eca7b76001
Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6314 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d6160ee
1300 lines
33 KiB
C
1300 lines
33 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (C) 2011 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* LLNL-CODE-403049.
|
|
* Rewritten for Linux by:
|
|
* Rohan Puri <rohan.puri15@gmail.com>
|
|
* Brian Behlendorf <behlendorf1@llnl.gov>
|
|
* Copyright (c) 2013 by Delphix. All rights reserved.
|
|
* Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* ZFS control directory (a.k.a. ".zfs")
|
|
*
|
|
* This directory provides a common location for all ZFS meta-objects.
|
|
* Currently, this is only the 'snapshot' and 'shares' directory, but this may
|
|
* expand in the future. The elements are built dynamically, as the hierarchy
|
|
* does not actually exist on disk.
|
|
*
|
|
* For 'snapshot', we don't want to have all snapshots always mounted, because
|
|
* this would take up a huge amount of space in /etc/mnttab. We have three
|
|
* types of objects:
|
|
*
|
|
* ctldir ------> snapshotdir -------> snapshot
|
|
* |
|
|
* |
|
|
* V
|
|
* mounted fs
|
|
*
|
|
* The 'snapshot' node contains just enough information to lookup '..' and act
|
|
* as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
|
|
* perform an automount of the underlying filesystem and return the
|
|
* corresponding inode.
|
|
*
|
|
* All mounts are handled automatically by an user mode helper which invokes
|
|
* the mount mount procedure. Unmounts are handled by allowing the mount
|
|
* point to expire so the kernel may automatically unmount it.
|
|
*
|
|
* The '.zfs', '.zfs/snapshot', and all directories created under
|
|
* '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
|
|
* share the same zfs_sb_t as the head filesystem (what '.zfs' lives under).
|
|
*
|
|
* File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
|
|
* (ie: snapshots) are complete ZFS filesystems and have their own unique
|
|
* zfs_sb_t. However, the fsid reported by these mounts will be the same
|
|
* as that used by the parent zfs_sb_t to make NFS happy.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/pathname.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/vfs_opreg.h>
|
|
#include <sys/zfs_ctldir.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/dsl_deleg.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/zpl.h>
|
|
#include "zfs_namecheck.h"
|
|
|
|
/*
|
|
* Two AVL trees are maintained which contain all currently automounted
|
|
* snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
|
|
* entry which MUST:
|
|
*
|
|
* - be attached to both trees, and
|
|
* - be unique, no duplicate entries are allowed.
|
|
*
|
|
* The zfs_snapshots_by_name tree is indexed by the full dataset name
|
|
* while the zfs_snapshots_by_objsetid tree is indexed by the unique
|
|
* objsetid. This allows for fast lookups either by name or objsetid.
|
|
*/
|
|
static avl_tree_t zfs_snapshots_by_name;
|
|
static avl_tree_t zfs_snapshots_by_objsetid;
|
|
static krwlock_t zfs_snapshot_lock;
|
|
|
|
/*
|
|
* Control Directory Tunables (.zfs)
|
|
*/
|
|
int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
|
|
int zfs_admin_snapshot = 1;
|
|
|
|
/*
|
|
* Dedicated task queue for unmounting snapshots.
|
|
*/
|
|
static taskq_t *zfs_expire_taskq;
|
|
|
|
typedef struct {
|
|
char *se_name; /* full snapshot name */
|
|
char *se_path; /* full mount path */
|
|
spa_t *se_spa; /* pool spa */
|
|
uint64_t se_objsetid; /* snapshot objset id */
|
|
struct dentry *se_root_dentry; /* snapshot root dentry */
|
|
taskqid_t se_taskqid; /* scheduled unmount taskqid */
|
|
avl_node_t se_node_name; /* zfs_snapshots_by_name link */
|
|
avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
|
|
refcount_t se_refcount; /* reference count */
|
|
} zfs_snapentry_t;
|
|
|
|
static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
|
|
|
|
/*
|
|
* Allocate a new zfs_snapentry_t being careful to make a copy of the
|
|
* the snapshot name and provided mount point. No reference is taken.
|
|
*/
|
|
static zfs_snapentry_t *
|
|
zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
|
|
uint64_t objsetid, struct dentry *root_dentry)
|
|
{
|
|
zfs_snapentry_t *se;
|
|
|
|
se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
|
|
|
|
se->se_name = strdup(full_name);
|
|
se->se_path = strdup(full_path);
|
|
se->se_spa = spa;
|
|
se->se_objsetid = objsetid;
|
|
se->se_root_dentry = root_dentry;
|
|
se->se_taskqid = -1;
|
|
|
|
refcount_create(&se->se_refcount);
|
|
|
|
return (se);
|
|
}
|
|
|
|
/*
|
|
* Free a zfs_snapentry_t the called must ensure there are no active
|
|
* references.
|
|
*/
|
|
static void
|
|
zfsctl_snapshot_free(zfs_snapentry_t *se)
|
|
{
|
|
refcount_destroy(&se->se_refcount);
|
|
strfree(se->se_name);
|
|
strfree(se->se_path);
|
|
|
|
kmem_free(se, sizeof (zfs_snapentry_t));
|
|
}
|
|
|
|
/*
|
|
* Hold a reference on the zfs_snapentry_t.
|
|
*/
|
|
static void
|
|
zfsctl_snapshot_hold(zfs_snapentry_t *se)
|
|
{
|
|
refcount_add(&se->se_refcount, NULL);
|
|
}
|
|
|
|
/*
|
|
* Release a reference on the zfs_snapentry_t. When the number of
|
|
* references drops to zero the structure will be freed.
|
|
*/
|
|
static void
|
|
zfsctl_snapshot_rele(zfs_snapentry_t *se)
|
|
{
|
|
if (refcount_remove(&se->se_refcount, NULL) == 0)
|
|
zfsctl_snapshot_free(se);
|
|
}
|
|
|
|
/*
|
|
* Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
|
|
* zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
|
|
* of the trees a reference is held.
|
|
*/
|
|
static void
|
|
zfsctl_snapshot_add(zfs_snapentry_t *se)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
|
|
refcount_add(&se->se_refcount, NULL);
|
|
avl_add(&zfs_snapshots_by_name, se);
|
|
avl_add(&zfs_snapshots_by_objsetid, se);
|
|
}
|
|
|
|
/*
|
|
* Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
|
|
* zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
|
|
* this can result in the structure being freed if that was the last
|
|
* remaining reference.
|
|
*/
|
|
static void
|
|
zfsctl_snapshot_remove(zfs_snapentry_t *se)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
|
|
avl_remove(&zfs_snapshots_by_name, se);
|
|
avl_remove(&zfs_snapshots_by_objsetid, se);
|
|
zfsctl_snapshot_rele(se);
|
|
}
|
|
|
|
/*
|
|
* Snapshot name comparison function for the zfs_snapshots_by_name.
|
|
*/
|
|
static int
|
|
snapentry_compare_by_name(const void *a, const void *b)
|
|
{
|
|
const zfs_snapentry_t *se_a = a;
|
|
const zfs_snapentry_t *se_b = b;
|
|
int ret;
|
|
|
|
ret = strcmp(se_a->se_name, se_b->se_name);
|
|
|
|
if (ret < 0)
|
|
return (-1);
|
|
else if (ret > 0)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Snapshot name comparison function for the zfs_snapshots_by_objsetid.
|
|
*/
|
|
static int
|
|
snapentry_compare_by_objsetid(const void *a, const void *b)
|
|
{
|
|
const zfs_snapentry_t *se_a = a;
|
|
const zfs_snapentry_t *se_b = b;
|
|
|
|
if (se_a->se_spa != se_b->se_spa)
|
|
return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
|
|
|
|
if (se_a->se_objsetid < se_b->se_objsetid)
|
|
return (-1);
|
|
else if (se_a->se_objsetid > se_b->se_objsetid)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
|
|
* is found a pointer to the zfs_snapentry_t is returned and a reference
|
|
* taken on the structure. The caller is responsible for dropping the
|
|
* reference with zfsctl_snapshot_rele(). If the snapname is not found
|
|
* NULL will be returned.
|
|
*/
|
|
static zfs_snapentry_t *
|
|
zfsctl_snapshot_find_by_name(char *snapname)
|
|
{
|
|
zfs_snapentry_t *se, search;
|
|
|
|
ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
|
|
|
|
search.se_name = snapname;
|
|
se = avl_find(&zfs_snapshots_by_name, &search, NULL);
|
|
if (se)
|
|
refcount_add(&se->se_refcount, NULL);
|
|
|
|
return (se);
|
|
}
|
|
|
|
/*
|
|
* Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
|
|
* rather than the snapname. In all other respects it behaves the same
|
|
* as zfsctl_snapshot_find_by_name().
|
|
*/
|
|
static zfs_snapentry_t *
|
|
zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
|
|
{
|
|
zfs_snapentry_t *se, search;
|
|
|
|
ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
|
|
|
|
search.se_spa = spa;
|
|
search.se_objsetid = objsetid;
|
|
se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
|
|
if (se)
|
|
refcount_add(&se->se_refcount, NULL);
|
|
|
|
return (se);
|
|
}
|
|
|
|
/*
|
|
* Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
|
|
* removed, renamed, and added back to the new correct location in the tree.
|
|
*/
|
|
static int
|
|
zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
|
|
{
|
|
zfs_snapentry_t *se;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
|
|
|
|
se = zfsctl_snapshot_find_by_name(old_snapname);
|
|
if (se == NULL)
|
|
return (ENOENT);
|
|
|
|
zfsctl_snapshot_remove(se);
|
|
strfree(se->se_name);
|
|
se->se_name = strdup(new_snapname);
|
|
zfsctl_snapshot_add(se);
|
|
zfsctl_snapshot_rele(se);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delayed task responsible for unmounting an expired automounted snapshot.
|
|
*/
|
|
static void
|
|
snapentry_expire(void *data)
|
|
{
|
|
zfs_snapentry_t *se = (zfs_snapentry_t *)data;
|
|
spa_t *spa = se->se_spa;
|
|
uint64_t objsetid = se->se_objsetid;
|
|
|
|
if (zfs_expire_snapshot <= 0) {
|
|
zfsctl_snapshot_rele(se);
|
|
return;
|
|
}
|
|
|
|
se->se_taskqid = -1;
|
|
(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
|
|
zfsctl_snapshot_rele(se);
|
|
|
|
/*
|
|
* Reschedule the unmount if the zfs_snapentry_t wasn't removed.
|
|
* This can occur when the snapshot is busy.
|
|
*/
|
|
rw_enter(&zfs_snapshot_lock, RW_READER);
|
|
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
|
|
zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
|
|
zfsctl_snapshot_rele(se);
|
|
}
|
|
rw_exit(&zfs_snapshot_lock);
|
|
}
|
|
|
|
/*
|
|
* Cancel an automatic unmount of a snapname. This callback is responsible
|
|
* for dropping the reference on the zfs_snapentry_t which was taken when
|
|
* during dispatch.
|
|
*/
|
|
static void
|
|
zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
|
|
{
|
|
ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
|
|
|
|
if (taskq_cancel_id(zfs_expire_taskq, se->se_taskqid) == 0) {
|
|
se->se_taskqid = -1;
|
|
zfsctl_snapshot_rele(se);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dispatch the unmount task for delayed handling with a hold protecting it.
|
|
*/
|
|
static void
|
|
zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
|
|
{
|
|
ASSERT3S(se->se_taskqid, ==, -1);
|
|
|
|
if (delay <= 0)
|
|
return;
|
|
|
|
zfsctl_snapshot_hold(se);
|
|
se->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
|
|
snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
|
|
}
|
|
|
|
/*
|
|
* Schedule an automatic unmount of objset id to occur in delay seconds from
|
|
* now. Any previous delayed unmount will be cancelled in favor of the
|
|
* updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
|
|
* and held until the outstanding task is handled or cancelled.
|
|
*/
|
|
int
|
|
zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
|
|
{
|
|
zfs_snapentry_t *se;
|
|
int error = ENOENT;
|
|
|
|
rw_enter(&zfs_snapshot_lock, RW_READER);
|
|
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
|
|
zfsctl_snapshot_unmount_cancel(se);
|
|
zfsctl_snapshot_unmount_delay_impl(se, delay);
|
|
zfsctl_snapshot_rele(se);
|
|
error = 0;
|
|
}
|
|
rw_exit(&zfs_snapshot_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Check if snapname is currently mounted. Returned non-zero when mounted
|
|
* and zero when unmounted.
|
|
*/
|
|
static boolean_t
|
|
zfsctl_snapshot_ismounted(char *snapname)
|
|
{
|
|
zfs_snapentry_t *se;
|
|
boolean_t ismounted = B_FALSE;
|
|
|
|
rw_enter(&zfs_snapshot_lock, RW_READER);
|
|
if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
|
|
zfsctl_snapshot_rele(se);
|
|
ismounted = B_TRUE;
|
|
}
|
|
rw_exit(&zfs_snapshot_lock);
|
|
|
|
return (ismounted);
|
|
}
|
|
|
|
/*
|
|
* Check if the given inode is a part of the virtual .zfs directory.
|
|
*/
|
|
boolean_t
|
|
zfsctl_is_node(struct inode *ip)
|
|
{
|
|
return (ITOZ(ip)->z_is_ctldir);
|
|
}
|
|
|
|
/*
|
|
* Check if the given inode is a .zfs/snapshots/snapname directory.
|
|
*/
|
|
boolean_t
|
|
zfsctl_is_snapdir(struct inode *ip)
|
|
{
|
|
return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
|
|
}
|
|
|
|
/*
|
|
* Allocate a new inode with the passed id and ops.
|
|
*/
|
|
static struct inode *
|
|
zfsctl_inode_alloc(zfs_sb_t *zsb, uint64_t id,
|
|
const struct file_operations *fops, const struct inode_operations *ops)
|
|
{
|
|
struct timespec now = current_fs_time(zsb->z_sb);
|
|
struct inode *ip;
|
|
znode_t *zp;
|
|
|
|
ip = new_inode(zsb->z_sb);
|
|
if (ip == NULL)
|
|
return (NULL);
|
|
|
|
zp = ITOZ(ip);
|
|
ASSERT3P(zp->z_dirlocks, ==, NULL);
|
|
ASSERT3P(zp->z_acl_cached, ==, NULL);
|
|
ASSERT3P(zp->z_xattr_cached, ==, NULL);
|
|
zp->z_id = id;
|
|
zp->z_unlinked = 0;
|
|
zp->z_atime_dirty = 0;
|
|
zp->z_zn_prefetch = 0;
|
|
zp->z_moved = 0;
|
|
zp->z_sa_hdl = NULL;
|
|
zp->z_blksz = 0;
|
|
zp->z_seq = 0;
|
|
zp->z_mapcnt = 0;
|
|
zp->z_size = 0;
|
|
zp->z_links = 0;
|
|
zp->z_pflags = 0;
|
|
zp->z_uid = 0;
|
|
zp->z_gid = 0;
|
|
zp->z_mode = 0;
|
|
zp->z_sync_cnt = 0;
|
|
zp->z_is_mapped = B_FALSE;
|
|
zp->z_is_ctldir = B_TRUE;
|
|
zp->z_is_sa = B_FALSE;
|
|
zp->z_is_stale = B_FALSE;
|
|
ip->i_generation = 0;
|
|
ip->i_ino = id;
|
|
ip->i_mode = (S_IFDIR | S_IRWXUGO);
|
|
ip->i_uid = SUID_TO_KUID(0);
|
|
ip->i_gid = SGID_TO_KGID(0);
|
|
ip->i_blkbits = SPA_MINBLOCKSHIFT;
|
|
ip->i_atime = now;
|
|
ip->i_mtime = now;
|
|
ip->i_ctime = now;
|
|
ip->i_fop = fops;
|
|
ip->i_op = ops;
|
|
|
|
if (insert_inode_locked(ip)) {
|
|
unlock_new_inode(ip);
|
|
iput(ip);
|
|
return (NULL);
|
|
}
|
|
|
|
mutex_enter(&zsb->z_znodes_lock);
|
|
list_insert_tail(&zsb->z_all_znodes, zp);
|
|
zsb->z_nr_znodes++;
|
|
membar_producer();
|
|
mutex_exit(&zsb->z_znodes_lock);
|
|
|
|
unlock_new_inode(ip);
|
|
|
|
return (ip);
|
|
}
|
|
|
|
/*
|
|
* Lookup the inode with given id, it will be allocated if needed.
|
|
*/
|
|
static struct inode *
|
|
zfsctl_inode_lookup(zfs_sb_t *zsb, uint64_t id,
|
|
const struct file_operations *fops, const struct inode_operations *ops)
|
|
{
|
|
struct inode *ip = NULL;
|
|
|
|
while (ip == NULL) {
|
|
ip = ilookup(zsb->z_sb, (unsigned long)id);
|
|
if (ip)
|
|
break;
|
|
|
|
/* May fail due to concurrent zfsctl_inode_alloc() */
|
|
ip = zfsctl_inode_alloc(zsb, id, fops, ops);
|
|
}
|
|
|
|
return (ip);
|
|
}
|
|
|
|
/*
|
|
* Create the '.zfs' directory. This directory is cached as part of the VFS
|
|
* structure. This results in a hold on the zfs_sb_t. The code in zfs_umount()
|
|
* therefore checks against a vfs_count of 2 instead of 1. This reference
|
|
* is removed when the ctldir is destroyed in the unmount. All other entities
|
|
* under the '.zfs' directory are created dynamically as needed.
|
|
*
|
|
* Because the dynamically created '.zfs' directory entries assume the use
|
|
* of 64-bit inode numbers this support must be disabled on 32-bit systems.
|
|
*/
|
|
int
|
|
zfsctl_create(zfs_sb_t *zsb)
|
|
{
|
|
#if defined(CONFIG_64BIT)
|
|
ASSERT(zsb->z_ctldir == NULL);
|
|
|
|
zsb->z_ctldir = zfsctl_inode_alloc(zsb, ZFSCTL_INO_ROOT,
|
|
&zpl_fops_root, &zpl_ops_root);
|
|
if (zsb->z_ctldir == NULL)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
return (0);
|
|
#else
|
|
return (SET_ERROR(EOPNOTSUPP));
|
|
#endif /* CONFIG_64BIT */
|
|
}
|
|
|
|
/*
|
|
* Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
|
|
* Only called when the filesystem is unmounted.
|
|
*/
|
|
void
|
|
zfsctl_destroy(zfs_sb_t *zsb)
|
|
{
|
|
if (zsb->z_issnap) {
|
|
zfs_snapentry_t *se;
|
|
spa_t *spa = zsb->z_os->os_spa;
|
|
uint64_t objsetid = dmu_objset_id(zsb->z_os);
|
|
|
|
rw_enter(&zfs_snapshot_lock, RW_WRITER);
|
|
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid))
|
|
!= NULL) {
|
|
zfsctl_snapshot_unmount_cancel(se);
|
|
zfsctl_snapshot_remove(se);
|
|
zfsctl_snapshot_rele(se);
|
|
}
|
|
rw_exit(&zfs_snapshot_lock);
|
|
} else if (zsb->z_ctldir) {
|
|
iput(zsb->z_ctldir);
|
|
zsb->z_ctldir = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a root znode, retrieve the associated .zfs directory.
|
|
* Add a hold to the vnode and return it.
|
|
*/
|
|
struct inode *
|
|
zfsctl_root(znode_t *zp)
|
|
{
|
|
ASSERT(zfs_has_ctldir(zp));
|
|
igrab(ZTOZSB(zp)->z_ctldir);
|
|
return (ZTOZSB(zp)->z_ctldir);
|
|
}
|
|
/*
|
|
* Generate a long fid which includes the root object and objset of a
|
|
* snapshot but not the generation number. For the root object the
|
|
* generation number is ignored when zero to avoid needing to open
|
|
* the dataset when generating fids for the snapshot names.
|
|
*/
|
|
static int
|
|
zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
|
|
{
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
zfid_short_t *zfid = (zfid_short_t *)fidp;
|
|
zfid_long_t *zlfid = (zfid_long_t *)fidp;
|
|
uint32_t gen = 0;
|
|
uint64_t object;
|
|
uint64_t objsetid;
|
|
int i;
|
|
|
|
object = zsb->z_root;
|
|
objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
|
|
zfid->zf_len = LONG_FID_LEN;
|
|
|
|
for (i = 0; i < sizeof (zfid->zf_object); i++)
|
|
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
|
|
|
|
for (i = 0; i < sizeof (zfid->zf_gen); i++)
|
|
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
|
|
|
|
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
|
|
zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
|
|
|
|
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
|
|
zlfid->zf_setgen[i] = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Generate an appropriate fid for an entry in the .zfs directory.
|
|
*/
|
|
int
|
|
zfsctl_fid(struct inode *ip, fid_t *fidp)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
uint64_t object = zp->z_id;
|
|
zfid_short_t *zfid;
|
|
int i;
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
if (fidp->fid_len < SHORT_FID_LEN) {
|
|
fidp->fid_len = SHORT_FID_LEN;
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
if (zfsctl_is_snapdir(ip)) {
|
|
ZFS_EXIT(zsb);
|
|
return (zfsctl_snapdir_fid(ip, fidp));
|
|
}
|
|
|
|
zfid = (zfid_short_t *)fidp;
|
|
|
|
zfid->zf_len = SHORT_FID_LEN;
|
|
|
|
for (i = 0; i < sizeof (zfid->zf_object); i++)
|
|
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
|
|
|
|
/* .zfs znodes always have a generation number of 0 */
|
|
for (i = 0; i < sizeof (zfid->zf_gen); i++)
|
|
zfid->zf_gen[i] = 0;
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Construct a full dataset name in full_name: "pool/dataset@snap_name"
|
|
*/
|
|
static int
|
|
zfsctl_snapshot_name(zfs_sb_t *zsb, const char *snap_name, int len,
|
|
char *full_name)
|
|
{
|
|
objset_t *os = zsb->z_os;
|
|
|
|
if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
|
|
return (SET_ERROR(EILSEQ));
|
|
|
|
dmu_objset_name(os, full_name);
|
|
if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
|
|
return (SET_ERROR(ENAMETOOLONG));
|
|
|
|
(void) strcat(full_name, "@");
|
|
(void) strcat(full_name, snap_name);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
|
|
*/
|
|
static int
|
|
zfsctl_snapshot_path(struct path *path, int len, char *full_path)
|
|
{
|
|
char *path_buffer, *path_ptr;
|
|
int path_len, error = 0;
|
|
|
|
path_buffer = kmem_alloc(len, KM_SLEEP);
|
|
|
|
path_ptr = d_path(path, path_buffer, len);
|
|
if (IS_ERR(path_ptr)) {
|
|
error = -PTR_ERR(path_ptr);
|
|
goto out;
|
|
}
|
|
|
|
path_len = path_buffer + len - 1 - path_ptr;
|
|
if (path_len > len) {
|
|
error = SET_ERROR(EFAULT);
|
|
goto out;
|
|
}
|
|
|
|
memcpy(full_path, path_ptr, path_len);
|
|
full_path[path_len] = '\0';
|
|
out:
|
|
kmem_free(path_buffer, len);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
|
|
*/
|
|
static int
|
|
zfsctl_snapshot_path_objset(zfs_sb_t *zsb, uint64_t objsetid,
|
|
int path_len, char *full_path)
|
|
{
|
|
objset_t *os = zsb->z_os;
|
|
fstrans_cookie_t cookie;
|
|
char *snapname;
|
|
boolean_t case_conflict;
|
|
uint64_t id, pos = 0;
|
|
int error = 0;
|
|
|
|
if (zsb->z_mntopts->z_mntpoint == NULL)
|
|
return (ENOENT);
|
|
|
|
cookie = spl_fstrans_mark();
|
|
snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
|
|
while (error == 0) {
|
|
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
|
|
error = dmu_snapshot_list_next(zsb->z_os,
|
|
ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
|
|
&case_conflict);
|
|
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (id == objsetid)
|
|
break;
|
|
}
|
|
|
|
memset(full_path, 0, path_len);
|
|
snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
|
|
zsb->z_mntopts->z_mntpoint, snapname);
|
|
out:
|
|
kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
|
|
spl_fstrans_unmark(cookie);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Special case the handling of "..".
|
|
*/
|
|
int
|
|
zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
|
|
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
|
|
{
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
int error = 0;
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
if (strcmp(name, "..") == 0) {
|
|
*ipp = dip->i_sb->s_root->d_inode;
|
|
} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
|
|
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIR,
|
|
&zpl_fops_snapdir, &zpl_ops_snapdir);
|
|
} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
|
|
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SHARES,
|
|
&zpl_fops_shares, &zpl_ops_shares);
|
|
} else {
|
|
*ipp = NULL;
|
|
}
|
|
|
|
if (*ipp == NULL)
|
|
error = SET_ERROR(ENOENT);
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lookup entry point for the 'snapshot' directory. Try to open the
|
|
* snapshot if it exist, creating the pseudo filesystem inode as necessary.
|
|
* Perform a mount of the associated dataset on top of the inode.
|
|
*/
|
|
int
|
|
zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
|
|
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
|
|
{
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
uint64_t id;
|
|
int error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
error = dmu_snapshot_lookup(zsb->z_os, name, &id);
|
|
if (error) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIRS - id,
|
|
&simple_dir_operations, &simple_dir_inode_operations);
|
|
if (*ipp == NULL)
|
|
error = SET_ERROR(ENOENT);
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Renaming a directory under '.zfs/snapshot' will automatically trigger
|
|
* a rename of the snapshot to the new given name. The rename is confined
|
|
* to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
|
|
*/
|
|
int
|
|
zfsctl_snapdir_rename(struct inode *sdip, char *snm,
|
|
struct inode *tdip, char *tnm, cred_t *cr, int flags)
|
|
{
|
|
zfs_sb_t *zsb = ITOZSB(sdip);
|
|
char *to, *from, *real, *fsname;
|
|
int error;
|
|
|
|
if (!zfs_admin_snapshot)
|
|
return (EACCES);
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
|
|
if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
|
|
error = dmu_snapshot_realname(zsb->z_os, snm, real,
|
|
ZFS_MAX_DATASET_NAME_LEN, NULL);
|
|
if (error == 0) {
|
|
snm = real;
|
|
} else if (error != ENOTSUP) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
dmu_objset_name(zsb->z_os, fsname);
|
|
|
|
error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
|
|
ZFS_MAX_DATASET_NAME_LEN, from);
|
|
if (error == 0)
|
|
error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
|
|
ZFS_MAX_DATASET_NAME_LEN, to);
|
|
if (error == 0)
|
|
error = zfs_secpolicy_rename_perms(from, to, cr);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Cannot move snapshots out of the snapdir.
|
|
*/
|
|
if (sdip != tdip) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* No-op when names are identical.
|
|
*/
|
|
if (strcmp(snm, tnm) == 0) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
rw_enter(&zfs_snapshot_lock, RW_WRITER);
|
|
|
|
error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
|
|
if (error == 0)
|
|
(void) zfsctl_snapshot_rename(snm, tnm);
|
|
|
|
rw_exit(&zfs_snapshot_lock);
|
|
out:
|
|
kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
|
|
kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
|
|
kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
|
|
kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Removing a directory under '.zfs/snapshot' will automatically trigger
|
|
* the removal of the snapshot with the given name.
|
|
*/
|
|
int
|
|
zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
|
|
{
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
char *snapname, *real;
|
|
int error;
|
|
|
|
if (!zfs_admin_snapshot)
|
|
return (EACCES);
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
|
|
if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
|
|
error = dmu_snapshot_realname(zsb->z_os, name, real,
|
|
ZFS_MAX_DATASET_NAME_LEN, NULL);
|
|
if (error == 0) {
|
|
name = real;
|
|
} else if (error != ENOTSUP) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
error = zfsctl_snapshot_name(ITOZSB(dip), name,
|
|
ZFS_MAX_DATASET_NAME_LEN, snapname);
|
|
if (error == 0)
|
|
error = zfs_secpolicy_destroy_perms(snapname, cr);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
|
|
if ((error == 0) || (error == ENOENT))
|
|
error = dsl_destroy_snapshot(snapname, B_FALSE);
|
|
out:
|
|
kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
|
|
kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Creating a directory under '.zfs/snapshot' will automatically trigger
|
|
* the creation of a new snapshot with the given name.
|
|
*/
|
|
int
|
|
zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
|
|
struct inode **ipp, cred_t *cr, int flags)
|
|
{
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
char *dsname;
|
|
int error;
|
|
|
|
if (!zfs_admin_snapshot)
|
|
return (EACCES);
|
|
|
|
dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
|
|
if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
|
|
error = SET_ERROR(EILSEQ);
|
|
goto out;
|
|
}
|
|
|
|
dmu_objset_name(zsb->z_os, dsname);
|
|
|
|
error = zfs_secpolicy_snapshot_perms(dsname, cr);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
if (error == 0) {
|
|
error = dmu_objset_snapshot_one(dsname, dirname);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
error = zfsctl_snapdir_lookup(dip, dirname, ipp,
|
|
0, cr, NULL, NULL);
|
|
}
|
|
out:
|
|
kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Attempt to unmount a snapshot by making a call to user space.
|
|
* There is no assurance that this can or will succeed, is just a
|
|
* best effort. In the case where it does fail, perhaps because
|
|
* it's in use, the unmount will fail harmlessly.
|
|
*/
|
|
#define SET_UNMOUNT_CMD \
|
|
"exec 0</dev/null " \
|
|
" 1>/dev/null " \
|
|
" 2>/dev/null; " \
|
|
"umount -t zfs -n %s'%s'"
|
|
|
|
int
|
|
zfsctl_snapshot_unmount(char *snapname, int flags)
|
|
{
|
|
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
|
|
char *envp[] = { NULL };
|
|
zfs_snapentry_t *se;
|
|
int error;
|
|
|
|
rw_enter(&zfs_snapshot_lock, RW_READER);
|
|
if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
|
|
rw_exit(&zfs_snapshot_lock);
|
|
return (ENOENT);
|
|
}
|
|
rw_exit(&zfs_snapshot_lock);
|
|
|
|
argv[2] = kmem_asprintf(SET_UNMOUNT_CMD,
|
|
flags & MNT_FORCE ? "-f " : "", se->se_path);
|
|
zfsctl_snapshot_rele(se);
|
|
dprintf("unmount; path=%s\n", se->se_path);
|
|
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
|
|
strfree(argv[2]);
|
|
|
|
|
|
/*
|
|
* The umount system utility will return 256 on error. We must
|
|
* assume this error is because the file system is busy so it is
|
|
* converted to the more sensible EBUSY.
|
|
*/
|
|
if (error)
|
|
error = SET_ERROR(EBUSY);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
|
|
#define SET_MOUNT_CMD \
|
|
"exec 0</dev/null " \
|
|
" 1>/dev/null " \
|
|
" 2>/dev/null; " \
|
|
"mount -t zfs -n '%s' '%s'"
|
|
|
|
int
|
|
zfsctl_snapshot_mount(struct path *path, int flags)
|
|
{
|
|
struct dentry *dentry = path->dentry;
|
|
struct inode *ip = dentry->d_inode;
|
|
zfs_sb_t *zsb;
|
|
zfs_sb_t *snap_zsb;
|
|
zfs_snapentry_t *se;
|
|
char *full_name, *full_path;
|
|
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
|
|
char *envp[] = { NULL };
|
|
int error;
|
|
struct path spath;
|
|
|
|
if (ip == NULL)
|
|
return (EISDIR);
|
|
|
|
zsb = ITOZSB(ip);
|
|
ZFS_ENTER(zsb);
|
|
|
|
full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
error = zfsctl_snapshot_name(zsb, dname(dentry),
|
|
ZFS_MAX_DATASET_NAME_LEN, full_name);
|
|
if (error)
|
|
goto error;
|
|
|
|
error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
|
|
if (error)
|
|
goto error;
|
|
|
|
/*
|
|
* Multiple concurrent automounts of a snapshot are never allowed.
|
|
* The snapshot may be manually mounted as many times as desired.
|
|
*/
|
|
if (zfsctl_snapshot_ismounted(full_name)) {
|
|
error = 0;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Attempt to mount the snapshot from user space. Normally this
|
|
* would be done using the vfs_kern_mount() function, however that
|
|
* function is marked GPL-only and cannot be used. On error we
|
|
* careful to log the real error to the console and return EISDIR
|
|
* to safely abort the automount. This should be very rare.
|
|
*
|
|
* If the user mode helper happens to return EBUSY, a concurrent
|
|
* mount is already in progress in which case the error is ignored.
|
|
* Take note that if the program was executed successfully the return
|
|
* value from call_usermodehelper() will be (exitcode << 8 + signal).
|
|
*/
|
|
dprintf("mount; name=%s path=%s\n", full_name, full_path);
|
|
argv[2] = kmem_asprintf(SET_MOUNT_CMD, full_name, full_path);
|
|
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
|
|
strfree(argv[2]);
|
|
if (error) {
|
|
if (!(error & MOUNT_BUSY << 8)) {
|
|
cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
|
|
full_path, full_name, error);
|
|
error = SET_ERROR(EISDIR);
|
|
} else {
|
|
/*
|
|
* EBUSY, this could mean a concurrent mount, or the
|
|
* snapshot has already been mounted at completely
|
|
* different place. We return 0 so VFS will retry. For
|
|
* the latter case the VFS will retry several times
|
|
* and return ELOOP, which is probably not a very good
|
|
* behavior.
|
|
*/
|
|
error = 0;
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Follow down in to the mounted snapshot and set MNT_SHRINKABLE
|
|
* to identify this as an automounted filesystem.
|
|
*/
|
|
spath = *path;
|
|
path_get(&spath);
|
|
if (zpl_follow_down_one(&spath)) {
|
|
snap_zsb = ITOZSB(spath.dentry->d_inode);
|
|
snap_zsb->z_parent = zsb;
|
|
dentry = spath.dentry;
|
|
spath.mnt->mnt_flags |= MNT_SHRINKABLE;
|
|
|
|
rw_enter(&zfs_snapshot_lock, RW_WRITER);
|
|
se = zfsctl_snapshot_alloc(full_name, full_path,
|
|
snap_zsb->z_os->os_spa, dmu_objset_id(snap_zsb->z_os),
|
|
dentry);
|
|
zfsctl_snapshot_add(se);
|
|
zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
|
|
rw_exit(&zfs_snapshot_lock);
|
|
}
|
|
path_put(&spath);
|
|
error:
|
|
kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
|
|
kmem_free(full_path, MAXPATHLEN);
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Given the objset id of the snapshot return its zfs_sb_t as zsbp.
|
|
*/
|
|
int
|
|
zfsctl_lookup_objset(struct super_block *sb, uint64_t objsetid, zfs_sb_t **zsbp)
|
|
{
|
|
zfs_snapentry_t *se;
|
|
int error;
|
|
spa_t *spa = ((zfs_sb_t *)(sb->s_fs_info))->z_os->os_spa;
|
|
|
|
/*
|
|
* Verify that the snapshot is mounted then lookup the mounted root
|
|
* rather than the covered mount point. This may fail if the
|
|
* snapshot has just been unmounted by an unrelated user space
|
|
* process. This race cannot occur to an expired mount point
|
|
* because we hold the zfs_snapshot_lock to prevent the race.
|
|
*/
|
|
rw_enter(&zfs_snapshot_lock, RW_READER);
|
|
if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
|
|
zfs_sb_t *zsb;
|
|
|
|
zsb = ITOZSB(se->se_root_dentry->d_inode);
|
|
ASSERT3U(dmu_objset_id(zsb->z_os), ==, objsetid);
|
|
|
|
if (time_after(jiffies, zsb->z_snap_defer_time +
|
|
MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
|
|
zsb->z_snap_defer_time = jiffies;
|
|
zfsctl_snapshot_unmount_cancel(se);
|
|
zfsctl_snapshot_unmount_delay_impl(se,
|
|
zfs_expire_snapshot);
|
|
}
|
|
|
|
*zsbp = zsb;
|
|
zfsctl_snapshot_rele(se);
|
|
error = SET_ERROR(0);
|
|
} else {
|
|
error = SET_ERROR(ENOENT);
|
|
}
|
|
rw_exit(&zfs_snapshot_lock);
|
|
|
|
/*
|
|
* Automount the snapshot given the objset id by constructing the
|
|
* full mount point and performing a traversal.
|
|
*/
|
|
if (error == ENOENT) {
|
|
struct path path;
|
|
char *mnt;
|
|
|
|
mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
|
|
MAXPATHLEN, mnt);
|
|
if (error) {
|
|
kmem_free(mnt, MAXPATHLEN);
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
error = kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
|
|
if (error == 0) {
|
|
*zsbp = ITOZSB(path.dentry->d_inode);
|
|
path_put(&path);
|
|
}
|
|
|
|
kmem_free(mnt, MAXPATHLEN);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
|
|
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
|
|
{
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
struct inode *ip;
|
|
znode_t *dzp;
|
|
int error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
|
|
if (zsb->z_shares_dir == 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
if ((error = zfs_zget(zsb, zsb->z_shares_dir, &dzp)) == 0) {
|
|
error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
|
|
iput(ZTOI(dzp));
|
|
}
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Initialize the various pieces we'll need to create and manipulate .zfs
|
|
* directories. Currently this is unused but available.
|
|
*/
|
|
void
|
|
zfsctl_init(void)
|
|
{
|
|
avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
|
|
sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
|
|
se_node_name));
|
|
avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
|
|
sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
|
|
se_node_objsetid));
|
|
rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
zfs_expire_taskq = taskq_create("z_unmount", 1, defclsyspri,
|
|
1, 8, TASKQ_PREPOPULATE);
|
|
}
|
|
|
|
/*
|
|
* Cleanup the various pieces we needed for .zfs directories. In particular
|
|
* ensure the expiry timer is canceled safely.
|
|
*/
|
|
void
|
|
zfsctl_fini(void)
|
|
{
|
|
taskq_destroy(zfs_expire_taskq);
|
|
|
|
avl_destroy(&zfs_snapshots_by_name);
|
|
avl_destroy(&zfs_snapshots_by_objsetid);
|
|
rw_destroy(&zfs_snapshot_lock);
|
|
}
|
|
|
|
module_param(zfs_admin_snapshot, int, 0644);
|
|
MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
|
|
|
|
module_param(zfs_expire_snapshot, int, 0644);
|
|
MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
|