freebsd-dev/sbin/fsck_ffs/pass1.c
Tor Egge a46d9bce72 Don't allow special devices of type NODEV (NOUDEV as seen from kernel).
They can't be created via mknod and the kernel crashes if it encounters
such an inode.
Approved by:	mckusick
2001-02-15 22:26:21 +00:00

450 lines
12 KiB
C

/*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
#if 0
static const char sccsid[] = "@(#)pass1.c 8.6 (Berkeley) 4/28/95";
#endif
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <sys/param.h>
#include <sys/stat.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ffs/fs.h>
#include <err.h>
#include <string.h>
#include "fsck.h"
static ufs_daddr_t badblk;
static ufs_daddr_t dupblk;
static ino_t lastino; /* last inode in use */
static void checkinode __P((ino_t inumber, struct inodesc *));
void
pass1()
{
u_int8_t *cp;
ino_t inumber;
int c, i, cgd, inosused;
struct inostat *info;
struct inodesc idesc;
/*
* Set file system reserved blocks in used block map.
*/
for (c = 0; c < sblock.fs_ncg; c++) {
cgd = cgdmin(&sblock, c);
if (c == 0) {
i = cgbase(&sblock, c);
} else
i = cgsblock(&sblock, c);
for (; i < cgd; i++)
setbmap(i);
}
i = sblock.fs_csaddr;
cgd = i + howmany(sblock.fs_cssize, sblock.fs_fsize);
for (; i < cgd; i++)
setbmap(i);
/*
* Find all allocated blocks.
*/
memset(&idesc, 0, sizeof(struct inodesc));
idesc.id_func = pass1check;
n_files = n_blks = 0;
for (c = 0; c < sblock.fs_ncg; c++) {
inumber = c * sblock.fs_ipg;
setinodebuf(inumber);
inosused = sblock.fs_ipg;
if (got_siginfo) {
printf("%s: phase 1: cyl group %d of %d (%d%%)\n",
cdevname, c, sblock.fs_ncg,
c * 100 / sblock.fs_ncg);
got_siginfo = 0;
}
/*
* If we are using soft updates, then we can trust the
* cylinder group inode allocation maps to tell us which
* inodes are allocated. We will scan the used inode map
* to find the inodes that are really in use, and then
* read only those inodes in from disk.
*/
if (preen && usedsoftdep) {
getblk(&cgblk, cgtod(&sblock, c), sblock.fs_cgsize);
if (!cg_chkmagic(&cgrp))
pfatal("CG %d: BAD MAGIC NUMBER\n", c);
cp = &cg_inosused(&cgrp)[(sblock.fs_ipg - 1) / NBBY];
for ( ; inosused > 0; inosused -= NBBY, cp--) {
if (*cp == 0)
continue;
for (i = 1 << (NBBY - 1); i > 0; i >>= 1) {
if (*cp & i)
break;
inosused--;
}
break;
}
if (inosused < 0)
inosused = 0;
}
/*
* Allocate inoinfo structures for the allocated inodes.
*/
inostathead[c].il_numalloced = inosused;
if (inosused == 0) {
inostathead[c].il_stat = 0;
continue;
}
info = calloc((unsigned)inosused, sizeof(struct inostat));
if (info == NULL)
pfatal("cannot alloc %u bytes for inoinfo\n",
(unsigned)(sizeof(struct inostat) * inosused));
inostathead[c].il_stat = info;
/*
* Scan the allocated inodes.
*/
for (i = 0; i < inosused; i++, inumber++) {
if (inumber < ROOTINO) {
(void)getnextinode(inumber);
continue;
}
checkinode(inumber, &idesc);
}
lastino += 1;
if (inosused < sblock.fs_ipg || inumber == lastino)
continue;
/*
* If we were not able to determine in advance which inodes
* were in use, then reduce the size of the inoinfo structure
* to the size necessary to describe the inodes that we
* really found.
*/
inosused = lastino - (c * sblock.fs_ipg);
if (inosused < 0)
inosused = 0;
inostathead[c].il_numalloced = inosused;
if (inosused == 0) {
free(inostathead[c].il_stat);
inostathead[c].il_stat = 0;
continue;
}
info = calloc((unsigned)inosused, sizeof(struct inostat));
if (info == NULL)
pfatal("cannot alloc %u bytes for inoinfo\n",
(unsigned)(sizeof(struct inostat) * inosused));
memmove(info, inostathead[c].il_stat, inosused * sizeof(*info));
free(inostathead[c].il_stat);
inostathead[c].il_stat = info;
}
freeinodebuf();
}
static void
checkinode(inumber, idesc)
ino_t inumber;
register struct inodesc *idesc;
{
register struct dinode *dp;
struct zlncnt *zlnp;
u_int64_t kernmaxfilesize;
ufs_daddr_t ndb, j;
mode_t mode;
char *symbuf;
dp = getnextinode(inumber);
mode = dp->di_mode & IFMT;
if (mode == 0) {
if (memcmp(dp->di_db, zino.di_db,
NDADDR * sizeof(ufs_daddr_t)) ||
memcmp(dp->di_ib, zino.di_ib,
NIADDR * sizeof(ufs_daddr_t)) ||
dp->di_mode || dp->di_size) {
pfatal("PARTIALLY ALLOCATED INODE I=%lu", inumber);
if (reply("CLEAR") == 1) {
dp = ginode(inumber);
clearinode(dp);
inodirty();
}
}
inoinfo(inumber)->ino_state = USTATE;
return;
}
lastino = inumber;
/* This should match the file size limit in ffs_mountfs(). */
kernmaxfilesize = (u_int64_t)0x40000000 * sblock.fs_bsize - 1;
if (dp->di_size > kernmaxfilesize ||
dp->di_size > sblock.fs_maxfilesize ||
(mode == IFDIR && dp->di_size > MAXDIRSIZE)) {
if (debug)
printf("bad size %qu:", dp->di_size);
goto unknown;
}
if (!preen && mode == IFMT && reply("HOLD BAD BLOCK") == 1) {
dp = ginode(inumber);
dp->di_size = sblock.fs_fsize;
dp->di_mode = IFREG|0600;
inodirty();
}
if ((mode == IFBLK || mode == IFCHR || mode == IFIFO ||
mode == IFSOCK) && dp->di_size != 0) {
if (debug)
printf("bad special-file size %qu:", dp->di_size);
goto unknown;
}
if ((mode == IFBLK || mode == IFCHR) && (dev_t)dp->di_rdev == NODEV) {
if (debug)
printf("bad special-file rdev NODEV:");
goto unknown;
}
ndb = howmany(dp->di_size, sblock.fs_bsize);
if (ndb < 0) {
if (debug)
printf("bad size %qu ndb %d:",
dp->di_size, ndb);
goto unknown;
}
if (mode == IFBLK || mode == IFCHR)
ndb++;
if (mode == IFLNK) {
if (doinglevel2 &&
dp->di_size > 0 && dp->di_size < MAXSYMLINKLEN &&
dp->di_blocks != 0) {
symbuf = alloca(secsize);
if (bread(fsreadfd, symbuf,
fsbtodb(&sblock, dp->di_db[0]),
(long)secsize) != 0)
errx(EEXIT, "cannot read symlink");
if (debug) {
symbuf[dp->di_size] = 0;
printf("convert symlink %lu(%s) of size %ld\n",
(u_long)inumber, symbuf, (long)dp->di_size);
}
dp = ginode(inumber);
memmove(dp->di_shortlink, symbuf, (long)dp->di_size);
dp->di_blocks = 0;
inodirty();
}
/*
* Fake ndb value so direct/indirect block checks below
* will detect any garbage after symlink string.
*/
if (dp->di_size < sblock.fs_maxsymlinklen) {
ndb = howmany(dp->di_size, sizeof(ufs_daddr_t));
if (ndb > NDADDR) {
j = ndb - NDADDR;
for (ndb = 1; j > 1; j--)
ndb *= NINDIR(&sblock);
ndb += NDADDR;
}
}
}
for (j = ndb; j < NDADDR; j++)
if (dp->di_db[j] != 0) {
if (debug)
printf("bad direct addr: %ld\n",
(long)dp->di_db[j]);
goto unknown;
}
for (j = 0, ndb -= NDADDR; ndb > 0; j++)
ndb /= NINDIR(&sblock);
for (; j < NIADDR; j++)
if (dp->di_ib[j] != 0) {
if (debug)
printf("bad indirect addr: %ld\n",
(long)dp->di_ib[j]);
goto unknown;
}
if (ftypeok(dp) == 0)
goto unknown;
n_files++;
inoinfo(inumber)->ino_linkcnt = dp->di_nlink;
if (dp->di_nlink <= 0) {
zlnp = (struct zlncnt *)malloc(sizeof *zlnp);
if (zlnp == NULL) {
pfatal("LINK COUNT TABLE OVERFLOW");
if (reply("CONTINUE") == 0) {
ckfini(0);
exit(EEXIT);
}
} else {
zlnp->zlncnt = inumber;
zlnp->next = zlnhead;
zlnhead = zlnp;
}
}
if (mode == IFDIR) {
if (dp->di_size == 0)
inoinfo(inumber)->ino_state = DCLEAR;
else
inoinfo(inumber)->ino_state = DSTATE;
cacheino(dp, inumber);
countdirs++;
} else
inoinfo(inumber)->ino_state = FSTATE;
inoinfo(inumber)->ino_type = IFTODT(mode);
if (doinglevel2 &&
(dp->di_ouid != (u_short)-1 || dp->di_ogid != (u_short)-1)) {
dp = ginode(inumber);
dp->di_uid = dp->di_ouid;
dp->di_ouid = -1;
dp->di_gid = dp->di_ogid;
dp->di_ogid = -1;
inodirty();
}
badblk = dupblk = 0;
idesc->id_number = inumber;
if (dp->di_flags & SF_SNAPSHOT)
idesc->id_type = SNAP;
else
idesc->id_type = ADDR;
(void)ckinode(dp, idesc);
idesc->id_entryno *= btodb(sblock.fs_fsize);
if (dp->di_blocks != idesc->id_entryno) {
pwarn("INCORRECT BLOCK COUNT I=%lu (%ld should be %ld)",
inumber, dp->di_blocks, idesc->id_entryno);
if (preen)
printf(" (CORRECTED)\n");
else if (reply("CORRECT") == 0)
return;
dp = ginode(inumber);
dp->di_blocks = idesc->id_entryno;
inodirty();
}
return;
unknown:
pfatal("UNKNOWN FILE TYPE I=%lu", inumber);
inoinfo(inumber)->ino_state = FCLEAR;
if (reply("CLEAR") == 1) {
inoinfo(inumber)->ino_state = USTATE;
dp = ginode(inumber);
clearinode(dp);
inodirty();
}
}
int
pass1check(idesc)
register struct inodesc *idesc;
{
int res = KEEPON;
int anyout, nfrags;
ufs_daddr_t blkno = idesc->id_blkno;
register struct dups *dlp;
struct dups *new;
if (idesc->id_type == SNAP) {
if (blkno == BLK_NOCOPY)
return (KEEPON);
if (idesc->id_number == cursnapshot) {
if (blkno == blkstofrags(&sblock, idesc->id_lbn))
return (KEEPON);
if (blkno == BLK_SNAP) {
blkno = blkstofrags(&sblock, idesc->id_lbn);
idesc->id_entryno -= idesc->id_numfrags;
}
} else {
if (blkno == BLK_SNAP)
return (KEEPON);
}
}
if ((anyout = chkrange(blkno, idesc->id_numfrags)) != 0) {
blkerror(idesc->id_number, "BAD", blkno);
if (badblk++ >= MAXBAD) {
pwarn("EXCESSIVE BAD BLKS I=%lu",
idesc->id_number);
if (preen)
printf(" (SKIPPING)\n");
else if (reply("CONTINUE") == 0) {
ckfini(0);
exit(EEXIT);
}
return (STOP);
}
}
for (nfrags = idesc->id_numfrags; nfrags > 0; blkno++, nfrags--) {
if (anyout && chkrange(blkno, 1)) {
res = SKIP;
} else if (!testbmap(blkno)) {
n_blks++;
setbmap(blkno);
} else {
blkerror(idesc->id_number, "DUP", blkno);
if (dupblk++ >= MAXDUP) {
pwarn("EXCESSIVE DUP BLKS I=%lu",
idesc->id_number);
if (preen)
printf(" (SKIPPING)\n");
else if (reply("CONTINUE") == 0) {
ckfini(0);
exit(EEXIT);
}
return (STOP);
}
new = (struct dups *)malloc(sizeof(struct dups));
if (new == NULL) {
pfatal("DUP TABLE OVERFLOW.");
if (reply("CONTINUE") == 0) {
ckfini(0);
exit(EEXIT);
}
return (STOP);
}
new->dup = blkno;
if (muldup == 0) {
duplist = muldup = new;
new->next = 0;
} else {
new->next = muldup->next;
muldup->next = new;
}
for (dlp = duplist; dlp != muldup; dlp = dlp->next)
if (dlp->dup == blkno)
break;
if (dlp == muldup && dlp->dup != blkno)
muldup = new;
}
/*
* count the number of blocks found in id_entryno
*/
idesc->id_entryno++;
}
return (res);
}