7e75718295
MFC after: 2 weeks
2160 lines
51 KiB
C
2160 lines
51 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1983, 1988, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "defs.h"
|
|
|
|
__RCSID("$FreeBSD$");
|
|
|
|
static struct rt_spare *rts_better(struct rt_entry *);
|
|
static struct rt_spare rts_empty = {0,0,0,HOPCNT_INFINITY,0,0,0};
|
|
static void set_need_flash(void);
|
|
#ifdef _HAVE_SIN_LEN
|
|
static void masktrim(struct sockaddr_in *ap);
|
|
#else
|
|
static void masktrim(struct sockaddr_in_new *ap);
|
|
#endif
|
|
static void rtbad(struct rt_entry *);
|
|
|
|
|
|
struct radix_node_head *rhead; /* root of the radix tree */
|
|
|
|
int need_flash = 1; /* flash update needed
|
|
* start =1 to suppress the 1st
|
|
*/
|
|
|
|
struct timeval age_timer; /* next check of old routes */
|
|
struct timeval need_kern = { /* need to update kernel table */
|
|
EPOCH+MIN_WAITTIME-1, 0
|
|
};
|
|
|
|
int stopint;
|
|
|
|
int total_routes;
|
|
|
|
/* zap any old routes through this gateway */
|
|
static naddr age_bad_gate;
|
|
|
|
|
|
/* It is desirable to "aggregate" routes, to combine differing routes of
|
|
* the same metric and next hop into a common route with a smaller netmask
|
|
* or to suppress redundant routes, routes that add no information to
|
|
* routes with smaller netmasks.
|
|
*
|
|
* A route is redundant if and only if any and all routes with smaller
|
|
* but matching netmasks and nets are the same. Since routes are
|
|
* kept sorted in the radix tree, redundant routes always come second.
|
|
*
|
|
* There are two kinds of aggregations. First, two routes of the same bit
|
|
* mask and differing only in the least significant bit of the network
|
|
* number can be combined into a single route with a coarser mask.
|
|
*
|
|
* Second, a route can be suppressed in favor of another route with a more
|
|
* coarse mask provided no incompatible routes with intermediate masks
|
|
* are present. The second kind of aggregation involves suppressing routes.
|
|
* A route must not be suppressed if an incompatible route exists with
|
|
* an intermediate mask, since the suppressed route would be covered
|
|
* by the intermediate.
|
|
*
|
|
* This code relies on the radix tree walk encountering routes
|
|
* sorted first by address, with the smallest address first.
|
|
*/
|
|
|
|
static struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest;
|
|
|
|
/* #define DEBUG_AG */
|
|
#ifdef DEBUG_AG
|
|
#define CHECK_AG() {int acnt = 0; struct ag_info *cag; \
|
|
for (cag = ag_avail; cag != NULL; cag = cag->ag_fine) \
|
|
acnt++; \
|
|
for (cag = ag_corsest; cag != NULL; cag = cag->ag_fine) \
|
|
acnt++; \
|
|
if (acnt != NUM_AG_SLOTS) { \
|
|
(void)fflush(stderr); \
|
|
abort(); \
|
|
} \
|
|
}
|
|
#else
|
|
#define CHECK_AG()
|
|
#endif
|
|
|
|
|
|
/* Output the contents of an aggregation table slot.
|
|
* This function must always be immediately followed with the deletion
|
|
* of the target slot.
|
|
*/
|
|
static void
|
|
ag_out(struct ag_info *ag,
|
|
void (*out)(struct ag_info *))
|
|
{
|
|
struct ag_info *ag_cors;
|
|
naddr bit;
|
|
|
|
|
|
/* Forget it if this route should not be output for split-horizon. */
|
|
if (ag->ag_state & AGS_SPLIT_HZ)
|
|
return;
|
|
|
|
/* If we output both the even and odd twins, then the immediate parent,
|
|
* if it is present, is redundant, unless the parent manages to
|
|
* aggregate into something coarser.
|
|
* On successive calls, this code detects the even and odd twins,
|
|
* and marks the parent.
|
|
*
|
|
* Note that the order in which the radix tree code emits routes
|
|
* ensures that the twins are seen before the parent is emitted.
|
|
*/
|
|
ag_cors = ag->ag_cors;
|
|
if (ag_cors != NULL
|
|
&& ag_cors->ag_mask == ag->ag_mask<<1
|
|
&& ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) {
|
|
ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h)
|
|
? AGS_REDUN0
|
|
: AGS_REDUN1);
|
|
}
|
|
|
|
/* Skip it if this route is itself redundant.
|
|
*
|
|
* It is ok to change the contents of the slot here, since it is
|
|
* always deleted next.
|
|
*/
|
|
if (ag->ag_state & AGS_REDUN0) {
|
|
if (ag->ag_state & AGS_REDUN1)
|
|
return; /* quit if fully redundant */
|
|
/* make it finer if it is half-redundant */
|
|
bit = (-ag->ag_mask) >> 1;
|
|
ag->ag_dst_h |= bit;
|
|
ag->ag_mask |= bit;
|
|
|
|
} else if (ag->ag_state & AGS_REDUN1) {
|
|
/* make it finer if it is half-redundant */
|
|
bit = (-ag->ag_mask) >> 1;
|
|
ag->ag_mask |= bit;
|
|
}
|
|
out(ag);
|
|
}
|
|
|
|
|
|
static void
|
|
ag_del(struct ag_info *ag)
|
|
{
|
|
CHECK_AG();
|
|
|
|
if (ag->ag_cors == NULL)
|
|
ag_corsest = ag->ag_fine;
|
|
else
|
|
ag->ag_cors->ag_fine = ag->ag_fine;
|
|
|
|
if (ag->ag_fine == NULL)
|
|
ag_finest = ag->ag_cors;
|
|
else
|
|
ag->ag_fine->ag_cors = ag->ag_cors;
|
|
|
|
ag->ag_fine = ag_avail;
|
|
ag_avail = ag;
|
|
|
|
CHECK_AG();
|
|
}
|
|
|
|
|
|
/* Flush routes waiting for aggregation.
|
|
* This must not suppress a route unless it is known that among all
|
|
* routes with coarser masks that match it, the one with the longest
|
|
* mask is appropriate. This is ensured by scanning the routes
|
|
* in lexical order, and with the most restrictive mask first
|
|
* among routes to the same destination.
|
|
*/
|
|
void
|
|
ag_flush(naddr lim_dst_h, /* flush routes to here */
|
|
naddr lim_mask, /* matching this mask */
|
|
void (*out)(struct ag_info *))
|
|
{
|
|
struct ag_info *ag, *ag_cors;
|
|
naddr dst_h;
|
|
|
|
|
|
for (ag = ag_finest;
|
|
ag != NULL && ag->ag_mask >= lim_mask;
|
|
ag = ag_cors) {
|
|
ag_cors = ag->ag_cors;
|
|
|
|
/* work on only the specified routes */
|
|
dst_h = ag->ag_dst_h;
|
|
if ((dst_h & lim_mask) != lim_dst_h)
|
|
continue;
|
|
|
|
if (!(ag->ag_state & AGS_SUPPRESS))
|
|
ag_out(ag, out);
|
|
|
|
else for ( ; ; ag_cors = ag_cors->ag_cors) {
|
|
/* Look for a route that can suppress the
|
|
* current route */
|
|
if (ag_cors == NULL) {
|
|
/* failed, so output it and look for
|
|
* another route to work on
|
|
*/
|
|
ag_out(ag, out);
|
|
break;
|
|
}
|
|
|
|
if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) {
|
|
/* We found a route with a coarser mask that
|
|
* aggregates the current target.
|
|
*
|
|
* If it has a different next hop, it
|
|
* cannot replace the target, so output
|
|
* the target.
|
|
*/
|
|
if (ag->ag_gate != ag_cors->ag_gate
|
|
&& !(ag->ag_state & AGS_FINE_GATE)
|
|
&& !(ag_cors->ag_state & AGS_CORS_GATE)) {
|
|
ag_out(ag, out);
|
|
break;
|
|
}
|
|
|
|
/* If the coarse route has a good enough
|
|
* metric, it suppresses the target.
|
|
* If the suppressed target was redundant,
|
|
* then mark the suppressor redundant.
|
|
*/
|
|
if (ag_cors->ag_pref <= ag->ag_pref) {
|
|
if (AG_IS_REDUN(ag->ag_state)
|
|
&& ag_cors->ag_mask==ag->ag_mask<<1) {
|
|
if (ag_cors->ag_dst_h == dst_h)
|
|
ag_cors->ag_state |= AGS_REDUN0;
|
|
else
|
|
ag_cors->ag_state |= AGS_REDUN1;
|
|
}
|
|
if (ag->ag_tag != ag_cors->ag_tag)
|
|
ag_cors->ag_tag = 0;
|
|
if (ag->ag_nhop != ag_cors->ag_nhop)
|
|
ag_cors->ag_nhop = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* That route has either been output or suppressed */
|
|
ag_cors = ag->ag_cors;
|
|
ag_del(ag);
|
|
}
|
|
|
|
CHECK_AG();
|
|
}
|
|
|
|
|
|
/* Try to aggregate a route with previous routes.
|
|
*/
|
|
void
|
|
ag_check(naddr dst,
|
|
naddr mask,
|
|
naddr gate,
|
|
naddr nhop,
|
|
char metric,
|
|
char pref,
|
|
u_int new_seqno,
|
|
u_short tag,
|
|
u_short state,
|
|
void (*out)(struct ag_info *)) /* output using this */
|
|
{
|
|
struct ag_info *ag, *nag, *ag_cors;
|
|
naddr xaddr;
|
|
int x;
|
|
|
|
dst = ntohl(dst);
|
|
|
|
/* Punt non-contiguous subnet masks.
|
|
*
|
|
* (X & -X) contains a single bit if and only if X is a power of 2.
|
|
* (X + (X & -X)) == 0 if and only if X is a power of 2.
|
|
*/
|
|
if ((mask & -mask) + mask != 0) {
|
|
struct ag_info nc_ag;
|
|
|
|
nc_ag.ag_dst_h = dst;
|
|
nc_ag.ag_mask = mask;
|
|
nc_ag.ag_gate = gate;
|
|
nc_ag.ag_nhop = nhop;
|
|
nc_ag.ag_metric = metric;
|
|
nc_ag.ag_pref = pref;
|
|
nc_ag.ag_tag = tag;
|
|
nc_ag.ag_state = state;
|
|
nc_ag.ag_seqno = new_seqno;
|
|
out(&nc_ag);
|
|
return;
|
|
}
|
|
|
|
/* Search for the right slot in the aggregation table.
|
|
*/
|
|
ag_cors = NULL;
|
|
ag = ag_corsest;
|
|
while (ag != NULL) {
|
|
if (ag->ag_mask >= mask)
|
|
break;
|
|
|
|
/* Suppress old routes (i.e. combine with compatible routes
|
|
* with coarser masks) as we look for the right slot in the
|
|
* aggregation table for the new route.
|
|
* A route to an address less than the current destination
|
|
* will not be affected by the current route or any route
|
|
* seen hereafter. That means it is safe to suppress it.
|
|
* This check keeps poor routes (e.g. with large hop counts)
|
|
* from preventing suppression of finer routes.
|
|
*/
|
|
if (ag_cors != NULL
|
|
&& ag->ag_dst_h < dst
|
|
&& (ag->ag_state & AGS_SUPPRESS)
|
|
&& ag_cors->ag_pref <= ag->ag_pref
|
|
&& (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h
|
|
&& (ag_cors->ag_gate == ag->ag_gate
|
|
|| (ag->ag_state & AGS_FINE_GATE)
|
|
|| (ag_cors->ag_state & AGS_CORS_GATE))) {
|
|
/* If the suppressed target was redundant,
|
|
* then mark the suppressor redundant.
|
|
*/
|
|
if (AG_IS_REDUN(ag->ag_state)
|
|
&& ag_cors->ag_mask == ag->ag_mask<<1) {
|
|
if (ag_cors->ag_dst_h == dst)
|
|
ag_cors->ag_state |= AGS_REDUN0;
|
|
else
|
|
ag_cors->ag_state |= AGS_REDUN1;
|
|
}
|
|
if (ag->ag_tag != ag_cors->ag_tag)
|
|
ag_cors->ag_tag = 0;
|
|
if (ag->ag_nhop != ag_cors->ag_nhop)
|
|
ag_cors->ag_nhop = 0;
|
|
ag_del(ag);
|
|
CHECK_AG();
|
|
} else {
|
|
ag_cors = ag;
|
|
}
|
|
ag = ag_cors->ag_fine;
|
|
}
|
|
|
|
/* If we find the even/odd twin of the new route, and if the
|
|
* masks and so forth are equal, we can aggregate them.
|
|
* We can probably promote one of the pair.
|
|
*
|
|
* Since the routes are encountered in lexical order,
|
|
* the new route must be odd. However, the second or later
|
|
* times around this loop, it could be the even twin promoted
|
|
* from the even/odd pair of twins of the finer route.
|
|
*/
|
|
while (ag != NULL
|
|
&& ag->ag_mask == mask
|
|
&& ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) {
|
|
|
|
/* Here we know the target route and the route in the current
|
|
* slot have the same netmasks and differ by at most the
|
|
* last bit. They are either for the same destination, or
|
|
* for an even/odd pair of destinations.
|
|
*/
|
|
if (ag->ag_dst_h == dst) {
|
|
/* We have two routes to the same destination.
|
|
* Routes are encountered in lexical order, so a
|
|
* route is never promoted until the parent route is
|
|
* already present. So we know that the new route is
|
|
* a promoted (or aggregated) pair and the route
|
|
* already in the slot is the explicit route.
|
|
*
|
|
* Prefer the best route if their metrics differ,
|
|
* or the aggregated one if not, following a sort
|
|
* of longest-match rule.
|
|
*/
|
|
if (pref <= ag->ag_pref) {
|
|
ag->ag_gate = gate;
|
|
ag->ag_nhop = nhop;
|
|
ag->ag_tag = tag;
|
|
ag->ag_metric = metric;
|
|
ag->ag_pref = pref;
|
|
if (ag->ag_seqno < new_seqno)
|
|
ag->ag_seqno = new_seqno;
|
|
x = ag->ag_state;
|
|
ag->ag_state = state;
|
|
state = x;
|
|
}
|
|
|
|
/* Some bits are set if they are set on either route,
|
|
* except when the route is for an interface.
|
|
*/
|
|
if (!(ag->ag_state & AGS_IF))
|
|
ag->ag_state |= (state & (AGS_AGGREGATE_EITHER
|
|
| AGS_REDUN0
|
|
| AGS_REDUN1));
|
|
return;
|
|
}
|
|
|
|
/* If one of the routes can be promoted and the other can
|
|
* be suppressed, it may be possible to combine them or
|
|
* worthwhile to promote one.
|
|
*
|
|
* Any route that can be promoted is always
|
|
* marked to be eligible to be suppressed.
|
|
*/
|
|
if (!((state & AGS_AGGREGATE)
|
|
&& (ag->ag_state & AGS_SUPPRESS))
|
|
&& !((ag->ag_state & AGS_AGGREGATE)
|
|
&& (state & AGS_SUPPRESS)))
|
|
break;
|
|
|
|
/* A pair of even/odd twin routes can be combined
|
|
* if either is redundant, or if they are via the
|
|
* same gateway and have the same metric.
|
|
*/
|
|
if (AG_IS_REDUN(ag->ag_state)
|
|
|| AG_IS_REDUN(state)
|
|
|| (ag->ag_gate == gate
|
|
&& ag->ag_pref == pref
|
|
&& (state & ag->ag_state & AGS_AGGREGATE) != 0)) {
|
|
|
|
/* We have both the even and odd pairs.
|
|
* Since the routes are encountered in order,
|
|
* the route in the slot must be the even twin.
|
|
*
|
|
* Combine and promote (aggregate) the pair of routes.
|
|
*/
|
|
if (new_seqno < ag->ag_seqno)
|
|
new_seqno = ag->ag_seqno;
|
|
if (!AG_IS_REDUN(state))
|
|
state &= ~AGS_REDUN1;
|
|
if (AG_IS_REDUN(ag->ag_state))
|
|
state |= AGS_REDUN0;
|
|
else
|
|
state &= ~AGS_REDUN0;
|
|
state |= (ag->ag_state & AGS_AGGREGATE_EITHER);
|
|
if (ag->ag_tag != tag)
|
|
tag = 0;
|
|
if (ag->ag_nhop != nhop)
|
|
nhop = 0;
|
|
|
|
/* Get rid of the even twin that was already
|
|
* in the slot.
|
|
*/
|
|
ag_del(ag);
|
|
|
|
} else if (ag->ag_pref >= pref
|
|
&& (ag->ag_state & AGS_AGGREGATE)) {
|
|
/* If we cannot combine the pair, maybe the route
|
|
* with the worse metric can be promoted.
|
|
*
|
|
* Promote the old, even twin, by giving its slot
|
|
* in the table to the new, odd twin.
|
|
*/
|
|
ag->ag_dst_h = dst;
|
|
|
|
xaddr = ag->ag_gate;
|
|
ag->ag_gate = gate;
|
|
gate = xaddr;
|
|
|
|
xaddr = ag->ag_nhop;
|
|
ag->ag_nhop = nhop;
|
|
nhop = xaddr;
|
|
|
|
x = ag->ag_tag;
|
|
ag->ag_tag = tag;
|
|
tag = x;
|
|
|
|
/* The promoted route is even-redundant only if the
|
|
* even twin was fully redundant. It is not
|
|
* odd-redundant because the odd-twin will still be
|
|
* in the table.
|
|
*/
|
|
x = ag->ag_state;
|
|
if (!AG_IS_REDUN(x))
|
|
x &= ~AGS_REDUN0;
|
|
x &= ~AGS_REDUN1;
|
|
ag->ag_state = state;
|
|
state = x;
|
|
|
|
x = ag->ag_metric;
|
|
ag->ag_metric = metric;
|
|
metric = x;
|
|
|
|
x = ag->ag_pref;
|
|
ag->ag_pref = pref;
|
|
pref = x;
|
|
|
|
/* take the newest sequence number */
|
|
if (new_seqno <= ag->ag_seqno)
|
|
new_seqno = ag->ag_seqno;
|
|
else
|
|
ag->ag_seqno = new_seqno;
|
|
|
|
} else {
|
|
if (!(state & AGS_AGGREGATE))
|
|
break; /* cannot promote either twin */
|
|
|
|
/* Promote the new, odd twin by shaving its
|
|
* mask and address.
|
|
* The promoted route is odd-redundant only if the
|
|
* odd twin was fully redundant. It is not
|
|
* even-redundant because the even twin is still in
|
|
* the table.
|
|
*/
|
|
if (!AG_IS_REDUN(state))
|
|
state &= ~AGS_REDUN1;
|
|
state &= ~AGS_REDUN0;
|
|
if (new_seqno < ag->ag_seqno)
|
|
new_seqno = ag->ag_seqno;
|
|
else
|
|
ag->ag_seqno = new_seqno;
|
|
}
|
|
|
|
mask <<= 1;
|
|
dst &= mask;
|
|
|
|
if (ag_cors == NULL) {
|
|
ag = ag_corsest;
|
|
break;
|
|
}
|
|
ag = ag_cors;
|
|
ag_cors = ag->ag_cors;
|
|
}
|
|
|
|
/* When we can no longer promote and combine routes,
|
|
* flush the old route in the target slot. Also flush
|
|
* any finer routes that we know will never be aggregated by
|
|
* the new route.
|
|
*
|
|
* In case we moved toward coarser masks,
|
|
* get back where we belong
|
|
*/
|
|
if (ag != NULL
|
|
&& ag->ag_mask < mask) {
|
|
ag_cors = ag;
|
|
ag = ag->ag_fine;
|
|
}
|
|
|
|
/* Empty the target slot
|
|
*/
|
|
if (ag != NULL && ag->ag_mask == mask) {
|
|
ag_flush(ag->ag_dst_h, ag->ag_mask, out);
|
|
ag = (ag_cors == NULL) ? ag_corsest : ag_cors->ag_fine;
|
|
}
|
|
|
|
#ifdef DEBUG_AG
|
|
(void)fflush(stderr);
|
|
if (ag == NULL && ag_cors != ag_finest)
|
|
abort();
|
|
if (ag_cors == NULL && ag != ag_corsest)
|
|
abort();
|
|
if (ag != NULL && ag->ag_cors != ag_cors)
|
|
abort();
|
|
if (ag_cors != NULL && ag_cors->ag_fine != ag)
|
|
abort();
|
|
CHECK_AG();
|
|
#endif
|
|
|
|
/* Save the new route on the end of the table.
|
|
*/
|
|
nag = ag_avail;
|
|
ag_avail = nag->ag_fine;
|
|
|
|
nag->ag_dst_h = dst;
|
|
nag->ag_mask = mask;
|
|
nag->ag_gate = gate;
|
|
nag->ag_nhop = nhop;
|
|
nag->ag_metric = metric;
|
|
nag->ag_pref = pref;
|
|
nag->ag_tag = tag;
|
|
nag->ag_state = state;
|
|
nag->ag_seqno = new_seqno;
|
|
|
|
nag->ag_fine = ag;
|
|
if (ag != NULL)
|
|
ag->ag_cors = nag;
|
|
else
|
|
ag_finest = nag;
|
|
nag->ag_cors = ag_cors;
|
|
if (ag_cors == NULL)
|
|
ag_corsest = nag;
|
|
else
|
|
ag_cors->ag_fine = nag;
|
|
CHECK_AG();
|
|
}
|
|
|
|
static const char *
|
|
rtm_type_name(u_char type)
|
|
{
|
|
static const char * const rtm_types[] = {
|
|
"RTM_ADD",
|
|
"RTM_DELETE",
|
|
"RTM_CHANGE",
|
|
"RTM_GET",
|
|
"RTM_LOSING",
|
|
"RTM_REDIRECT",
|
|
"RTM_MISS",
|
|
"RTM_LOCK",
|
|
"RTM_OLDADD",
|
|
"RTM_OLDDEL",
|
|
"RTM_RESOLVE",
|
|
"RTM_NEWADDR",
|
|
"RTM_DELADDR",
|
|
#ifdef RTM_OIFINFO
|
|
"RTM_OIFINFO",
|
|
#endif
|
|
"RTM_IFINFO",
|
|
"RTM_NEWMADDR",
|
|
"RTM_DELMADDR"
|
|
};
|
|
#define NEW_RTM_PAT "RTM type %#x"
|
|
static char name0[sizeof(NEW_RTM_PAT)+2];
|
|
|
|
|
|
if (type > sizeof(rtm_types)/sizeof(rtm_types[0])
|
|
|| type == 0) {
|
|
snprintf(name0, sizeof(name0), NEW_RTM_PAT, type);
|
|
return name0;
|
|
} else {
|
|
return rtm_types[type-1];
|
|
}
|
|
#undef NEW_RTM_PAT
|
|
}
|
|
|
|
|
|
/* Trim a mask in a sockaddr
|
|
* Produce a length of 0 for an address of 0.
|
|
* Otherwise produce the index of the first zero byte.
|
|
*/
|
|
void
|
|
#ifdef _HAVE_SIN_LEN
|
|
masktrim(struct sockaddr_in *ap)
|
|
#else
|
|
masktrim(struct sockaddr_in_new *ap)
|
|
#endif
|
|
{
|
|
char *cp;
|
|
|
|
if (ap->sin_addr.s_addr == 0) {
|
|
ap->sin_len = 0;
|
|
return;
|
|
}
|
|
cp = (char *)(&ap->sin_addr.s_addr+1);
|
|
while (*--cp == 0)
|
|
continue;
|
|
ap->sin_len = cp - (char*)ap + 1;
|
|
}
|
|
|
|
|
|
/* Tell the kernel to add, delete or change a route
|
|
*/
|
|
static void
|
|
rtioctl(int action, /* RTM_DELETE, etc */
|
|
naddr dst,
|
|
naddr gate,
|
|
naddr mask,
|
|
int metric,
|
|
int flags)
|
|
{
|
|
struct {
|
|
struct rt_msghdr w_rtm;
|
|
struct sockaddr_in w_dst;
|
|
struct sockaddr_in w_gate;
|
|
#ifdef _HAVE_SA_LEN
|
|
struct sockaddr_in w_mask;
|
|
#else
|
|
struct sockaddr_in_new w_mask;
|
|
#endif
|
|
} w;
|
|
long cc;
|
|
# define PAT " %-10s %s metric=%d flags=%#x"
|
|
# define ARGS rtm_type_name(action), rtname(dst,mask,gate), metric, flags
|
|
|
|
again:
|
|
memset(&w, 0, sizeof(w));
|
|
w.w_rtm.rtm_msglen = sizeof(w);
|
|
w.w_rtm.rtm_version = RTM_VERSION;
|
|
w.w_rtm.rtm_type = action;
|
|
w.w_rtm.rtm_flags = flags;
|
|
w.w_rtm.rtm_seq = ++rt_sock_seqno;
|
|
w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY;
|
|
if (metric != 0 || action == RTM_CHANGE) {
|
|
w.w_rtm.rtm_rmx.rmx_hopcount = metric;
|
|
w.w_rtm.rtm_inits |= RTV_HOPCOUNT;
|
|
}
|
|
w.w_dst.sin_family = AF_INET;
|
|
w.w_dst.sin_addr.s_addr = dst;
|
|
w.w_gate.sin_family = AF_INET;
|
|
w.w_gate.sin_addr.s_addr = gate;
|
|
#ifdef _HAVE_SA_LEN
|
|
w.w_dst.sin_len = sizeof(w.w_dst);
|
|
w.w_gate.sin_len = sizeof(w.w_gate);
|
|
#endif
|
|
if (mask == HOST_MASK) {
|
|
w.w_rtm.rtm_flags |= RTF_HOST;
|
|
w.w_rtm.rtm_msglen -= sizeof(w.w_mask);
|
|
} else {
|
|
w.w_rtm.rtm_addrs |= RTA_NETMASK;
|
|
w.w_mask.sin_addr.s_addr = htonl(mask);
|
|
#ifdef _HAVE_SA_LEN
|
|
masktrim(&w.w_mask);
|
|
if (w.w_mask.sin_len == 0)
|
|
w.w_mask.sin_len = sizeof(long);
|
|
w.w_rtm.rtm_msglen -= (sizeof(w.w_mask) - w.w_mask.sin_len);
|
|
#endif
|
|
}
|
|
|
|
#ifndef NO_INSTALL
|
|
cc = write(rt_sock, &w, w.w_rtm.rtm_msglen);
|
|
if (cc < 0) {
|
|
if (errno == ESRCH
|
|
&& (action == RTM_CHANGE || action == RTM_DELETE)) {
|
|
trace_act("route disappeared before" PAT, ARGS);
|
|
if (action == RTM_CHANGE) {
|
|
action = RTM_ADD;
|
|
goto again;
|
|
}
|
|
return;
|
|
}
|
|
msglog("write(rt_sock)" PAT ": %s", ARGS, strerror(errno));
|
|
return;
|
|
} else if (cc != w.w_rtm.rtm_msglen) {
|
|
msglog("write(rt_sock) wrote %ld instead of %d for" PAT,
|
|
cc, w.w_rtm.rtm_msglen, ARGS);
|
|
return;
|
|
}
|
|
#endif
|
|
if (TRACEKERNEL)
|
|
trace_misc("write kernel" PAT, ARGS);
|
|
#undef PAT
|
|
#undef ARGS
|
|
}
|
|
|
|
|
|
#define KHASH_SIZE 71 /* should be prime */
|
|
#define KHASH(a,m) khash_bins[((a) ^ (m)) % KHASH_SIZE]
|
|
static struct khash {
|
|
struct khash *k_next;
|
|
naddr k_dst;
|
|
naddr k_mask;
|
|
naddr k_gate;
|
|
short k_metric;
|
|
u_short k_state;
|
|
#define KS_NEW 0x001
|
|
#define KS_DELETE 0x002 /* need to delete the route */
|
|
#define KS_ADD 0x004 /* add to the kernel */
|
|
#define KS_CHANGE 0x008 /* tell kernel to change the route */
|
|
#define KS_DEL_ADD 0x010 /* delete & add to change the kernel */
|
|
#define KS_STATIC 0x020 /* Static flag in kernel */
|
|
#define KS_GATEWAY 0x040 /* G flag in kernel */
|
|
#define KS_DYNAMIC 0x080 /* result of redirect */
|
|
#define KS_DELETED 0x100 /* already deleted from kernel */
|
|
#define KS_CHECK 0x200
|
|
time_t k_keep;
|
|
#define K_KEEP_LIM 30
|
|
time_t k_redirect_time; /* when redirected route 1st seen */
|
|
} *khash_bins[KHASH_SIZE];
|
|
|
|
|
|
static struct khash*
|
|
kern_find(naddr dst, naddr mask, struct khash ***ppk)
|
|
{
|
|
struct khash *k, **pk;
|
|
|
|
for (pk = &KHASH(dst,mask); (k = *pk) != NULL; pk = &k->k_next) {
|
|
if (k->k_dst == dst && k->k_mask == mask)
|
|
break;
|
|
}
|
|
if (ppk != NULL)
|
|
*ppk = pk;
|
|
return k;
|
|
}
|
|
|
|
|
|
static struct khash*
|
|
kern_add(naddr dst, naddr mask)
|
|
{
|
|
struct khash *k, **pk;
|
|
|
|
k = kern_find(dst, mask, &pk);
|
|
if (k != NULL)
|
|
return k;
|
|
|
|
k = (struct khash *)rtmalloc(sizeof(*k), "kern_add");
|
|
|
|
memset(k, 0, sizeof(*k));
|
|
k->k_dst = dst;
|
|
k->k_mask = mask;
|
|
k->k_state = KS_NEW;
|
|
k->k_keep = now.tv_sec;
|
|
*pk = k;
|
|
|
|
return k;
|
|
}
|
|
|
|
|
|
/* If a kernel route has a non-zero metric, check that it is still in the
|
|
* daemon table, and not deleted by interfaces coming and going.
|
|
*/
|
|
static void
|
|
kern_check_static(struct khash *k,
|
|
struct interface *ifp)
|
|
{
|
|
struct rt_entry *rt;
|
|
struct rt_spare new;
|
|
|
|
if (k->k_metric == 0)
|
|
return;
|
|
|
|
memset(&new, 0, sizeof(new));
|
|
new.rts_ifp = ifp;
|
|
new.rts_gate = k->k_gate;
|
|
new.rts_router = (ifp != NULL) ? ifp->int_addr : loopaddr;
|
|
new.rts_metric = k->k_metric;
|
|
new.rts_time = now.tv_sec;
|
|
|
|
rt = rtget(k->k_dst, k->k_mask);
|
|
if (rt != NULL) {
|
|
if (!(rt->rt_state & RS_STATIC))
|
|
rtchange(rt, rt->rt_state | RS_STATIC, &new, 0);
|
|
} else {
|
|
rtadd(k->k_dst, k->k_mask, RS_STATIC, &new);
|
|
}
|
|
}
|
|
|
|
|
|
/* operate on a kernel entry
|
|
*/
|
|
static void
|
|
kern_ioctl(struct khash *k,
|
|
int action, /* RTM_DELETE, etc */
|
|
int flags)
|
|
|
|
{
|
|
switch (action) {
|
|
case RTM_DELETE:
|
|
k->k_state &= ~KS_DYNAMIC;
|
|
if (k->k_state & KS_DELETED)
|
|
return;
|
|
k->k_state |= KS_DELETED;
|
|
break;
|
|
case RTM_ADD:
|
|
k->k_state &= ~KS_DELETED;
|
|
break;
|
|
case RTM_CHANGE:
|
|
if (k->k_state & KS_DELETED) {
|
|
action = RTM_ADD;
|
|
k->k_state &= ~KS_DELETED;
|
|
}
|
|
break;
|
|
}
|
|
|
|
rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_metric, flags);
|
|
}
|
|
|
|
|
|
/* add a route the kernel told us
|
|
*/
|
|
static void
|
|
rtm_add(struct rt_msghdr *rtm,
|
|
struct rt_addrinfo *info,
|
|
time_t keep)
|
|
{
|
|
struct khash *k;
|
|
struct interface *ifp;
|
|
naddr mask;
|
|
|
|
|
|
if (rtm->rtm_flags & RTF_HOST) {
|
|
mask = HOST_MASK;
|
|
} else if (INFO_MASK(info) != 0) {
|
|
mask = ntohl(S_ADDR(INFO_MASK(info)));
|
|
} else {
|
|
msglog("ignore %s without mask", rtm_type_name(rtm->rtm_type));
|
|
return;
|
|
}
|
|
|
|
k = kern_add(S_ADDR(INFO_DST(info)), mask);
|
|
if (k->k_state & KS_NEW)
|
|
k->k_keep = now.tv_sec+keep;
|
|
if (INFO_GATE(info) == 0) {
|
|
trace_act("note %s without gateway",
|
|
rtm_type_name(rtm->rtm_type));
|
|
k->k_metric = HOPCNT_INFINITY;
|
|
} else if (INFO_GATE(info)->sa_family != AF_INET) {
|
|
trace_act("note %s with gateway AF=%d",
|
|
rtm_type_name(rtm->rtm_type),
|
|
INFO_GATE(info)->sa_family);
|
|
k->k_metric = HOPCNT_INFINITY;
|
|
} else {
|
|
k->k_gate = S_ADDR(INFO_GATE(info));
|
|
k->k_metric = rtm->rtm_rmx.rmx_hopcount;
|
|
if (k->k_metric < 0)
|
|
k->k_metric = 0;
|
|
else if (k->k_metric > HOPCNT_INFINITY-1)
|
|
k->k_metric = HOPCNT_INFINITY-1;
|
|
}
|
|
k->k_state &= ~(KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD
|
|
| KS_DELETED | KS_GATEWAY | KS_STATIC
|
|
| KS_NEW | KS_CHECK);
|
|
if (rtm->rtm_flags & RTF_GATEWAY)
|
|
k->k_state |= KS_GATEWAY;
|
|
if (rtm->rtm_flags & RTF_STATIC)
|
|
k->k_state |= KS_STATIC;
|
|
|
|
if (0 != (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED))) {
|
|
if (INFO_AUTHOR(info) != 0
|
|
&& INFO_AUTHOR(info)->sa_family == AF_INET)
|
|
ifp = iflookup(S_ADDR(INFO_AUTHOR(info)));
|
|
else
|
|
ifp = NULL;
|
|
if (supplier
|
|
&& (ifp == NULL || !(ifp->int_state & IS_REDIRECT_OK))) {
|
|
/* Routers are not supposed to listen to redirects,
|
|
* so delete it if it came via an unknown interface
|
|
* or the interface does not have special permission.
|
|
*/
|
|
k->k_state &= ~KS_DYNAMIC;
|
|
k->k_state |= KS_DELETE;
|
|
LIM_SEC(need_kern, 0);
|
|
trace_act("mark for deletion redirected %s --> %s"
|
|
" via %s",
|
|
addrname(k->k_dst, k->k_mask, 0),
|
|
naddr_ntoa(k->k_gate),
|
|
ifp ? ifp->int_name : "unknown interface");
|
|
} else {
|
|
k->k_state |= KS_DYNAMIC;
|
|
k->k_redirect_time = now.tv_sec;
|
|
trace_act("accept redirected %s --> %s via %s",
|
|
addrname(k->k_dst, k->k_mask, 0),
|
|
naddr_ntoa(k->k_gate),
|
|
ifp ? ifp->int_name : "unknown interface");
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* If it is not a static route, quit until the next comparison
|
|
* between the kernel and daemon tables, when it will be deleted.
|
|
*/
|
|
if (!(k->k_state & KS_STATIC)) {
|
|
k->k_state |= KS_DELETE;
|
|
LIM_SEC(need_kern, k->k_keep);
|
|
return;
|
|
}
|
|
|
|
/* Put static routes with real metrics into the daemon table so
|
|
* they can be advertised.
|
|
*
|
|
* Find the interface toward the gateway.
|
|
*/
|
|
ifp = iflookup(k->k_gate);
|
|
if (ifp == NULL)
|
|
msglog("static route %s --> %s impossibly lacks ifp",
|
|
addrname(S_ADDR(INFO_DST(info)), mask, 0),
|
|
naddr_ntoa(k->k_gate));
|
|
|
|
kern_check_static(k, ifp);
|
|
}
|
|
|
|
|
|
/* deal with packet loss
|
|
*/
|
|
static void
|
|
rtm_lose(struct rt_msghdr *rtm,
|
|
struct rt_addrinfo *info)
|
|
{
|
|
if (INFO_GATE(info) == 0
|
|
|| INFO_GATE(info)->sa_family != AF_INET) {
|
|
trace_act("ignore %s without gateway",
|
|
rtm_type_name(rtm->rtm_type));
|
|
return;
|
|
}
|
|
|
|
if (rdisc_ok)
|
|
rdisc_age(S_ADDR(INFO_GATE(info)));
|
|
age(S_ADDR(INFO_GATE(info)));
|
|
}
|
|
|
|
|
|
/* Make the gateway slot of an info structure point to something
|
|
* useful. If it is not already useful, but it specifies an interface,
|
|
* then fill in the sockaddr_in provided and point it there.
|
|
*/
|
|
static int
|
|
get_info_gate(struct sockaddr **sap,
|
|
struct sockaddr_in *rsin)
|
|
{
|
|
struct sockaddr_dl *sdl = (struct sockaddr_dl *)*sap;
|
|
struct interface *ifp;
|
|
|
|
if (sdl == NULL)
|
|
return 0;
|
|
if ((sdl)->sdl_family == AF_INET)
|
|
return 1;
|
|
if ((sdl)->sdl_family != AF_LINK)
|
|
return 0;
|
|
|
|
ifp = ifwithindex(sdl->sdl_index, 1);
|
|
if (ifp == NULL)
|
|
return 0;
|
|
|
|
rsin->sin_addr.s_addr = ifp->int_addr;
|
|
#ifdef _HAVE_SA_LEN
|
|
rsin->sin_len = sizeof(*rsin);
|
|
#endif
|
|
rsin->sin_family = AF_INET;
|
|
*sap = (struct sockaddr*)rsin;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Clean the kernel table by copying it to the daemon image.
|
|
* Eventually the daemon will delete any extra routes.
|
|
*/
|
|
void
|
|
flush_kern(void)
|
|
{
|
|
static char *sysctl_buf;
|
|
static size_t sysctl_buf_size = 0;
|
|
size_t needed;
|
|
int mib[6];
|
|
char *next, *lim;
|
|
struct rt_msghdr *rtm;
|
|
struct sockaddr_in gate_sin;
|
|
struct rt_addrinfo info;
|
|
int i;
|
|
struct khash *k;
|
|
|
|
|
|
for (i = 0; i < KHASH_SIZE; i++) {
|
|
for (k = khash_bins[i]; k != NULL; k = k->k_next) {
|
|
k->k_state |= KS_CHECK;
|
|
}
|
|
}
|
|
|
|
mib[0] = CTL_NET;
|
|
mib[1] = PF_ROUTE;
|
|
mib[2] = 0; /* protocol */
|
|
mib[3] = 0; /* wildcard address family */
|
|
mib[4] = NET_RT_DUMP;
|
|
mib[5] = 0; /* no flags */
|
|
for (;;) {
|
|
if ((needed = sysctl_buf_size) != 0) {
|
|
if (sysctl(mib, 6, sysctl_buf,&needed, 0, 0) >= 0)
|
|
break;
|
|
if (errno != ENOMEM && errno != EFAULT)
|
|
BADERR(1,"flush_kern: sysctl(RT_DUMP)");
|
|
free(sysctl_buf);
|
|
needed = 0;
|
|
}
|
|
if (sysctl(mib, 6, 0, &needed, 0, 0) < 0)
|
|
BADERR(1,"flush_kern: sysctl(RT_DUMP) estimate");
|
|
/* Kludge around the habit of some systems, such as
|
|
* BSD/OS 3.1, to not admit how many routes are in the
|
|
* kernel, or at least to be quite wrong.
|
|
*/
|
|
needed += 50*(sizeof(*rtm)+5*sizeof(struct sockaddr));
|
|
sysctl_buf = rtmalloc(sysctl_buf_size = needed,
|
|
"flush_kern sysctl(RT_DUMP)");
|
|
}
|
|
|
|
lim = sysctl_buf + needed;
|
|
for (next = sysctl_buf; next < lim; next += rtm->rtm_msglen) {
|
|
rtm = (struct rt_msghdr *)next;
|
|
if (rtm->rtm_msglen == 0) {
|
|
msglog("zero length kernel route at "
|
|
" %#lx in buffer %#lx before %#lx",
|
|
(u_long)rtm, (u_long)sysctl_buf, (u_long)lim);
|
|
break;
|
|
}
|
|
|
|
rt_xaddrs(&info,
|
|
(struct sockaddr *)(rtm+1),
|
|
(struct sockaddr *)(next + rtm->rtm_msglen),
|
|
rtm->rtm_addrs);
|
|
|
|
if (INFO_DST(&info) == 0
|
|
|| INFO_DST(&info)->sa_family != AF_INET)
|
|
continue;
|
|
|
|
#if defined (RTF_LLINFO)
|
|
/* ignore ARP table entries on systems with a merged route
|
|
* and ARP table.
|
|
*/
|
|
if (rtm->rtm_flags & RTF_LLINFO)
|
|
continue;
|
|
#endif
|
|
#if defined(RTF_WASCLONED) && defined(__FreeBSD__)
|
|
/* ignore cloned routes
|
|
*/
|
|
if (rtm->rtm_flags & RTF_WASCLONED)
|
|
continue;
|
|
#endif
|
|
|
|
/* ignore multicast addresses
|
|
*/
|
|
if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info)))))
|
|
continue;
|
|
|
|
if (!get_info_gate(&INFO_GATE(&info), &gate_sin))
|
|
continue;
|
|
|
|
/* Note static routes and interface routes, and also
|
|
* preload the image of the kernel table so that
|
|
* we can later clean it, as well as avoid making
|
|
* unneeded changes. Keep the old kernel routes for a
|
|
* few seconds to allow a RIP or router-discovery
|
|
* response to be heard.
|
|
*/
|
|
rtm_add(rtm,&info,MIN_WAITTIME);
|
|
}
|
|
|
|
for (i = 0; i < KHASH_SIZE; i++) {
|
|
for (k = khash_bins[i]; k != NULL; k = k->k_next) {
|
|
if (k->k_state & KS_CHECK) {
|
|
msglog("%s --> %s disappeared from kernel",
|
|
addrname(k->k_dst, k->k_mask, 0),
|
|
naddr_ntoa(k->k_gate));
|
|
del_static(k->k_dst, k->k_mask, k->k_gate, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Listen to announcements from the kernel
|
|
*/
|
|
void
|
|
read_rt(void)
|
|
{
|
|
long cc;
|
|
struct interface *ifp;
|
|
struct sockaddr_in gate_sin;
|
|
naddr mask, gate;
|
|
union {
|
|
struct {
|
|
struct rt_msghdr rtm;
|
|
struct sockaddr addrs[RTAX_MAX];
|
|
} r;
|
|
struct if_msghdr ifm;
|
|
} m;
|
|
char str[100], *strp;
|
|
struct rt_addrinfo info;
|
|
|
|
|
|
for (;;) {
|
|
cc = read(rt_sock, &m, sizeof(m));
|
|
if (cc <= 0) {
|
|
if (cc < 0 && errno != EWOULDBLOCK)
|
|
LOGERR("read(rt_sock)");
|
|
return;
|
|
}
|
|
|
|
if (m.r.rtm.rtm_version != RTM_VERSION) {
|
|
msglog("bogus routing message version %d",
|
|
m.r.rtm.rtm_version);
|
|
continue;
|
|
}
|
|
|
|
/* Ignore our own results.
|
|
*/
|
|
if (m.r.rtm.rtm_type <= RTM_CHANGE
|
|
&& m.r.rtm.rtm_pid == mypid) {
|
|
static int complained = 0;
|
|
if (!complained) {
|
|
msglog("receiving our own change messages");
|
|
complained = 1;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (m.r.rtm.rtm_type == RTM_IFINFO
|
|
|| m.r.rtm.rtm_type == RTM_NEWADDR
|
|
|| m.r.rtm.rtm_type == RTM_DELADDR) {
|
|
ifp = ifwithindex(m.ifm.ifm_index,
|
|
m.r.rtm.rtm_type != RTM_DELADDR);
|
|
if (ifp == NULL)
|
|
trace_act("note %s with flags %#x"
|
|
" for unknown interface index #%d",
|
|
rtm_type_name(m.r.rtm.rtm_type),
|
|
m.ifm.ifm_flags,
|
|
m.ifm.ifm_index);
|
|
else
|
|
trace_act("note %s with flags %#x for %s",
|
|
rtm_type_name(m.r.rtm.rtm_type),
|
|
m.ifm.ifm_flags,
|
|
ifp->int_name);
|
|
|
|
/* After being informed of a change to an interface,
|
|
* check them all now if the check would otherwise
|
|
* be a long time from now, if the interface is
|
|
* not known, or if the interface has been turned
|
|
* off or on.
|
|
*/
|
|
if (ifinit_timer.tv_sec-now.tv_sec>=CHECK_BAD_INTERVAL
|
|
|| ifp == NULL
|
|
|| ((ifp->int_if_flags ^ m.ifm.ifm_flags)
|
|
& IFF_UP) != 0)
|
|
ifinit_timer.tv_sec = now.tv_sec;
|
|
continue;
|
|
}
|
|
#ifdef RTM_OIFINFO
|
|
if (m.r.rtm.rtm_type == RTM_OIFINFO)
|
|
continue; /* ignore compat message */
|
|
#endif
|
|
|
|
strlcpy(str, rtm_type_name(m.r.rtm.rtm_type), sizeof(str));
|
|
strp = &str[strlen(str)];
|
|
if (m.r.rtm.rtm_type <= RTM_CHANGE)
|
|
strp += sprintf(strp," from pid %d",m.r.rtm.rtm_pid);
|
|
|
|
/*
|
|
* Only messages that use the struct rt_msghdr format are
|
|
* allowed beyond this point.
|
|
*/
|
|
if (m.r.rtm.rtm_type > RTM_RESOLVE) {
|
|
trace_act("ignore %s", str);
|
|
continue;
|
|
}
|
|
|
|
rt_xaddrs(&info, m.r.addrs, &m.r.addrs[RTAX_MAX],
|
|
m.r.rtm.rtm_addrs);
|
|
|
|
if (INFO_DST(&info) == 0) {
|
|
trace_act("ignore %s without dst", str);
|
|
continue;
|
|
}
|
|
|
|
if (INFO_DST(&info)->sa_family != AF_INET) {
|
|
trace_act("ignore %s for AF %d", str,
|
|
INFO_DST(&info)->sa_family);
|
|
continue;
|
|
}
|
|
|
|
mask = ((INFO_MASK(&info) != 0)
|
|
? ntohl(S_ADDR(INFO_MASK(&info)))
|
|
: (m.r.rtm.rtm_flags & RTF_HOST)
|
|
? HOST_MASK
|
|
: std_mask(S_ADDR(INFO_DST(&info))));
|
|
|
|
strp += sprintf(strp, ": %s",
|
|
addrname(S_ADDR(INFO_DST(&info)), mask, 0));
|
|
|
|
if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) {
|
|
trace_act("ignore multicast %s", str);
|
|
continue;
|
|
}
|
|
|
|
#if defined(RTF_LLINFO)
|
|
if (m.r.rtm.rtm_flags & RTF_LLINFO) {
|
|
trace_act("ignore ARP %s", str);
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
#if defined(RTF_WASCLONED) && defined(__FreeBSD__)
|
|
if (m.r.rtm.rtm_flags & RTF_WASCLONED) {
|
|
trace_act("ignore cloned %s", str);
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
if (get_info_gate(&INFO_GATE(&info), &gate_sin)) {
|
|
gate = S_ADDR(INFO_GATE(&info));
|
|
strp += sprintf(strp, " --> %s", naddr_ntoa(gate));
|
|
} else {
|
|
gate = 0;
|
|
}
|
|
|
|
if (INFO_AUTHOR(&info) != 0)
|
|
strp += sprintf(strp, " by authority of %s",
|
|
saddr_ntoa(INFO_AUTHOR(&info)));
|
|
|
|
switch (m.r.rtm.rtm_type) {
|
|
case RTM_ADD:
|
|
case RTM_CHANGE:
|
|
case RTM_REDIRECT:
|
|
if (m.r.rtm.rtm_errno != 0) {
|
|
trace_act("ignore %s with \"%s\" error",
|
|
str, strerror(m.r.rtm.rtm_errno));
|
|
} else {
|
|
trace_act("%s", str);
|
|
rtm_add(&m.r.rtm,&info,0);
|
|
}
|
|
break;
|
|
|
|
case RTM_DELETE:
|
|
if (m.r.rtm.rtm_errno != 0
|
|
&& m.r.rtm.rtm_errno != ESRCH) {
|
|
trace_act("ignore %s with \"%s\" error",
|
|
str, strerror(m.r.rtm.rtm_errno));
|
|
} else {
|
|
trace_act("%s", str);
|
|
del_static(S_ADDR(INFO_DST(&info)), mask,
|
|
gate, 1);
|
|
}
|
|
break;
|
|
|
|
case RTM_LOSING:
|
|
trace_act("%s", str);
|
|
rtm_lose(&m.r.rtm,&info);
|
|
break;
|
|
|
|
default:
|
|
trace_act("ignore %s", str);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* after aggregating, note routes that belong in the kernel
|
|
*/
|
|
static void
|
|
kern_out(struct ag_info *ag)
|
|
{
|
|
struct khash *k;
|
|
|
|
|
|
/* Do not install bad routes if they are not already present.
|
|
* This includes routes that had RS_NET_SYN for interfaces that
|
|
* recently died.
|
|
*/
|
|
if (ag->ag_metric == HOPCNT_INFINITY) {
|
|
k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, 0);
|
|
if (k == NULL)
|
|
return;
|
|
} else {
|
|
k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask);
|
|
}
|
|
|
|
if (k->k_state & KS_NEW) {
|
|
/* will need to add new entry to the kernel table */
|
|
k->k_state = KS_ADD;
|
|
if (ag->ag_state & AGS_GATEWAY)
|
|
k->k_state |= KS_GATEWAY;
|
|
k->k_gate = ag->ag_gate;
|
|
k->k_metric = ag->ag_metric;
|
|
return;
|
|
}
|
|
|
|
if (k->k_state & KS_STATIC)
|
|
return;
|
|
|
|
/* modify existing kernel entry if necessary */
|
|
if (k->k_gate != ag->ag_gate
|
|
|| k->k_metric != ag->ag_metric) {
|
|
/* Must delete bad interface routes etc. to change them. */
|
|
if (k->k_metric == HOPCNT_INFINITY)
|
|
k->k_state |= KS_DEL_ADD;
|
|
k->k_gate = ag->ag_gate;
|
|
k->k_metric = ag->ag_metric;
|
|
k->k_state |= KS_CHANGE;
|
|
}
|
|
|
|
/* If the daemon thinks the route should exist, forget
|
|
* about any redirections.
|
|
* If the daemon thinks the route should exist, eventually
|
|
* override manual intervention by the operator.
|
|
*/
|
|
if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) {
|
|
k->k_state &= ~KS_DYNAMIC;
|
|
k->k_state |= (KS_ADD | KS_DEL_ADD);
|
|
}
|
|
|
|
if ((k->k_state & KS_GATEWAY)
|
|
&& !(ag->ag_state & AGS_GATEWAY)) {
|
|
k->k_state &= ~KS_GATEWAY;
|
|
k->k_state |= (KS_ADD | KS_DEL_ADD);
|
|
} else if (!(k->k_state & KS_GATEWAY)
|
|
&& (ag->ag_state & AGS_GATEWAY)) {
|
|
k->k_state |= KS_GATEWAY;
|
|
k->k_state |= (KS_ADD | KS_DEL_ADD);
|
|
}
|
|
|
|
/* Deleting-and-adding is necessary to change aspects of a route.
|
|
* Just delete instead of deleting and then adding a bad route.
|
|
* Otherwise, we want to keep the route in the kernel.
|
|
*/
|
|
if (k->k_metric == HOPCNT_INFINITY
|
|
&& (k->k_state & KS_DEL_ADD))
|
|
k->k_state |= KS_DELETE;
|
|
else
|
|
k->k_state &= ~KS_DELETE;
|
|
#undef RT
|
|
}
|
|
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
walk_kern(struct radix_node *rn,
|
|
struct walkarg *argp UNUSED)
|
|
{
|
|
#define RT ((struct rt_entry *)rn)
|
|
char metric, pref;
|
|
u_int ags = 0;
|
|
|
|
|
|
/* Do not install synthetic routes */
|
|
if (RT->rt_state & RS_NET_SYN)
|
|
return 0;
|
|
|
|
if (!(RT->rt_state & RS_IF)) {
|
|
/* This is an ordinary route, not for an interface.
|
|
*/
|
|
|
|
/* aggregate, ordinary good routes without regard to
|
|
* their metric
|
|
*/
|
|
pref = 1;
|
|
ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
|
|
|
|
/* Do not install host routes directly to hosts, to avoid
|
|
* interfering with ARP entries in the kernel table.
|
|
*/
|
|
if (RT_ISHOST(RT)
|
|
&& ntohl(RT->rt_dst) == RT->rt_gate)
|
|
return 0;
|
|
|
|
} else {
|
|
/* This is an interface route.
|
|
* Do not install routes for "external" remote interfaces.
|
|
*/
|
|
if (RT->rt_ifp != 0 && (RT->rt_ifp->int_state & IS_EXTERNAL))
|
|
return 0;
|
|
|
|
/* Interfaces should override received routes.
|
|
*/
|
|
pref = 0;
|
|
ags |= (AGS_IF | AGS_CORS_GATE);
|
|
|
|
/* If it is not an interface, or an alias for an interface,
|
|
* it must be a "gateway."
|
|
*
|
|
* If it is a "remote" interface, it is also a "gateway" to
|
|
* the kernel if is not an alias.
|
|
*/
|
|
if (RT->rt_ifp == 0
|
|
|| (RT->rt_ifp->int_state & IS_REMOTE))
|
|
ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE);
|
|
}
|
|
|
|
/* If RIP is off and IRDP is on, let the route to the discovered
|
|
* route suppress any RIP routes. Eventually the RIP routes
|
|
* will time-out and be deleted. This reaches the steady-state
|
|
* quicker.
|
|
*/
|
|
if ((RT->rt_state & RS_RDISC) && rip_sock < 0)
|
|
ags |= AGS_CORS_GATE;
|
|
|
|
metric = RT->rt_metric;
|
|
if (metric == HOPCNT_INFINITY) {
|
|
/* if the route is dead, so try hard to aggregate. */
|
|
pref = HOPCNT_INFINITY;
|
|
ags |= (AGS_FINE_GATE | AGS_SUPPRESS);
|
|
ags &= ~(AGS_IF | AGS_CORS_GATE);
|
|
}
|
|
|
|
ag_check(RT->rt_dst, RT->rt_mask, RT->rt_gate, 0,
|
|
metric,pref, 0, 0, ags, kern_out);
|
|
return 0;
|
|
#undef RT
|
|
}
|
|
|
|
|
|
/* Update the kernel table to match the daemon table.
|
|
*/
|
|
static void
|
|
fix_kern(void)
|
|
{
|
|
int i;
|
|
struct khash *k, **pk;
|
|
|
|
|
|
need_kern = age_timer;
|
|
|
|
/* Walk daemon table, updating the copy of the kernel table.
|
|
*/
|
|
(void)rn_walktree(rhead, walk_kern, 0);
|
|
ag_flush(0,0,kern_out);
|
|
|
|
for (i = 0; i < KHASH_SIZE; i++) {
|
|
for (pk = &khash_bins[i]; (k = *pk) != NULL; ) {
|
|
/* Do not touch static routes */
|
|
if (k->k_state & KS_STATIC) {
|
|
kern_check_static(k,0);
|
|
pk = &k->k_next;
|
|
continue;
|
|
}
|
|
|
|
/* check hold on routes deleted by the operator */
|
|
if (k->k_keep > now.tv_sec) {
|
|
/* ensure we check when the hold is over */
|
|
LIM_SEC(need_kern, k->k_keep);
|
|
/* mark for the next cycle */
|
|
k->k_state |= KS_DELETE;
|
|
pk = &k->k_next;
|
|
continue;
|
|
}
|
|
|
|
if ((k->k_state & KS_DELETE)
|
|
&& !(k->k_state & KS_DYNAMIC)) {
|
|
kern_ioctl(k, RTM_DELETE, 0);
|
|
*pk = k->k_next;
|
|
free(k);
|
|
continue;
|
|
}
|
|
|
|
if (k->k_state & KS_DEL_ADD)
|
|
kern_ioctl(k, RTM_DELETE, 0);
|
|
|
|
if (k->k_state & KS_ADD) {
|
|
kern_ioctl(k, RTM_ADD,
|
|
((0 != (k->k_state & (KS_GATEWAY
|
|
| KS_DYNAMIC)))
|
|
? RTF_GATEWAY : 0));
|
|
} else if (k->k_state & KS_CHANGE) {
|
|
kern_ioctl(k, RTM_CHANGE,
|
|
((0 != (k->k_state & (KS_GATEWAY
|
|
| KS_DYNAMIC)))
|
|
? RTF_GATEWAY : 0));
|
|
}
|
|
k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD);
|
|
|
|
/* Mark this route to be deleted in the next cycle.
|
|
* This deletes routes that disappear from the
|
|
* daemon table, since the normal aging code
|
|
* will clear the bit for routes that have not
|
|
* disappeared from the daemon table.
|
|
*/
|
|
k->k_state |= KS_DELETE;
|
|
pk = &k->k_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Delete a static route in the image of the kernel table.
|
|
*/
|
|
void
|
|
del_static(naddr dst,
|
|
naddr mask,
|
|
naddr gate,
|
|
int gone)
|
|
{
|
|
struct khash *k;
|
|
struct rt_entry *rt;
|
|
|
|
/* Just mark it in the table to be deleted next time the kernel
|
|
* table is updated.
|
|
* If it has already been deleted, mark it as such, and set its
|
|
* keep-timer so that it will not be deleted again for a while.
|
|
* This lets the operator delete a route added by the daemon
|
|
* and add a replacement.
|
|
*/
|
|
k = kern_find(dst, mask, 0);
|
|
if (k != NULL && (gate == 0 || k->k_gate == gate)) {
|
|
k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK);
|
|
k->k_state |= KS_DELETE;
|
|
if (gone) {
|
|
k->k_state |= KS_DELETED;
|
|
k->k_keep = now.tv_sec + K_KEEP_LIM;
|
|
}
|
|
}
|
|
|
|
rt = rtget(dst, mask);
|
|
if (rt != NULL && (rt->rt_state & RS_STATIC))
|
|
rtbad(rt);
|
|
}
|
|
|
|
|
|
/* Delete all routes generated from ICMP Redirects that use a given gateway,
|
|
* as well as old redirected routes.
|
|
*/
|
|
void
|
|
del_redirects(naddr bad_gate,
|
|
time_t old)
|
|
{
|
|
int i;
|
|
struct khash *k;
|
|
|
|
|
|
for (i = 0; i < KHASH_SIZE; i++) {
|
|
for (k = khash_bins[i]; k != NULL; k = k->k_next) {
|
|
if (!(k->k_state & KS_DYNAMIC)
|
|
|| (k->k_state & KS_STATIC))
|
|
continue;
|
|
|
|
if (k->k_gate != bad_gate
|
|
&& k->k_redirect_time > old
|
|
&& !supplier)
|
|
continue;
|
|
|
|
k->k_state |= KS_DELETE;
|
|
k->k_state &= ~KS_DYNAMIC;
|
|
need_kern.tv_sec = now.tv_sec;
|
|
trace_act("mark redirected %s --> %s for deletion",
|
|
addrname(k->k_dst, k->k_mask, 0),
|
|
naddr_ntoa(k->k_gate));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Start the daemon tables.
|
|
*/
|
|
extern int max_keylen;
|
|
|
|
void
|
|
rtinit(void)
|
|
{
|
|
int i;
|
|
struct ag_info *ag;
|
|
|
|
/* Initialize the radix trees */
|
|
max_keylen = sizeof(struct sockaddr_in);
|
|
rn_init();
|
|
rn_inithead(&rhead, 32);
|
|
|
|
/* mark all of the slots in the table free */
|
|
ag_avail = ag_slots;
|
|
for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) {
|
|
ag->ag_fine = ag+1;
|
|
ag++;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef _HAVE_SIN_LEN
|
|
static struct sockaddr_in dst_sock = {sizeof(dst_sock), AF_INET, 0, {0}, {0}};
|
|
static struct sockaddr_in mask_sock = {sizeof(mask_sock), AF_INET, 0, {0}, {0}};
|
|
#else
|
|
static struct sockaddr_in_new dst_sock = {_SIN_ADDR_SIZE, AF_INET};
|
|
static struct sockaddr_in_new mask_sock = {_SIN_ADDR_SIZE, AF_INET};
|
|
#endif
|
|
|
|
|
|
static void
|
|
set_need_flash(void)
|
|
{
|
|
if (!need_flash) {
|
|
need_flash = 1;
|
|
/* Do not send the flash update immediately. Wait a little
|
|
* while to hear from other routers.
|
|
*/
|
|
no_flash.tv_sec = now.tv_sec + MIN_WAITTIME;
|
|
}
|
|
}
|
|
|
|
|
|
/* Get a particular routing table entry
|
|
*/
|
|
struct rt_entry *
|
|
rtget(naddr dst, naddr mask)
|
|
{
|
|
struct rt_entry *rt;
|
|
|
|
dst_sock.sin_addr.s_addr = dst;
|
|
mask_sock.sin_addr.s_addr = htonl(mask);
|
|
masktrim(&mask_sock);
|
|
rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock,&mask_sock,rhead);
|
|
if (!rt
|
|
|| rt->rt_dst != dst
|
|
|| rt->rt_mask != mask)
|
|
return 0;
|
|
|
|
return rt;
|
|
}
|
|
|
|
|
|
/* Find a route to dst as the kernel would.
|
|
*/
|
|
struct rt_entry *
|
|
rtfind(naddr dst)
|
|
{
|
|
dst_sock.sin_addr.s_addr = dst;
|
|
return (struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead);
|
|
}
|
|
|
|
|
|
/* add a route to the table
|
|
*/
|
|
void
|
|
rtadd(naddr dst,
|
|
naddr mask,
|
|
u_int state, /* rt_state for the entry */
|
|
struct rt_spare *new)
|
|
{
|
|
struct rt_entry *rt;
|
|
naddr smask;
|
|
int i;
|
|
struct rt_spare *rts;
|
|
|
|
rt = (struct rt_entry *)rtmalloc(sizeof (*rt), "rtadd");
|
|
memset(rt, 0, sizeof(*rt));
|
|
for (rts = rt->rt_spares, i = NUM_SPARES; i != 0; i--, rts++)
|
|
rts->rts_metric = HOPCNT_INFINITY;
|
|
|
|
rt->rt_nodes->rn_key = (caddr_t)&rt->rt_dst_sock;
|
|
rt->rt_dst = dst;
|
|
rt->rt_dst_sock.sin_family = AF_INET;
|
|
#ifdef _HAVE_SIN_LEN
|
|
rt->rt_dst_sock.sin_len = dst_sock.sin_len;
|
|
#endif
|
|
if (mask != HOST_MASK) {
|
|
smask = std_mask(dst);
|
|
if ((smask & ~mask) == 0 && mask > smask)
|
|
state |= RS_SUBNET;
|
|
}
|
|
mask_sock.sin_addr.s_addr = htonl(mask);
|
|
masktrim(&mask_sock);
|
|
rt->rt_mask = mask;
|
|
rt->rt_state = state;
|
|
rt->rt_spares[0] = *new;
|
|
rt->rt_time = now.tv_sec;
|
|
rt->rt_poison_metric = HOPCNT_INFINITY;
|
|
rt->rt_seqno = update_seqno;
|
|
|
|
if (++total_routes == MAX_ROUTES)
|
|
msglog("have maximum (%d) routes", total_routes);
|
|
if (TRACEACTIONS)
|
|
trace_add_del("Add", rt);
|
|
|
|
need_kern.tv_sec = now.tv_sec;
|
|
set_need_flash();
|
|
|
|
if (0 == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock,
|
|
rhead, rt->rt_nodes)) {
|
|
msglog("rnh_addaddr() failed for %s mask=%#lx",
|
|
naddr_ntoa(dst), (u_long)mask);
|
|
free(rt);
|
|
}
|
|
}
|
|
|
|
|
|
/* notice a changed route
|
|
*/
|
|
void
|
|
rtchange(struct rt_entry *rt,
|
|
u_int state, /* new state bits */
|
|
struct rt_spare *new,
|
|
char *label)
|
|
{
|
|
if (rt->rt_metric != new->rts_metric) {
|
|
/* Fix the kernel immediately if it seems the route
|
|
* has gone bad, since there may be a working route that
|
|
* aggregates this route.
|
|
*/
|
|
if (new->rts_metric == HOPCNT_INFINITY) {
|
|
need_kern.tv_sec = now.tv_sec;
|
|
if (new->rts_time >= now.tv_sec - EXPIRE_TIME)
|
|
new->rts_time = now.tv_sec - EXPIRE_TIME;
|
|
}
|
|
rt->rt_seqno = update_seqno;
|
|
set_need_flash();
|
|
}
|
|
|
|
if (rt->rt_gate != new->rts_gate) {
|
|
need_kern.tv_sec = now.tv_sec;
|
|
rt->rt_seqno = update_seqno;
|
|
set_need_flash();
|
|
}
|
|
|
|
state |= (rt->rt_state & RS_SUBNET);
|
|
|
|
/* Keep various things from deciding ageless routes are stale.
|
|
*/
|
|
if (!AGE_RT(state, new->rts_ifp))
|
|
new->rts_time = now.tv_sec;
|
|
|
|
if (TRACEACTIONS)
|
|
trace_change(rt, state, new,
|
|
label ? label : "Chg ");
|
|
|
|
rt->rt_state = state;
|
|
rt->rt_spares[0] = *new;
|
|
}
|
|
|
|
|
|
/* check for a better route among the spares
|
|
*/
|
|
static struct rt_spare *
|
|
rts_better(struct rt_entry *rt)
|
|
{
|
|
struct rt_spare *rts, *rts1;
|
|
int i;
|
|
|
|
/* find the best alternative among the spares */
|
|
rts = rt->rt_spares+1;
|
|
for (i = NUM_SPARES, rts1 = rts+1; i > 2; i--, rts1++) {
|
|
if (BETTER_LINK(rt,rts1,rts))
|
|
rts = rts1;
|
|
}
|
|
|
|
return rts;
|
|
}
|
|
|
|
|
|
/* switch to a backup route
|
|
*/
|
|
void
|
|
rtswitch(struct rt_entry *rt,
|
|
struct rt_spare *rts)
|
|
{
|
|
struct rt_spare swap;
|
|
char label[10];
|
|
|
|
|
|
/* Do not change permanent routes */
|
|
if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_RDISC
|
|
| RS_NET_SYN | RS_IF)))
|
|
return;
|
|
|
|
/* find the best alternative among the spares */
|
|
if (rts == NULL)
|
|
rts = rts_better(rt);
|
|
|
|
/* Do not bother if it is not worthwhile.
|
|
*/
|
|
if (!BETTER_LINK(rt, rts, rt->rt_spares))
|
|
return;
|
|
|
|
swap = rt->rt_spares[0];
|
|
(void)sprintf(label, "Use #%d", (int)(rts - rt->rt_spares));
|
|
rtchange(rt, rt->rt_state & ~(RS_NET_SYN | RS_RDISC), rts, label);
|
|
if (swap.rts_metric == HOPCNT_INFINITY) {
|
|
*rts = rts_empty;
|
|
} else {
|
|
*rts = swap;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
rtdelete(struct rt_entry *rt)
|
|
{
|
|
struct khash *k;
|
|
|
|
|
|
if (TRACEACTIONS)
|
|
trace_add_del("Del", rt);
|
|
|
|
k = kern_find(rt->rt_dst, rt->rt_mask, 0);
|
|
if (k != NULL) {
|
|
k->k_state |= KS_DELETE;
|
|
need_kern.tv_sec = now.tv_sec;
|
|
}
|
|
|
|
dst_sock.sin_addr.s_addr = rt->rt_dst;
|
|
mask_sock.sin_addr.s_addr = htonl(rt->rt_mask);
|
|
masktrim(&mask_sock);
|
|
if (rt != (struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock,
|
|
rhead)) {
|
|
msglog("rnh_deladdr() failed");
|
|
} else {
|
|
free(rt);
|
|
total_routes--;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
rts_delete(struct rt_entry *rt,
|
|
struct rt_spare *rts)
|
|
{
|
|
trace_upslot(rt, rts, &rts_empty);
|
|
*rts = rts_empty;
|
|
}
|
|
|
|
|
|
/* Get rid of a bad route, and try to switch to a replacement.
|
|
*/
|
|
static void
|
|
rtbad(struct rt_entry *rt)
|
|
{
|
|
struct rt_spare new;
|
|
|
|
/* Poison the route */
|
|
new = rt->rt_spares[0];
|
|
new.rts_metric = HOPCNT_INFINITY;
|
|
rtchange(rt, rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC), &new, 0);
|
|
rtswitch(rt, 0);
|
|
}
|
|
|
|
|
|
/* Junk a RS_NET_SYN or RS_LOCAL route,
|
|
* unless it is needed by another interface.
|
|
*/
|
|
void
|
|
rtbad_sub(struct rt_entry *rt)
|
|
{
|
|
struct interface *ifp, *ifp1;
|
|
struct intnet *intnetp;
|
|
u_int state;
|
|
|
|
|
|
ifp1 = NULL;
|
|
state = 0;
|
|
|
|
if (rt->rt_state & RS_LOCAL) {
|
|
/* Is this the route through loopback for the interface?
|
|
* If so, see if it is used by any other interfaces, such
|
|
* as a point-to-point interface with the same local address.
|
|
*/
|
|
LIST_FOREACH(ifp, &ifnet, int_list) {
|
|
/* Retain it if another interface needs it.
|
|
*/
|
|
if (ifp->int_addr == rt->rt_ifp->int_addr) {
|
|
state |= RS_LOCAL;
|
|
ifp1 = ifp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (!(state & RS_LOCAL)) {
|
|
/* Retain RIPv1 logical network route if there is another
|
|
* interface that justifies it.
|
|
*/
|
|
if (rt->rt_state & RS_NET_SYN) {
|
|
LIST_FOREACH(ifp, &ifnet, int_list) {
|
|
if ((ifp->int_state & IS_NEED_NET_SYN)
|
|
&& rt->rt_mask == ifp->int_std_mask
|
|
&& rt->rt_dst == ifp->int_std_addr) {
|
|
state |= RS_NET_SYN;
|
|
ifp1 = ifp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* or if there is an authority route that needs it. */
|
|
for (intnetp = intnets;
|
|
intnetp != NULL;
|
|
intnetp = intnetp->intnet_next) {
|
|
if (intnetp->intnet_addr == rt->rt_dst
|
|
&& intnetp->intnet_mask == rt->rt_mask) {
|
|
state |= (RS_NET_SYN | RS_NET_INT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ifp1 != NULL || (state & RS_NET_SYN)) {
|
|
struct rt_spare new = rt->rt_spares[0];
|
|
new.rts_ifp = ifp1;
|
|
rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state),
|
|
&new, 0);
|
|
} else {
|
|
rtbad(rt);
|
|
}
|
|
}
|
|
|
|
|
|
/* Called while walking the table looking for sick interfaces
|
|
* or after a time change.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
walk_bad(struct radix_node *rn,
|
|
struct walkarg *argp UNUSED)
|
|
{
|
|
#define RT ((struct rt_entry *)rn)
|
|
struct rt_spare *rts;
|
|
int i;
|
|
|
|
|
|
/* fix any spare routes through the interface
|
|
*/
|
|
rts = RT->rt_spares;
|
|
for (i = NUM_SPARES; i != 1; i--) {
|
|
rts++;
|
|
if (rts->rts_metric < HOPCNT_INFINITY
|
|
&& (rts->rts_ifp == NULL
|
|
|| (rts->rts_ifp->int_state & IS_BROKE)))
|
|
rts_delete(RT, rts);
|
|
}
|
|
|
|
/* Deal with the main route
|
|
*/
|
|
/* finished if it has been handled before or if its interface is ok
|
|
*/
|
|
if (RT->rt_ifp == 0 || !(RT->rt_ifp->int_state & IS_BROKE))
|
|
return 0;
|
|
|
|
/* Bad routes for other than interfaces are easy.
|
|
*/
|
|
if (0 == (RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) {
|
|
rtbad(RT);
|
|
return 0;
|
|
}
|
|
|
|
rtbad_sub(RT);
|
|
return 0;
|
|
#undef RT
|
|
}
|
|
|
|
|
|
/* Check the age of an individual route.
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
walk_age(struct radix_node *rn,
|
|
struct walkarg *argp UNUSED)
|
|
{
|
|
#define RT ((struct rt_entry *)rn)
|
|
struct interface *ifp;
|
|
struct rt_spare *rts;
|
|
int i;
|
|
|
|
|
|
/* age all of the spare routes, including the primary route
|
|
* currently in use
|
|
*/
|
|
rts = RT->rt_spares;
|
|
for (i = NUM_SPARES; i != 0; i--, rts++) {
|
|
|
|
ifp = rts->rts_ifp;
|
|
if (i == NUM_SPARES) {
|
|
if (!AGE_RT(RT->rt_state, ifp)) {
|
|
/* Keep various things from deciding ageless
|
|
* routes are stale
|
|
*/
|
|
rts->rts_time = now.tv_sec;
|
|
continue;
|
|
}
|
|
|
|
/* forget RIP routes after RIP has been turned off.
|
|
*/
|
|
if (rip_sock < 0) {
|
|
rtdelete(RT);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* age failing routes
|
|
*/
|
|
if (age_bad_gate == rts->rts_gate
|
|
&& rts->rts_time >= now_stale) {
|
|
rts->rts_time -= SUPPLY_INTERVAL;
|
|
}
|
|
|
|
/* trash the spare routes when they go bad */
|
|
if (rts->rts_metric < HOPCNT_INFINITY
|
|
&& now_garbage > rts->rts_time
|
|
&& i != NUM_SPARES)
|
|
rts_delete(RT, rts);
|
|
}
|
|
|
|
|
|
/* finished if the active route is still fresh */
|
|
if (now_stale <= RT->rt_time)
|
|
return 0;
|
|
|
|
/* try to switch to an alternative */
|
|
rtswitch(RT, 0);
|
|
|
|
/* Delete a dead route after it has been publicly mourned. */
|
|
if (now_garbage > RT->rt_time) {
|
|
rtdelete(RT);
|
|
return 0;
|
|
}
|
|
|
|
/* Start poisoning a bad route before deleting it. */
|
|
if (now.tv_sec - RT->rt_time > EXPIRE_TIME) {
|
|
struct rt_spare new = RT->rt_spares[0];
|
|
new.rts_metric = HOPCNT_INFINITY;
|
|
rtchange(RT, RT->rt_state, &new, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Watch for dead routes and interfaces.
|
|
*/
|
|
void
|
|
age(naddr bad_gate)
|
|
{
|
|
struct interface *ifp;
|
|
int need_query = 0;
|
|
|
|
/* If not listening to RIP, there is no need to age the routes in
|
|
* the table.
|
|
*/
|
|
age_timer.tv_sec = (now.tv_sec
|
|
+ ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL));
|
|
|
|
/* Check for dead IS_REMOTE interfaces by timing their
|
|
* transmissions.
|
|
*/
|
|
LIST_FOREACH(ifp, &ifnet, int_list) {
|
|
if (!(ifp->int_state & IS_REMOTE))
|
|
continue;
|
|
|
|
/* ignore unreachable remote interfaces */
|
|
if (!check_remote(ifp))
|
|
continue;
|
|
|
|
/* Restore remote interface that has become reachable
|
|
*/
|
|
if (ifp->int_state & IS_BROKE)
|
|
if_ok(ifp, "remote ");
|
|
|
|
if (ifp->int_act_time != NEVER
|
|
&& now.tv_sec - ifp->int_act_time > EXPIRE_TIME) {
|
|
msglog("remote interface %s to %s timed out after"
|
|
" %ld:%ld",
|
|
ifp->int_name,
|
|
naddr_ntoa(ifp->int_dstaddr),
|
|
(long)(now.tv_sec - ifp->int_act_time)/60,
|
|
(long)(now.tv_sec - ifp->int_act_time)%60);
|
|
if_sick(ifp);
|
|
}
|
|
|
|
/* If we have not heard from the other router
|
|
* recently, ask it.
|
|
*/
|
|
if (now.tv_sec >= ifp->int_query_time) {
|
|
ifp->int_query_time = NEVER;
|
|
need_query = 1;
|
|
}
|
|
}
|
|
|
|
/* Age routes. */
|
|
age_bad_gate = bad_gate;
|
|
(void)rn_walktree(rhead, walk_age, 0);
|
|
|
|
/* delete old redirected routes to keep the kernel table small
|
|
* and prevent blackholes
|
|
*/
|
|
del_redirects(bad_gate, now.tv_sec-STALE_TIME);
|
|
|
|
/* Update the kernel routing table. */
|
|
fix_kern();
|
|
|
|
/* poke reticent remote gateways */
|
|
if (need_query)
|
|
rip_query();
|
|
}
|