freebsd-dev/sys/net/flowtable.c
Hans Petter Selasky c25290420e Start process of removing the use of the deprecated "M_FLOWID" flag
from the FreeBSD network code. The flag is still kept around in the
"sys/mbuf.h" header file, but does no longer have any users. Instead
the "m_pkthdr.rsstype" field in the mbuf structure is now used to
decide the meaning of the "m_pkthdr.flowid" field. To modify the
"m_pkthdr.rsstype" field please use the existing "M_HASHTYPE_XXX"
macros as defined in the "sys/mbuf.h" header file.

This patch introduces new behaviour in the transmit direction.
Previously network drivers checked if "M_FLOWID" was set in "m_flags"
before using the "m_pkthdr.flowid" field. This check has now now been
replaced by checking if "M_HASHTYPE_GET(m)" is different from
"M_HASHTYPE_NONE". In the future more hashtypes will be added, for
example hashtypes for hardware dedicated flows.

"M_HASHTYPE_OPAQUE" indicates that the "m_pkthdr.flowid" value is
valid and has no particular type. This change removes the need for an
"if" statement in TCP transmit code checking for the presence of a
valid flowid value. The "if" statement mentioned above is now a direct
variable assignment which is then later checked by the respective
network drivers like before.

Additional notes:
- The SCTP code changes will be committed as a separate patch.
- Removal of the "M_FLOWID" flag will also be done separately.
- The FreeBSD version has been bumped.

MFC after:	1 month
Sponsored by:	Mellanox Technologies
2014-12-01 11:45:24 +00:00

1190 lines
28 KiB
C

/*-
* Copyright (c) 2014 Gleb Smirnoff <glebius@FreeBSD.org>
* Copyright (c) 2008-2010, BitGravity Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Neither the name of the BitGravity Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_route.h"
#include "opt_mpath.h"
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/bitstring.h>
#include <sys/condvar.h>
#include <sys/callout.h>
#include <sys/hash.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_llatbl.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/flowtable.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#ifdef FLOWTABLE_HASH_ALL
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/sctp.h>
#endif
#include <ddb/ddb.h>
#ifdef FLOWTABLE_HASH_ALL
#define KEY_PORTS (sizeof(uint16_t) * 2)
#define KEY_ADDRS 2
#else
#define KEY_PORTS 0
#define KEY_ADDRS 1
#endif
#ifdef INET6
#define KEY_ADDR_LEN sizeof(struct in6_addr)
#else
#define KEY_ADDR_LEN sizeof(struct in_addr)
#endif
#define KEYLEN ((KEY_ADDR_LEN * KEY_ADDRS + KEY_PORTS) / sizeof(uint32_t))
struct flentry {
uint32_t f_hash; /* hash flowing forward */
uint32_t f_key[KEYLEN]; /* address(es and ports) */
uint32_t f_uptime; /* uptime at last access */
uint16_t f_fibnum; /* fib index */
#ifdef FLOWTABLE_HASH_ALL
uint8_t f_proto; /* protocol */
uint8_t f_flags; /* stale? */
#define FL_STALE 1
#endif
SLIST_ENTRY(flentry) f_next; /* pointer to collision entry */
struct rtentry *f_rt; /* rtentry for flow */
struct llentry *f_lle; /* llentry for flow */
};
#undef KEYLEN
SLIST_HEAD(flist, flentry);
/* Make sure we can use pcpu_zone_ptr for struct flist. */
CTASSERT(sizeof(struct flist) == sizeof(void *));
struct flowtable {
counter_u64_t *ft_stat;
int ft_size;
/*
* ft_table is a malloc(9)ed array of pointers. Pointers point to
* memory from UMA_ZONE_PCPU zone.
* ft_masks is per-cpu pointer itself. Each instance points
* to a malloc(9)ed bitset, that is private to corresponding CPU.
*/
struct flist **ft_table;
bitstr_t **ft_masks;
bitstr_t *ft_tmpmask;
};
#define FLOWSTAT_ADD(ft, name, v) \
counter_u64_add((ft)->ft_stat[offsetof(struct flowtable_stat, name) / sizeof(uint64_t)], (v))
#define FLOWSTAT_INC(ft, name) FLOWSTAT_ADD(ft, name, 1)
static struct proc *flowcleanerproc;
static uint32_t flow_hashjitter;
static struct cv flowclean_f_cv;
static struct cv flowclean_c_cv;
static struct mtx flowclean_lock;
static uint32_t flowclean_cycles;
/*
* TODO:
* - add sysctls to resize && flush flow tables
* - Add per flowtable sysctls for statistics and configuring timeouts
* - add saturation counter to rtentry to support per-packet load-balancing
* add flag to indicate round-robin flow, add list lookup from head
for flows
* - add sysctl / device node / syscall to support exporting and importing
* of flows with flag to indicate that a flow was imported so should
* not be considered for auto-cleaning
* - support explicit connection state (currently only ad-hoc for DSR)
* - idetach() cleanup for options VIMAGE builds.
*/
#ifdef INET
static VNET_DEFINE(struct flowtable, ip4_ft);
#define V_ip4_ft VNET(ip4_ft)
#endif
#ifdef INET6
static VNET_DEFINE(struct flowtable, ip6_ft);
#define V_ip6_ft VNET(ip6_ft)
#endif
static uma_zone_t flow_zone;
static VNET_DEFINE(int, flowtable_enable) = 1;
#define V_flowtable_enable VNET(flowtable_enable)
static SYSCTL_NODE(_net, OID_AUTO, flowtable, CTLFLAG_RD, NULL,
"flowtable");
SYSCTL_INT(_net_flowtable, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(flowtable_enable), 0, "enable flowtable caching.");
SYSCTL_UMA_MAX(_net_flowtable, OID_AUTO, maxflows, CTLFLAG_RW,
&flow_zone, "Maximum number of flows allowed");
static MALLOC_DEFINE(M_FTABLE, "flowtable", "flowtable hashes and bitstrings");
static struct flentry *
flowtable_lookup_common(struct flowtable *, uint32_t *, int, uint32_t);
#ifdef INET
static struct flentry *
flowtable_lookup_ipv4(struct mbuf *m, struct route *ro)
{
struct flentry *fle;
struct sockaddr_in *sin;
struct ip *ip;
uint32_t fibnum;
#ifdef FLOWTABLE_HASH_ALL
uint32_t key[3];
int iphlen;
uint16_t sport, dport;
uint8_t proto;
#endif
ip = mtod(m, struct ip *);
if (ip->ip_src.s_addr == ip->ip_dst.s_addr ||
(ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
return (NULL);
fibnum = M_GETFIB(m);
#ifdef FLOWTABLE_HASH_ALL
iphlen = ip->ip_hl << 2;
proto = ip->ip_p;
switch (proto) {
case IPPROTO_TCP: {
struct tcphdr *th;
th = (struct tcphdr *)((char *)ip + iphlen);
sport = th->th_sport;
dport = th->th_dport;
if (th->th_flags & (TH_RST|TH_FIN))
fibnum |= (FL_STALE << 24);
break;
}
case IPPROTO_UDP: {
struct udphdr *uh;
uh = (struct udphdr *)((char *)ip + iphlen);
sport = uh->uh_sport;
dport = uh->uh_dport;
break;
}
case IPPROTO_SCTP: {
struct sctphdr *sh;
sh = (struct sctphdr *)((char *)ip + iphlen);
sport = sh->src_port;
dport = sh->dest_port;
/* XXXGL: handle stale? */
break;
}
default:
sport = dport = 0;
break;
}
key[0] = ip->ip_dst.s_addr;
key[1] = ip->ip_src.s_addr;
key[2] = (dport << 16) | sport;
fibnum |= proto << 16;
fle = flowtable_lookup_common(&V_ip4_ft, key, 3 * sizeof(uint32_t),
fibnum);
#else /* !FLOWTABLE_HASH_ALL */
fle = flowtable_lookup_common(&V_ip4_ft, (uint32_t *)&ip->ip_dst,
sizeof(struct in_addr), fibnum);
#endif /* FLOWTABLE_HASH_ALL */
if (fle == NULL)
return (NULL);
sin = (struct sockaddr_in *)&ro->ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = ip->ip_dst;
return (fle);
}
#endif /* INET */
#ifdef INET6
/*
* PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
* then it sets p to point at the offset "len" in the mbuf. WARNING: the
* pointer might become stale after other pullups (but we never use it
* this way).
*/
#define PULLUP_TO(_len, p, T) \
do { \
int x = (_len) + sizeof(T); \
if ((m)->m_len < x) \
return (NULL); \
p = (mtod(m, char *) + (_len)); \
} while (0)
#define TCP(p) ((struct tcphdr *)(p))
#define SCTP(p) ((struct sctphdr *)(p))
#define UDP(p) ((struct udphdr *)(p))
static struct flentry *
flowtable_lookup_ipv6(struct mbuf *m, struct route *ro)
{
struct flentry *fle;
struct sockaddr_in6 *sin6;
struct ip6_hdr *ip6;
uint32_t fibnum;
#ifdef FLOWTABLE_HASH_ALL
uint32_t key[9];
void *ulp;
int hlen;
uint16_t sport, dport;
u_short offset;
uint8_t proto;
#else
uint32_t key[4];
#endif
ip6 = mtod(m, struct ip6_hdr *);
if (in6_localaddr(&ip6->ip6_dst))
return (NULL);
fibnum = M_GETFIB(m);
#ifdef FLOWTABLE_HASH_ALL
hlen = sizeof(struct ip6_hdr);
proto = ip6->ip6_nxt;
offset = sport = dport = 0;
ulp = NULL;
while (ulp == NULL) {
switch (proto) {
case IPPROTO_ICMPV6:
case IPPROTO_OSPFIGP:
case IPPROTO_PIM:
case IPPROTO_CARP:
case IPPROTO_ESP:
case IPPROTO_NONE:
ulp = ip6;
break;
case IPPROTO_TCP:
PULLUP_TO(hlen, ulp, struct tcphdr);
dport = TCP(ulp)->th_dport;
sport = TCP(ulp)->th_sport;
if (TCP(ulp)->th_flags & (TH_RST|TH_FIN))
fibnum |= (FL_STALE << 24);
break;
case IPPROTO_SCTP:
PULLUP_TO(hlen, ulp, struct sctphdr);
dport = SCTP(ulp)->src_port;
sport = SCTP(ulp)->dest_port;
/* XXXGL: handle stale? */
break;
case IPPROTO_UDP:
PULLUP_TO(hlen, ulp, struct udphdr);
dport = UDP(ulp)->uh_dport;
sport = UDP(ulp)->uh_sport;
break;
case IPPROTO_HOPOPTS: /* RFC 2460 */
PULLUP_TO(hlen, ulp, struct ip6_hbh);
hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
ulp = NULL;
break;
case IPPROTO_ROUTING: /* RFC 2460 */
PULLUP_TO(hlen, ulp, struct ip6_rthdr);
hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
ulp = NULL;
break;
case IPPROTO_FRAGMENT: /* RFC 2460 */
PULLUP_TO(hlen, ulp, struct ip6_frag);
hlen += sizeof (struct ip6_frag);
proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
IP6F_OFF_MASK;
ulp = NULL;
break;
case IPPROTO_DSTOPTS: /* RFC 2460 */
PULLUP_TO(hlen, ulp, struct ip6_hbh);
hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
ulp = NULL;
break;
case IPPROTO_AH: /* RFC 2402 */
PULLUP_TO(hlen, ulp, struct ip6_ext);
hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
ulp = NULL;
break;
default:
PULLUP_TO(hlen, ulp, struct ip6_ext);
break;
}
}
bcopy(&ip6->ip6_dst, &key[0], sizeof(struct in6_addr));
bcopy(&ip6->ip6_src, &key[4], sizeof(struct in6_addr));
key[8] = (dport << 16) | sport;
fibnum |= proto << 16;
fle = flowtable_lookup_common(&V_ip6_ft, key, 9 * sizeof(uint32_t),
fibnum);
#else /* !FLOWTABLE_HASH_ALL */
bcopy(&ip6->ip6_dst, &key[0], sizeof(struct in6_addr));
fle = flowtable_lookup_common(&V_ip6_ft, key, sizeof(struct in6_addr),
fibnum);
#endif /* FLOWTABLE_HASH_ALL */
if (fle == NULL)
return (NULL);
sin6 = (struct sockaddr_in6 *)&ro->ro_dst;
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
bcopy(&ip6->ip6_dst, &sin6->sin6_addr, sizeof(struct in6_addr));
return (fle);
}
#endif /* INET6 */
static bitstr_t *
flowtable_mask(struct flowtable *ft)
{
/*
* flowtable_free_stale() calls w/o critical section, but
* with sched_bind(). Since pointer is stable throughout
* ft lifetime, it is safe, otherwise...
*
* CRITICAL_ASSERT(curthread);
*/
return (*(bitstr_t **)zpcpu_get(ft->ft_masks));
}
static struct flist *
flowtable_list(struct flowtable *ft, uint32_t hash)
{
CRITICAL_ASSERT(curthread);
return (zpcpu_get(ft->ft_table[hash % ft->ft_size]));
}
static int
flow_stale(struct flowtable *ft, struct flentry *fle, int maxidle)
{
if (((fle->f_rt->rt_flags & RTF_HOST) &&
((fle->f_rt->rt_flags & (RTF_UP)) != (RTF_UP))) ||
(fle->f_rt->rt_ifp == NULL) ||
!RT_LINK_IS_UP(fle->f_rt->rt_ifp) ||
(fle->f_lle->la_flags & LLE_VALID) == 0)
return (1);
if (time_uptime - fle->f_uptime > maxidle)
return (1);
#ifdef FLOWTABLE_HASH_ALL
if (fle->f_flags & FL_STALE)
return (1);
#endif
return (0);
}
static int
flow_full(void)
{
int count, max;
count = uma_zone_get_cur(flow_zone);
max = uma_zone_get_max(flow_zone);
return (count > (max - (max >> 3)));
}
static int
flow_matches(struct flentry *fle, uint32_t *key, int keylen, uint32_t fibnum)
{
#ifdef FLOWTABLE_HASH_ALL
uint8_t proto;
proto = (fibnum >> 16) & 0xff;
fibnum &= 0xffff;
#endif
CRITICAL_ASSERT(curthread);
/* Microoptimization for IPv4: don't use bcmp(). */
if (((keylen == sizeof(uint32_t) && (fle->f_key[0] != key[0])) ||
(bcmp(fle->f_key, key, keylen) == 0)) &&
fibnum == fle->f_fibnum &&
#ifdef FLOWTABLE_HASH_ALL
proto == fle->f_proto &&
#endif
(fle->f_rt->rt_flags & RTF_UP) &&
fle->f_rt->rt_ifp != NULL &&
(fle->f_lle->la_flags & LLE_VALID))
return (1);
return (0);
}
static struct flentry *
flowtable_insert(struct flowtable *ft, uint32_t hash, uint32_t *key,
int keylen, uint32_t fibnum0)
{
#ifdef INET6
struct route_in6 sro6;
#endif
#ifdef INET
struct route sro;
#endif
struct route *ro = NULL;
struct rtentry *rt;
struct lltable *lt = NULL;
struct llentry *lle;
struct sockaddr_storage *l3addr;
struct ifnet *ifp;
struct flist *flist;
struct flentry *fle, *iter;
bitstr_t *mask;
uint16_t fibnum = fibnum0;
#ifdef FLOWTABLE_HASH_ALL
uint8_t proto;
proto = (fibnum0 >> 16) & 0xff;
fibnum = fibnum0 & 0xffff;
#endif
/*
* This bit of code ends up locking the
* same route 3 times (just like ip_output + ether_output)
* - at lookup
* - in rt_check when called by arpresolve
* - dropping the refcount for the rtentry
*
* This could be consolidated to one if we wrote a variant
* of arpresolve with an rt_check variant that expected to
* receive the route locked
*/
#ifdef INET
if (ft == &V_ip4_ft) {
struct sockaddr_in *sin;
ro = &sro;
bzero(&sro.ro_dst, sizeof(sro.ro_dst));
sin = (struct sockaddr_in *)&sro.ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr.s_addr = key[0];
}
#endif
#ifdef INET6
if (ft == &V_ip6_ft) {
struct sockaddr_in6 *sin6;
ro = (struct route *)&sro6;
sin6 = &sro6.ro_dst;
bzero(sin6, sizeof(*sin6));
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
bcopy(key, &sin6->sin6_addr, sizeof(struct in6_addr));
}
#endif
ro->ro_rt = NULL;
#ifdef RADIX_MPATH
rtalloc_mpath_fib(ro, hash, fibnum);
#else
rtalloc_ign_fib(ro, 0, fibnum);
#endif
if (ro->ro_rt == NULL)
return (NULL);
rt = ro->ro_rt;
ifp = rt->rt_ifp;
if (ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) {
RTFREE(rt);
return (NULL);
}
#ifdef INET
if (ft == &V_ip4_ft)
lt = LLTABLE(ifp);
#endif
#ifdef INET6
if (ft == &V_ip6_ft)
lt = LLTABLE6(ifp);
#endif
if (rt->rt_flags & RTF_GATEWAY)
l3addr = (struct sockaddr_storage *)rt->rt_gateway;
else
l3addr = (struct sockaddr_storage *)&ro->ro_dst;
lle = llentry_alloc(ifp, lt, l3addr);
if (lle == NULL) {
RTFREE(rt);
return (NULL);
}
/* Don't insert the entry if the ARP hasn't yet finished resolving. */
if ((lle->la_flags & LLE_VALID) == 0) {
RTFREE(rt);
LLE_FREE(lle);
FLOWSTAT_INC(ft, ft_fail_lle_invalid);
return (NULL);
}
fle = uma_zalloc(flow_zone, M_NOWAIT | M_ZERO);
if (fle == NULL) {
RTFREE(rt);
LLE_FREE(lle);
return (NULL);
}
fle->f_hash = hash;
bcopy(key, &fle->f_key, keylen);
fle->f_rt = rt;
fle->f_lle = lle;
fle->f_fibnum = fibnum;
fle->f_uptime = time_uptime;
#ifdef FLOWTABLE_HASH_ALL
fle->f_proto = proto;
fle->f_flags = fibnum0 >> 24;
#endif
critical_enter();
mask = flowtable_mask(ft);
flist = flowtable_list(ft, hash);
if (SLIST_EMPTY(flist)) {
bit_set(mask, (hash % ft->ft_size));
SLIST_INSERT_HEAD(flist, fle, f_next);
goto skip;
}
/*
* find end of list and make sure that we were not
* preempted by another thread handling this flow
*/
SLIST_FOREACH(iter, flist, f_next) {
KASSERT(iter->f_hash % ft->ft_size == hash % ft->ft_size,
("%s: wrong hash", __func__));
if (flow_matches(iter, key, keylen, fibnum)) {
/*
* We probably migrated to an other CPU after
* lookup in flowtable_lookup_common() failed.
* It appeared that this CPU already has flow
* entry.
*/
iter->f_uptime = time_uptime;
#ifdef FLOWTABLE_HASH_ALL
iter->f_flags |= fibnum >> 24;
#endif
critical_exit();
FLOWSTAT_INC(ft, ft_collisions);
uma_zfree(flow_zone, fle);
return (iter);
}
}
SLIST_INSERT_HEAD(flist, fle, f_next);
skip:
critical_exit();
FLOWSTAT_INC(ft, ft_inserts);
return (fle);
}
int
flowtable_lookup(sa_family_t sa, struct mbuf *m, struct route *ro)
{
struct flentry *fle;
if (V_flowtable_enable == 0)
return (ENXIO);
switch (sa) {
#ifdef INET
case AF_INET:
fle = flowtable_lookup_ipv4(m, ro);
break;
#endif
#ifdef INET6
case AF_INET6:
fle = flowtable_lookup_ipv6(m, ro);
break;
#endif
default:
panic("%s: sa %d", __func__, sa);
}
if (fle == NULL)
return (EHOSTUNREACH);
if (M_HASHTYPE_GET(m) == M_HASHTYPE_NONE) {
M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
m->m_pkthdr.flowid = fle->f_hash;
}
ro->ro_rt = fle->f_rt;
ro->ro_lle = fle->f_lle;
ro->ro_flags |= RT_NORTREF;
return (0);
}
static struct flentry *
flowtable_lookup_common(struct flowtable *ft, uint32_t *key, int keylen,
uint32_t fibnum)
{
struct flist *flist;
struct flentry *fle;
uint32_t hash;
FLOWSTAT_INC(ft, ft_lookups);
hash = jenkins_hash32(key, keylen / sizeof(uint32_t), flow_hashjitter);
critical_enter();
flist = flowtable_list(ft, hash);
SLIST_FOREACH(fle, flist, f_next) {
KASSERT(fle->f_hash % ft->ft_size == hash % ft->ft_size,
("%s: wrong hash", __func__));
if (flow_matches(fle, key, keylen, fibnum)) {
fle->f_uptime = time_uptime;
#ifdef FLOWTABLE_HASH_ALL
fle->f_flags |= fibnum >> 24;
#endif
critical_exit();
FLOWSTAT_INC(ft, ft_hits);
return (fle);
}
}
critical_exit();
FLOWSTAT_INC(ft, ft_misses);
return (flowtable_insert(ft, hash, key, keylen, fibnum));
}
/*
* used by the bit_alloc macro
*/
#define calloc(count, size) malloc((count)*(size), M_FTABLE, M_WAITOK | M_ZERO)
static void
flowtable_alloc(struct flowtable *ft)
{
ft->ft_table = malloc(ft->ft_size * sizeof(struct flist),
M_FTABLE, M_WAITOK);
for (int i = 0; i < ft->ft_size; i++)
ft->ft_table[i] = uma_zalloc(pcpu_zone_ptr, M_WAITOK | M_ZERO);
ft->ft_masks = uma_zalloc(pcpu_zone_ptr, M_WAITOK);
for (int i = 0; i < mp_ncpus; i++) {
bitstr_t **b;
b = zpcpu_get_cpu(ft->ft_masks, i);
*b = bit_alloc(ft->ft_size);
}
ft->ft_tmpmask = bit_alloc(ft->ft_size);
}
#undef calloc
static void
flowtable_free_stale(struct flowtable *ft, struct rtentry *rt, int maxidle)
{
struct flist *flist, freelist;
struct flentry *fle, *fle1, *fleprev;
bitstr_t *mask, *tmpmask;
int curbit, tmpsize;
SLIST_INIT(&freelist);
mask = flowtable_mask(ft);
tmpmask = ft->ft_tmpmask;
tmpsize = ft->ft_size;
memcpy(tmpmask, mask, ft->ft_size/8);
curbit = 0;
fleprev = NULL; /* pacify gcc */
/*
* XXX Note to self, bit_ffs operates at the byte level
* and thus adds gratuitous overhead
*/
bit_ffs(tmpmask, ft->ft_size, &curbit);
while (curbit != -1) {
if (curbit >= ft->ft_size || curbit < -1) {
log(LOG_ALERT,
"warning: bad curbit value %d \n",
curbit);
break;
}
FLOWSTAT_INC(ft, ft_free_checks);
critical_enter();
flist = flowtable_list(ft, curbit);
#ifdef DIAGNOSTIC
if (SLIST_EMPTY(flist) && curbit > 0) {
log(LOG_ALERT,
"warning bit=%d set, but no fle found\n",
curbit);
}
#endif
SLIST_FOREACH_SAFE(fle, flist, f_next, fle1) {
if (rt != NULL && fle->f_rt != rt) {
fleprev = fle;
continue;
}
if (!flow_stale(ft, fle, maxidle)) {
fleprev = fle;
continue;
}
if (fle == SLIST_FIRST(flist))
SLIST_REMOVE_HEAD(flist, f_next);
else
SLIST_REMOVE_AFTER(fleprev, f_next);
SLIST_INSERT_HEAD(&freelist, fle, f_next);
}
if (SLIST_EMPTY(flist))
bit_clear(mask, curbit);
critical_exit();
bit_clear(tmpmask, curbit);
tmpmask += (curbit / 8);
tmpsize -= (curbit / 8) * 8;
bit_ffs(tmpmask, tmpsize, &curbit);
}
SLIST_FOREACH_SAFE(fle, &freelist, f_next, fle1) {
FLOWSTAT_INC(ft, ft_frees);
if (fle->f_rt != NULL)
RTFREE(fle->f_rt);
if (fle->f_lle != NULL)
LLE_FREE(fle->f_lle);
uma_zfree(flow_zone, fle);
}
}
static void
flowtable_clean_vnet(struct flowtable *ft, struct rtentry *rt, int maxidle)
{
int i;
CPU_FOREACH(i) {
if (smp_started == 1) {
thread_lock(curthread);
sched_bind(curthread, i);
thread_unlock(curthread);
}
flowtable_free_stale(ft, rt, maxidle);
if (smp_started == 1) {
thread_lock(curthread);
sched_unbind(curthread);
thread_unlock(curthread);
}
}
}
void
flowtable_route_flush(sa_family_t sa, struct rtentry *rt)
{
struct flowtable *ft;
switch (sa) {
#ifdef INET
case AF_INET:
ft = &V_ip4_ft;
break;
#endif
#ifdef INET6
case AF_INET6:
ft = &V_ip6_ft;
break;
#endif
default:
panic("%s: sa %d", __func__, sa);
}
flowtable_clean_vnet(ft, rt, 0);
}
static void
flowtable_cleaner(void)
{
VNET_ITERATOR_DECL(vnet_iter);
struct thread *td;
if (bootverbose)
log(LOG_INFO, "flowtable cleaner started\n");
td = curthread;
while (1) {
uint32_t flowclean_freq, maxidle;
/*
* The maximum idle time, as well as frequency are arbitrary.
*/
if (flow_full())
maxidle = 5;
else
maxidle = 30;
VNET_LIST_RLOCK();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
#ifdef INET
flowtable_clean_vnet(&V_ip4_ft, NULL, maxidle);
#endif
#ifdef INET6
flowtable_clean_vnet(&V_ip6_ft, NULL, maxidle);
#endif
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK();
if (flow_full())
flowclean_freq = 4*hz;
else
flowclean_freq = 20*hz;
mtx_lock(&flowclean_lock);
thread_lock(td);
sched_prio(td, PPAUSE);
thread_unlock(td);
flowclean_cycles++;
cv_broadcast(&flowclean_f_cv);
cv_timedwait(&flowclean_c_cv, &flowclean_lock, flowclean_freq);
mtx_unlock(&flowclean_lock);
}
}
static void
flowtable_flush(void *unused __unused)
{
uint64_t start;
mtx_lock(&flowclean_lock);
start = flowclean_cycles;
while (start == flowclean_cycles) {
cv_broadcast(&flowclean_c_cv);
cv_wait(&flowclean_f_cv, &flowclean_lock);
}
mtx_unlock(&flowclean_lock);
}
static struct kproc_desc flow_kp = {
"flowcleaner",
flowtable_cleaner,
&flowcleanerproc
};
SYSINIT(flowcleaner, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &flow_kp);
static int
flowtable_get_size(char *name)
{
int size;
if (TUNABLE_INT_FETCH(name, &size)) {
if (size < 256)
size = 256;
if (!powerof2(size)) {
printf("%s must be power of 2\n", name);
size = 2048;
}
} else {
/*
* round up to the next power of 2
*/
size = 1 << fls((1024 + maxusers * 64) - 1);
}
return (size);
}
static void
flowtable_init(const void *unused __unused)
{
flow_hashjitter = arc4random();
flow_zone = uma_zcreate("flows", sizeof(struct flentry),
NULL, NULL, NULL, NULL, (64-1), UMA_ZONE_MAXBUCKET);
uma_zone_set_max(flow_zone, 1024 + maxusers * 64 * mp_ncpus);
cv_init(&flowclean_c_cv, "c_flowcleanwait");
cv_init(&flowclean_f_cv, "f_flowcleanwait");
mtx_init(&flowclean_lock, "flowclean lock", NULL, MTX_DEF);
EVENTHANDLER_REGISTER(ifnet_departure_event, flowtable_flush, NULL,
EVENTHANDLER_PRI_ANY);
}
SYSINIT(flowtable_init, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST,
flowtable_init, NULL);
#ifdef INET
static SYSCTL_NODE(_net_flowtable, OID_AUTO, ip4, CTLFLAG_RD, NULL,
"Flowtable for IPv4");
static VNET_PCPUSTAT_DEFINE(struct flowtable_stat, ip4_ftstat);
VNET_PCPUSTAT_SYSINIT(ip4_ftstat);
VNET_PCPUSTAT_SYSUNINIT(ip4_ftstat);
SYSCTL_VNET_PCPUSTAT(_net_flowtable_ip4, OID_AUTO, stat, struct flowtable_stat,
ip4_ftstat, "Flowtable statistics for IPv4 "
"(struct flowtable_stat, net/flowtable.h)");
static void
flowtable_init_vnet_v4(const void *unused __unused)
{
V_ip4_ft.ft_size = flowtable_get_size("net.flowtable.ip4.size");
V_ip4_ft.ft_stat = VNET(ip4_ftstat);
flowtable_alloc(&V_ip4_ft);
}
VNET_SYSINIT(ft_vnet_v4, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
flowtable_init_vnet_v4, NULL);
#endif /* INET */
#ifdef INET6
static SYSCTL_NODE(_net_flowtable, OID_AUTO, ip6, CTLFLAG_RD, NULL,
"Flowtable for IPv6");
static VNET_PCPUSTAT_DEFINE(struct flowtable_stat, ip6_ftstat);
VNET_PCPUSTAT_SYSINIT(ip6_ftstat);
VNET_PCPUSTAT_SYSUNINIT(ip6_ftstat);
SYSCTL_VNET_PCPUSTAT(_net_flowtable_ip6, OID_AUTO, stat, struct flowtable_stat,
ip6_ftstat, "Flowtable statistics for IPv6 "
"(struct flowtable_stat, net/flowtable.h)");
static void
flowtable_init_vnet_v6(const void *unused __unused)
{
V_ip6_ft.ft_size = flowtable_get_size("net.flowtable.ip6.size");
V_ip6_ft.ft_stat = VNET(ip6_ftstat);
flowtable_alloc(&V_ip6_ft);
}
VNET_SYSINIT(flowtable_init_vnet_v6, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
flowtable_init_vnet_v6, NULL);
#endif /* INET6 */
#ifdef DDB
static bitstr_t *
flowtable_mask_pcpu(struct flowtable *ft, int cpuid)
{
return (zpcpu_get_cpu(*ft->ft_masks, cpuid));
}
static struct flist *
flowtable_list_pcpu(struct flowtable *ft, uint32_t hash, int cpuid)
{
return (zpcpu_get_cpu(&ft->ft_table[hash % ft->ft_size], cpuid));
}
static void
flow_show(struct flowtable *ft, struct flentry *fle)
{
int idle_time;
int rt_valid, ifp_valid;
volatile struct rtentry *rt;
struct ifnet *ifp = NULL;
uint32_t *hashkey = fle->f_key;
idle_time = (int)(time_uptime - fle->f_uptime);
rt = fle->f_rt;
rt_valid = rt != NULL;
if (rt_valid)
ifp = rt->rt_ifp;
ifp_valid = ifp != NULL;
#ifdef INET
if (ft == &V_ip4_ft) {
char daddr[4*sizeof "123"];
#ifdef FLOWTABLE_HASH_ALL
char saddr[4*sizeof "123"];
uint16_t sport, dport;
#endif
inet_ntoa_r(*(struct in_addr *) &hashkey[0], daddr);
#ifdef FLOWTABLE_HASH_ALL
inet_ntoa_r(*(struct in_addr *) &hashkey[1], saddr);
dport = ntohs((uint16_t)(hashkey[2] >> 16));
sport = ntohs((uint16_t)(hashkey[2] & 0xffff));
db_printf("%s:%d->%s:%d", saddr, sport, daddr, dport);
#else
db_printf("%s ", daddr);
#endif
}
#endif /* INET */
#ifdef INET6
if (ft == &V_ip6_ft) {
#ifdef FLOWTABLE_HASH_ALL
db_printf("\n\tkey=%08x:%08x:%08x%08x:%08x:%08x%08x:%08x:%08x",
hashkey[0], hashkey[1], hashkey[2],
hashkey[3], hashkey[4], hashkey[5],
hashkey[6], hashkey[7], hashkey[8]);
#else
db_printf("\n\tkey=%08x:%08x:%08x ",
hashkey[0], hashkey[1], hashkey[2]);
#endif
}
#endif /* INET6 */
db_printf("hash=%08x idle_time=%03d"
"\n\tfibnum=%02d rt=%p",
fle->f_hash, idle_time, fle->f_fibnum, fle->f_rt);
#ifdef FLOWTABLE_HASH_ALL
if (fle->f_flags & FL_STALE)
db_printf(" FL_STALE ");
#endif
if (rt_valid) {
if (rt->rt_flags & RTF_UP)
db_printf(" RTF_UP ");
}
if (ifp_valid) {
if (ifp->if_flags & IFF_LOOPBACK)
db_printf(" IFF_LOOPBACK ");
if (ifp->if_flags & IFF_UP)
db_printf(" IFF_UP ");
if (ifp->if_flags & IFF_POINTOPOINT)
db_printf(" IFF_POINTOPOINT ");
}
db_printf("\n");
}
static void
flowtable_show(struct flowtable *ft, int cpuid)
{
int curbit = 0;
bitstr_t *mask, *tmpmask;
if (cpuid != -1)
db_printf("cpu: %d\n", cpuid);
mask = flowtable_mask_pcpu(ft, cpuid);
tmpmask = ft->ft_tmpmask;
memcpy(tmpmask, mask, ft->ft_size/8);
/*
* XXX Note to self, bit_ffs operates at the byte level
* and thus adds gratuitous overhead
*/
bit_ffs(tmpmask, ft->ft_size, &curbit);
while (curbit != -1) {
struct flist *flist;
struct flentry *fle;
if (curbit >= ft->ft_size || curbit < -1) {
db_printf("warning: bad curbit value %d \n",
curbit);
break;
}
flist = flowtable_list_pcpu(ft, curbit, cpuid);
SLIST_FOREACH(fle, flist, f_next)
flow_show(ft, fle);
bit_clear(tmpmask, curbit);
bit_ffs(tmpmask, ft->ft_size, &curbit);
}
}
static void
flowtable_show_vnet(struct flowtable *ft)
{
int i;
CPU_FOREACH(i)
flowtable_show(ft, i);
}
DB_SHOW_COMMAND(flowtables, db_show_flowtables)
{
VNET_ITERATOR_DECL(vnet_iter);
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
#ifdef VIMAGE
db_printf("vnet %p\n", vnet_iter);
#endif
#ifdef INET
printf("IPv4:\n");
flowtable_show_vnet(&V_ip4_ft);
#endif
#ifdef INET6
printf("IPv6:\n");
flowtable_show_vnet(&V_ip6_ft);
#endif
CURVNET_RESTORE();
}
}
#endif