) {
/* Acknowledge */
axp8xx_write(dev, AXP_IRQSTAT3, val);
}
error = axp8xx_read(dev, AXP_IRQSTAT4, &val, 1);
if (error != 0)
return;
if (val) {
if (bootverbose)
device_printf(dev, "AXP_IRQSTAT4 val: %x\n", val);
if (val & AXP_IRQSTAT4_BATLVL_LO0)
devctl_notify("PMU", "Battery", "shutdown threshold", NULL);
if (val & AXP_IRQSTAT4_BATLVL_LO1)
devctl_notify("PMU", "Battery", "warning threshold", NULL);
/* Acknowledge */
axp8xx_write(dev, AXP_IRQSTAT4, val);
}
error = axp8xx_read(dev, AXP_IRQSTAT5, &val, 1);
if (error != 0)
return;
if (val != 0) {
if ((val & AXP_IRQSTAT5_POKSIRQ) != 0) {
if (bootverbose)
device_printf(dev, "Power button pressed\n");
shutdown_nice(RB_POWEROFF);
}
/* Acknowledge */
axp8xx_write(dev, AXP_IRQSTAT5, val);
}
error = axp8xx_read(dev, AXP_IRQSTAT6, &val, 1);
if (error != 0)
return;
if (val) {
/* Acknowledge */
axp8xx_write(dev, AXP_IRQSTAT6, val);
}
}
static device_t
axp8xx_gpio_get_bus(device_t dev)
{
struct axp8xx_softc *sc;
sc = device_get_softc(dev);
return (sc->gpiodev);
}
static int
axp8xx_gpio_pin_max(device_t dev, int *maxpin)
{
*maxpin = nitems(axp8xx_pins) - 1;
return (0);
}
static int
axp8xx_gpio_pin_getname(device_t dev, uint32_t pin, char *name)
{
if (pin >= nitems(axp8xx_pins))
return (EINVAL);
snprintf(name, GPIOMAXNAME, "%s", axp8xx_pins[pin].name);
return (0);
}
static int
axp8xx_gpio_pin_getcaps(device_t dev, uint32_t pin, uint32_t *caps)
{
if (pin >= nitems(axp8xx_pins))
return (EINVAL);
*caps = GPIO_PIN_INPUT | GPIO_PIN_OUTPUT;
return (0);
}
static int
axp8xx_gpio_pin_getflags(device_t dev, uint32_t pin, uint32_t *flags)
{
struct axp8xx_softc *sc;
uint8_t data, func;
int error;
if (pin >= nitems(axp8xx_pins))
return (EINVAL);
sc = device_get_softc(dev);
AXP_LOCK(sc);
error = axp8xx_read(dev, axp8xx_pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = (data & AXP_GPIO_FUNC) >> AXP_GPIO_FUNC_SHIFT;
if (func == AXP_GPIO_FUNC_INPUT)
*flags = GPIO_PIN_INPUT;
else if (func == AXP_GPIO_FUNC_DRVLO ||
func == AXP_GPIO_FUNC_DRVHI)
*flags = GPIO_PIN_OUTPUT;
else
*flags = 0;
}
AXP_UNLOCK(sc);
return (error);
}
static int
axp8xx_gpio_pin_setflags(device_t dev, uint32_t pin, uint32_t flags)
{
struct axp8xx_softc *sc;
uint8_t data;
int error;
if (pin >= nitems(axp8xx_pins))
return (EINVAL);
sc = device_get_softc(dev);
AXP_LOCK(sc);
error = axp8xx_read(dev, axp8xx_pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
data &= ~AXP_GPIO_FUNC;
if ((flags & (GPIO_PIN_INPUT|GPIO_PIN_OUTPUT)) != 0) {
if ((flags & GPIO_PIN_OUTPUT) == 0)
data |= AXP_GPIO_FUNC_INPUT;
}
error = axp8xx_write(dev, axp8xx_pins[pin].ctrl_reg, data);
}
AXP_UNLOCK(sc);
return (error);
}
static int
axp8xx_gpio_pin_get(device_t dev, uint32_t pin, unsigned int *val)
{
struct axp8xx_softc *sc;
uint8_t data, func;
int error;
if (pin >= nitems(axp8xx_pins))
return (EINVAL);
sc = device_get_softc(dev);
AXP_LOCK(sc);
error = axp8xx_read(dev, axp8xx_pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = (data & AXP_GPIO_FUNC) >> AXP_GPIO_FUNC_SHIFT;
switch (func) {
case AXP_GPIO_FUNC_DRVLO:
*val = 0;
break;
case AXP_GPIO_FUNC_DRVHI:
*val = 1;
break;
case AXP_GPIO_FUNC_INPUT:
error = axp8xx_read(dev, AXP_GPIO_SIGBIT, &data, 1);
if (error == 0)
*val = (data & (1 << pin)) ? 1 : 0;
break;
default:
error = EIO;
break;
}
}
AXP_UNLOCK(sc);
return (error);
}
static int
axp8xx_gpio_pin_set(device_t dev, uint32_t pin, unsigned int val)
{
struct axp8xx_softc *sc;
uint8_t data, func;
int error;
if (pin >= nitems(axp8xx_pins))
return (EINVAL);
sc = device_get_softc(dev);
AXP_LOCK(sc);
error = axp8xx_read(dev, axp8xx_pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = (data & AXP_GPIO_FUNC) >> AXP_GPIO_FUNC_SHIFT;
switch (func) {
case AXP_GPIO_FUNC_DRVLO:
case AXP_GPIO_FUNC_DRVHI:
data &= ~AXP_GPIO_FUNC;
data |= (val << AXP_GPIO_FUNC_SHIFT);
break;
default:
error = EIO;
break;
}
}
if (error == 0)
error = axp8xx_write(dev, axp8xx_pins[pin].ctrl_reg, data);
AXP_UNLOCK(sc);
return (error);
}
static int
axp8xx_gpio_pin_toggle(device_t dev, uint32_t pin)
{
struct axp8xx_softc *sc;
uint8_t data, func;
int error;
if (pin >= nitems(axp8xx_pins))
return (EINVAL);
sc = device_get_softc(dev);
AXP_LOCK(sc);
error = axp8xx_read(dev, axp8xx_pins[pin].ctrl_reg, &data, 1);
if (error == 0) {
func = (data & AXP_GPIO_FUNC) >> AXP_GPIO_FUNC_SHIFT;
switch (func) {
case AXP_GPIO_FUNC_DRVLO:
data &= ~AXP_GPIO_FUNC;
data |= (AXP_GPIO_FUNC_DRVHI << AXP_GPIO_FUNC_SHIFT);
break;
case AXP_GPIO_FUNC_DRVHI:
data &= ~AXP_GPIO_FUNC;
data |= (AXP_GPIO_FUNC_DRVLO << AXP_GPIO_FUNC_SHIFT);
break;
default:
error = EIO;
break;
}
}
if (error == 0)
error = axp8xx_write(dev, axp8xx_pins[pin].ctrl_reg, data);
AXP_UNLOCK(sc);
return (error);
}
static int
axp8xx_gpio_map_gpios(device_t bus, phandle_t dev, phandle_t gparent,
int gcells, pcell_t *gpios, uint32_t *pin, uint32_t *flags)
{
if (gpios[0] >= nitems(axp8xx_pins))
return (EINVAL);
*pin = gpios[0];
*flags = gpios[1];
return (0);
}
static phandle_t
axp8xx_get_node(device_t dev, device_t bus)
{
return (ofw_bus_get_node(dev));
}
static struct axp8xx_reg_sc *
axp8xx_reg_attach(device_t dev, phandle_t node,
struct axp8xx_regdef *def)
{
struct axp8xx_reg_sc *reg_sc;
struct regnode_init_def initdef;
struct regnode *regnode;
memset(&initdef, 0, sizeof(initdef));
if (regulator_parse_ofw_stdparam(dev, node, &initdef) != 0)
return (NULL);
if (initdef.std_param.min_uvolt == 0)
initdef.std_param.min_uvolt = def->voltage_min * 1000;
if (initdef.std_param.max_uvolt == 0)
initdef.std_param.max_uvolt = def->voltage_max * 1000;
initdef.id = def->id;
initdef.ofw_node = node;
regnode = regnode_create(dev, &axp8xx_regnode_class, &initdef);
if (regnode == NULL) {
device_printf(dev, "cannot create regulator\n");
return (NULL);
}
reg_sc = regnode_get_softc(regnode);
reg_sc->regnode = regnode;
reg_sc->base_dev = dev;
reg_sc->def = def;
reg_sc->xref = OF_xref_from_node(node);
reg_sc->param = regnode_get_stdparam(regnode);
regnode_register(regnode);
return (reg_sc);
}
static int
axp8xx_regdev_map(device_t dev, phandle_t xref, int ncells, pcell_t *cells,
intptr_t *num)
{
struct axp8xx_softc *sc;
int i;
sc = device_get_softc(dev);
for (i = 0; i < sc->nregs; i++) {
if (sc->regs[i] == NULL)
continue;
if (sc->regs[i]->xref == xref) {
*num = sc->regs[i]->def->id;
return (0);
}
}
return (ENXIO);
}
static int
axp8xx_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data)
{
case AXP803:
device_set_desc(dev, "X-Powers AXP803 Power Management Unit");
break;
case AXP813:
device_set_desc(dev, "X-Powers AXP813 Power Management Unit");
break;
default:
return (ENXIO);
}
return (BUS_PROBE_DEFAULT);
}
static int
axp8xx_attach(device_t dev)
{
struct axp8xx_softc *sc;
struct axp8xx_reg_sc *reg;
uint8_t chip_id, val;
phandle_t rnode, child;
int error, i;
sc = device_get_softc(dev);
sc->addr = iicbus_get_addr(dev);
mtx_init(&sc->mtx, device_get_nameunit(dev), NULL, MTX_DEF);
error = bus_alloc_resources(dev, axp8xx_spec, &sc->res);
if (error != 0) {
device_printf(dev, "cannot allocate resources for device\n");
return (error);
}
if (bootverbose) {
axp8xx_read(dev, AXP_ICTYPE, &chip_id, 1);
device_printf(dev, "chip ID 0x%02x\n", chip_id);
}
sc->nregs = nitems(axp8xx_common_regdefs);
sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
switch (sc->type) {
case AXP803:
sc->nregs += nitems(axp803_regdefs);
break;
case AXP813:
sc->nregs += nitems(axp813_regdefs);
break;
}
sc->config = &axp803_config;
sc->sensors = axp8xx_common_sensors;
sc->nsensors = nitems(axp8xx_common_sensors);
sc->regs = malloc(sizeof(struct axp8xx_reg_sc *) * sc->nregs,
M_AXP8XX_REG, M_WAITOK | M_ZERO);
/* Attach known regulators that exist in the DT */
rnode = ofw_bus_find_child(ofw_bus_get_node(dev), "regulators");
if (rnode > 0) {
for (i = 0; i < sc->nregs; i++) {
char *regname;
struct axp8xx_regdef *regdef;
if (i <= nitems(axp8xx_common_regdefs)) {
regname = axp8xx_common_regdefs[i].name;
regdef = &axp8xx_common_regdefs[i];
} else {
int off;
off = i - nitems(axp8xx_common_regdefs);
switch (sc->type) {
case AXP803:
regname = axp803_regdefs[off].name;
regdef = &axp803_regdefs[off];
break;
case AXP813:
regname = axp813_regdefs[off].name;
regdef = &axp813_regdefs[off];
break;
}
}
child = ofw_bus_find_child(rnode,
regname);
if (child == 0)
continue;
reg = axp8xx_reg_attach(dev, child,
regdef);
if (reg == NULL) {
device_printf(dev,
"cannot attach regulator %s\n",
regname);
continue;
}
sc->regs[i] = reg;
}
}
/* Add sensors */
for (i = 0; i < sc->nsensors; i++) {
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, sc->sensors[i].name,
CTLTYPE_INT | CTLFLAG_RD,
dev, sc->sensors[i].id, axp8xx_sysctl,
sc->sensors[i].format,
sc->sensors[i].desc);
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "batchargecurrentstep",
CTLTYPE_INT | CTLFLAG_RW,
dev, 0, axp8xx_sysctl_chargecurrent,
"I", "Battery Charging Current Step, "
"0: 200mA, 1: 400mA, 2: 600mA, 3: 800mA, "
"4: 1000mA, 5: 1200mA, 6: 1400mA, 7: 1600mA, "
"8: 1800mA, 9: 2000mA, 10: 2200mA, 11: 2400mA, "
"12: 2600mA, 13: 2800mA");
/* Get thresholds */
if (axp8xx_read(dev, AXP_BAT_CAP_WARN, &val, 1) == 0) {
sc->warn_thres = (val & AXP_BAT_CAP_WARN_LV1) >> 4;
sc->warn_thres += AXP_BAP_CAP_WARN_LV1BASE;
sc->shut_thres = (val & AXP_BAT_CAP_WARN_LV2);
if (bootverbose) {
device_printf(dev,
"Raw reg val: 0x%02x\n", val);
device_printf(dev,
"Warning threshold: 0x%02x\n", sc->warn_thres);
device_printf(dev,
"Shutdown threshold: 0x%02x\n", sc->shut_thres);
}
}
/* Enable interrupts */
axp8xx_write(dev, AXP_IRQEN1,
AXP_IRQEN1_VBUS_LO |
AXP_IRQEN1_VBUS_HI |
AXP_IRQEN1_ACIN_LO |
AXP_IRQEN1_ACIN_HI);
axp8xx_write(dev, AXP_IRQEN2,
AXP_IRQEN2_BATCHGD |
AXP_IRQEN2_BATCHGC |
AXP_IRQEN2_BAT_NO |
AXP_IRQEN2_BAT_IN);
axp8xx_write(dev, AXP_IRQEN3, 0);
axp8xx_write(dev, AXP_IRQEN4,
AXP_IRQEN4_BATLVL_LO0 |
AXP_IRQEN4_BATLVL_LO1);
axp8xx_write(dev, AXP_IRQEN5,
AXP_IRQEN5_POKSIRQ |
AXP_IRQEN5_POKLIRQ);
axp8xx_write(dev, AXP_IRQEN6, 0);
/* Install interrupt handler */
error = bus_setup_intr(dev, sc->res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, axp8xx_intr, dev, &sc->ih);
if (error != 0) {
device_printf(dev, "cannot setup interrupt handler\n");
return (error);
}
EVENTHANDLER_REGISTER(shutdown_final, axp8xx_shutdown, dev,
SHUTDOWN_PRI_LAST);
sc->gpiodev = gpiobus_attach_bus(dev);
return (0);
}
static device_method_t axp8xx_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, axp8xx_probe),
DEVMETHOD(device_attach, axp8xx_attach),
/* GPIO interface */
DEVMETHOD(gpio_get_bus, axp8xx_gpio_get_bus),
DEVMETHOD(gpio_pin_max, axp8xx_gpio_pin_max),
DEVMETHOD(gpio_pin_getname, axp8xx_gpio_pin_getname),
DEVMETHOD(gpio_pin_getcaps, axp8xx_gpio_pin_getcaps),
DEVMETHOD(gpio_pin_getflags, axp8xx_gpio_pin_getflags),
DEVMETHOD(gpio_pin_setflags, axp8xx_gpio_pin_setflags),
DEVMETHOD(gpio_pin_get, axp8xx_gpio_pin_get),
DEVMETHOD(gpio_pin_set, axp8xx_gpio_pin_set),
DEVMETHOD(gpio_pin_toggle, axp8xx_gpio_pin_toggle),
DEVMETHOD(gpio_map_gpios, axp8xx_gpio_map_gpios),
/* Regdev interface */
DEVMETHOD(regdev_map, axp8xx_regdev_map),
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_node, axp8xx_get_node),
DEVMETHOD_END
};
static driver_t axp8xx_driver = {
"axp8xx_pmu",
axp8xx_methods,
sizeof(struct axp8xx_softc),
};
static devclass_t axp8xx_devclass;
extern devclass_t ofwgpiobus_devclass, gpioc_devclass;
extern driver_t ofw_gpiobus_driver, gpioc_driver;
EARLY_DRIVER_MODULE(axp8xx, iicbus, axp8xx_driver, axp8xx_devclass, 0, 0,
BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LAST);
EARLY_DRIVER_MODULE(ofw_gpiobus, axp8xx_pmu, ofw_gpiobus_driver,
ofwgpiobus_devclass, 0, 0, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LAST);
DRIVER_MODULE(gpioc, axp8xx_pmu, gpioc_driver, gpioc_devclass, 0, 0);
MODULE_VERSION(axp8xx, 1);
MODULE_DEPEND(axp8xx, iicbus, 1, 1, 1);
SIMPLEBUS_PNP_INFO(compat_data);