freebsd-dev/include/sys/metaslab.h
Don Brady 3dfb57a35e OpenZFS 7090 - zfs should throttle allocations
OpenZFS 7090 - zfs should throttle allocations

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Matthew Ahrens <mahrens@delphix.com>
Ported-by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>

When write I/Os are issued, they are issued in block order but the ZIO
pipeline will drive them asynchronously through the allocation stage
which can result in blocks being allocated out-of-order. It would be
nice to preserve as much of the logical order as possible.

In addition, the allocations are equally scattered across all top-level
VDEVs but not all top-level VDEVs are created equally. The pipeline
should be able to detect devices that are more capable of handling
allocations and should allocate more blocks to those devices. This
allows for dynamic allocation distribution when devices are imbalanced
as fuller devices will tend to be slower than empty devices.

The change includes a new pool-wide allocation queue which would
throttle and order allocations in the ZIO pipeline. The queue would be
ordered by issued time and offset and would provide an initial amount of
allocation of work to each top-level vdev. The allocation logic utilizes
a reservation system to reserve allocations that will be performed by
the allocator. Once an allocation is successfully completed it's
scheduled on a given top-level vdev. Each top-level vdev maintains a
maximum number of allocations that it can handle (mg_alloc_queue_depth).
The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth)
are distributed across the top-level vdevs metaslab groups and round
robin across all eligible metaslab groups to distribute the work. As
top-levels complete their work, they receive additional work from the
pool-wide allocation queue until the allocation queue is emptied.

OpenZFS-issue: https://www.illumos.org/issues/7090
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7
Closes #5258 

Porting Notes:
- Maintained minimal stack in zio_done
- Preserve linux-specific io sizes in zio_write_compress
- Added module params and documentation
- Updated to use optimize AVL cmp macros
2016-10-13 17:59:18 -07:00

108 lines
3.8 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
*/
#ifndef _SYS_METASLAB_H
#define _SYS_METASLAB_H
#include <sys/spa.h>
#include <sys/space_map.h>
#include <sys/txg.h>
#include <sys/zio.h>
#include <sys/avl.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct metaslab_ops {
uint64_t (*msop_alloc)(metaslab_t *msp, uint64_t size);
} metaslab_ops_t;
extern metaslab_ops_t *zfs_metaslab_ops;
int metaslab_init(metaslab_group_t *, uint64_t, uint64_t, uint64_t,
metaslab_t **);
void metaslab_fini(metaslab_t *);
void metaslab_load_wait(metaslab_t *);
int metaslab_load(metaslab_t *);
void metaslab_unload(metaslab_t *);
void metaslab_sync(metaslab_t *, uint64_t);
void metaslab_sync_done(metaslab_t *, uint64_t);
void metaslab_sync_reassess(metaslab_group_t *);
uint64_t metaslab_block_maxsize(metaslab_t *);
#define METASLAB_HINTBP_FAVOR 0x0
#define METASLAB_HINTBP_AVOID 0x1
#define METASLAB_GANG_HEADER 0x2
#define METASLAB_GANG_CHILD 0x4
#define METASLAB_ASYNC_ALLOC 0x8
#define METASLAB_DONT_THROTTLE 0x10
#define METASLAB_FASTWRITE 0x20
int metaslab_alloc(spa_t *, metaslab_class_t *, uint64_t,
blkptr_t *, int, uint64_t, blkptr_t *, int, zio_t *);
void metaslab_free(spa_t *, const blkptr_t *, uint64_t, boolean_t);
int metaslab_claim(spa_t *, const blkptr_t *, uint64_t);
void metaslab_check_free(spa_t *, const blkptr_t *);
void metaslab_fastwrite_mark(spa_t *, const blkptr_t *);
void metaslab_fastwrite_unmark(spa_t *, const blkptr_t *);
metaslab_class_t *metaslab_class_create(spa_t *, metaslab_ops_t *);
void metaslab_class_destroy(metaslab_class_t *);
int metaslab_class_validate(metaslab_class_t *);
void metaslab_class_histogram_verify(metaslab_class_t *);
uint64_t metaslab_class_fragmentation(metaslab_class_t *);
uint64_t metaslab_class_expandable_space(metaslab_class_t *);
boolean_t metaslab_class_throttle_reserve(metaslab_class_t *, int,
zio_t *, int);
void metaslab_class_throttle_unreserve(metaslab_class_t *, int, zio_t *);
void metaslab_class_space_update(metaslab_class_t *, int64_t, int64_t,
int64_t, int64_t);
uint64_t metaslab_class_get_alloc(metaslab_class_t *);
uint64_t metaslab_class_get_space(metaslab_class_t *);
uint64_t metaslab_class_get_dspace(metaslab_class_t *);
uint64_t metaslab_class_get_deferred(metaslab_class_t *);
metaslab_group_t *metaslab_group_create(metaslab_class_t *, vdev_t *);
void metaslab_group_destroy(metaslab_group_t *);
void metaslab_group_activate(metaslab_group_t *);
void metaslab_group_passivate(metaslab_group_t *);
boolean_t metaslab_group_initialized(metaslab_group_t *);
uint64_t metaslab_group_get_space(metaslab_group_t *);
void metaslab_group_histogram_verify(metaslab_group_t *);
uint64_t metaslab_group_fragmentation(metaslab_group_t *);
void metaslab_group_histogram_remove(metaslab_group_t *, metaslab_t *);
void metaslab_group_alloc_decrement(spa_t *, uint64_t, void *, int);
void metaslab_group_alloc_verify(spa_t *, const blkptr_t *, void *);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_METASLAB_H */