freebsd-dev/sys/ofed/drivers/net/mlx4/en_tx.c
Alfred Perlstein c9f432b7ba Update OFED to Linux 3.7 and update Mellanox drivers.
Update the OFED Infiniband core to the version supplied in Linux
version 3.7.

The update to OFED is nearly all additional defines and functions
with the exception of the addition of additional parameters to
ib_register_device() and the reg_user_mr callback.

In addition the ibcore (Infiniband core) and ipoib (IP over Infiniband)
have both been made into completely loadable modules to facilitate
testing of the OFED stack in FreeBSD.

Finally the Mellanox Infiniband drivers are now updated to the
latest version shipping with Linux 3.7.

Submitted by: Mellanox FreeBSD driver team:
                Oded Shanoon (odeds mellanox.com),
                Meny Yossefi (menyy mellanox.com),
                Orit Moskovich (oritm mellanox.com)

Approved by: re
2013-09-29 00:35:03 +00:00

1040 lines
27 KiB
C

/*
* Copyright (c) 2007 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include "mlx4_en.h"
#include <linux/mlx4/cq.h>
#include <linux/mlx4/qp.h>
#include <linux/vmalloc.h>
#include <net/ethernet.h>
#include <net/if_vlan_var.h>
#include <sys/mbuf.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_lro.h>
#include <netinet/udp.h>
enum {
MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
MAX_BF = 256,
};
static int inline_thold = MAX_INLINE;
module_param_named(inline_thold, inline_thold, int, 0444);
MODULE_PARM_DESC(inline_thold, "treshold for using inline data");
int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring, u32 size,
u16 stride)
{
struct mlx4_en_dev *mdev = priv->mdev;
int tmp;
int err;
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
inline_thold = min(inline_thold, MAX_INLINE);
mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF);
mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF);
/* Allocate the buf ring */
ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF,
M_WAITOK, &ring->tx_lock.m);
if (ring->br == NULL) {
en_err(priv, "Failed allocating tx_info ring\n");
return -ENOMEM;
}
tmp = size * sizeof(struct mlx4_en_tx_info);
ring->tx_info = kmalloc(tmp, GFP_KERNEL);
if (!ring->tx_info) {
en_err(priv, "Failed allocating tx_info ring\n");
err = -ENOMEM;
goto err_tx;
}
en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
ring->tx_info, tmp);
ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
if (!ring->bounce_buf) {
en_err(priv, "Failed allocating bounce buffer\n");
err = -ENOMEM;
goto err_tx;
}
ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
2 * PAGE_SIZE);
if (err) {
en_err(priv, "Failed allocating hwq resources\n");
goto err_bounce;
}
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map TX buffer\n");
goto err_hwq_res;
}
ring->buf = ring->wqres.buf.direct.buf;
en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
"buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
err = mlx4_qp_reserve_range(mdev->dev, 1, 256, &ring->qpn, MLX4_RESERVE_BF_QP);
if (err) {
en_err(priv, "Failed reserving qp for tx ring.\n");
goto err_map;
}
err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
if (err) {
en_err(priv, "Failed allocating qp %d\n", ring->qpn);
goto err_reserve;
}
ring->qp.event = mlx4_en_sqp_event;
err = mlx4_bf_alloc(mdev->dev, &ring->bf, 0);
if (err) {
ring->bf.uar = &mdev->priv_uar;
ring->bf.uar->map = mdev->uar_map;
ring->bf_enabled = false;
} else
ring->bf_enabled = true;
return 0;
err_reserve:
mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
err_map:
mlx4_en_unmap_buffer(&ring->wqres.buf);
err_hwq_res:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_bounce:
kfree(ring->bounce_buf);
ring->bounce_buf = NULL;
err_tx:
buf_ring_free(ring->br, M_DEVBUF);
kfree(ring->tx_info);
ring->tx_info = NULL;
return err;
}
void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
buf_ring_free(ring->br, M_DEVBUF);
if (ring->bf_enabled)
mlx4_bf_free(mdev->dev, &ring->bf);
mlx4_qp_remove(mdev->dev, &ring->qp);
mlx4_qp_free(mdev->dev, &ring->qp);
mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
kfree(ring->bounce_buf);
ring->bounce_buf = NULL;
kfree(ring->tx_info);
ring->tx_info = NULL;
mtx_destroy(&ring->tx_lock.m);
mtx_destroy(&ring->comp_lock.m);
}
int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int cq)
{
struct mlx4_en_dev *mdev = priv->mdev;
int err;
ring->cqn = cq;
ring->prod = 0;
ring->cons = 0xffffffff;
ring->last_nr_txbb = 1;
ring->poll_cnt = 0;
ring->blocked = 0;
memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
memset(ring->buf, 0, ring->buf_size);
ring->qp_state = MLX4_QP_STATE_RST;
ring->doorbell_qpn = swab32(ring->qp.qpn << 8);
mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
ring->cqn, &ring->context);
if (ring->bf_enabled)
ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
&ring->qp, &ring->qp_state);
return err;
}
void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
}
static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int index, u8 owner)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
struct mbuf *mb = tx_info->mb;
void *end = ring->buf + ring->buf_size;
int frags = tx_info->nr_segs;
int i;
__be32 *ptr = (__be32 *)tx_desc;
__be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
/* Optimize the common case when there are no wraparounds */
if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
if (!tx_info->inl) {
for (i = 0; i < frags; i++) {
pci_unmap_single(mdev->pdev,
(dma_addr_t) be64_to_cpu(data[i].addr),
data[i].byte_count, PCI_DMA_TODEVICE);
}
}
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
}
} else {
if (!tx_info->inl) {
for (i = 0; i < frags; i++) {
/* Check for wraparound before unmapping */
if ((void *) data >= end)
data = (struct mlx4_wqe_data_seg *) ring->buf;
pci_unmap_single(mdev->pdev,
(dma_addr_t) be64_to_cpu(data->addr),
data->byte_count, PCI_DMA_TODEVICE);
++data;
}
}
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
if ((void *) ptr >= end) {
ptr = ring->buf;
stamp ^= cpu_to_be32(0x80000000);
}
}
}
m_freem(mb);
return tx_info->nr_txbb;
}
int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int cnt = 0;
/* Skip last polled descriptor */
ring->cons += ring->last_nr_txbb;
en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
ring->cons, ring->prod);
if ((u32) (ring->prod - ring->cons) > ring->size) {
en_warn(priv, "Tx consumer passed producer!\n");
return 0;
}
while (ring->cons != ring->prod) {
ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
ring->cons & ring->size_mask,
!!(ring->cons & ring->size));
ring->cons += ring->last_nr_txbb;
cnt++;
}
if (cnt)
en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
return cnt;
}
void mlx4_en_set_prio_map(struct mlx4_en_priv *priv, u16 *prio_map, u32 ring_num)
{
int block = 8 / ring_num;
int extra = 8 - (block * ring_num);
int num = 0;
u16 ring = 1;
int prio;
if (ring_num == 1) {
for (prio = 0; prio < 8; prio++)
prio_map[prio] = 0;
return;
}
for (prio = 0; prio < 8; prio++) {
if (extra && (num == block + 1)) {
ring++;
num = 0;
extra--;
} else if (!extra && (num == block)) {
ring++;
num = 0;
}
prio_map[prio] = ring;
en_dbg(DRV, priv, " prio:%d --> ring:%d\n", prio, ring);
num++;
}
}
static void mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_cq *mcq = &cq->mcq;
struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
struct mlx4_cqe *cqe = cq->buf;
u16 index;
u16 new_index;
u32 txbbs_skipped = 0;
u32 cq_last_sav;
/* index always points to the first TXBB of the last polled descriptor */
index = ring->cons & ring->size_mask;
new_index = be16_to_cpu(cqe->wqe_index) & ring->size_mask;
if (index == new_index)
return;
if (!priv->port_up)
return;
/*
* We use a two-stage loop:
* - the first samples the HW-updated CQE
* - the second frees TXBBs until the last sample
* This lets us amortize CQE cache misses, while still polling the CQ
* until is quiescent.
*/
cq_last_sav = mcq->cons_index;
do {
do {
/* Skip over last polled CQE */
index = (index + ring->last_nr_txbb) & ring->size_mask;
txbbs_skipped += ring->last_nr_txbb;
/* Poll next CQE */
ring->last_nr_txbb = mlx4_en_free_tx_desc(
priv, ring, index,
!!((ring->cons + txbbs_skipped) &
ring->size));
++mcq->cons_index;
} while (index != new_index);
new_index = be16_to_cpu(cqe->wqe_index) & ring->size_mask;
} while (index != new_index);
AVG_PERF_COUNTER(priv->pstats.tx_coal_avg,
(u32) (mcq->cons_index - cq_last_sav));
/*
* To prevent CQ overflow we first update CQ consumer and only then
* the ring consumer.
*/
mlx4_cq_set_ci(mcq);
wmb();
ring->cons += txbbs_skipped;
/* Wakeup Tx queue if this ring stopped it */
if (unlikely(ring->blocked)) {
if ((u32) (ring->prod - ring->cons) <=
ring->size - HEADROOM - MAX_DESC_TXBBS) {
ring->blocked = 0;
if (atomic_fetchadd_int(&priv->blocked, -1) == 1)
atomic_clear_int(&dev->if_drv_flags,
IFF_DRV_OACTIVE);
priv->port_stats.wake_queue++;
}
}
}
void mlx4_en_tx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
if (!spin_trylock(&ring->comp_lock))
return;
mlx4_en_process_tx_cq(cq->dev, cq);
mod_timer(&cq->timer, jiffies + 1);
spin_unlock(&ring->comp_lock);
}
void mlx4_en_poll_tx_cq(unsigned long data)
{
struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
u32 inflight;
INC_PERF_COUNTER(priv->pstats.tx_poll);
if (!spin_trylock(&ring->comp_lock)) {
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
return;
}
mlx4_en_process_tx_cq(cq->dev, cq);
inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
/* If there are still packets in flight and the timer has not already
* been scheduled by the Tx routine then schedule it here to guarantee
* completion processing of these packets */
if (inflight && priv->port_up)
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
spin_unlock(&ring->comp_lock);
}
static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
u32 index,
unsigned int desc_size)
{
u32 copy = (ring->size - index) * TXBB_SIZE;
int i;
for (i = desc_size - copy - 4; i >= 0; i -= 4) {
if ((i & (TXBB_SIZE - 1)) == 0)
wmb();
*((u32 *) (ring->buf + i)) =
*((u32 *) (ring->bounce_buf + copy + i));
}
for (i = copy - 4; i >= 4 ; i -= 4) {
if ((i & (TXBB_SIZE - 1)) == 0)
wmb();
*((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
*((u32 *) (ring->bounce_buf + i));
}
/* Return real descriptor location */
return ring->buf + index * TXBB_SIZE;
}
static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
{
struct mlx4_en_cq *cq = &priv->tx_cq[tx_ind];
struct mlx4_en_tx_ring *ring = &priv->tx_ring[tx_ind];
/* If we don't have a pending timer, set one up to catch our recent
post in case the interface becomes idle */
if (!timer_pending(&cq->timer))
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
/* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
if (spin_trylock(&ring->comp_lock)) {
mlx4_en_process_tx_cq(priv->dev, cq);
spin_unlock(&ring->comp_lock);
}
}
static int is_inline(struct mbuf *mb)
{
if (inline_thold && mb->m_pkthdr.len <= inline_thold &&
(mb->m_pkthdr.csum_flags & CSUM_TSO) == 0)
return 1;
return 0;
}
static int inline_size(struct mbuf *mb)
{
int len;
len = mb->m_pkthdr.len;
if (len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
<= MLX4_INLINE_ALIGN)
return ALIGN(len + CTRL_SIZE +
sizeof(struct mlx4_wqe_inline_seg), 16);
else
return ALIGN(len + CTRL_SIZE + 2 *
sizeof(struct mlx4_wqe_inline_seg), 16);
}
static int get_head_size(struct mbuf *mb)
{
struct tcphdr *th;
struct ip *ip;
int ip_hlen, tcp_hlen;
int len;
len = ETHER_HDR_LEN;
if (mb->m_len < len + sizeof(struct ip))
return (0);
ip = (struct ip *)(mtod(mb, char *) + len);
if (ip->ip_p != IPPROTO_TCP)
return (0);
ip_hlen = ip->ip_hl << 2;
len += ip_hlen;
if (mb->m_len < len + sizeof(struct tcphdr))
return (0);
th = (struct tcphdr *)(mtod(mb, char *) + len);
tcp_hlen = th->th_off << 2;
len += tcp_hlen;
if (mb->m_len < len)
return (0);
return (len);
}
static int get_real_size(struct mbuf *mb, struct net_device *dev, int *segsp,
int *lso_header_size)
{
struct mbuf *m;
int nr_segs;
nr_segs = 0;
for (m = mb; m != NULL; m = m->m_next)
if (m->m_len)
nr_segs++;
if (mb->m_pkthdr.csum_flags & CSUM_TSO) {
*lso_header_size = get_head_size(mb);
if (*lso_header_size) {
if (mb->m_len == *lso_header_size)
nr_segs--;
*segsp = nr_segs;
return CTRL_SIZE + nr_segs * DS_SIZE +
ALIGN(*lso_header_size + 4, DS_SIZE);
}
} else
*lso_header_size = 0;
*segsp = nr_segs;
if (is_inline(mb))
return inline_size(mb);
return (CTRL_SIZE + nr_segs * DS_SIZE);
}
static struct mbuf *mb_copy(struct mbuf *mb, int *offp, char *data, int len)
{
int bytes;
int off;
off = *offp;
while (len) {
bytes = min(mb->m_len - off, len);
if (bytes)
memcpy(data, mb->m_data + off, bytes);
len -= bytes;
data += bytes;
off += bytes;
if (off == mb->m_len) {
off = 0;
mb = mb->m_next;
}
}
*offp = off;
return (mb);
}
static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct mbuf *mb,
int real_size, u16 *vlan_tag, int tx_ind)
{
struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
int len;
int off;
off = 0;
len = mb->m_pkthdr.len;
if (len <= spc) {
inl->byte_count = cpu_to_be32(1 << 31 | len);
mb_copy(mb, &off, (void *)(inl + 1), len);
} else {
inl->byte_count = cpu_to_be32(1 << 31 | spc);
mb = mb_copy(mb, &off, (void *)(inl + 1), spc);
inl = (void *) (inl + 1) + spc;
mb_copy(mb, &off, (void *)(inl + 1), len - spc);
wmb();
inl->byte_count = cpu_to_be32(1 << 31 | (len - spc));
}
tx_desc->ctrl.vlan_tag = cpu_to_be16(*vlan_tag);
tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!(*vlan_tag);
tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
}
u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_hash_entry *entry;
struct ether_header *eth;
struct tcphdr *th;
struct ip *iph;
u32 hash_index;
int tx_ind = 0;
u16 vlan_tag = 0;
int len;
/* Obtain VLAN information if present */
if (mb->m_flags & M_VLANTAG) {
vlan_tag = mb->m_pkthdr.ether_vtag;
/* Set the Tx ring to use according to vlan priority */
tx_ind = priv->tx_prio_map[vlan_tag >> 13];
if (tx_ind)
return tx_ind;
}
if (mb->m_len <
ETHER_HDR_LEN + sizeof(struct ip) + sizeof(struct tcphdr))
return MLX4_EN_NUM_HASH_RINGS;
eth = mtod(mb, struct ether_header *);
/* Hashing is only done for TCP/IP or UDP/IP packets */
if (be16_to_cpu(eth->ether_type) != ETHERTYPE_IP)
return MLX4_EN_NUM_HASH_RINGS;
len = ETHER_HDR_LEN;
iph = (struct ip *)(mtod(mb, char *) + len);
len += iph->ip_hl << 2;
th = (struct tcphdr *)(mtod(mb, char *) + len);
hash_index = be32_to_cpu(iph->ip_dst.s_addr) & MLX4_EN_TX_HASH_MASK;
switch(iph->ip_p) {
case IPPROTO_UDP:
break;
case IPPROTO_TCP:
if (mb->m_len < len + sizeof(struct tcphdr))
return MLX4_EN_NUM_HASH_RINGS;
hash_index =
(hash_index ^ be16_to_cpu(th->th_dport ^ th->th_sport)) &
MLX4_EN_TX_HASH_MASK;
break;
default:
return MLX4_EN_NUM_HASH_RINGS;
}
entry = &priv->tx_hash[hash_index];
if(unlikely(!entry->cnt)) {
tx_ind = hash_index & (MLX4_EN_NUM_HASH_RINGS / 2 - 1);
if (2 * entry->small_pkts > entry->big_pkts)
tx_ind += MLX4_EN_NUM_HASH_RINGS / 2;
entry->small_pkts = entry->big_pkts = 0;
entry->ring = tx_ind;
}
entry->cnt++;
if (mb->m_pkthdr.len > MLX4_EN_SMALL_PKT_SIZE)
entry->big_pkts++;
else
entry->small_pkts++;
return entry->ring;
}
static void mlx4_bf_copy(unsigned long *dst, unsigned long *src, unsigned bytecnt)
{
__iowrite64_copy(dst, src, bytecnt / 8);
}
static int mlx4_en_xmit(struct net_device *dev, int tx_ind, struct mbuf **mbp)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring;
struct mlx4_en_cq *cq;
struct mlx4_en_tx_desc *tx_desc;
struct mlx4_wqe_data_seg *data;
struct mlx4_en_tx_info *tx_info;
struct mbuf *m;
int nr_txbb;
int nr_segs;
int desc_size;
int real_size;
dma_addr_t dma;
u32 index, bf_index;
__be32 op_own;
u16 vlan_tag = 0;
int i;
int lso_header_size;
bool bounce = false;
struct mbuf *mb;
int defrag = 1;
ring = &priv->tx_ring[tx_ind];
mb = *mbp;
if (!priv->port_up)
goto tx_drop;
retry:
real_size = get_real_size(mb, dev, &nr_segs, &lso_header_size);
if (unlikely(!real_size))
goto tx_drop;
/* Allign descriptor to TXBB size */
desc_size = ALIGN(real_size, TXBB_SIZE);
nr_txbb = desc_size / TXBB_SIZE;
if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
if (defrag) {
mb = m_defrag(*mbp, M_NOWAIT);
if (mb == NULL) {
mb = *mbp;
goto tx_drop;
}
*mbp = mb;
defrag = 0;
goto retry;
}
goto tx_drop;
}
/* Check available TXBBs And 2K spare for prefetch */
if (unlikely(((int)(ring->prod - ring->cons)) >
ring->size - HEADROOM - MAX_DESC_TXBBS)) {
/* every full Tx ring stops queue */
if (ring->blocked == 0)
atomic_add_int(&priv->blocked, 1);
atomic_set_int(&dev->if_drv_flags, IFF_DRV_OACTIVE);
ring->blocked = 1;
priv->port_stats.queue_stopped++;
/* Use interrupts to find out when queue opened */
cq = &priv->tx_cq[tx_ind];
mlx4_en_arm_cq(priv, cq);
return EBUSY;
}
/* Track current inflight packets for performance analysis */
AVG_PERF_COUNTER(priv->pstats.inflight_avg,
(u32) (ring->prod - ring->cons - 1));
/* Packet is good - grab an index and transmit it */
index = ring->prod & ring->size_mask;
bf_index = ring->prod;
/* See if we have enough space for whole descriptor TXBB for setting
* SW ownership on next descriptor; if not, use a bounce buffer. */
if (likely(index + nr_txbb <= ring->size))
tx_desc = ring->buf + index * TXBB_SIZE;
else {
tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
bounce = true;
}
/* Prepare ctrl segement apart opcode+ownership, which depends on
* whether LSO is used */
if (mb->m_flags & M_VLANTAG)
vlan_tag = mb->m_pkthdr.ether_vtag;
tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!vlan_tag;
tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
tx_desc->ctrl.srcrb_flags = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE |
MLX4_WQE_CTRL_SOLICITED);
if (mb->m_pkthdr.csum_flags & (CSUM_IP|CSUM_TCP|CSUM_UDP)) {
if (mb->m_pkthdr.csum_flags & CSUM_IP)
tx_desc->ctrl.srcrb_flags |=
cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
if (mb->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP))
tx_desc->ctrl.srcrb_flags |=
cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM);
priv->port_stats.tx_chksum_offload++;
}
if (unlikely(priv->validate_loopback)) {
/* Copy dst mac address to wqe */
struct ether_header *ethh;
u64 mac;
u32 mac_l, mac_h;
ethh = mtod(mb, struct ether_header *);
mac = mlx4_en_mac_to_u64(ethh->ether_dhost);
if (mac) {
mac_h = (u32) ((mac & 0xffff00000000ULL) >> 16);
mac_l = (u32) (mac & 0xffffffff);
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(mac_h);
tx_desc->ctrl.imm = cpu_to_be32(mac_l);
}
}
/* Handle LSO (TSO) packets */
if (lso_header_size) {
int segsz;
/* Mark opcode as LSO */
op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
((ring->prod & ring->size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
/* Fill in the LSO prefix */
tx_desc->lso.mss_hdr_size = cpu_to_be32(
mb->m_pkthdr.tso_segsz << 16 | lso_header_size);
/* Copy headers;
* note that we already verified that it is linear */
memcpy(tx_desc->lso.header, mb->m_data, lso_header_size);
data = ((void *) &tx_desc->lso +
ALIGN(lso_header_size + 4, DS_SIZE));
priv->port_stats.tso_packets++;
segsz = mb->m_pkthdr.tso_segsz;
i = ((mb->m_pkthdr.len - lso_header_size) / segsz) +
!!((mb->m_pkthdr.len - lso_header_size) % segsz);
ring->bytes += mb->m_pkthdr.len + (i - 1) * lso_header_size;
ring->packets += i;
mb->m_data += lso_header_size;
mb->m_len -= lso_header_size;
} else {
/* Normal (Non LSO) packet */
op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
((ring->prod & ring->size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
data = &tx_desc->data;
ring->bytes += max(mb->m_pkthdr.len,
(unsigned int)ETHER_MIN_LEN - ETHER_CRC_LEN);
ring->packets++;
}
AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len);
/* Save mb in tx_info ring */
tx_info = &ring->tx_info[index];
tx_info->mb = mb;
tx_info->nr_txbb = nr_txbb;
tx_info->nr_segs = nr_segs;
/* valid only for non inline segments */
tx_info->data_offset = (void *) data - (void *) tx_desc;
if (!is_inline(mb)) {
for (i = 0, m = mb; i < nr_segs; i++, m = m->m_next) {
if (m->m_len == 0) {
i--;
continue;
}
dma = pci_map_single(mdev->dev->pdev, m->m_data,
m->m_len, PCI_DMA_TODEVICE);
data->addr = cpu_to_be64(dma);
data->lkey = cpu_to_be32(mdev->mr.key);
wmb();
data->byte_count = cpu_to_be32(m->m_len);
data++;
}
if (lso_header_size) {
mb->m_data -= lso_header_size;
mb->m_len += lso_header_size;
}
tx_info->inl = 0;
} else {
build_inline_wqe(tx_desc, mb, real_size, &vlan_tag, tx_ind);
tx_info->inl = 1;
}
ring->prod += nr_txbb;
/* If we used a bounce buffer then copy descriptor back into place */
if (bounce)
tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !vlan_tag) {
*(u32 *) (&tx_desc->ctrl.vlan_tag) |= ring->doorbell_qpn;
op_own |= htonl((bf_index & 0xffff) << 8);
/* Ensure new descirptor hits memory
* before setting ownership of this descriptor to HW */
wmb();
tx_desc->ctrl.owner_opcode = op_own;
wmb();
mlx4_bf_copy(ring->bf.reg + ring->bf.offset, (unsigned long *) &tx_desc->ctrl,
desc_size);
wmb();
ring->bf.offset ^= ring->bf.buf_size;
} else {
/* Ensure new descirptor hits memory
* before setting ownership of this descriptor to HW */
wmb();
tx_desc->ctrl.owner_opcode = op_own;
wmb();
writel(ring->doorbell_qpn, ring->bf.uar->map + MLX4_SEND_DOORBELL);
}
return 0;
tx_drop:
*mbp = NULL;
m_freem(mb);
ring->errors++;
return EINVAL;
}
static int
mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mbuf *next;
int enqueued, err = 0;
ring = &priv->tx_ring[tx_ind];
if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || priv->port_up == 0) {
if (m != NULL)
err = drbr_enqueue(dev, ring->br, m);
return (err);
}
enqueued = 0;
if (m != NULL) {
if ((err = drbr_enqueue(dev, ring->br, m)) != 0)
return (err);
}
/* Process the queue */
while ((next = drbr_peek(dev, ring->br)) != NULL) {
if ((err = mlx4_en_xmit(dev, tx_ind, &next)) != 0) {
if (next == NULL) {
drbr_advance(dev, ring->br);
} else {
drbr_putback(dev, ring->br, next);
}
break;
}
drbr_advance(dev, ring->br);
enqueued++;
dev->if_obytes += next->m_pkthdr.len;
if (next->m_flags & M_MCAST)
dev->if_omcasts++;
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(dev, next);
if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
}
if (enqueued > 0)
ring->watchdog_time = ticks;
return (err);
}
void
mlx4_en_tx_que(void *context, int pending)
{
struct mlx4_en_tx_ring *ring;
struct mlx4_en_priv *priv;
struct net_device *dev;
struct mlx4_en_cq *cq;
int tx_ind;
cq = context;
dev = cq->dev;
priv = dev->if_softc;
tx_ind = cq->ring;
ring = &priv->tx_ring[tx_ind];
if (dev->if_drv_flags & IFF_DRV_RUNNING) {
mlx4_en_xmit_poll(priv, tx_ind);
spin_lock(&ring->tx_lock);
if (!drbr_empty(dev, ring->br))
mlx4_en_transmit_locked(dev, tx_ind, NULL);
spin_unlock(&ring->tx_lock);
}
}
int
mlx4_en_transmit(struct ifnet *dev, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mlx4_en_cq *cq;
int i = 0, err = 0;
/* Which queue to use */
if ((m->m_flags & (M_FLOWID | M_VLANTAG)) == M_FLOWID)
i = m->m_pkthdr.flowid % (MLX4_EN_NUM_HASH_RINGS - 1);
else
i = mlx4_en_select_queue(dev, m);
ring = &priv->tx_ring[i];
if (spin_trylock(&ring->tx_lock)) {
err = mlx4_en_transmit_locked(dev, i, m);
spin_unlock(&ring->tx_lock);
/* Poll CQ here */
mlx4_en_xmit_poll(priv, i);
} else {
err = drbr_enqueue(dev, ring->br, m);
cq = &priv->tx_cq[i];
taskqueue_enqueue(cq->tq, &cq->cq_task);
}
return (err);
}
/*
* Flush ring buffers.
*/
void
mlx4_en_qflush(struct ifnet *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring = priv->tx_ring;
struct mbuf *m;
for (int i = 0; i < priv->tx_ring_num; i++, ring++) {
spin_lock(&ring->tx_lock);
while ((m = buf_ring_dequeue_sc(ring->br)) != NULL)
m_freem(m);
spin_unlock(&ring->tx_lock);
}
if_qflush(dev);
}