freebsd-dev/sys/kern/vfs_vnops.c

1469 lines
34 KiB
C

/*-
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/kdb.h>
#include <sys/stat.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/vnode.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/filio.h>
#include <sys/resourcevar.h>
#include <sys/sx.h>
#include <sys/ttycom.h>
#include <sys/conf.h>
#include <sys/syslog.h>
#include <sys/unistd.h>
#include <security/audit/audit.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
static fo_rdwr_t vn_read;
static fo_rdwr_t vn_write;
static fo_truncate_t vn_truncate;
static fo_ioctl_t vn_ioctl;
static fo_poll_t vn_poll;
static fo_kqfilter_t vn_kqfilter;
static fo_stat_t vn_statfile;
static fo_close_t vn_closefile;
struct fileops vnops = {
.fo_read = vn_read,
.fo_write = vn_write,
.fo_truncate = vn_truncate,
.fo_ioctl = vn_ioctl,
.fo_poll = vn_poll,
.fo_kqfilter = vn_kqfilter,
.fo_stat = vn_statfile,
.fo_close = vn_closefile,
.fo_chmod = vn_chmod,
.fo_chown = vn_chown,
.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
};
int
vn_open(ndp, flagp, cmode, fp)
struct nameidata *ndp;
int *flagp, cmode;
struct file *fp;
{
struct thread *td = ndp->ni_cnd.cn_thread;
return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
}
/*
* Common code for vnode open operations.
* Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
*
* Note that this does NOT free nameidata for the successful case,
* due to the NDINIT being done elsewhere.
*/
int
vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
struct ucred *cred, struct file *fp)
{
struct vnode *vp;
struct mount *mp;
struct thread *td = ndp->ni_cnd.cn_thread;
struct vattr vat;
struct vattr *vap = &vat;
int fmode, error;
accmode_t accmode;
int vfslocked, mpsafe;
mpsafe = ndp->ni_cnd.cn_flags & MPSAFE;
restart:
vfslocked = 0;
fmode = *flagp;
if (fmode & O_CREAT) {
ndp->ni_cnd.cn_nameiop = CREATE;
ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF |
MPSAFE;
if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
ndp->ni_cnd.cn_flags |= FOLLOW;
if (!(vn_open_flags & VN_OPEN_NOAUDIT))
ndp->ni_cnd.cn_flags |= AUDITVNODE1;
bwillwrite();
if ((error = namei(ndp)) != 0)
return (error);
vfslocked = NDHASGIANT(ndp);
if (!mpsafe)
ndp->ni_cnd.cn_flags &= ~MPSAFE;
if (ndp->ni_vp == NULL) {
VATTR_NULL(vap);
vap->va_type = VREG;
vap->va_mode = cmode;
if (fmode & O_EXCL)
vap->va_vaflags |= VA_EXCLUSIVE;
if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
NDFREE(ndp, NDF_ONLY_PNBUF);
vput(ndp->ni_dvp);
VFS_UNLOCK_GIANT(vfslocked);
if ((error = vn_start_write(NULL, &mp,
V_XSLEEP | PCATCH)) != 0)
return (error);
goto restart;
}
#ifdef MAC
error = mac_vnode_check_create(cred, ndp->ni_dvp,
&ndp->ni_cnd, vap);
if (error == 0)
#endif
error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
&ndp->ni_cnd, vap);
vput(ndp->ni_dvp);
vn_finished_write(mp);
if (error) {
VFS_UNLOCK_GIANT(vfslocked);
NDFREE(ndp, NDF_ONLY_PNBUF);
return (error);
}
fmode &= ~O_TRUNC;
vp = ndp->ni_vp;
} else {
if (ndp->ni_dvp == ndp->ni_vp)
vrele(ndp->ni_dvp);
else
vput(ndp->ni_dvp);
ndp->ni_dvp = NULL;
vp = ndp->ni_vp;
if (fmode & O_EXCL) {
error = EEXIST;
goto bad;
}
fmode &= ~O_CREAT;
}
} else {
ndp->ni_cnd.cn_nameiop = LOOKUP;
ndp->ni_cnd.cn_flags = ISOPEN |
((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) |
LOCKLEAF | MPSAFE;
if (!(fmode & FWRITE))
ndp->ni_cnd.cn_flags |= LOCKSHARED;
if (!(vn_open_flags & VN_OPEN_NOAUDIT))
ndp->ni_cnd.cn_flags |= AUDITVNODE1;
if ((error = namei(ndp)) != 0)
return (error);
if (!mpsafe)
ndp->ni_cnd.cn_flags &= ~MPSAFE;
vfslocked = NDHASGIANT(ndp);
vp = ndp->ni_vp;
}
if (vp->v_type == VLNK) {
error = EMLINK;
goto bad;
}
if (vp->v_type == VSOCK) {
error = EOPNOTSUPP;
goto bad;
}
if (vp->v_type != VDIR && fmode & O_DIRECTORY) {
error = ENOTDIR;
goto bad;
}
accmode = 0;
if (fmode & (FWRITE | O_TRUNC)) {
if (vp->v_type == VDIR) {
error = EISDIR;
goto bad;
}
accmode |= VWRITE;
}
if (fmode & FREAD)
accmode |= VREAD;
if (fmode & FEXEC)
accmode |= VEXEC;
if ((fmode & O_APPEND) && (fmode & FWRITE))
accmode |= VAPPEND;
#ifdef MAC
error = mac_vnode_check_open(cred, vp, accmode);
if (error)
goto bad;
#endif
if ((fmode & O_CREAT) == 0) {
if (accmode & VWRITE) {
error = vn_writechk(vp);
if (error)
goto bad;
}
if (accmode) {
error = VOP_ACCESS(vp, accmode, cred, td);
if (error)
goto bad;
}
}
if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
goto bad;
if (fmode & FWRITE) {
vp->v_writecount++;
CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
__func__, vp, vp->v_writecount);
}
*flagp = fmode;
ASSERT_VOP_LOCKED(vp, "vn_open_cred");
if (!mpsafe)
VFS_UNLOCK_GIANT(vfslocked);
return (0);
bad:
NDFREE(ndp, NDF_ONLY_PNBUF);
vput(vp);
VFS_UNLOCK_GIANT(vfslocked);
*flagp = fmode;
ndp->ni_vp = NULL;
return (error);
}
/*
* Check for write permissions on the specified vnode.
* Prototype text segments cannot be written.
*/
int
vn_writechk(vp)
register struct vnode *vp;
{
ASSERT_VOP_LOCKED(vp, "vn_writechk");
/*
* If there's shared text associated with
* the vnode, try to free it up once. If
* we fail, we can't allow writing.
*/
if (vp->v_vflag & VV_TEXT)
return (ETXTBSY);
return (0);
}
/*
* Vnode close call
*/
int
vn_close(vp, flags, file_cred, td)
register struct vnode *vp;
int flags;
struct ucred *file_cred;
struct thread *td;
{
struct mount *mp;
int error, lock_flags;
if (!(flags & FWRITE) && vp->v_mount != NULL &&
vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED)
lock_flags = LK_SHARED;
else
lock_flags = LK_EXCLUSIVE;
VFS_ASSERT_GIANT(vp->v_mount);
vn_start_write(vp, &mp, V_WAIT);
vn_lock(vp, lock_flags | LK_RETRY);
if (flags & FWRITE) {
VNASSERT(vp->v_writecount > 0, vp,
("vn_close: negative writecount"));
vp->v_writecount--;
CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
__func__, vp, vp->v_writecount);
}
error = VOP_CLOSE(vp, flags, file_cred, td);
vput(vp);
vn_finished_write(mp);
return (error);
}
/*
* Heuristic to detect sequential operation.
*/
static int
sequential_heuristic(struct uio *uio, struct file *fp)
{
if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
return (fp->f_seqcount << IO_SEQSHIFT);
/*
* Offset 0 is handled specially. open() sets f_seqcount to 1 so
* that the first I/O is normally considered to be slightly
* sequential. Seeking to offset 0 doesn't change sequentiality
* unless previous seeks have reduced f_seqcount to 0, in which
* case offset 0 is not special.
*/
if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
uio->uio_offset == fp->f_nextoff) {
/*
* f_seqcount is in units of fixed-size blocks so that it
* depends mainly on the amount of sequential I/O and not
* much on the number of sequential I/O's. The fixed size
* of 16384 is hard-coded here since it is (not quite) just
* a magic size that works well here. This size is more
* closely related to the best I/O size for real disks than
* to any block size used by software.
*/
fp->f_seqcount += howmany(uio->uio_resid, 16384);
if (fp->f_seqcount > IO_SEQMAX)
fp->f_seqcount = IO_SEQMAX;
return (fp->f_seqcount << IO_SEQSHIFT);
}
/* Not sequential. Quickly draw-down sequentiality. */
if (fp->f_seqcount > 1)
fp->f_seqcount = 1;
else
fp->f_seqcount = 0;
return (0);
}
/*
* Package up an I/O request on a vnode into a uio and do it.
*/
int
vn_rdwr(rw, vp, base, len, offset, segflg, ioflg, active_cred, file_cred,
aresid, td)
enum uio_rw rw;
struct vnode *vp;
void *base;
int len;
off_t offset;
enum uio_seg segflg;
int ioflg;
struct ucred *active_cred;
struct ucred *file_cred;
ssize_t *aresid;
struct thread *td;
{
struct uio auio;
struct iovec aiov;
struct mount *mp;
struct ucred *cred;
int error, lock_flags;
VFS_ASSERT_GIANT(vp->v_mount);
if ((ioflg & IO_NODELOCKED) == 0) {
mp = NULL;
if (rw == UIO_WRITE) {
if (vp->v_type != VCHR &&
(error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
!= 0)
return (error);
if (MNT_SHARED_WRITES(mp) ||
((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) {
lock_flags = LK_SHARED;
} else {
lock_flags = LK_EXCLUSIVE;
}
vn_lock(vp, lock_flags | LK_RETRY);
} else
vn_lock(vp, LK_SHARED | LK_RETRY);
}
ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
aiov.iov_base = base;
aiov.iov_len = len;
auio.uio_resid = len;
auio.uio_offset = offset;
auio.uio_segflg = segflg;
auio.uio_rw = rw;
auio.uio_td = td;
error = 0;
#ifdef MAC
if ((ioflg & IO_NOMACCHECK) == 0) {
if (rw == UIO_READ)
error = mac_vnode_check_read(active_cred, file_cred,
vp);
else
error = mac_vnode_check_write(active_cred, file_cred,
vp);
}
#endif
if (error == 0) {
if (file_cred)
cred = file_cred;
else
cred = active_cred;
if (rw == UIO_READ)
error = VOP_READ(vp, &auio, ioflg, cred);
else
error = VOP_WRITE(vp, &auio, ioflg, cred);
}
if (aresid)
*aresid = auio.uio_resid;
else
if (auio.uio_resid && error == 0)
error = EIO;
if ((ioflg & IO_NODELOCKED) == 0) {
if (rw == UIO_WRITE && vp->v_type != VCHR)
vn_finished_write(mp);
VOP_UNLOCK(vp, 0);
}
return (error);
}
/*
* Package up an I/O request on a vnode into a uio and do it. The I/O
* request is split up into smaller chunks and we try to avoid saturating
* the buffer cache while potentially holding a vnode locked, so we
* check bwillwrite() before calling vn_rdwr(). We also call kern_yield()
* to give other processes a chance to lock the vnode (either other processes
* core'ing the same binary, or unrelated processes scanning the directory).
*/
int
vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
file_cred, aresid, td)
enum uio_rw rw;
struct vnode *vp;
void *base;
size_t len;
off_t offset;
enum uio_seg segflg;
int ioflg;
struct ucred *active_cred;
struct ucred *file_cred;
size_t *aresid;
struct thread *td;
{
int error = 0;
ssize_t iaresid;
VFS_ASSERT_GIANT(vp->v_mount);
do {
int chunk;
/*
* Force `offset' to a multiple of MAXBSIZE except possibly
* for the first chunk, so that filesystems only need to
* write full blocks except possibly for the first and last
* chunks.
*/
chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
if (chunk > len)
chunk = len;
if (rw != UIO_READ && vp->v_type == VREG)
bwillwrite();
iaresid = 0;
error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
ioflg, active_cred, file_cred, &iaresid, td);
len -= chunk; /* aresid calc already includes length */
if (error)
break;
offset += chunk;
base = (char *)base + chunk;
kern_yield(PRI_USER);
} while (len);
if (aresid)
*aresid = len + iaresid;
return (error);
}
/*
* File table vnode read routine.
*/
static int
vn_read(fp, uio, active_cred, flags, td)
struct file *fp;
struct uio *uio;
struct ucred *active_cred;
int flags;
struct thread *td;
{
struct vnode *vp;
int error, ioflag;
struct mtx *mtxp;
int advice, vfslocked;
off_t offset;
KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
uio->uio_td, td));
mtxp = NULL;
vp = fp->f_vnode;
ioflag = 0;
if (fp->f_flag & FNONBLOCK)
ioflag |= IO_NDELAY;
if (fp->f_flag & O_DIRECT)
ioflag |= IO_DIRECT;
advice = POSIX_FADV_NORMAL;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
/*
* According to McKusick the vn lock was protecting f_offset here.
* It is now protected by the FOFFSET_LOCKED flag.
*/
if ((flags & FOF_OFFSET) == 0 || fp->f_advice != NULL) {
mtxp = mtx_pool_find(mtxpool_sleep, fp);
mtx_lock(mtxp);
if ((flags & FOF_OFFSET) == 0) {
while (fp->f_vnread_flags & FOFFSET_LOCKED) {
fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
"vnread offlock", 0);
}
fp->f_vnread_flags |= FOFFSET_LOCKED;
uio->uio_offset = fp->f_offset;
}
if (fp->f_advice != NULL &&
uio->uio_offset >= fp->f_advice->fa_start &&
uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
advice = fp->f_advice->fa_advice;
mtx_unlock(mtxp);
}
vn_lock(vp, LK_SHARED | LK_RETRY);
switch (advice) {
case POSIX_FADV_NORMAL:
case POSIX_FADV_SEQUENTIAL:
case POSIX_FADV_NOREUSE:
ioflag |= sequential_heuristic(uio, fp);
break;
case POSIX_FADV_RANDOM:
/* Disable read-ahead for random I/O. */
break;
}
offset = uio->uio_offset;
#ifdef MAC
error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
if (error == 0)
#endif
error = VOP_READ(vp, uio, ioflag, fp->f_cred);
if ((flags & FOF_OFFSET) == 0) {
fp->f_offset = uio->uio_offset;
mtx_lock(mtxp);
if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
wakeup(&fp->f_vnread_flags);
fp->f_vnread_flags = 0;
mtx_unlock(mtxp);
}
fp->f_nextoff = uio->uio_offset;
VOP_UNLOCK(vp, 0);
if (error == 0 && advice == POSIX_FADV_NOREUSE &&
offset != uio->uio_offset)
error = VOP_ADVISE(vp, offset, uio->uio_offset - 1,
POSIX_FADV_DONTNEED);
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* File table vnode write routine.
*/
static int
vn_write(fp, uio, active_cred, flags, td)
struct file *fp;
struct uio *uio;
struct ucred *active_cred;
int flags;
struct thread *td;
{
struct vnode *vp;
struct mount *mp;
int error, ioflag, lock_flags;
struct mtx *mtxp;
int advice, vfslocked;
KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
uio->uio_td, td));
vp = fp->f_vnode;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
if (vp->v_type == VREG)
bwillwrite();
ioflag = IO_UNIT;
if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
ioflag |= IO_APPEND;
if (fp->f_flag & FNONBLOCK)
ioflag |= IO_NDELAY;
if (fp->f_flag & O_DIRECT)
ioflag |= IO_DIRECT;
if ((fp->f_flag & O_FSYNC) ||
(vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
ioflag |= IO_SYNC;
mp = NULL;
if (vp->v_type != VCHR &&
(error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
goto unlock;
if ((MNT_SHARED_WRITES(mp) ||
((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) &&
(flags & FOF_OFFSET) != 0) {
lock_flags = LK_SHARED;
} else {
lock_flags = LK_EXCLUSIVE;
}
vn_lock(vp, lock_flags | LK_RETRY);
if ((flags & FOF_OFFSET) == 0)
uio->uio_offset = fp->f_offset;
advice = POSIX_FADV_NORMAL;
if (fp->f_advice != NULL) {
mtxp = mtx_pool_find(mtxpool_sleep, fp);
mtx_lock(mtxp);
if (fp->f_advice != NULL &&
uio->uio_offset >= fp->f_advice->fa_start &&
uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
advice = fp->f_advice->fa_advice;
mtx_unlock(mtxp);
}
switch (advice) {
case POSIX_FADV_NORMAL:
case POSIX_FADV_SEQUENTIAL:
ioflag |= sequential_heuristic(uio, fp);
break;
case POSIX_FADV_RANDOM:
/* XXX: Is this correct? */
break;
case POSIX_FADV_NOREUSE:
/*
* Request the underlying FS to discard the buffers
* and pages after the I/O is complete.
*/
ioflag |= IO_DIRECT;
break;
}
#ifdef MAC
error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
if (error == 0)
#endif
error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
if ((flags & FOF_OFFSET) == 0)
fp->f_offset = uio->uio_offset;
fp->f_nextoff = uio->uio_offset;
VOP_UNLOCK(vp, 0);
if (vp->v_type != VCHR)
vn_finished_write(mp);
unlock:
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* File table truncate routine.
*/
static int
vn_truncate(fp, length, active_cred, td)
struct file *fp;
off_t length;
struct ucred *active_cred;
struct thread *td;
{
struct vattr vattr;
struct mount *mp;
struct vnode *vp;
int vfslocked;
int error;
vp = fp->f_vnode;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
if (error) {
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_type == VDIR) {
error = EISDIR;
goto out;
}
#ifdef MAC
error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
if (error)
goto out;
#endif
error = vn_writechk(vp);
if (error == 0) {
VATTR_NULL(&vattr);
vattr.va_size = length;
error = VOP_SETATTR(vp, &vattr, fp->f_cred);
}
out:
VOP_UNLOCK(vp, 0);
vn_finished_write(mp);
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* File table vnode stat routine.
*/
static int
vn_statfile(fp, sb, active_cred, td)
struct file *fp;
struct stat *sb;
struct ucred *active_cred;
struct thread *td;
{
struct vnode *vp = fp->f_vnode;
int vfslocked;
int error;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
vn_lock(vp, LK_SHARED | LK_RETRY);
error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
VOP_UNLOCK(vp, 0);
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* Stat a vnode; implementation for the stat syscall
*/
int
vn_stat(vp, sb, active_cred, file_cred, td)
struct vnode *vp;
register struct stat *sb;
struct ucred *active_cred;
struct ucred *file_cred;
struct thread *td;
{
struct vattr vattr;
register struct vattr *vap;
int error;
u_short mode;
#ifdef MAC
error = mac_vnode_check_stat(active_cred, file_cred, vp);
if (error)
return (error);
#endif
vap = &vattr;
/*
* Initialize defaults for new and unusual fields, so that file
* systems which don't support these fields don't need to know
* about them.
*/
vap->va_birthtime.tv_sec = -1;
vap->va_birthtime.tv_nsec = 0;
vap->va_fsid = VNOVAL;
vap->va_rdev = NODEV;
error = VOP_GETATTR(vp, vap, active_cred);
if (error)
return (error);
/*
* Zero the spare stat fields
*/
bzero(sb, sizeof *sb);
/*
* Copy from vattr table
*/
if (vap->va_fsid != VNOVAL)
sb->st_dev = vap->va_fsid;
else
sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
sb->st_ino = vap->va_fileid;
mode = vap->va_mode;
switch (vap->va_type) {
case VREG:
mode |= S_IFREG;
break;
case VDIR:
mode |= S_IFDIR;
break;
case VBLK:
mode |= S_IFBLK;
break;
case VCHR:
mode |= S_IFCHR;
break;
case VLNK:
mode |= S_IFLNK;
break;
case VSOCK:
mode |= S_IFSOCK;
break;
case VFIFO:
mode |= S_IFIFO;
break;
default:
return (EBADF);
};
sb->st_mode = mode;
sb->st_nlink = vap->va_nlink;
sb->st_uid = vap->va_uid;
sb->st_gid = vap->va_gid;
sb->st_rdev = vap->va_rdev;
if (vap->va_size > OFF_MAX)
return (EOVERFLOW);
sb->st_size = vap->va_size;
sb->st_atim = vap->va_atime;
sb->st_mtim = vap->va_mtime;
sb->st_ctim = vap->va_ctime;
sb->st_birthtim = vap->va_birthtime;
/*
* According to www.opengroup.org, the meaning of st_blksize is
* "a filesystem-specific preferred I/O block size for this
* object. In some filesystem types, this may vary from file
* to file"
* Use miminum/default of PAGE_SIZE (e.g. for VCHR).
*/
sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
sb->st_flags = vap->va_flags;
if (priv_check(td, PRIV_VFS_GENERATION))
sb->st_gen = 0;
else
sb->st_gen = vap->va_gen;
sb->st_blocks = vap->va_bytes / S_BLKSIZE;
return (0);
}
/*
* File table vnode ioctl routine.
*/
static int
vn_ioctl(fp, com, data, active_cred, td)
struct file *fp;
u_long com;
void *data;
struct ucred *active_cred;
struct thread *td;
{
struct vnode *vp = fp->f_vnode;
struct vattr vattr;
int vfslocked;
int error;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
error = ENOTTY;
switch (vp->v_type) {
case VREG:
case VDIR:
if (com == FIONREAD) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_GETATTR(vp, &vattr, active_cred);
VOP_UNLOCK(vp, 0);
if (!error)
*(int *)data = vattr.va_size - fp->f_offset;
}
if (com == FIONBIO || com == FIOASYNC) /* XXX */
error = 0;
else
error = VOP_IOCTL(vp, com, data, fp->f_flag,
active_cred, td);
break;
default:
break;
}
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* File table vnode poll routine.
*/
static int
vn_poll(fp, events, active_cred, td)
struct file *fp;
int events;
struct ucred *active_cred;
struct thread *td;
{
struct vnode *vp;
int vfslocked;
int error;
vp = fp->f_vnode;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
#ifdef MAC
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
VOP_UNLOCK(vp, 0);
if (!error)
#endif
error = VOP_POLL(vp, events, fp->f_cred, td);
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* Acquire the requested lock and then check for validity. LK_RETRY
* permits vn_lock to return doomed vnodes.
*/
int
_vn_lock(struct vnode *vp, int flags, char *file, int line)
{
int error;
VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
("vn_lock called with no locktype."));
do {
#ifdef DEBUG_VFS_LOCKS
KASSERT(vp->v_holdcnt != 0,
("vn_lock %p: zero hold count", vp));
#endif
error = VOP_LOCK1(vp, flags, file, line);
flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */
KASSERT((flags & LK_RETRY) == 0 || error == 0,
("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
flags, error));
/*
* Callers specify LK_RETRY if they wish to get dead vnodes.
* If RETRY is not set, we return ENOENT instead.
*/
if (error == 0 && vp->v_iflag & VI_DOOMED &&
(flags & LK_RETRY) == 0) {
VOP_UNLOCK(vp, 0);
error = ENOENT;
break;
}
} while (flags & LK_RETRY && error != 0);
return (error);
}
/*
* File table vnode close routine.
*/
static int
vn_closefile(fp, td)
struct file *fp;
struct thread *td;
{
struct vnode *vp;
struct flock lf;
int vfslocked;
int error;
vp = fp->f_vnode;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
lf.l_whence = SEEK_SET;
lf.l_start = 0;
lf.l_len = 0;
lf.l_type = F_UNLCK;
(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
}
fp->f_ops = &badfileops;
error = vn_close(vp, fp->f_flag, fp->f_cred, td);
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
/*
* Preparing to start a filesystem write operation. If the operation is
* permitted, then we bump the count of operations in progress and
* proceed. If a suspend request is in progress, we wait until the
* suspension is over, and then proceed.
*/
int
vn_start_write(vp, mpp, flags)
struct vnode *vp;
struct mount **mpp;
int flags;
{
struct mount *mp;
int error;
error = 0;
/*
* If a vnode is provided, get and return the mount point that
* to which it will write.
*/
if (vp != NULL) {
if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
*mpp = NULL;
if (error != EOPNOTSUPP)
return (error);
return (0);
}
}
if ((mp = *mpp) == NULL)
return (0);
/*
* VOP_GETWRITEMOUNT() returns with the mp refcount held through
* a vfs_ref().
* As long as a vnode is not provided we need to acquire a
* refcount for the provided mountpoint too, in order to
* emulate a vfs_ref().
*/
MNT_ILOCK(mp);
if (vp == NULL)
MNT_REF(mp);
/*
* Check on status of suspension.
*/
if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
mp->mnt_susp_owner != curthread) {
while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
if (flags & V_NOWAIT) {
error = EWOULDBLOCK;
goto unlock;
}
error = msleep(&mp->mnt_flag, MNT_MTX(mp),
(PUSER - 1) | (flags & PCATCH), "suspfs", 0);
if (error)
goto unlock;
}
}
if (flags & V_XSLEEP)
goto unlock;
mp->mnt_writeopcount++;
unlock:
if (error != 0 || (flags & V_XSLEEP) != 0)
MNT_REL(mp);
MNT_IUNLOCK(mp);
return (error);
}
/*
* Secondary suspension. Used by operations such as vop_inactive
* routines that are needed by the higher level functions. These
* are allowed to proceed until all the higher level functions have
* completed (indicated by mnt_writeopcount dropping to zero). At that
* time, these operations are halted until the suspension is over.
*/
int
vn_start_secondary_write(vp, mpp, flags)
struct vnode *vp;
struct mount **mpp;
int flags;
{
struct mount *mp;
int error;
retry:
if (vp != NULL) {
if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
*mpp = NULL;
if (error != EOPNOTSUPP)
return (error);
return (0);
}
}
/*
* If we are not suspended or have not yet reached suspended
* mode, then let the operation proceed.
*/
if ((mp = *mpp) == NULL)
return (0);
/*
* VOP_GETWRITEMOUNT() returns with the mp refcount held through
* a vfs_ref().
* As long as a vnode is not provided we need to acquire a
* refcount for the provided mountpoint too, in order to
* emulate a vfs_ref().
*/
MNT_ILOCK(mp);
if (vp == NULL)
MNT_REF(mp);
if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
mp->mnt_secondary_writes++;
mp->mnt_secondary_accwrites++;
MNT_IUNLOCK(mp);
return (0);
}
if (flags & V_NOWAIT) {
MNT_REL(mp);
MNT_IUNLOCK(mp);
return (EWOULDBLOCK);
}
/*
* Wait for the suspension to finish.
*/
error = msleep(&mp->mnt_flag, MNT_MTX(mp),
(PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
vfs_rel(mp);
if (error == 0)
goto retry;
return (error);
}
/*
* Filesystem write operation has completed. If we are suspending and this
* operation is the last one, notify the suspender that the suspension is
* now in effect.
*/
void
vn_finished_write(mp)
struct mount *mp;
{
if (mp == NULL)
return;
MNT_ILOCK(mp);
MNT_REL(mp);
mp->mnt_writeopcount--;
if (mp->mnt_writeopcount < 0)
panic("vn_finished_write: neg cnt");
if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
mp->mnt_writeopcount <= 0)
wakeup(&mp->mnt_writeopcount);
MNT_IUNLOCK(mp);
}
/*
* Filesystem secondary write operation has completed. If we are
* suspending and this operation is the last one, notify the suspender
* that the suspension is now in effect.
*/
void
vn_finished_secondary_write(mp)
struct mount *mp;
{
if (mp == NULL)
return;
MNT_ILOCK(mp);
MNT_REL(mp);
mp->mnt_secondary_writes--;
if (mp->mnt_secondary_writes < 0)
panic("vn_finished_secondary_write: neg cnt");
if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
mp->mnt_secondary_writes <= 0)
wakeup(&mp->mnt_secondary_writes);
MNT_IUNLOCK(mp);
}
/*
* Request a filesystem to suspend write operations.
*/
int
vfs_write_suspend(mp)
struct mount *mp;
{
int error;
MNT_ILOCK(mp);
if (mp->mnt_susp_owner == curthread) {
MNT_IUNLOCK(mp);
return (EALREADY);
}
while (mp->mnt_kern_flag & MNTK_SUSPEND)
msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
mp->mnt_kern_flag |= MNTK_SUSPEND;
mp->mnt_susp_owner = curthread;
if (mp->mnt_writeopcount > 0)
(void) msleep(&mp->mnt_writeopcount,
MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
else
MNT_IUNLOCK(mp);
if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
vfs_write_resume(mp);
return (error);
}
/*
* Request a filesystem to resume write operations.
*/
void
vfs_write_resume(mp)
struct mount *mp;
{
MNT_ILOCK(mp);
if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
MNTK_SUSPENDED);
mp->mnt_susp_owner = NULL;
wakeup(&mp->mnt_writeopcount);
wakeup(&mp->mnt_flag);
curthread->td_pflags &= ~TDP_IGNSUSP;
MNT_IUNLOCK(mp);
VFS_SUSP_CLEAN(mp);
} else
MNT_IUNLOCK(mp);
}
/*
* Implement kqueues for files by translating it to vnode operation.
*/
static int
vn_kqfilter(struct file *fp, struct knote *kn)
{
int vfslocked;
int error;
vfslocked = VFS_LOCK_GIANT(fp->f_vnode->v_mount);
error = VOP_KQFILTER(fp->f_vnode, kn);
VFS_UNLOCK_GIANT(vfslocked);
return error;
}
/*
* Simplified in-kernel wrapper calls for extended attribute access.
* Both calls pass in a NULL credential, authorizing as "kernel" access.
* Set IO_NODELOCKED in ioflg if the vnode is already locked.
*/
int
vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
const char *attrname, int *buflen, char *buf, struct thread *td)
{
struct uio auio;
struct iovec iov;
int error;
iov.iov_len = *buflen;
iov.iov_base = buf;
auio.uio_iov = &iov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_td = td;
auio.uio_offset = 0;
auio.uio_resid = *buflen;
if ((ioflg & IO_NODELOCKED) == 0)
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
/* authorize attribute retrieval as kernel */
error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
td);
if ((ioflg & IO_NODELOCKED) == 0)
VOP_UNLOCK(vp, 0);
if (error == 0) {
*buflen = *buflen - auio.uio_resid;
}
return (error);
}
/*
* XXX failure mode if partially written?
*/
int
vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
const char *attrname, int buflen, char *buf, struct thread *td)
{
struct uio auio;
struct iovec iov;
struct mount *mp;
int error;
iov.iov_len = buflen;
iov.iov_base = buf;
auio.uio_iov = &iov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_WRITE;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_td = td;
auio.uio_offset = 0;
auio.uio_resid = buflen;
if ((ioflg & IO_NODELOCKED) == 0) {
if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
return (error);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
}
ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
/* authorize attribute setting as kernel */
error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
if ((ioflg & IO_NODELOCKED) == 0) {
vn_finished_write(mp);
VOP_UNLOCK(vp, 0);
}
return (error);
}
int
vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
const char *attrname, struct thread *td)
{
struct mount *mp;
int error;
if ((ioflg & IO_NODELOCKED) == 0) {
if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
return (error);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
}
ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
/* authorize attribute removal as kernel */
error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
if (error == EOPNOTSUPP)
error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
NULL, td);
if ((ioflg & IO_NODELOCKED) == 0) {
vn_finished_write(mp);
VOP_UNLOCK(vp, 0);
}
return (error);
}
int
vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
{
struct mount *mp;
int ltype, error;
mp = vp->v_mount;
ltype = VOP_ISLOCKED(vp);
KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
("vn_vget_ino: vp not locked"));
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0) {
vfs_ref(mp);
VOP_UNLOCK(vp, 0);
error = vfs_busy(mp, 0);
vn_lock(vp, ltype | LK_RETRY);
vfs_rel(mp);
if (error != 0)
return (ENOENT);
if (vp->v_iflag & VI_DOOMED) {
vfs_unbusy(mp);
return (ENOENT);
}
}
VOP_UNLOCK(vp, 0);
error = VFS_VGET(mp, ino, lkflags, rvp);
vfs_unbusy(mp);
vn_lock(vp, ltype | LK_RETRY);
if (vp->v_iflag & VI_DOOMED) {
if (error == 0)
vput(*rvp);
error = ENOENT;
}
return (error);
}
int
vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
const struct thread *td)
{
if (vp->v_type != VREG || td == NULL)
return (0);
PROC_LOCK(td->td_proc);
if ((uoff_t)uio->uio_offset + uio->uio_resid >
lim_cur(td->td_proc, RLIMIT_FSIZE)) {
kern_psignal(td->td_proc, SIGXFSZ);
PROC_UNLOCK(td->td_proc);
return (EFBIG);
}
PROC_UNLOCK(td->td_proc);
return (0);
}
int
vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
struct thread *td)
{
struct vnode *vp;
int error, vfslocked;
vp = fp->f_vnode;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
#ifdef AUDIT
vn_lock(vp, LK_SHARED | LK_RETRY);
AUDIT_ARG_VNODE1(vp);
VOP_UNLOCK(vp, 0);
#endif
error = setfmode(td, active_cred, vp, mode);
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
int
vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
struct thread *td)
{
struct vnode *vp;
int error, vfslocked;
vp = fp->f_vnode;
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
#ifdef AUDIT
vn_lock(vp, LK_SHARED | LK_RETRY);
AUDIT_ARG_VNODE1(vp);
VOP_UNLOCK(vp, 0);
#endif
error = setfown(td, active_cred, vp, uid, gid);
VFS_UNLOCK_GIANT(vfslocked);
return (error);
}
void
vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
{
vm_object_t object;
if ((object = vp->v_object) == NULL)
return;
VM_OBJECT_LOCK(object);
vm_object_page_remove(object, start, end, 0);
VM_OBJECT_UNLOCK(object);
}