freebsd-dev/sys/arm/arm/pmap-v6.c
Alan Cox 26e874e0d5 Stop calling pmap_remove_write() from pmap_remove_all(). Doing so is not
only inefficient but also leads to recursive lock acquisition.

Tested by:	ray
2012-09-30 03:54:57 +00:00

3816 lines
93 KiB
C

/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */
/*-
* Copyright 2011 Semihalf
* Copyright 2004 Olivier Houchard.
* Copyright 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Steve C. Woodford for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* From: FreeBSD: src/sys/arm/arm/pmap.c,v 1.113 2009/07/24 13:50:29
*/
/*-
* Copyright (c) 2002-2003 Wasabi Systems, Inc.
* Copyright (c) 2001 Richard Earnshaw
* Copyright (c) 2001-2002 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
*
* RiscBSD kernel project
*
* pmap.c
*
* Machine dependant vm stuff
*
* Created : 20/09/94
*/
/*
* Special compilation symbols
* PMAP_DEBUG - Build in pmap_debug_level code
*/
/* Include header files */
#include "opt_vm.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/vmmeter.h>
#include <sys/mman.h>
#include <sys/rwlock.h>
#include <sys/smp.h>
#include <sys/sched.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/uma.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_extern.h>
#include <machine/md_var.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/pcb.h>
#ifdef DEBUG
extern int last_fault_code;
#endif
#ifdef PMAP_DEBUG
#define PDEBUG(_lev_,_stat_) \
if (pmap_debug_level >= (_lev_)) \
((_stat_))
#define dprintf printf
int pmap_debug_level = 0;
#define PMAP_INLINE
#else /* PMAP_DEBUG */
#define PDEBUG(_lev_,_stat_) /* Nothing */
#define dprintf(x, arg...)
#define PMAP_INLINE __inline
#endif /* PMAP_DEBUG */
extern struct pv_addr systempage;
/*
* Internal function prototypes
*/
static void pmap_free_pv_entry (pv_entry_t);
static pv_entry_t pmap_get_pv_entry(void);
static void pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t,
vm_prot_t, boolean_t, int);
static vm_paddr_t pmap_extract_locked(pmap_t pmap, vm_offset_t va);
static void pmap_alloc_l1(pmap_t);
static void pmap_free_l1(pmap_t);
static int pmap_clearbit(struct vm_page *, u_int);
static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t);
static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t);
static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
static vm_offset_t kernel_pt_lookup(vm_paddr_t);
static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1");
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
vm_offset_t pmap_curmaxkvaddr;
vm_paddr_t kernel_l1pa;
vm_offset_t kernel_vm_end = 0;
struct pmap kernel_pmap_store;
static pt_entry_t *csrc_pte, *cdst_pte;
static vm_offset_t csrcp, cdstp;
static struct mtx cmtx;
static void pmap_init_l1(struct l1_ttable *, pd_entry_t *);
/*
* These routines are called when the CPU type is identified to set up
* the PTE prototypes, cache modes, etc.
*
* The variables are always here, just in case LKMs need to reference
* them (though, they shouldn't).
*/
static void pmap_set_prot(pt_entry_t *pte, vm_prot_t prot, uint8_t user);
pt_entry_t pte_l1_s_cache_mode;
pt_entry_t pte_l1_s_cache_mode_pt;
pt_entry_t pte_l2_l_cache_mode;
pt_entry_t pte_l2_l_cache_mode_pt;
pt_entry_t pte_l2_s_cache_mode;
pt_entry_t pte_l2_s_cache_mode_pt;
struct msgbuf *msgbufp = 0;
/*
* Crashdump maps.
*/
static caddr_t crashdumpmap;
extern void bcopy_page(vm_offset_t, vm_offset_t);
extern void bzero_page(vm_offset_t);
char *_tmppt;
/*
* Metadata for L1 translation tables.
*/
struct l1_ttable {
/* Entry on the L1 Table list */
SLIST_ENTRY(l1_ttable) l1_link;
/* Entry on the L1 Least Recently Used list */
TAILQ_ENTRY(l1_ttable) l1_lru;
/* Track how many domains are allocated from this L1 */
volatile u_int l1_domain_use_count;
/*
* A free-list of domain numbers for this L1.
* We avoid using ffs() and a bitmap to track domains since ffs()
* is slow on ARM.
*/
u_int8_t l1_domain_first;
u_int8_t l1_domain_free[PMAP_DOMAINS];
/* Physical address of this L1 page table */
vm_paddr_t l1_physaddr;
/* KVA of this L1 page table */
pd_entry_t *l1_kva;
};
/*
* Convert a virtual address into its L1 table index. That is, the
* index used to locate the L2 descriptor table pointer in an L1 table.
* This is basically used to index l1->l1_kva[].
*
* Each L2 descriptor table represents 1MB of VA space.
*/
#define L1_IDX(va) (((vm_offset_t)(va)) >> L1_S_SHIFT)
/*
* L1 Page Tables are tracked using a Least Recently Used list.
* - New L1s are allocated from the HEAD.
* - Freed L1s are added to the TAIl.
* - Recently accessed L1s (where an 'access' is some change to one of
* the userland pmaps which owns this L1) are moved to the TAIL.
*/
static TAILQ_HEAD(, l1_ttable) l1_lru_list;
/*
* A list of all L1 tables
*/
static SLIST_HEAD(, l1_ttable) l1_list;
static struct mtx l1_lru_lock;
/*
* The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
*
* This is normally 16MB worth L2 page descriptors for any given pmap.
* Reference counts are maintained for L2 descriptors so they can be
* freed when empty.
*/
struct l2_dtable {
/* The number of L2 page descriptors allocated to this l2_dtable */
u_int l2_occupancy;
/* List of L2 page descriptors */
struct l2_bucket {
pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */
vm_paddr_t l2b_phys; /* Physical address of same */
u_short l2b_l1idx; /* This L2 table's L1 index */
u_short l2b_occupancy; /* How many active descriptors */
} l2_bucket[L2_BUCKET_SIZE];
};
/* pmap_kenter_internal flags */
#define KENTER_CACHE 0x1
#define KENTER_USER 0x2
/*
* Given an L1 table index, calculate the corresponding l2_dtable index
* and bucket index within the l2_dtable.
*/
#define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \
(L2_SIZE - 1))
#define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1))
/*
* Given a virtual address, this macro returns the
* virtual address required to drop into the next L2 bucket.
*/
#define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE)
/*
* We try to map the page tables write-through, if possible. However, not
* all CPUs have a write-through cache mode, so on those we have to sync
* the cache when we frob page tables.
*
* We try to evaluate this at compile time, if possible. However, it's
* not always possible to do that, hence this run-time var.
*/
int pmap_needs_pte_sync;
/*
* Macro to determine if a mapping might be resident in the
* instruction cache and/or TLB
*/
#define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
/*
* Macro to determine if a mapping might be resident in the
* data cache and/or TLB
*/
#define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0)
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
#define pmap_is_current(pm) ((pm) == pmap_kernel() || \
curproc->p_vmspace->vm_map.pmap == (pm))
static uma_zone_t pvzone = NULL;
uma_zone_t l2zone;
static uma_zone_t l2table_zone;
static vm_offset_t pmap_kernel_l2dtable_kva;
static vm_offset_t pmap_kernel_l2ptp_kva;
static vm_paddr_t pmap_kernel_l2ptp_phys;
static struct vm_object pvzone_obj;
static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
static struct rwlock pvh_global_lock;
int l1_mem_types[] = {
ARM_L1S_STRONG_ORD,
ARM_L1S_DEVICE_NOSHARE,
ARM_L1S_DEVICE_SHARE,
ARM_L1S_NRML_NOCACHE,
ARM_L1S_NRML_IWT_OWT,
ARM_L1S_NRML_IWB_OWB,
ARM_L1S_NRML_IWBA_OWBA
};
int l2l_mem_types[] = {
ARM_L2L_STRONG_ORD,
ARM_L2L_DEVICE_NOSHARE,
ARM_L2L_DEVICE_SHARE,
ARM_L2L_NRML_NOCACHE,
ARM_L2L_NRML_IWT_OWT,
ARM_L2L_NRML_IWB_OWB,
ARM_L2L_NRML_IWBA_OWBA
};
int l2s_mem_types[] = {
ARM_L2S_STRONG_ORD,
ARM_L2S_DEVICE_NOSHARE,
ARM_L2S_DEVICE_SHARE,
ARM_L2S_NRML_NOCACHE,
ARM_L2S_NRML_IWT_OWT,
ARM_L2S_NRML_IWB_OWB,
ARM_L2S_NRML_IWBA_OWBA
};
/*
* This list exists for the benefit of pmap_map_chunk(). It keeps track
* of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
* find them as necessary.
*
* Note that the data on this list MUST remain valid after initarm() returns,
* as pmap_bootstrap() uses it to contruct L2 table metadata.
*/
SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
static void
pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
{
int i;
l1->l1_kva = l1pt;
l1->l1_domain_use_count = 0;
l1->l1_domain_first = 0;
for (i = 0; i < PMAP_DOMAINS; i++)
l1->l1_domain_free[i] = i + 1;
/*
* Copy the kernel's L1 entries to each new L1.
*/
if (l1pt != pmap_kernel()->pm_l1->l1_kva)
memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE);
if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0)
panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
}
static vm_offset_t
kernel_pt_lookup(vm_paddr_t pa)
{
struct pv_addr *pv;
SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
if (pv->pv_pa == pa)
return (pv->pv_va);
}
return (0);
}
void
pmap_pte_init_mmu_v6(void)
{
if (PTE_PAGETABLE >= 3)
pmap_needs_pte_sync = 1;
pte_l1_s_cache_mode = l1_mem_types[PTE_CACHE];
pte_l2_l_cache_mode = l2l_mem_types[PTE_CACHE];
pte_l2_s_cache_mode = l2s_mem_types[PTE_CACHE];
pte_l1_s_cache_mode_pt = l1_mem_types[PTE_PAGETABLE];
pte_l2_l_cache_mode_pt = l2l_mem_types[PTE_PAGETABLE];
pte_l2_s_cache_mode_pt = l2s_mem_types[PTE_PAGETABLE];
}
/*
* Allocate an L1 translation table for the specified pmap.
* This is called at pmap creation time.
*/
static void
pmap_alloc_l1(pmap_t pm)
{
struct l1_ttable *l1;
u_int8_t domain;
/*
* Remove the L1 at the head of the LRU list
*/
mtx_lock(&l1_lru_lock);
l1 = TAILQ_FIRST(&l1_lru_list);
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
/*
* Pick the first available domain number, and update
* the link to the next number.
*/
domain = l1->l1_domain_first;
l1->l1_domain_first = l1->l1_domain_free[domain];
/*
* If there are still free domain numbers in this L1,
* put it back on the TAIL of the LRU list.
*/
if (++l1->l1_domain_use_count < PMAP_DOMAINS)
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
mtx_unlock(&l1_lru_lock);
/*
* Fix up the relevant bits in the pmap structure
*/
pm->pm_l1 = l1;
pm->pm_domain = domain + 1;
}
/*
* Free an L1 translation table.
* This is called at pmap destruction time.
*/
static void
pmap_free_l1(pmap_t pm)
{
struct l1_ttable *l1 = pm->pm_l1;
mtx_lock(&l1_lru_lock);
/*
* If this L1 is currently on the LRU list, remove it.
*/
if (l1->l1_domain_use_count < PMAP_DOMAINS)
TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
/*
* Free up the domain number which was allocated to the pmap
*/
l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first;
l1->l1_domain_first = pm->pm_domain - 1;
l1->l1_domain_use_count--;
/*
* The L1 now must have at least 1 free domain, so add
* it back to the LRU list. If the use count is zero,
* put it at the head of the list, otherwise it goes
* to the tail.
*/
if (l1->l1_domain_use_count == 0) {
TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
} else
TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
mtx_unlock(&l1_lru_lock);
}
/*
* Returns a pointer to the L2 bucket associated with the specified pmap
* and VA, or NULL if no L2 bucket exists for the address.
*/
static PMAP_INLINE struct l2_bucket *
pmap_get_l2_bucket(pmap_t pm, vm_offset_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
u_short l1idx;
l1idx = L1_IDX(va);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL ||
(l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL)
return (NULL);
return (l2b);
}
/*
* Returns a pointer to the L2 bucket associated with the specified pmap
* and VA.
*
* If no L2 bucket exists, perform the necessary allocations to put an L2
* bucket/page table in place.
*
* Note that if a new L2 bucket/page was allocated, the caller *must*
* increment the bucket occupancy counter appropriately *before*
* releasing the pmap's lock to ensure no other thread or cpu deallocates
* the bucket/page in the meantime.
*/
static struct l2_bucket *
pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
u_short l1idx;
l1idx = L1_IDX(va);
PMAP_ASSERT_LOCKED(pm);
rw_assert(&pvh_global_lock, RA_WLOCKED);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
/*
* No mapping at this address, as there is
* no entry in the L1 table.
* Need to allocate a new l2_dtable.
*/
PMAP_UNLOCK(pm);
rw_wunlock(&pvh_global_lock);
if ((l2 = uma_zalloc(l2table_zone, M_NOWAIT)) == NULL) {
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
return (NULL);
}
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
if (pm->pm_l2[L2_IDX(l1idx)] != NULL) {
/*
* Someone already allocated the l2_dtable while
* we were doing the same.
*/
uma_zfree(l2table_zone, l2);
l2 = pm->pm_l2[L2_IDX(l1idx)];
} else {
bzero(l2, sizeof(*l2));
/*
* Link it into the parent pmap
*/
pm->pm_l2[L2_IDX(l1idx)] = l2;
}
}
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
/*
* Fetch pointer to the L2 page table associated with the address.
*/
if (l2b->l2b_kva == NULL) {
pt_entry_t *ptep;
/*
* No L2 page table has been allocated. Chances are, this
* is because we just allocated the l2_dtable, above.
*/
PMAP_UNLOCK(pm);
rw_wunlock(&pvh_global_lock);
ptep = uma_zalloc(l2zone, M_NOWAIT);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
if (l2b->l2b_kva != 0) {
/* We lost the race. */
uma_zfree(l2zone, ptep);
return (l2b);
}
l2b->l2b_phys = vtophys(ptep);
if (ptep == NULL) {
/*
* Oops, no more L2 page tables available at this
* time. We may need to deallocate the l2_dtable
* if we allocated a new one above.
*/
if (l2->l2_occupancy == 0) {
pm->pm_l2[L2_IDX(l1idx)] = NULL;
uma_zfree(l2table_zone, l2);
}
return (NULL);
}
l2->l2_occupancy++;
l2b->l2b_kva = ptep;
l2b->l2b_l1idx = l1idx;
}
return (l2b);
}
static PMAP_INLINE void
pmap_free_l2_ptp(pt_entry_t *l2)
{
uma_zfree(l2zone, l2);
}
/*
* One or more mappings in the specified L2 descriptor table have just been
* invalidated.
*
* Garbage collect the metadata and descriptor table itself if necessary.
*
* The pmap lock must be acquired when this is called (not necessary
* for the kernel pmap).
*/
static void
pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
{
struct l2_dtable *l2;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep;
u_short l1idx;
/*
* Update the bucket's reference count according to how many
* PTEs the caller has just invalidated.
*/
l2b->l2b_occupancy -= count;
/*
* Note:
*
* Level 2 page tables allocated to the kernel pmap are never freed
* as that would require checking all Level 1 page tables and
* removing any references to the Level 2 page table. See also the
* comment elsewhere about never freeing bootstrap L2 descriptors.
*
* We make do with just invalidating the mapping in the L2 table.
*
* This isn't really a big deal in practice and, in fact, leads
* to a performance win over time as we don't need to continually
* alloc/free.
*/
if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
return;
/*
* There are no more valid mappings in this level 2 page table.
* Go ahead and NULL-out the pointer in the bucket, then
* free the page table.
*/
l1idx = l2b->l2b_l1idx;
ptep = l2b->l2b_kva;
l2b->l2b_kva = NULL;
pl1pd = &pm->pm_l1->l1_kva[l1idx];
/*
* If the L1 slot matches the pmap's domain
* number, then invalidate it.
*/
l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK);
if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) {
*pl1pd = 0;
PTE_SYNC(pl1pd);
}
/*
* Release the L2 descriptor table back to the pool cache.
*/
pmap_free_l2_ptp(ptep);
/*
* Update the reference count in the associated l2_dtable
*/
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (--l2->l2_occupancy > 0)
return;
/*
* There are no more valid mappings in any of the Level 1
* slots managed by this l2_dtable. Go ahead and NULL-out
* the pointer in the parent pmap and free the l2_dtable.
*/
pm->pm_l2[L2_IDX(l1idx)] = NULL;
uma_zfree(l2table_zone, l2);
}
/*
* Pool cache constructors for L2 descriptor tables, metadata and pmap
* structures.
*/
static int
pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK;
/*
* The mappings for these page tables were initially made using
* pmap_kenter() by the pool subsystem. Therefore, the cache-
* mode will not be right for page table mappings. To avoid
* polluting the pmap_kenter() code with a special case for
* page tables, we simply fix up the cache-mode here if it's not
* correct.
*/
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
cpu_idcache_wbinv_range(va, PAGE_SIZE);
#ifdef ARM_L2_PIPT
cpu_l2cache_wbinv_range(pte & L2_S_FRAME, PAGE_SIZE);
#else
cpu_l2cache_wbinv_range(va, PAGE_SIZE);
#endif
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
/*
* Page tables must have the cache-mode set to
* Write-Thru.
*/
*ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(va);
cpu_cpwait();
}
memset(mem, 0, L2_TABLE_SIZE_REAL);
return (0);
}
/*
* Modify pte bits for all ptes corresponding to the given physical address.
* We use `maskbits' rather than `clearbits' because we're always passing
* constants and the latter would require an extra inversion at run-time.
*/
static int
pmap_clearbit(struct vm_page *pg, u_int maskbits)
{
struct l2_bucket *l2b;
struct pv_entry *pv;
pt_entry_t *ptep, npte, opte;
pmap_t pm;
vm_offset_t va;
u_int oflags;
int count = 0;
rw_wlock(&pvh_global_lock);
if (maskbits & PVF_WRITE)
maskbits |= PVF_MOD;
/*
* Clear saved attributes (modify, reference)
*/
pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
if (TAILQ_EMPTY(&pg->md.pv_list)) {
rw_wunlock(&pvh_global_lock);
return (0);
}
/*
* Loop over all current mappings setting/clearing as appropos
*/
TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) {
va = pv->pv_va;
pm = pv->pv_pmap;
oflags = pv->pv_flags;
pv->pv_flags &= ~maskbits;
PMAP_LOCK(pm);
l2b = pmap_get_l2_bucket(pm, va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
npte = opte = *ptep;
if ((maskbits & (PVF_WRITE|PVF_MOD)) && L2_S_WRITABLE(opte)) {
vm_page_dirty(pg);
/* make the pte read only */
npte |= L2_APX;
}
if (maskbits & PVF_REF) {
/*
* Make the PTE invalid so that we will take a
* page fault the next time the mapping is
* referenced.
*/
npte &= ~L2_TYPE_MASK;
npte |= L2_TYPE_INV;
}
CTR4(KTR_PMAP,"clearbit: pmap:%p bits:%x pte:%x->%x",
pm, maskbits, opte, npte);
if (npte != opte) {
count++;
*ptep = npte;
PTE_SYNC(ptep);
/* Flush the TLB entry if a current pmap. */
if (PV_BEEN_EXECD(oflags))
cpu_tlb_flushID_SE(pv->pv_va);
else if (PV_BEEN_REFD(oflags))
cpu_tlb_flushD_SE(pv->pv_va);
}
PMAP_UNLOCK(pm);
}
if (maskbits & PVF_WRITE)
vm_page_aflag_clear(pg, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* main pv_entry manipulation functions:
* pmap_enter_pv: enter a mapping onto a vm_page list
* pmap_remove_pv: remove a mappiing from a vm_page list
*
* NOTE: pmap_enter_pv expects to lock the pvh itself
* pmap_remove_pv expects the caller to lock the pvh before calling
*/
/*
* pmap_enter_pv: enter a mapping onto a vm_page's PV list
*
* => caller should hold the proper lock on pvh_global_lock
* => caller should have pmap locked
* => we will (someday) gain the lock on the vm_page's PV list
* => caller should adjust ptp's wire_count before calling
* => caller should not adjust pmap's wire_count
*/
static void
pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm,
vm_offset_t va, u_int flags)
{
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_ASSERT_LOCKED(pm);
pve->pv_pmap = pm;
pve->pv_va = va;
pve->pv_flags = flags;
TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list);
TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist);
pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD);
if (pve->pv_flags & PVF_WIRED)
++pm->pm_stats.wired_count;
vm_page_aflag_set(pg, PGA_REFERENCED);
}
/*
*
* pmap_find_pv: Find a pv entry
*
* => caller should hold lock on vm_page
*/
static PMAP_INLINE struct pv_entry *
pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
{
struct pv_entry *pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list)
if (pm == pv->pv_pmap && va == pv->pv_va)
break;
return (pv);
}
/*
* vector_page_setprot:
*
* Manipulate the protection of the vector page.
*/
void
vector_page_setprot(int prot)
{
struct l2_bucket *l2b;
pt_entry_t *ptep;
l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
pmap_set_prot(ptep, prot|VM_PROT_EXECUTE, 0);
cpu_tlb_flushD_SE(vector_page);
cpu_cpwait();
}
static void
pmap_set_prot(pt_entry_t *ptep, vm_prot_t prot, uint8_t user)
{
*ptep &= ~L2_S_PROT_MASK;
if (!(prot & VM_PROT_EXECUTE))
*ptep |= L2_XN;
*ptep |= L2_S_PROT_R;
if (user)
*ptep |= L2_S_PROT_U;
if (prot & VM_PROT_WRITE)
*ptep &= ~(L2_APX);
}
/*
* pmap_remove_pv: try to remove a mapping from a pv_list
*
* => caller should hold proper lock on pmap_main_lock
* => pmap should be locked
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should adjust ptp's wire_count and free PTP if needed
* => caller should NOT adjust pmap's wire_count
* => we return the removed pve
*/
static void
pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve)
{
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_ASSERT_LOCKED(pm);
TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list);
TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist);
if (pve->pv_flags & PVF_WIRED)
--pm->pm_stats.wired_count;
if (pg->md.pvh_attrs & PVF_MOD)
vm_page_dirty(pg);
if (TAILQ_FIRST(&pg->md.pv_list) == NULL)
pg->md.pvh_attrs &= ~PVF_REF;
else
vm_page_aflag_set(pg, PGA_REFERENCED);
if (pve->pv_flags & PVF_WRITE) {
TAILQ_FOREACH(pve, &pg->md.pv_list, pv_list)
if (pve->pv_flags & PVF_WRITE)
break;
if (!pve) {
pg->md.pvh_attrs &= ~PVF_MOD;
vm_page_aflag_clear(pg, PGA_WRITEABLE);
}
}
}
static struct pv_entry *
pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va)
{
struct pv_entry *pve;
rw_assert(&pvh_global_lock, RA_WLOCKED);
pve = TAILQ_FIRST(&pg->md.pv_list);
while (pve) {
if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */
pmap_nuke_pv(pg, pm, pve);
break;
}
pve = TAILQ_NEXT(pve, pv_list);
}
return(pve); /* return removed pve */
}
/*
*
* pmap_modify_pv: Update pv flags
*
* => caller should hold lock on vm_page [so that attrs can be adjusted]
* => caller should NOT adjust pmap's wire_count
* => we return the old flags
*
* Modify a physical-virtual mapping in the pv table
*/
static u_int
pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va,
u_int clr_mask, u_int set_mask)
{
struct pv_entry *npv;
u_int flags, oflags;
PMAP_ASSERT_LOCKED(pm);
rw_assert(&pvh_global_lock, RA_WLOCKED);
if ((npv = pmap_find_pv(pg, pm, va)) == NULL)
return (0);
/*
* There is at least one VA mapping this page.
*/
if (clr_mask & (PVF_REF | PVF_MOD))
pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
oflags = npv->pv_flags;
npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
if ((flags ^ oflags) & PVF_WIRED) {
if (flags & PVF_WIRED)
++pm->pm_stats.wired_count;
else
--pm->pm_stats.wired_count;
}
if ((oflags & PVF_WRITE) && !(flags & PVF_WRITE)) {
TAILQ_FOREACH(npv, &pg->md.pv_list, pv_list) {
if (npv->pv_flags & PVF_WRITE)
break;
}
if (!npv) {
pg->md.pvh_attrs &= ~PVF_MOD;
vm_page_aflag_clear(pg, PGA_WRITEABLE);
}
}
return (oflags);
}
/* Function to set the debug level of the pmap code */
#ifdef PMAP_DEBUG
void
pmap_debug(int level)
{
pmap_debug_level = level;
dprintf("pmap_debug: level=%d\n", pmap_debug_level);
}
#endif /* PMAP_DEBUG */
void
pmap_pinit0(struct pmap *pmap)
{
PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap));
dprintf("pmap_pinit0: pmap = %08x, pm_pdir = %08x\n",
(u_int32_t) pmap, (u_int32_t) pmap->pm_pdir);
bcopy(kernel_pmap, pmap, sizeof(*pmap));
bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx));
PMAP_LOCK_INIT(pmap);
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
int shpgperproc = PMAP_SHPGPERPROC;
PDEBUG(1, printf("pmap_init: phys_start = %08x\n", PHYSADDR));
l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
/*
* Initialize the PV entry allocator.
*/
pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
pv_entry_high_water = 9 * (pv_entry_max / 10);
/*
* Now it is safe to enable pv_table recording.
*/
PDEBUG(1, printf("pmap_init: done!\n"));
}
int
pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep, pte;
vm_paddr_t pa;
u_int l1idx;
int rv = 0;
l1idx = L1_IDX(va);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
/*
* If there is no l2_dtable for this address, then the process
* has no business accessing it.
*
* Note: This will catch userland processes trying to access
* kernel addresses.
*/
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL)
goto out;
/*
* Likewise if there is no L2 descriptor table
*/
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
if (l2b->l2b_kva == NULL)
goto out;
/*
* Check the PTE itself.
*/
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
if (pte == 0)
goto out;
/*
* Catch a userland access to the vector page mapped at 0x0
*/
if (user && ((pte & L2_S_PROT_MASK) == L2_S_PROT_U))
goto out;
if (va == vector_page)
goto out;
pa = l2pte_pa(pte);
CTR5(KTR_PMAP, "pmap_fault_fix: pmap:%p va:%x pte:0x%x ftype:%x user:%x",
pm, va, pte, ftype, user);
if ((ftype & VM_PROT_WRITE) && !(L2_S_WRITABLE(pte))) {
/*
* This looks like a good candidate for "page modified"
* emulation...
*/
struct pv_entry *pv;
struct vm_page *pg;
/* Extract the physical address of the page */
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
goto out;
}
/* Get the current flags for this page. */
pv = pmap_find_pv(pg, pm, va);
if (pv == NULL) {
goto out;
}
/*
* Do the flags say this page is writable? If not then it
* is a genuine write fault. If yes then the write fault is
* our fault as we did not reflect the write access in the
* PTE. Now we know a write has occurred we can correct this
* and also set the modified bit
*/
if ((pv->pv_flags & PVF_WRITE) == 0) {
goto out;
}
pg->md.pvh_attrs |= PVF_REF | PVF_MOD;
vm_page_dirty(pg);
pv->pv_flags |= PVF_REF | PVF_MOD;
/* Re-enable write permissions for the page */
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
pmap_set_prot(ptep, VM_PROT_WRITE, *ptep & L2_S_PROT_U);
CTR1(KTR_PMAP, "pmap_fault_fix: new pte:0x%x", pte);
PTE_SYNC(ptep);
rv = 1;
} else if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) {
/*
* This looks like a good candidate for "page referenced"
* emulation.
*/
struct pv_entry *pv;
struct vm_page *pg;
/* Extract the physical address of the page */
if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
goto out;
/* Get the current flags for this page. */
pv = pmap_find_pv(pg, pm, va);
if (pv == NULL)
goto out;
pg->md.pvh_attrs |= PVF_REF;
pv->pv_flags |= PVF_REF;
*ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO;
PTE_SYNC(ptep);
rv = 1;
}
/*
* We know there is a valid mapping here, so simply
* fix up the L1 if necessary.
*/
pl1pd = &pm->pm_l1->l1_kva[l1idx];
l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO;
if (*pl1pd != l1pd) {
*pl1pd = l1pd;
PTE_SYNC(pl1pd);
rv = 1;
}
#ifdef DEBUG
/*
* If 'rv == 0' at this point, it generally indicates that there is a
* stale TLB entry for the faulting address. This happens when two or
* more processes are sharing an L1. Since we don't flush the TLB on
* a context switch between such processes, we can take domain faults
* for mappings which exist at the same VA in both processes. EVEN IF
* WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
* example.
*
* This is extremely likely to happen if pmap_enter() updated the L1
* entry for a recently entered mapping. In this case, the TLB is
* flushed for the new mapping, but there may still be TLB entries for
* other mappings belonging to other processes in the 1MB range
* covered by the L1 entry.
*
* Since 'rv == 0', we know that the L1 already contains the correct
* value, so the fault must be due to a stale TLB entry.
*
* Since we always need to flush the TLB anyway in the case where we
* fixed up the L1, or frobbed the L2 PTE, we effectively deal with
* stale TLB entries dynamically.
*
* However, the above condition can ONLY happen if the current L1 is
* being shared. If it happens when the L1 is unshared, it indicates
* that other parts of the pmap are not doing their job WRT managing
* the TLB.
*/
if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) {
printf("fixup: pm %p, va 0x%08x, ftype %d - nothing to do!\n",
pm, va, ftype);
printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n",
l2, l2b, ptep, pl1pd);
printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n",
pte, l1pd, last_fault_code);
#ifdef DDB
Debugger();
#endif
}
#endif
cpu_tlb_flushID_SE(va);
cpu_cpwait();
rv = 1;
out:
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pm);
return (rv);
}
void
pmap_postinit(void)
{
struct l2_bucket *l2b;
struct l1_ttable *l1;
pd_entry_t *pl1pt;
pt_entry_t *ptep, pte;
vm_offset_t va, eva;
u_int loop, needed;
needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
needed -= 1;
l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK);
for (loop = 0; loop < needed; loop++, l1++) {
/* Allocate a L1 page table */
va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0,
0xffffffff, L1_TABLE_SIZE, 0);
if (va == 0)
panic("Cannot allocate L1 KVM");
eva = va + L1_TABLE_SIZE;
pl1pt = (pd_entry_t *)va;
while (va < eva) {
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt;
*ptep = pte;
PTE_SYNC(ptep);
cpu_tlb_flushD_SE(va);
va += PAGE_SIZE;
}
pmap_init_l1(l1, pl1pt);
}
#ifdef DEBUG
printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
needed);
#endif
}
/*
* This is used to stuff certain critical values into the PCB where they
* can be accessed quickly from cpu_switch() et al.
*/
void
pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb)
{
struct l2_bucket *l2b;
pcb->pcb_pagedir = pm->pm_l1->l1_physaddr;
pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
(DOMAIN_CLIENT << (pm->pm_domain * 2));
if (vector_page < KERNBASE) {
pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)];
l2b = pmap_get_l2_bucket(pm, vector_page);
pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO |
L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL);
} else
pcb->pcb_pl1vec = NULL;
}
void
pmap_activate(struct thread *td)
{
pmap_t pm;
struct pcb *pcb;
pm = vmspace_pmap(td->td_proc->p_vmspace);
pcb = td->td_pcb;
critical_enter();
pmap_set_pcb_pagedir(pm, pcb);
if (td == curthread) {
u_int cur_dacr, cur_ttb;
__asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb));
__asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr));
cur_ttb &= ~(L1_TABLE_SIZE - 1);
if (cur_ttb == (u_int)pcb->pcb_pagedir &&
cur_dacr == pcb->pcb_dacr) {
/*
* No need to switch address spaces.
*/
critical_exit();
return;
}
/*
* We MUST, I repeat, MUST fix up the L1 entry corresponding
* to 'vector_page' in the incoming L1 table before switching
* to it otherwise subsequent interrupts/exceptions (including
* domain faults!) will jump into hyperspace.
*/
if (pcb->pcb_pl1vec) {
*pcb->pcb_pl1vec = pcb->pcb_l1vec;
}
cpu_domains(pcb->pcb_dacr);
cpu_setttb(pcb->pcb_pagedir);
}
critical_exit();
}
static int
pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va)
{
pd_entry_t *pdep, pde;
pt_entry_t *ptep, pte;
vm_offset_t pa;
int rv = 0;
/*
* Make sure the descriptor itself has the correct cache mode
*/
pdep = &kl1[L1_IDX(va)];
pde = *pdep;
if (l1pte_section_p(pde)) {
if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
*pdep = (pde & ~L1_S_CACHE_MASK) |
pte_l1_s_cache_mode_pt;
PTE_SYNC(pdep);
rv = 1;
}
} else {
pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
if (ptep == NULL)
panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep);
ptep = &ptep[l2pte_index(va)];
pte = *ptep;
if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
*ptep = (pte & ~L2_S_CACHE_MASK) |
pte_l2_s_cache_mode_pt;
PTE_SYNC(ptep);
rv = 1;
}
}
return (rv);
}
static void
pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap,
pt_entry_t **ptep)
{
vm_offset_t va = *availp;
struct l2_bucket *l2b;
if (ptep) {
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
if (l2b == NULL)
panic("pmap_alloc_specials: no l2b for 0x%x", va);
*ptep = &l2b->l2b_kva[l2pte_index(va)];
}
*vap = va;
*availp = va + (PAGE_SIZE * pages);
}
/*
* Bootstrap the system enough to run with virtual memory.
*
* On the arm this is called after mapping has already been enabled
* and just syncs the pmap module with what has already been done.
* [We can't call it easily with mapping off since the kernel is not
* mapped with PA == VA, hence we would have to relocate every address
* from the linked base (virtual) address "KERNBASE" to the actual
* (physical) address starting relative to 0]
*/
#define PMAP_STATIC_L2_SIZE 16
void
pmap_bootstrap(vm_offset_t firstaddr, vm_offset_t lastaddr, struct pv_addr *l1pt)
{
static struct l1_ttable static_l1;
static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
struct l1_ttable *l1 = &static_l1;
struct l2_dtable *l2;
struct l2_bucket *l2b;
pd_entry_t pde;
pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va;
pt_entry_t *ptep;
vm_paddr_t pa;
vm_offset_t va;
vm_size_t size;
int l1idx, l2idx, l2next = 0;
PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n",
firstaddr, lastaddr));
virtual_avail = firstaddr;
kernel_pmap->pm_l1 = l1;
kernel_l1pa = l1pt->pv_pa;
/*
* Scan the L1 translation table created by initarm() and create
* the required metadata for all valid mappings found in it.
*/
for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) {
pde = kernel_l1pt[l1idx];
/*
* We're only interested in Coarse mappings.
* pmap_extract() can deal with section mappings without
* recourse to checking L2 metadata.
*/
if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
continue;
/*
* Lookup the KVA of this L2 descriptor table
*/
pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK);
ptep = (pt_entry_t *)kernel_pt_lookup(pa);
if (ptep == NULL) {
panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
(u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa);
}
/*
* Fetch the associated L2 metadata structure.
* Allocate a new one if necessary.
*/
if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) {
if (l2next == PMAP_STATIC_L2_SIZE)
panic("pmap_bootstrap: out of static L2s");
kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 =
&static_l2[l2next++];
}
/*
* One more L1 slot tracked...
*/
l2->l2_occupancy++;
/*
* Fill in the details of the L2 descriptor in the
* appropriate bucket.
*/
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
l2b->l2b_kva = ptep;
l2b->l2b_phys = pa;
l2b->l2b_l1idx = l1idx;
/*
* Establish an initial occupancy count for this descriptor
*/
for (l2idx = 0;
l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
l2idx++) {
if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
l2b->l2b_occupancy++;
}
}
/*
* Make sure the descriptor itself has the correct cache mode.
* If not, fix it, but whine about the problem. Port-meisters
* should consider this a clue to fix up their initarm()
* function. :)
*/
if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) {
printf("pmap_bootstrap: WARNING! wrong cache mode for "
"L2 pte @ %p\n", ptep);
}
}
/*
* Ensure the primary (kernel) L1 has the correct cache mode for
* a page table. Bitch if it is not correctly set.
*/
for (va = (vm_offset_t)kernel_l1pt;
va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) {
if (pmap_set_pt_cache_mode(kernel_l1pt, va))
printf("pmap_bootstrap: WARNING! wrong cache mode for "
"primary L1 @ 0x%x\n", va);
}
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
cpu_tlb_flushID();
cpu_cpwait();
PMAP_LOCK_INIT(kernel_pmap);
CPU_FILL(&kernel_pmap->pm_active);
kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL;
TAILQ_INIT(&kernel_pmap->pm_pvlist);
/*
* Initialize the global pv list lock.
*/
rw_init(&pvh_global_lock, "pmap pv global");
/*
* Reserve some special page table entries/VA space for temporary
* mapping of pages.
*/
pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte);
pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte);
pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte);
pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte);
size = ((lastaddr - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE;
pmap_alloc_specials(&virtual_avail,
round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
&pmap_kernel_l2ptp_kva, NULL);
size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE;
pmap_alloc_specials(&virtual_avail,
round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
&pmap_kernel_l2dtable_kva, NULL);
pmap_alloc_specials(&virtual_avail,
1, (vm_offset_t*)&_tmppt, NULL);
pmap_alloc_specials(&virtual_avail,
MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL);
SLIST_INIT(&l1_list);
TAILQ_INIT(&l1_lru_list);
mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF);
pmap_init_l1(l1, kernel_l1pt);
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
virtual_avail = round_page(virtual_avail);
virtual_end = lastaddr;
kernel_vm_end = pmap_curmaxkvaddr;
arm_nocache_startaddr = lastaddr;
mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF);
pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
struct pcb *pcb;
cpu_idcache_wbinv_all();
cpu_l2cache_wbinv_all();
cpu_tlb_flushID();
cpu_cpwait();
if (vector_page < KERNBASE) {
struct pcb *curpcb = PCPU_GET(curpcb);
pcb = thread0.td_pcb;
if (pmap_is_current(pmap)) {
/*
* Frob the L1 entry corresponding to the vector
* page so that it contains the kernel pmap's domain
* number. This will ensure pmap_remove() does not
* pull the current vector page out from under us.
*/
critical_enter();
*pcb->pcb_pl1vec = pcb->pcb_l1vec;
cpu_domains(pcb->pcb_dacr);
cpu_setttb(pcb->pcb_pagedir);
critical_exit();
}
pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE);
/*
* Make sure cpu_switch(), et al, DTRT. This is safe to do
* since this process has no remaining mappings of its own.
*/
curpcb->pcb_pl1vec = pcb->pcb_pl1vec;
curpcb->pcb_l1vec = pcb->pcb_l1vec;
curpcb->pcb_dacr = pcb->pcb_dacr;
curpcb->pcb_pagedir = pcb->pcb_pagedir;
}
pmap_free_l1(pmap);
PMAP_LOCK_DESTROY(pmap);
dprintf("pmap_release()\n");
}
/*
* Helper function for pmap_grow_l2_bucket()
*/
static __inline int
pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap)
{
struct l2_bucket *l2b;
pt_entry_t *ptep;
vm_paddr_t pa;
struct vm_page *pg;
pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
if (pg == NULL)
return (1);
pa = VM_PAGE_TO_PHYS(pg);
if (pap)
*pap = pa;
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
ptep = &l2b->l2b_kva[l2pte_index(va)];
*ptep = L2_S_PROTO | pa | cache_mode;
pmap_set_prot(ptep, VM_PROT_READ | VM_PROT_WRITE, 0);
PTE_SYNC(ptep);
return (0);
}
/*
* This is the same as pmap_alloc_l2_bucket(), except that it is only
* used by pmap_growkernel().
*/
static __inline struct l2_bucket *
pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va)
{
struct l2_dtable *l2;
struct l2_bucket *l2b;
struct l1_ttable *l1;
pd_entry_t *pl1pd;
u_short l1idx;
vm_offset_t nva;
l1idx = L1_IDX(va);
if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) {
/*
* No mapping at this address, as there is
* no entry in the L1 table.
* Need to allocate a new l2_dtable.
*/
nva = pmap_kernel_l2dtable_kva;
if ((nva & PAGE_MASK) == 0) {
/*
* Need to allocate a backing page
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
return (NULL);
}
l2 = (struct l2_dtable *)nva;
nva += sizeof(struct l2_dtable);
if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva &
PAGE_MASK)) {
/*
* The new l2_dtable straddles a page boundary.
* Map in another page to cover it.
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL))
return (NULL);
}
pmap_kernel_l2dtable_kva = nva;
/*
* Link it into the parent pmap
*/
pm->pm_l2[L2_IDX(l1idx)] = l2;
memset(l2, 0, sizeof(*l2));
}
l2b = &l2->l2_bucket[L2_BUCKET(l1idx)];
/*
* Fetch pointer to the L2 page table associated with the address.
*/
if (l2b->l2b_kva == NULL) {
pt_entry_t *ptep;
/*
* No L2 page table has been allocated. Chances are, this
* is because we just allocated the l2_dtable, above.
*/
nva = pmap_kernel_l2ptp_kva;
ptep = (pt_entry_t *)nva;
if ((nva & PAGE_MASK) == 0) {
/*
* Need to allocate a backing page
*/
if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt,
&pmap_kernel_l2ptp_phys))
return (NULL);
}
memset(ptep, 0, L2_TABLE_SIZE_REAL);
l2->l2_occupancy++;
l2b->l2b_kva = ptep;
l2b->l2b_l1idx = l1idx;
l2b->l2b_phys = pmap_kernel_l2ptp_phys;
pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
}
/* Distribute new L1 entry to all other L1s */
SLIST_FOREACH(l1, &l1_list, l1_link) {
pl1pd = &l1->l1_kva[L1_IDX(va)];
*pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) |
L1_C_PROTO;
PTE_SYNC(pl1pd);
}
return (l2b);
}
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
pmap_t kpm = pmap_kernel();
if (addr <= pmap_curmaxkvaddr)
return; /* we are OK */
/*
* whoops! we need to add kernel PTPs
*/
/* Map 1MB at a time */
for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE)
pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
/*
* flush out the cache, expensive but growkernel will happen so
* rarely
*/
cpu_dcache_wbinv_all();
cpu_l2cache_wbinv_all();
cpu_tlb_flushD();
cpu_cpwait();
kernel_vm_end = pmap_curmaxkvaddr;
}
/*
* Remove all pages from specified address space
* this aids process exit speeds. Also, this code
* is special cased for current process only, but
* can have the more generic (and slightly slower)
* mode enabled. This is much faster than pmap_remove
* in the case of running down an entire address space.
*/
void
pmap_remove_pages(pmap_t pmap)
{
struct pv_entry *pv, *npv;
struct l2_bucket *l2b = NULL;
vm_page_t m;
pt_entry_t *pt;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
if (pv->pv_flags & PVF_WIRED) {
/* Cannot remove wired pages now. */
npv = TAILQ_NEXT(pv, pv_plist);
continue;
}
pmap->pm_stats.resident_count--;
l2b = pmap_get_l2_bucket(pmap, pv->pv_va);
KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages"));
pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK);
KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt));
*pt = 0;
PTE_SYNC(pt);
npv = TAILQ_NEXT(pv, pv_plist);
pmap_nuke_pv(m, pmap, pv);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
pmap_free_pv_entry(pv);
pmap_free_l2_bucket(pmap, l2b, 1);
}
rw_wunlock(&pvh_global_lock);
cpu_tlb_flushID();
cpu_cpwait();
PMAP_UNLOCK(pmap);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
#ifdef ARM_HAVE_SUPERSECTIONS
/* Map a super section into the KVA. */
void
pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags)
{
pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) |
(((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL,
VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
struct l1_ttable *l1;
vm_offset_t va0, va_end;
KASSERT(((va | pa) & L1_SUP_OFFSET) == 0,
("Not a valid super section mapping"));
if (flags & SECTION_CACHE)
pd |= pte_l1_s_cache_mode;
else if (flags & SECTION_PT)
pd |= pte_l1_s_cache_mode_pt;
va0 = va & L1_SUP_FRAME;
va_end = va + L1_SUP_SIZE;
SLIST_FOREACH(l1, &l1_list, l1_link) {
va = va0;
for (; va < va_end; va += L1_S_SIZE) {
l1->l1_kva[L1_IDX(va)] = pd;
PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
}
}
}
#endif
/* Map a section into the KVA. */
void
pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags)
{
pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL,
VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL);
struct l1_ttable *l1;
KASSERT(((va | pa) & L1_S_OFFSET) == 0,
("Not a valid section mapping"));
if (flags & SECTION_CACHE)
pd |= pte_l1_s_cache_mode;
else if (flags & SECTION_PT)
pd |= pte_l1_s_cache_mode_pt;
SLIST_FOREACH(l1, &l1_list, l1_link) {
l1->l1_kva[L1_IDX(va)] = pd;
PTE_SYNC(&l1->l1_kva[L1_IDX(va)]);
}
}
/*
* Make a temporary mapping for a physical address. This is only intended
* to be used for panic dumps.
*/
void *
pmap_kenter_temp(vm_paddr_t pa, int i)
{
vm_offset_t va;
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
pmap_kenter(va, pa);
return ((void *)crashdumpmap);
}
/*
* add a wired page to the kva
* note that in order for the mapping to take effect -- you
* should do a invltlb after doing the pmap_kenter...
*/
static PMAP_INLINE void
pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags)
{
struct l2_bucket *l2b;
pt_entry_t *pte;
pt_entry_t opte;
PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n",
(uint32_t) va, (uint32_t) pa));
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
if (l2b == NULL)
l2b = pmap_grow_l2_bucket(pmap_kernel(), va);
KASSERT(l2b != NULL, ("No L2 Bucket"));
pte = &l2b->l2b_kva[l2pte_index(va)];
opte = *pte;
if (l2pte_valid(opte)) {
cpu_tlb_flushD_SE(va);
cpu_cpwait();
} else {
if (opte == 0)
l2b->l2b_occupancy++;
}
if (flags & KENTER_CACHE) {
*pte = L2_S_PROTO | pa | pte_l2_s_cache_mode;
pmap_set_prot(pte, VM_PROT_READ | VM_PROT_WRITE,
flags & KENTER_USER);
} else {
*pte = L2_S_PROTO | pa;
pmap_set_prot(pte, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
0);
}
PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n",
(uint32_t) pte, opte, *pte));
PTE_SYNC(pte);
cpu_cpwait();
}
void
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
pmap_kenter_internal(va, pa, KENTER_CACHE);
}
void
pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa)
{
pmap_kenter_internal(va, pa, 0);
}
void
pmap_kenter_user(vm_offset_t va, vm_paddr_t pa)
{
pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER);
/*
* Call pmap_fault_fixup now, to make sure we'll have no exception
* at the first use of the new address, or bad things will happen,
* as we use one of these addresses in the exception handlers.
*/
pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1);
}
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
return (pmap_extract_locked(kernel_pmap, va));
}
/*
* remove a page from the kernel pagetables
*/
void
pmap_kremove(vm_offset_t va)
{
struct l2_bucket *l2b;
pt_entry_t *pte, opte;
l2b = pmap_get_l2_bucket(pmap_kernel(), va);
if (!l2b)
return;
KASSERT(l2b != NULL, ("No L2 Bucket"));
pte = &l2b->l2b_kva[l2pte_index(va)];
opte = *pte;
if (l2pte_valid(opte)) {
va = va & ~PAGE_MASK;
cpu_tlb_flushD_SE(va);
cpu_cpwait();
*pte = 0;
}
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
{
vm_offset_t sva = *virt;
vm_offset_t va = sva;
PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, "
"prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end,
prot));
while (start < end) {
pmap_kenter(va, start);
va += PAGE_SIZE;
start += PAGE_SIZE;
}
*virt = va;
return (sva);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
*/
void
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
{
int i;
for (i = 0; i < count; i++) {
pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]),
KENTER_CACHE);
va += PAGE_SIZE;
}
}
/*
* this routine jerks page mappings from the
* kernel -- it is meant only for temporary mappings.
*/
void
pmap_qremove(vm_offset_t va, int count)
{
int i;
for (i = 0; i < count; i++) {
if (vtophys(va))
pmap_kremove(va);
va += PAGE_SIZE;
}
}
/*
* pmap_object_init_pt preloads the ptes for a given object
* into the specified pmap. This eliminates the blast of soft
* faults on process startup and immediately after an mmap.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
vm_pindex_t pindex, vm_size_t size)
{
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("pmap_object_init_pt: non-device object"));
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is elgible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pd_entry_t *pde;
pt_entry_t *pte;
if (!pmap_get_pde_pte(pmap, addr, &pde, &pte))
return (FALSE);
KASSERT(pte != NULL, ("Valid mapping but no pte ?"));
if (*pte == 0)
return (TRUE);
return (FALSE);
}
/*
* Fetch pointers to the PDE/PTE for the given pmap/VA pair.
* Returns TRUE if the mapping exists, else FALSE.
*
* NOTE: This function is only used by a couple of arm-specific modules.
* It is not safe to take any pmap locks here, since we could be right
* in the middle of debugging the pmap anyway...
*
* It is possible for this routine to return FALSE even though a valid
* mapping does exist. This is because we don't lock, so the metadata
* state may be inconsistent.
*
* NOTE: We can return a NULL *ptp in the case where the L1 pde is
* a "section" mapping.
*/
boolean_t
pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp)
{
struct l2_dtable *l2;
pd_entry_t *pl1pd, l1pd;
pt_entry_t *ptep;
u_short l1idx;
if (pm->pm_l1 == NULL)
return (FALSE);
l1idx = L1_IDX(va);
*pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx];
l1pd = *pl1pd;
if (l1pte_section_p(l1pd)) {
*ptp = NULL;
return (TRUE);
}
if (pm->pm_l2 == NULL)
return (FALSE);
l2 = pm->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
return (FALSE);
}
*ptp = &ptep[l2pte_index(va)];
return (TRUE);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *ptep;
struct l2_bucket *l2b;
boolean_t flush = FALSE;
pmap_t curpm;
int flags = 0;
KASSERT((m->flags & PG_FICTITIOUS) == 0,
("pmap_remove_all: page %p is fictitious", m));
if (TAILQ_EMPTY(&m->md.pv_list))
return;
rw_wlock(&pvh_global_lock);
curpm = vmspace_pmap(curproc->p_vmspace);
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
if (flush == FALSE && (pv->pv_pmap == curpm ||
pv->pv_pmap == pmap_kernel()))
flush = TRUE;
PMAP_LOCK(pv->pv_pmap);
l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
KASSERT(l2b != NULL, ("No l2 bucket"));
ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
if (L2_S_WRITABLE(*ptep))
vm_page_dirty(m);
*ptep = 0;
if (pmap_is_current(pv->pv_pmap))
PTE_SYNC(ptep);
pmap_free_l2_bucket(pv->pv_pmap, l2b, 1);
pv->pv_pmap->pm_stats.resident_count--;
flags |= pv->pv_flags;
pmap_nuke_pv(m, pv->pv_pmap, pv);
PMAP_UNLOCK(pv->pv_pmap);
pmap_free_pv_entry(pv);
}
m->md.pvh_attrs &= ~(PVF_MOD | PVF_REF);
if (flush) {
if (PV_BEEN_EXECD(flags))
cpu_tlb_flushID();
else
cpu_tlb_flushD();
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
}
int
pmap_change_attr(vm_offset_t sva, vm_size_t len, int mode)
{
vm_offset_t base, offset, tmpva;
vm_size_t size;
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_offset_t next_bucket;
PMAP_LOCK(kernel_pmap);
base = trunc_page(sva);
offset = sva & PAGE_MASK;
size = roundup(offset + len, PAGE_SIZE);
#ifdef checkit
/*
* Only supported on kernel virtual addresses, including the direct
* map but excluding the recursive map.
*/
if (base < DMAP_MIN_ADDRESS)
return (EINVAL);
#endif
for (tmpva = base; tmpva < base + size; ) {
next_bucket = L2_NEXT_BUCKET(tmpva);
if (next_bucket > base + size)
next_bucket = base + size;
l2b = pmap_get_l2_bucket(kernel_pmap, tmpva);
if (l2b == NULL) {
tmpva = next_bucket;
continue;
}
ptep = &l2b->l2b_kva[l2pte_index(tmpva)];
if (*ptep == 0)
return(EINVAL);
pte = *ptep &~ L2_S_CACHE_MASK;
cpu_idcache_wbinv_range(tmpva, PAGE_SIZE);
#ifdef ARM_L2_PIPT
cpu_l2cache_wbinv_range(pte & L2_S_FRAME, PAGE_SIZE);
#else
cpu_l2cache_wbinv_range(tmpva, PAGE_SIZE);
#endif
*ptep = pte;
cpu_tlb_flushID_SE(tmpva);
dprintf("%s: for va:%x ptep:%x pte:%x\n",
__func__, tmpva, (uint32_t)ptep, pte);
tmpva += PAGE_SIZE;
}
PMAP_UNLOCK(kernel_pmap);
return (0);
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_offset_t next_bucket;
u_int flags;
int flush;
if ((prot & VM_PROT_READ) == 0) {
pmap_remove(pm, sva, eva);
return;
}
if (prot & VM_PROT_WRITE) {
/*
* If this is a read->write transition, just ignore it and let
* vm_fault() take care of it later.
*/
return;
}
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
/*
* OK, at this point, we know we're doing write-protect operation.
* If the pmap is active, write-back the range.
*/
flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1;
flags = 0;
while (sva < eva) {
next_bucket = L2_NEXT_BUCKET(sva);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pm, sva);
if (l2b == NULL) {
sva = next_bucket;
continue;
}
ptep = &l2b->l2b_kva[l2pte_index(sva)];
while (sva < next_bucket) {
if ((pte = *ptep) != 0 && L2_S_WRITABLE(pte)) {
struct vm_page *pg;
u_int f;
pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
pmap_set_prot(ptep, prot, !(pm == pmap_kernel()));
PTE_SYNC(ptep);
f = pmap_modify_pv(pg, pm, sva,
PVF_WRITE, 0);
if (f & PVF_WRITE)
vm_page_dirty(pg);
if (flush >= 0) {
flush++;
flags |= f;
} else
if (PV_BEEN_EXECD(f))
cpu_tlb_flushID_SE(sva);
else
if (PV_BEEN_REFD(f))
cpu_tlb_flushD_SE(sva);
}
sva += PAGE_SIZE;
ptep++;
}
}
if (flush) {
if (PV_BEEN_EXECD(flags))
cpu_tlb_flushID();
else
if (PV_BEEN_REFD(flags))
cpu_tlb_flushD();
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pm);
}
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
void
pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
pmap_enter_locked(pmap, va, m, prot, wired, M_WAITOK);
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
}
/*
* The pvh global and pmap locks must be held.
*/
static void
pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
boolean_t wired, int flags)
{
struct l2_bucket *l2b = NULL;
struct vm_page *opg;
struct pv_entry *pve = NULL;
pt_entry_t *ptep, npte, opte;
u_int nflags;
u_int oflags;
vm_paddr_t pa;
u_char user;
PMAP_ASSERT_LOCKED(pmap);
rw_assert(&pvh_global_lock, RA_WLOCKED);
if (va == vector_page) {
pa = systempage.pv_pa;
m = NULL;
} else {
KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
(flags & M_NOWAIT) != 0,
("pmap_enter_locked: page %p is not busy", m));
pa = VM_PAGE_TO_PHYS(m);
}
user = 0;
/*
* Make sure userland mappings get the right permissions
*/
if (pmap != pmap_kernel() && va != vector_page)
user = 1;
nflags = 0;
if (prot & VM_PROT_WRITE)
nflags |= PVF_WRITE;
if (prot & VM_PROT_EXECUTE)
nflags |= PVF_EXEC;
if (wired)
nflags |= PVF_WIRED;
PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, "
"wired = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, wired));
if (pmap == pmap_kernel()) {
l2b = pmap_get_l2_bucket(pmap, va);
if (l2b == NULL)
l2b = pmap_grow_l2_bucket(pmap, va);
} else {
do_l2b_alloc:
l2b = pmap_alloc_l2_bucket(pmap, va);
if (l2b == NULL) {
if (flags & M_WAITOK) {
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
VM_WAIT;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
goto do_l2b_alloc;
}
return;
}
}
ptep = &l2b->l2b_kva[l2pte_index(va)];
opte = *ptep;
npte = pa;
oflags = 0;
if (opte) {
/*
* There is already a mapping at this address.
* If the physical address is different, lookup the
* vm_page.
*/
if (l2pte_pa(opte) != pa)
opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
else
opg = m;
} else
opg = NULL;
if ((prot & (VM_PROT_ALL)) ||
(!m || m->md.pvh_attrs & PVF_REF)) {
/*
* - The access type indicates that we don't need
* to do referenced emulation.
* OR
* - The physical page has already been referenced
* so no need to re-do referenced emulation here.
*/
npte |= L2_S_PROTO;
#ifdef SMP
npte |= L2_SHARED;
#endif
nflags |= PVF_REF;
if (m && ((prot & VM_PROT_WRITE) != 0 ||
(m->md.pvh_attrs & PVF_MOD))) {
/*
* This is a writable mapping, and the
* page's mod state indicates it has
* already been modified. Make it
* writable from the outset.
*/
nflags |= PVF_MOD;
if (!(m->md.pvh_attrs & PVF_MOD))
vm_page_dirty(m);
}
if (m && opte)
vm_page_aflag_set(m, PGA_REFERENCED);
} else {
/*
* Need to do page referenced emulation.
*/
npte |= L2_TYPE_INV;
}
npte |= L2_S_PROT_R;
if (prot & VM_PROT_WRITE) {
npte &= ~(L2_APX);
if (m != NULL &&
(m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
}
if (user)
npte |= L2_S_PROT_U;
if (!(prot & VM_PROT_EXECUTE) && m)
npte |= L2_XN;
npte |= pte_l2_s_cache_mode;
if (m && m == opg) {
/*
* We're changing the attrs of an existing mapping.
*/
oflags = pmap_modify_pv(m, pmap, va,
PVF_WRITE | PVF_EXEC | PVF_WIRED |
PVF_MOD | PVF_REF, nflags);
} else {
/*
* New mapping, or changing the backing page
* of an existing mapping.
*/
if (opg) {
/*
* Replacing an existing mapping with a new one.
* It is part of our managed memory so we
* must remove it from the PV list
*/
if ((pve = pmap_remove_pv(opg, pmap, va))) {
oflags = pve->pv_flags;
if (m && ((m->oflags & VPO_UNMANAGED))) {
pmap_free_pv_entry(pve);
pve = NULL;
}
}
}
if ((m && !(m->oflags & VPO_UNMANAGED))) {
if ((!pve) && (pve = pmap_get_pv_entry()) == NULL)
panic("pmap_enter: no pv entries");
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
("pmap_enter: managed mapping within the clean submap"));
KASSERT(pve != NULL, ("No pv"));
pmap_enter_pv(m, pve, pmap, va, nflags);
}
}
/*
* Keep the stats up to date
*/
if (opte == 0) {
l2b->l2b_occupancy++;
pmap->pm_stats.resident_count++;
}
CTR5(KTR_PMAP,"enter: pmap:%p va:%x prot:%x pte:%x->%x",
pmap, va, prot, opte, npte);
/*
* If this is just a wiring change, the two PTEs will be
* identical, so there's no need to update the page table.
*/
if (npte != opte) {
boolean_t is_cached = pmap_is_current(pmap);
*ptep = npte;
PTE_SYNC(ptep);
if (is_cached) {
/*
* We only need to frob the cache/tlb if this pmap
* is current
*/
if (L1_IDX(va) != L1_IDX(vector_page) &&
l2pte_valid(npte)) {
/*
* This mapping is likely to be accessed as
* soon as we return to userland. Fix up the
* L1 entry to avoid taking another
* page/domain fault.
*/
pd_entry_t *pl1pd, l1pd;
pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)];
l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) |
L1_C_PROTO;
if (*pl1pd != l1pd) {
*pl1pd = l1pd;
PTE_SYNC(pl1pd);
}
}
}
if (PV_BEEN_EXECD(oflags))
cpu_tlb_flushID_SE(va);
else if (PV_BEEN_REFD(oflags))
cpu_tlb_flushD_SE(va);
}
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
psize = atop(end - start);
m = m_start;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
pmap_enter_locked(pmap, start + ptoa(diff), m, prot &
(VM_PROT_READ | VM_PROT_EXECUTE), FALSE, M_NOWAIT);
m = TAILQ_NEXT(m, listq);
}
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* but is *MUCH* faster than pmap_enter...
*/
void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
FALSE, M_NOWAIT);
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
}
/*
* Routine: pmap_change_wiring
* Function: Change the wiring attribute for a map/virtual-address
* pair.
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_page_t pg;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
l2b = pmap_get_l2_bucket(pmap, va);
KASSERT(l2b, ("No l2b bucket in pmap_change_wiring"));
ptep = &l2b->l2b_kva[l2pte_index(va)];
pte = *ptep;
pg = PHYS_TO_VM_PAGE(l2pte_pa(pte));
if (pg)
pmap_modify_pv(pg, pmap, va, PVF_WIRED, wired);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
vm_size_t len, vm_offset_t src_addr)
{
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa;
PMAP_LOCK(pmap);
pa = pmap_extract_locked(pmap, va);
PMAP_UNLOCK(pmap);
return (pa);
}
static vm_paddr_t
pmap_extract_locked(pmap_t pmap, vm_offset_t va)
{
struct l2_dtable *l2;
pd_entry_t l1pd;
pt_entry_t *ptep, pte;
vm_paddr_t pa;
u_int l1idx;
if (pmap != kernel_pmap)
PMAP_ASSERT_LOCKED(pmap);
l1idx = L1_IDX(va);
l1pd = pmap->pm_l1->l1_kva[l1idx];
if (l1pte_section_p(l1pd)) {
/*
* These should only happen for the kernel pmap.
*/
KASSERT(pmap == kernel_pmap, ("unexpected section"));
/* XXX: what to do about the bits > 32 ? */
if (l1pd & L1_S_SUPERSEC)
pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
else
pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
} else {
/*
* Note that we can't rely on the validity of the L1
* descriptor as an indication that a mapping exists.
* We have to look it up in the L2 dtable.
*/
l2 = pmap->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL)
return (0);
pte = ptep[l2pte_index(va)];
if (pte == 0)
return (0);
switch (pte & L2_TYPE_MASK) {
case L2_TYPE_L:
pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
break;
default:
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
break;
}
}
return (pa);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
struct l2_dtable *l2;
pd_entry_t l1pd;
pt_entry_t *ptep, pte;
vm_paddr_t pa, paddr;
vm_page_t m = NULL;
u_int l1idx;
l1idx = L1_IDX(va);
paddr = 0;
PMAP_LOCK(pmap);
retry:
l1pd = pmap->pm_l1->l1_kva[l1idx];
if (l1pte_section_p(l1pd)) {
/*
* These should only happen for pmap_kernel()
*/
KASSERT(pmap == pmap_kernel(), ("huh"));
/* XXX: what to do about the bits > 32 ? */
if (l1pd & L1_S_SUPERSEC)
pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET);
else
pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET);
if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
goto retry;
if (L1_S_WRITABLE(l1pd) || (prot & VM_PROT_WRITE) == 0) {
m = PHYS_TO_VM_PAGE(pa);
vm_page_hold(m);
}
} else {
/*
* Note that we can't rely on the validity of the L1
* descriptor as an indication that a mapping exists.
* We have to look it up in the L2 dtable.
*/
l2 = pmap->pm_l2[L2_IDX(l1idx)];
if (l2 == NULL ||
(ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) {
PMAP_UNLOCK(pmap);
return (NULL);
}
ptep = &ptep[l2pte_index(va)];
pte = *ptep;
if (pte == 0) {
PMAP_UNLOCK(pmap);
return (NULL);
} else if ((prot & VM_PROT_WRITE) && (pte & L2_APX)) {
PMAP_UNLOCK(pmap);
return (NULL);
} else {
switch (pte & L2_TYPE_MASK) {
case L2_TYPE_L:
panic("extract and hold section mapping");
break;
default:
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
break;
}
if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr))
goto retry;
m = PHYS_TO_VM_PAGE(pa);
vm_page_hold(m);
}
}
PMAP_UNLOCK(pmap);
PA_UNLOCK_COND(paddr);
return (m);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
int
pmap_pinit(pmap_t pmap)
{
PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap));
PMAP_LOCK_INIT(pmap);
pmap_alloc_l1(pmap);
bzero(pmap->pm_l2, sizeof(pmap->pm_l2));
CPU_ZERO(&pmap->pm_active);
TAILQ_INIT(&pmap->pm_pvlist);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
pmap->pm_stats.resident_count = 1;
if (vector_page < KERNBASE) {
pmap_enter(pmap, vector_page,
VM_PROT_READ, PHYS_TO_VM_PAGE(systempage.pv_pa),
VM_PROT_READ, 1);
}
return (1);
}
/***************************************************
* page management routines.
***************************************************/
static void
pmap_free_pv_entry(pv_entry_t pv)
{
pv_entry_count--;
uma_zfree(pvzone, pv);
}
/*
* get a new pv_entry, allocating a block from the system
* when needed.
* the memory allocation is performed bypassing the malloc code
* because of the possibility of allocations at interrupt time.
*/
static pv_entry_t
pmap_get_pv_entry(void)
{
pv_entry_t ret_value;
pv_entry_count++;
if (pv_entry_count > pv_entry_high_water)
pagedaemon_wakeup();
ret_value = uma_zalloc(pvzone, M_NOWAIT);
return ret_value;
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
#define PMAP_REMOVE_CLEAN_LIST_SIZE 3
void
pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
struct l2_bucket *l2b;
vm_offset_t next_bucket;
pt_entry_t *ptep;
u_int total;
u_int mappings, is_exec, is_refd;
int flushall = 0;
/*
* we lock in the pmap => pv_head direction
*/
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pm);
total = 0;
while (sva < eva) {
/*
* Do one L2 bucket's worth at a time.
*/
next_bucket = L2_NEXT_BUCKET(sva);
if (next_bucket > eva)
next_bucket = eva;
l2b = pmap_get_l2_bucket(pm, sva);
if (l2b == NULL) {
sva = next_bucket;
continue;
}
ptep = &l2b->l2b_kva[l2pte_index(sva)];
mappings = 0;
while (sva < next_bucket) {
struct vm_page *pg;
pt_entry_t pte;
vm_paddr_t pa;
pte = *ptep;
if (pte == 0) {
/*
* Nothing here, move along
*/
sva += PAGE_SIZE;
ptep++;
continue;
}
pm->pm_stats.resident_count--;
pa = l2pte_pa(pte);
is_exec = 0;
is_refd = 1;
/*
* Update flags. In a number of circumstances,
* we could cluster a lot of these and do a
* number of sequential pages in one go.
*/
if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
struct pv_entry *pve;
pve = pmap_remove_pv(pg, pm, sva);
if (pve) {
is_exec = PV_BEEN_EXECD(pve->pv_flags);
is_refd = PV_BEEN_REFD(pve->pv_flags);
pmap_free_pv_entry(pve);
}
}
if (pmap_is_current(pm)) {
total++;
if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) {
if (is_exec)
cpu_tlb_flushID_SE(sva);
else if (is_refd)
cpu_tlb_flushD_SE(sva);
} else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE) {
flushall = 1;
}
}
*ptep = 0;
PTE_SYNC(ptep);
sva += PAGE_SIZE;
ptep++;
mappings++;
}
pmap_free_l2_bucket(pm, l2b, mappings);
}
rw_wunlock(&pvh_global_lock);
if (flushall)
cpu_tlb_flushID();
PMAP_UNLOCK(pm);
}
/*
* pmap_zero_page()
*
* Zero a given physical page by mapping it at a page hook point.
* In doing the zero page op, the page we zero is mapped cachable, as with
* StrongARM accesses to non-cached pages are non-burst making writing
* _any_ bulk data very slow.
*/
static void
pmap_zero_page_gen(vm_page_t pg, int off, int size)
{
vm_paddr_t phys = VM_PAGE_TO_PHYS(pg);
if (!TAILQ_EMPTY(&pg->md.pv_list))
panic("pmap_zero_page: page has mappings");
mtx_lock(&cmtx);
/*
* Hook in the page, zero it, invalidate the TLB as needed.
*
* Note the temporary zero-page mapping must be a non-cached page in
* order to work without corruption when write-allocate is enabled.
*/
*cdst_pte = L2_S_PROTO | phys | pte_l2_s_cache_mode;
pmap_set_prot(cdst_pte, VM_PROT_WRITE, 0);
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
if (off || size != PAGE_SIZE)
bzero((void *)(cdstp + off), size);
else
bzero_page(cdstp);
mtx_unlock(&cmtx);
}
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
pmap_zero_page_gen(m, 0, PAGE_SIZE);
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
pmap_zero_page_gen(m, off, size);
}
/*
* pmap_zero_page_idle zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents. This
* is intended to be called from the vm_pagezero process only and
* outside of Giant.
*/
void
pmap_zero_page_idle(vm_page_t m)
{
pmap_zero_page(m);
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
/*
* pmap_copy_page()
*
* Copy one physical page into another, by mapping the pages into
* hook points. The same comment regarding cachability as in
* pmap_zero_page also applies here.
*/
void
pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst)
{
/*
* Hold the source page's lock for the duration of the copy
* so that no other mappings can be created while we have a
* potentially aliased mapping.
* Map the pages into the page hook points, copy them, and purge
* the cache for the appropriate page. Invalidate the TLB
* as required.
*/
mtx_lock(&cmtx);
/* For ARMv6 using System bit is deprecated and mapping with AP
* bits set to 0x0 makes page not accessible. csrc_pte is mapped
* read/write until proper mapping defines are created for ARMv6.
*/
*csrc_pte = L2_S_PROTO | src | pte_l2_s_cache_mode;
pmap_set_prot(csrc_pte, VM_PROT_READ, 0);
PTE_SYNC(csrc_pte);
*cdst_pte = L2_S_PROTO | dst | pte_l2_s_cache_mode;
pmap_set_prot(cdst_pte, VM_PROT_READ | VM_PROT_WRITE, 0);
PTE_SYNC(cdst_pte);
cpu_tlb_flushD_SE(csrcp);
cpu_tlb_flushD_SE(cdstp);
cpu_cpwait();
bcopy_page(csrcp, cdstp);
mtx_unlock(&cmtx);
}
void
pmap_copy_page(vm_page_t src, vm_page_t dst)
{
if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size &&
_arm_memcpy((void *)VM_PAGE_TO_PHYS(dst),
(void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0)
return;
pmap_copy_page_generic(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
}
/*
* this routine returns true if a physical page resides
* in the given pmap.
*/
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
pv_entry_t pv;
int loops = 0;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_page_exists_quick: page %p is not managed", m));
rv = FALSE;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (pv->pv_pmap == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* pmap_page_wired_mappings:
*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
pv_entry_t pv;
int count;
count = 0;
if ((m->flags & PG_FICTITIOUS) != 0)
return (count);
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list)
if ((pv->pv_flags & PVF_WIRED) != 0)
count++;
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* pmap_is_referenced:
*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
boolean_t
pmap_is_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_referenced: page %p is not managed", m));
return ((m->md.pvh_attrs & PVF_REF) != 0);
}
/*
* pmap_ts_referenced:
*
* Return the count of reference bits for a page, clearing all of them.
*/
int
pmap_ts_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_ts_referenced: page %p is not managed", m));
return (pmap_clearbit(m, PVF_REF));
}
boolean_t
pmap_is_modified(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_modified: page %p is not managed", m));
if (m->md.pvh_attrs & PVF_MOD)
return (TRUE);
return(FALSE);
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_clear_modify: page %p is not managed", m));
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
KASSERT((m->oflags & VPO_BUSY) == 0,
("pmap_clear_modify: page %p is busy", m));
/*
* If the page is not PGA_WRITEABLE, then no mappings can be modified.
* If the object containing the page is locked and the page is not
* VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
if (m->md.pvh_attrs & PVF_MOD)
pmap_clearbit(m, PVF_MOD);
}
/*
* pmap_clear_reference:
*
* Clear the reference bit on the specified physical page.
*/
void
pmap_clear_reference(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_clear_reference: page %p is not managed", m));
if (m->md.pvh_attrs & PVF_REF)
pmap_clearbit(m, PVF_REF);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
pmap_remove_write(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_write: page %p is not managed", m));
/*
* If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
* another thread while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no page table entries need updating.
*/
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
if ((m->oflags & VPO_BUSY) != 0 ||
(m->aflags & PGA_WRITEABLE) != 0)
pmap_clearbit(m, PVF_WRITE);
}
/*
* perform the pmap work for mincore
*/
int
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
{
struct l2_bucket *l2b;
pt_entry_t *ptep, pte;
vm_paddr_t pa;
vm_page_t m;
int val;
boolean_t managed;
PMAP_LOCK(pmap);
retry:
l2b = pmap_get_l2_bucket(pmap, addr);
if (l2b == NULL) {
val = 0;
goto out;
}
ptep = &l2b->l2b_kva[l2pte_index(addr)];
pte = *ptep;
if (!l2pte_valid(pte)) {
val = 0;
goto out;
}
val = MINCORE_INCORE;
if (L2_S_WRITABLE(pte))
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
managed = FALSE;
pa = l2pte_pa(pte);
m = PHYS_TO_VM_PAGE(pa);
if (m != NULL && (m->oflags & VPO_UNMANAGED) == 0)
managed = TRUE;
if (managed) {
/*
* The ARM pmap tries to maintain a per-mapping
* reference bit. The trouble is that it's kept in
* the PV entry, not the PTE, so it's costly to access
* here. You would need to acquire the pvh global
* lock, call pmap_find_pv(), and introduce a custom
* version of vm_page_pa_tryrelock() that releases and
* reacquires the pvh global lock. In the end, I
* doubt it's worthwhile. This may falsely report
* the given address as referenced.
*/
if ((m->md.pvh_attrs & PVF_REF) != 0)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
}
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
goto retry;
} else
out:
PA_UNLOCK_COND(*locked_pa);
PMAP_UNLOCK(pmap);
return (val);
}
void
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
pmap_mapdev(vm_offset_t pa, vm_size_t size)
{
vm_offset_t va, tmpva, offset;
offset = pa & PAGE_MASK;
size = roundup(size, PAGE_SIZE);
GIANT_REQUIRED;
va = kmem_alloc_nofault(kernel_map, size);
if (!va)
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
for (tmpva = va; size > 0;) {
pmap_kenter_internal(tmpva, pa, 0);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
pa += PAGE_SIZE;
}
return ((void *)(va + offset));
}
/*
* pmap_map_section:
*
* Create a single section mapping.
*/
void
pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
int prot, int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pd_entry_t fl;
KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2"));
fl = l1_mem_types[cache];
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
}
/*
* pmap_link_l2pt:
*
* Link the L2 page table specified by l2pv.pv_pa into the L1
* page table at the slot for "va".
*/
void
pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv)
{
pd_entry_t *pde = (pd_entry_t *) l1pt, proto;
u_int slot = va >> L1_S_SHIFT;
proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO;
#ifdef VERBOSE_INIT_ARM
printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va);
#endif
pde[slot + 0] = proto | (l2pv->pv_pa + 0x000);
PTE_SYNC(&pde[slot]);
SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
}
/*
* pmap_map_entry
*
* Create a single page mapping.
*/
void
pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot,
int cache)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t fl;
pt_entry_t *pte;
KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin"));
fl = l2s_mem_types[cache];
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_entry: no L2 table for VA 0x%08x", va);
pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK);
if (pte == NULL)
panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va);
pte[l2pte_index(va)] = L2_S_PROTO | pa | fl;
pmap_set_prot(&pte[l2pte_index(va)], prot, 0);
PTE_SYNC(&pte[l2pte_index(va)]);
}
/*
* pmap_map_chunk:
*
* Map a chunk of memory using the most efficient mappings
* possible (section. large page, small page) into the
* provided L1 and L2 tables at the specified virtual address.
*/
vm_size_t
pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa,
vm_size_t size, int prot, int type)
{
pd_entry_t *pde = (pd_entry_t *) l1pt;
pt_entry_t *pte, f1, f2s, f2l;
vm_size_t resid;
int i;
resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
if (l1pt == 0)
panic("pmap_map_chunk: no L1 table provided");
#ifdef VERBOSE_INIT_ARM
printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x "
"prot=0x%x type=%d\n", pa, va, size, resid, prot, type);
#endif
f1 = l1_mem_types[type];
f2l = l2l_mem_types[type];
f2s = l2s_mem_types[type];
size = resid;
while (resid > 0) {
/* See if we can use a section mapping. */
if (L1_S_MAPPABLE_P(va, pa, resid)) {
#ifdef VERBOSE_INIT_ARM
printf("S");
#endif
pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
L1_S_PROT(PTE_KERNEL, prot) | f1 |
L1_S_DOM(PMAP_DOMAIN_KERNEL);
PTE_SYNC(&pde[va >> L1_S_SHIFT]);
va += L1_S_SIZE;
pa += L1_S_SIZE;
resid -= L1_S_SIZE;
continue;
}
/*
* Ok, we're going to use an L2 table. Make sure
* one is actually in the corresponding L1 slot
* for the current VA.
*/
if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
panic("pmap_map_chunk: no L2 table for VA 0x%08x", va);
pte = (pt_entry_t *) kernel_pt_lookup(
pde[L1_IDX(va)] & L1_C_ADDR_MASK);
if (pte == NULL)
panic("pmap_map_chunk: can't find L2 table for VA"
"0x%08x", va);
/* See if we can use a L2 large page mapping. */
if (L2_L_MAPPABLE_P(va, pa, resid)) {
#ifdef VERBOSE_INIT_ARM
printf("L");
#endif
for (i = 0; i < 16; i++) {
pte[l2pte_index(va) + i] =
L2_L_PROTO | pa |
L2_L_PROT(PTE_KERNEL, prot) | f2l;
PTE_SYNC(&pte[l2pte_index(va) + i]);
}
va += L2_L_SIZE;
pa += L2_L_SIZE;
resid -= L2_L_SIZE;
continue;
}
/* Use a small page mapping. */
#ifdef VERBOSE_INIT_ARM
printf("P");
#endif
pte[l2pte_index(va)] = L2_S_PROTO | pa | f2s;
pmap_set_prot(&pte[l2pte_index(va)], prot, 0);
PTE_SYNC(&pte[l2pte_index(va)]);
va += PAGE_SIZE;
pa += PAGE_SIZE;
resid -= PAGE_SIZE;
}
#ifdef VERBOSE_INIT_ARM
printf("\n");
#endif
return (size);
}
/********************** Static device map routines ***************************/
static const struct pmap_devmap *pmap_devmap_table;
/*
* Register the devmap table. This is provided in case early console
* initialization needs to register mappings created by bootstrap code
* before pmap_devmap_bootstrap() is called.
*/
void
pmap_devmap_register(const struct pmap_devmap *table)
{
pmap_devmap_table = table;
}
/*
* Map all of the static regions in the devmap table, and remember
* the devmap table so other parts of the kernel can look up entries
* later.
*/
void
pmap_devmap_bootstrap(vm_offset_t l1pt, const struct pmap_devmap *table)
{
int i;
pmap_devmap_table = table;
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
#ifdef VERBOSE_INIT_ARM
printf("devmap: %08x -> %08x @ %08x\n",
pmap_devmap_table[i].pd_pa,
pmap_devmap_table[i].pd_pa +
pmap_devmap_table[i].pd_size - 1,
pmap_devmap_table[i].pd_va);
#endif
pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va,
pmap_devmap_table[i].pd_pa,
pmap_devmap_table[i].pd_size,
pmap_devmap_table[i].pd_prot,
pmap_devmap_table[i].pd_cache);
}
}
const struct pmap_devmap *
pmap_devmap_find_pa(vm_paddr_t pa, vm_size_t size)
{
int i;
if (pmap_devmap_table == NULL)
return (NULL);
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
if (pa >= pmap_devmap_table[i].pd_pa &&
pa + size <= pmap_devmap_table[i].pd_pa +
pmap_devmap_table[i].pd_size)
return (&pmap_devmap_table[i]);
}
return (NULL);
}
const struct pmap_devmap *
pmap_devmap_find_va(vm_offset_t va, vm_size_t size)
{
int i;
if (pmap_devmap_table == NULL)
return (NULL);
for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) {
if (va >= pmap_devmap_table[i].pd_va &&
va + size <= pmap_devmap_table[i].pd_va +
pmap_devmap_table[i].pd_size)
return (&pmap_devmap_table[i]);
}
return (NULL);
}
int
pmap_dmap_iscurrent(pmap_t pmap)
{
return(pmap_is_current(pmap));
}