f984cb1883
fe_read_eeprom_rex() and fe_init_rex(). These functions should be useful for REX-5580 series (for PC-AT). But they are included in `#ifdef PC98' to avoid warnings by unused static functions. If you try to support REX-5580, please be aware of these functions. Submitted by: chi@bd.mbn.or.jp (Chiharu Shibata)
4336 lines
122 KiB
C
4336 lines
122 KiB
C
/*
|
|
* All Rights Reserved, Copyright (C) Fujitsu Limited 1995
|
|
*
|
|
* This software may be used, modified, copied, distributed, and sold, in
|
|
* both source and binary form provided that the above copyright, these
|
|
* terms and the following disclaimer are retained. The name of the author
|
|
* and/or the contributor may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* $FreeBSD$
|
|
*
|
|
* Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
|
|
* To be used with FreeBSD 3.x
|
|
* Contributed by M. Sekiguchi. <seki@sysrap.cs.fujitsu.co.jp>
|
|
*
|
|
* This version is intended to be a generic template for various
|
|
* MB86960A/MB86965A based Ethernet cards. It currently supports
|
|
* Fujitsu FMV-180 series for ISA and Allied-Telesis AT1700/RE2000
|
|
* series for ISA, as well as Fujitsu MBH10302 PC card.
|
|
* There are some currently-
|
|
* unused hooks embedded, which are primarily intended to support
|
|
* other types of Ethernet cards, but the author is not sure whether
|
|
* they are useful.
|
|
*
|
|
* This version also includes some alignments to support RE1000,
|
|
* C-NET(98)P2 and so on. These cards are not for AT-compatibles,
|
|
* but for NEC PC-98 bus -- a proprietary bus architecture available
|
|
* only in Japan. Confusingly, it is different from the Microsoft's
|
|
* PC98 architecture. :-{
|
|
* Further work for PC-98 version will be available as a part of
|
|
* FreeBSD(98) project.
|
|
*
|
|
* This software is a derivative work of if_ed.c version 1.56 by David
|
|
* Greenman available as a part of FreeBSD 2.0 RELEASE source distribution.
|
|
*
|
|
* The following lines are retained from the original if_ed.c:
|
|
*
|
|
* Copyright (C) 1993, David Greenman. This software may be used, modified,
|
|
* copied, distributed, and sold, in both source and binary form provided
|
|
* that the above copyright and these terms are retained. Under no
|
|
* circumstances is the author responsible for the proper functioning
|
|
* of this software, nor does the author assume any responsibility
|
|
* for damages incurred with its use.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
* o To support ISA PnP auto configuration for FMV-183/184.
|
|
* o To reconsider mbuf usage.
|
|
* o To reconsider transmission buffer usage, including
|
|
* transmission buffer size (currently 4KB x 2) and pros-and-
|
|
* cons of multiple frame transmission.
|
|
* o To test IPX codes.
|
|
* o To test FreeBSD3.0-current.
|
|
* o To test BRIDGE codes.
|
|
*/
|
|
|
|
#include "fe.h"
|
|
#include "opt_fe.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_ipx.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_mib.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef BRIDGE
|
|
#include <net/bridge.h>
|
|
#endif
|
|
|
|
#include <machine/clock.h>
|
|
|
|
#include <i386/isa/isa_device.h>
|
|
#include <i386/isa/icu.h>
|
|
|
|
/* PCCARD suport */
|
|
/* XXX FIXME! doesn't work with new pccard code, must be converted! */
|
|
#ifdef notdef
|
|
#include "card.h"
|
|
#endif
|
|
#if NCARD > 0
|
|
#include <sys/kernel.h>
|
|
#include <sys/select.h>
|
|
#include <sys/module.h>
|
|
#include <pccard/cardinfo.h>
|
|
#include <pccard/slot.h>
|
|
#endif
|
|
|
|
#include <i386/isa/ic/mb86960.h>
|
|
#include <i386/isa/if_fereg.h>
|
|
|
|
/*
|
|
* Default settings for fe driver specific options.
|
|
* They can be set in config file by "options" statements.
|
|
*/
|
|
|
|
/*
|
|
* Transmit just one packet per a "send" command to 86960.
|
|
* This option is intended for performance test. An EXPERIMENTAL option.
|
|
*/
|
|
#ifndef FE_SINGLE_TRANSMISSION
|
|
#define FE_SINGLE_TRANSMISSION 0
|
|
#endif
|
|
|
|
/*
|
|
* Maximum loops when interrupt.
|
|
* This option prevents an infinite loop due to hardware failure.
|
|
* (Some laptops make an infinite loop after PC-Card is ejected.)
|
|
*/
|
|
#ifndef FE_MAX_LOOP
|
|
#define FE_MAX_LOOP 0x800
|
|
#endif
|
|
|
|
/*
|
|
* If you define this option, 8-bit cards are also supported.
|
|
*/
|
|
/*#define FE_8BIT_SUPPORT*/
|
|
|
|
/*
|
|
* Device configuration flags.
|
|
*/
|
|
|
|
/* DLCR6 settings. */
|
|
#define FE_FLAGS_DLCR6_VALUE 0x007F
|
|
|
|
/* Force DLCR6 override. */
|
|
#define FE_FLAGS_OVERRIDE_DLCR6 0x0080
|
|
|
|
/* Shouldn't these be defined somewhere else such as isa_device.h? */
|
|
#define NO_IOADDR (-1)
|
|
#define NO_IRQ 0
|
|
|
|
/*
|
|
* Data type for a multicast address filter on 8696x.
|
|
*/
|
|
struct fe_filter { u_char data [ FE_FILTER_LEN ]; };
|
|
|
|
/*
|
|
* Special filter values.
|
|
*/
|
|
static struct fe_filter const fe_filter_nothing = { FE_FILTER_NOTHING };
|
|
static struct fe_filter const fe_filter_all = { FE_FILTER_ALL };
|
|
|
|
/* How many registers does an fe-supported adapter have at maximum? */
|
|
#define MAXREGISTERS 32
|
|
|
|
/*
|
|
* fe_softc: per line info and status
|
|
*/
|
|
static struct fe_softc {
|
|
|
|
/* Used by "common" codes. */
|
|
struct arpcom arpcom; /* Ethernet common */
|
|
|
|
/* Used by config codes. */
|
|
|
|
/* Set by probe() and not modified in later phases. */
|
|
char const * typestr; /* printable name of the interface. */
|
|
u_short iobase; /* base I/O address of the adapter. */
|
|
u_short ioaddr [ MAXREGISTERS ]; /* I/O addresses of registers. */
|
|
u_short txb_size; /* size of TX buffer, in bytes */
|
|
u_char proto_dlcr4; /* DLCR4 prototype. */
|
|
u_char proto_dlcr5; /* DLCR5 prototype. */
|
|
u_char proto_dlcr6; /* DLCR6 prototype. */
|
|
u_char proto_dlcr7; /* DLCR7 prototype. */
|
|
u_char proto_bmpr13; /* BMPR13 prototype. */
|
|
u_char stability; /* How stable is this? */
|
|
u_short priv_info; /* info specific to a vendor/model. */
|
|
|
|
/* Vendor/model specific hooks. */
|
|
void (*init)(struct fe_softc *); /* Just before fe_init(). */
|
|
void (*stop)(struct fe_softc *); /* Just after fe_stop(). */
|
|
|
|
/* Transmission buffer management. */
|
|
u_short txb_free; /* free bytes in TX buffer */
|
|
u_char txb_count; /* number of packets in TX buffer */
|
|
u_char txb_sched; /* number of scheduled packets */
|
|
|
|
/* Excessive collision counter (see fe_tint() for details.) */
|
|
u_char tx_excolls; /* # of excessive collisions. */
|
|
|
|
/* Multicast address filter management. */
|
|
u_char filter_change; /* MARs must be changed ASAP. */
|
|
struct fe_filter filter;/* new filter value. */
|
|
|
|
/* Network management. */
|
|
struct ifmib_iso_8802_3 mibdata;
|
|
|
|
/* Media information. */
|
|
struct ifmedia media; /* used by if_media. */
|
|
u_short mbitmap; /* bitmap for supported media; see bit2media */
|
|
int defmedia; /* default media */
|
|
void (* msel)(struct fe_softc *); /* media selector. */
|
|
|
|
} fe_softc[NFE];
|
|
|
|
#define sc_if arpcom.ac_if
|
|
#define sc_unit arpcom.ac_if.if_unit
|
|
#define sc_enaddr arpcom.ac_enaddr
|
|
|
|
/* Standard driver entry points. These can be static. */
|
|
static int fe_probe ( struct isa_device * );
|
|
static int fe_attach ( struct isa_device * );
|
|
static void fe_init ( void * );
|
|
static ointhand2_t feintr;
|
|
static int fe_ioctl ( struct ifnet *, u_long, caddr_t );
|
|
static void fe_start ( struct ifnet * );
|
|
static void fe_watchdog ( struct ifnet * );
|
|
static int fe_medchange ( struct ifnet * );
|
|
static void fe_medstat ( struct ifnet *, struct ifmediareq * );
|
|
|
|
/* Local functions. Order of declaration is confused. FIXME. */
|
|
static int fe_probe_ssi ( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_jli ( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_fmv ( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_lnx ( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_gwy ( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_ubn ( struct isa_device *, struct fe_softc * );
|
|
#ifdef PC98
|
|
static int fe_probe_re1000 ( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_cnet9ne( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_rex ( struct isa_device *, struct fe_softc * );
|
|
#endif
|
|
#if NCARD > 0
|
|
static int fe_probe_mbh ( struct isa_device *, struct fe_softc * );
|
|
static int fe_probe_tdk ( struct isa_device *, struct fe_softc * );
|
|
#endif
|
|
static int fe_get_packet ( struct fe_softc *, u_short );
|
|
static void fe_stop ( struct fe_softc * );
|
|
static void fe_tint ( struct fe_softc *, u_char );
|
|
static void fe_rint ( struct fe_softc *, u_char );
|
|
static void fe_xmit ( struct fe_softc * );
|
|
static void fe_write_mbufs ( struct fe_softc *, struct mbuf * );
|
|
static void fe_setmode ( struct fe_softc * );
|
|
static void fe_loadmar ( struct fe_softc * );
|
|
|
|
#ifdef DIAGNOSTIC
|
|
static void fe_emptybuffer ( struct fe_softc * );
|
|
#endif
|
|
|
|
/* Driver struct used in the config code. This must be public (external.) */
|
|
struct isa_driver fedriver =
|
|
{
|
|
fe_probe,
|
|
fe_attach,
|
|
"fe",
|
|
1 /* It's safe to mark as "sensitive" */
|
|
};
|
|
|
|
/*
|
|
* Fe driver specific constants which relate to 86960/86965.
|
|
*/
|
|
|
|
/* Interrupt masks */
|
|
#define FE_TMASK ( FE_D2_COLL16 | FE_D2_TXDONE )
|
|
#define FE_RMASK ( FE_D3_OVRFLO | FE_D3_CRCERR \
|
|
| FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY )
|
|
|
|
/* Maximum number of iterations for a receive interrupt. */
|
|
#define FE_MAX_RECV_COUNT ( ( 65536 - 2048 * 2 ) / 64 )
|
|
/*
|
|
* Maximum size of SRAM is 65536,
|
|
* minimum size of transmission buffer in fe is 2x2KB,
|
|
* and minimum amount of received packet including headers
|
|
* added by the chip is 64 bytes.
|
|
* Hence FE_MAX_RECV_COUNT is the upper limit for number
|
|
* of packets in the receive buffer.
|
|
*/
|
|
|
|
/*
|
|
* Miscellaneous definitions not directly related to hardware.
|
|
*/
|
|
|
|
/* Flags for stability. */
|
|
#define UNSTABLE_IRQ 0x01 /* IRQ setting may be incorrect. */
|
|
#define UNSTABLE_MAC 0x02 /* Probed MAC address may be incorrect. */
|
|
#define UNSTABLE_TYPE 0x04 /* Probed vendor/model may be incorrect. */
|
|
|
|
/* The following line must be delete when "net/if_media.h" support it. */
|
|
#ifndef IFM_10_FL
|
|
#define IFM_10_FL /* 13 */ IFM_10_5
|
|
#endif
|
|
|
|
#if 0
|
|
/* Mapping between media bitmap (in fe_softc.mbitmap) and ifm_media. */
|
|
static int const bit2media [] = {
|
|
#define MB_HA 0x0001
|
|
IFM_HDX | IFM_ETHER | IFM_AUTO,
|
|
#define MB_HM 0x0002
|
|
IFM_HDX | IFM_ETHER | IFM_MANUAL,
|
|
#define MB_HT 0x0004
|
|
IFM_HDX | IFM_ETHER | IFM_10_T,
|
|
#define MB_H2 0x0008
|
|
IFM_HDX | IFM_ETHER | IFM_10_2,
|
|
#define MB_H5 0x0010
|
|
IFM_HDX | IFM_ETHER | IFM_10_5,
|
|
#define MB_HF 0x0020
|
|
IFM_HDX | IFM_ETHER | IFM_10_FL,
|
|
#define MB_FT 0x0040
|
|
IFM_FDX | IFM_ETHER | IFM_10_T,
|
|
/* More can be come here... */
|
|
0
|
|
};
|
|
#else
|
|
/* Mapping between media bitmap (in fe_softc.mbitmap) and ifm_media. */
|
|
static int const bit2media [] = {
|
|
#define MB_HA 0x0001
|
|
IFM_ETHER | IFM_AUTO,
|
|
#define MB_HM 0x0002
|
|
IFM_ETHER | IFM_MANUAL,
|
|
#define MB_HT 0x0004
|
|
IFM_ETHER | IFM_10_T,
|
|
#define MB_H2 0x0008
|
|
IFM_ETHER | IFM_10_2,
|
|
#define MB_H5 0x0010
|
|
IFM_ETHER | IFM_10_5,
|
|
#define MB_HF 0x0020
|
|
IFM_ETHER | IFM_10_FL,
|
|
#define MB_FT 0x0040
|
|
IFM_ETHER | IFM_10_T,
|
|
/* More can be come here... */
|
|
0
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Routines to access contiguous I/O ports.
|
|
*/
|
|
|
|
static void
|
|
inblk ( struct fe_softc * sc, int offs, u_char * mem, int len )
|
|
{
|
|
while ( --len >= 0 ) {
|
|
*mem++ = inb( sc->ioaddr[ offs++ ] );
|
|
}
|
|
}
|
|
|
|
static void
|
|
outblk ( struct fe_softc * sc, int offs, u_char const * mem, int len )
|
|
{
|
|
while ( --len >= 0 ) {
|
|
outb( sc->ioaddr[ offs++ ], *mem++ );
|
|
}
|
|
}
|
|
|
|
/* PCCARD Support */
|
|
#if NCARD > 0
|
|
/*
|
|
* PC-Card (PCMCIA) specific code.
|
|
*/
|
|
static int feinit (struct pccard_devinfo *);
|
|
static void feunload (struct pccard_devinfo *);
|
|
static int fe_card_intr (struct pccard_devinfo *);
|
|
|
|
PCCARD_MODULE(fe, feinit, feunload, fe_card_intr, 0, net_imask);
|
|
|
|
/*
|
|
* Initialize the device - called from Slot manager.
|
|
*/
|
|
static int
|
|
feinit(struct pccard_devinfo *devi)
|
|
{
|
|
struct fe_softc *sc;
|
|
|
|
/* validate unit number. */
|
|
if (devi->isahd.id_unit >= NFE) return ENODEV;
|
|
|
|
/* Prepare for the device probe process. */
|
|
sc = &fe_softc[devi->isahd.id_unit];
|
|
sc->sc_unit = devi->isahd.id_unit;
|
|
sc->iobase = devi->isahd.id_iobase;
|
|
|
|
/*
|
|
* When the feinit() is called, the devi->misc holds a
|
|
* six-byte value set by the pccard daemon. If the
|
|
* corresponding entry in /etc/pccard.conf has an "ether"
|
|
* keyword, the value is the Ethernet MAC address extracted
|
|
* from CIS area of the card. If the entry has no "ether"
|
|
* keyword, the daemon fills the field with binary zero,
|
|
* instead. We passes the value (either MAC address or zero)
|
|
* to model-specific sub-probe routines through sc->sc_enaddr
|
|
* (it actually is sc->sc_arpcom.ar_enaddr, BTW) so that the
|
|
* sub-probe routies can use that info.
|
|
*/
|
|
bcopy(devi->misc, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Probe for supported cards. */
|
|
if (fe_probe_mbh(&devi->isahd, sc) == 0
|
|
&& fe_probe_tdk(&devi->isahd, sc) == 0) return ENXIO;
|
|
|
|
/* We've got a supported card. Attach it, then. */
|
|
if (fe_attach(&devi->isahd) == 0) return ENXIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* feunload - unload the driver and clear the table.
|
|
* XXX TODO:
|
|
* This is usually called when the card is ejected, but
|
|
* can be caused by a modunload of a controller driver.
|
|
* The idea is to reset the driver's view of the device
|
|
* and ensure that any driver entry points such as
|
|
* read and write do not hang.
|
|
*/
|
|
static void
|
|
feunload(struct pccard_devinfo *devi)
|
|
{
|
|
struct fe_softc *sc = &fe_softc[devi->isahd.id_unit];
|
|
printf("fe%d: unload\n", sc->sc_unit);
|
|
fe_stop(sc);
|
|
if_down(&sc->arpcom.ac_if);
|
|
}
|
|
|
|
/*
|
|
* fe_card_intr - Shared interrupt called from
|
|
* front end of PC-Card handler.
|
|
*/
|
|
static int
|
|
fe_card_intr(struct pccard_devinfo *devi)
|
|
{
|
|
feintr(devi->isahd.id_unit);
|
|
return (1);
|
|
}
|
|
#endif /* NCARD > 0 */
|
|
|
|
|
|
/*
|
|
* Hardware probe routines.
|
|
*
|
|
* In older versions of this driver, we provided an automatic I/O
|
|
* address detection. The features is, however, removed from this
|
|
* version, for simplicity. Any comments?
|
|
*/
|
|
|
|
/*
|
|
* Determine if the device is present at a specified I/O address. The
|
|
* main entry to the driver.
|
|
*/
|
|
|
|
static int
|
|
fe_probe (struct isa_device * dev)
|
|
{
|
|
struct fe_softc * sc;
|
|
int nports;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (dev->id_unit >= NFE) {
|
|
printf("fe%d: too large unit number for the current config\n",
|
|
dev->id_unit);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Prepare for the softc struct. */
|
|
sc = &fe_softc[dev->id_unit];
|
|
sc->sc_unit = dev->id_unit;
|
|
sc->iobase = dev->id_iobase;
|
|
|
|
/* Probe for supported boards. */
|
|
nports = 0;
|
|
#ifdef PC98
|
|
if (!nports) nports = fe_probe_re1000(dev, sc);
|
|
if (!nports) nports = fe_probe_cnet9ne(dev, sc);
|
|
if (!nports) nports = fe_probe_rex(dev, sc);
|
|
#endif
|
|
if (!nports) nports = fe_probe_ssi(dev, sc);
|
|
if (!nports) nports = fe_probe_jli(dev, sc);
|
|
if (!nports) nports = fe_probe_fmv(dev, sc);
|
|
if (!nports) nports = fe_probe_lnx(dev, sc);
|
|
if (!nports) nports = fe_probe_ubn(dev, sc);
|
|
if (!nports) nports = fe_probe_gwy(dev, sc);
|
|
|
|
/* We found supported board. */
|
|
return nports;
|
|
}
|
|
|
|
/*
|
|
* Check for specific bits in specific registers have specific values.
|
|
* A common utility function called from various sub-probe routines.
|
|
*/
|
|
|
|
struct fe_simple_probe_struct
|
|
{
|
|
u_char port; /* Offset from the base I/O address. */
|
|
u_char mask; /* Bits to be checked. */
|
|
u_char bits; /* Values to be compared against. */
|
|
};
|
|
|
|
static int
|
|
fe_simple_probe ( struct fe_softc const * sc,
|
|
struct fe_simple_probe_struct const * sp )
|
|
{
|
|
struct fe_simple_probe_struct const * p;
|
|
|
|
for ( p = sp; p->mask != 0; p++ ) {
|
|
#ifdef FE_DEBUG
|
|
unsigned a = sc->ioaddr[p->port];
|
|
printf("fe%d: Probing %02x (%04x): %02x (%02x, %02x): %s\n",
|
|
sc->sc_unit, p->port, a, inb(a), p->mask, p->bits,
|
|
(inb(a) & p->mask) == p->bits ? "OK" : "NG");
|
|
#endif
|
|
if ( ( inb( sc->ioaddr[ p->port ] ) & p->mask ) != p->bits )
|
|
{
|
|
return ( 0 );
|
|
}
|
|
}
|
|
return ( 1 );
|
|
}
|
|
|
|
/* Test if a given 6 byte value is a valid Ethernet station (MAC)
|
|
address. "Vendor" is an expected vendor code (first three bytes,)
|
|
or a zero when nothing expected. */
|
|
static int
|
|
valid_Ether_p (u_char const * addr, unsigned vendor)
|
|
{
|
|
#ifdef FE_DEBUG
|
|
printf("fe?: validating %6D against %06x\n", addr, ":", vendor);
|
|
#endif
|
|
|
|
/* All zero is not allowed as a vendor code. */
|
|
if (addr[0] == 0 && addr[1] == 0 && addr[2] == 0) return 0;
|
|
|
|
switch (vendor) {
|
|
case 0x000000:
|
|
/* Legal Ethernet address (stored in ROM) must have
|
|
its Group and Local bits cleared. */
|
|
if ((addr[0] & 0x03) != 0) return 0;
|
|
break;
|
|
case 0x020000:
|
|
/* Same as above, but a local address is allowed in
|
|
this context. */
|
|
if ((addr[0] & 0x01) != 0) return 0;
|
|
break;
|
|
default:
|
|
/* Make sure the vendor part matches if one is given. */
|
|
if ( addr[0] != ((vendor >> 16) & 0xFF)
|
|
|| addr[1] != ((vendor >> 8) & 0xFF)
|
|
|| addr[2] != ((vendor ) & 0xFF)) return 0;
|
|
break;
|
|
}
|
|
|
|
/* Host part must not be all-zeros nor all-ones. */
|
|
if (addr[3] == 0xFF && addr[4] == 0xFF && addr[5] == 0xFF) return 0;
|
|
if (addr[3] == 0x00 && addr[4] == 0x00 && addr[5] == 0x00) return 0;
|
|
|
|
/* Given addr looks like an Ethernet address. */
|
|
return 1;
|
|
}
|
|
|
|
/* Fill our softc struct with default value. */
|
|
static void
|
|
fe_softc_defaults (struct fe_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* Initialize I/O address re-mapping table for the standard
|
|
(contiguous) register layout. This routine doesn't use
|
|
ioaddr[], so the caller can safely override it after
|
|
calling fe_softc_defaults, if needed. */
|
|
for (i = 0; i < MAXREGISTERS; i++) sc->ioaddr[i] = sc->iobase + i;
|
|
|
|
/* Prepare for typical register prototypes. We assume a
|
|
"typical" board has <32KB> of <fast> SRAM connected with a
|
|
<byte-wide> data lines. */
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH;
|
|
sc->proto_bmpr13 = 0;
|
|
|
|
/* Assume the probe process (to be done later) is stable. */
|
|
sc->stability = 0;
|
|
|
|
/* A typical board needs no hooks. */
|
|
sc->init = NULL;
|
|
sc->stop = NULL;
|
|
|
|
/* Assume the board has no software-controllable media selection. */
|
|
sc->mbitmap = MB_HM;
|
|
sc->defmedia = MB_HM;
|
|
sc->msel = NULL;
|
|
}
|
|
|
|
/* Common error reporting routine used in probe routines for
|
|
"soft configured IRQ"-type boards. */
|
|
static void
|
|
fe_irq_failure (char const *name, int unit, int irq, char const *list)
|
|
{
|
|
printf("fe%d: %s board is detected, but %s IRQ was given\n",
|
|
unit, name, (irq == NO_IRQ ? "no" : "invalid"));
|
|
if (list != NULL) {
|
|
printf("fe%d: specify an IRQ from %s in kernel config\n",
|
|
unit, list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hardware (vendor) specific probe routines and hooks.
|
|
*/
|
|
|
|
/*
|
|
* Machine independent routines.
|
|
*/
|
|
|
|
/*
|
|
* Generic media selection scheme for MB86965 based boards.
|
|
*/
|
|
static void
|
|
fe_msel_965 (struct fe_softc *sc)
|
|
{
|
|
u_char b13;
|
|
|
|
/* Find the appropriate bits for BMPR13 tranceiver control. */
|
|
switch (IFM_SUBTYPE(sc->media.ifm_media)) {
|
|
case IFM_AUTO: b13 = FE_B13_PORT_AUTO | FE_B13_TPTYPE_UTP; break;
|
|
case IFM_10_T: b13 = FE_B13_PORT_TP | FE_B13_TPTYPE_UTP; break;
|
|
default: b13 = FE_B13_PORT_AUI; break;
|
|
}
|
|
|
|
/* Write it into the register. It takes effect immediately. */
|
|
outb(sc->ioaddr[FE_BMPR13], sc->proto_bmpr13 | b13);
|
|
}
|
|
|
|
/*
|
|
* Fujitsu MB86965 JLI mode support routines.
|
|
*/
|
|
|
|
/* Datasheet for 86965 explicitly states that it only supports serial
|
|
* EEPROM with 16 words (32 bytes) capacity. (I.e., 93C06.) However,
|
|
* ones with 64 words (128 bytes) are available in the marked, namely
|
|
* 93C46, and are also fully compatible with 86965. It is known that
|
|
* some boards (e.g., ICL) actually have 93C46 on them and use extra
|
|
* storage to keep various config info. */
|
|
#define JLI_EEPROM_SIZE 128
|
|
|
|
/*
|
|
* Routines to read all bytes from the config EEPROM through MB86965A.
|
|
* It is a MicroWire (3-wire) serial EEPROM with 6-bit address.
|
|
* (93C06 or 93C46.)
|
|
*/
|
|
static void
|
|
fe_strobe_eeprom_jli ( u_short bmpr16 )
|
|
{
|
|
/*
|
|
* We must guarantee 1us (or more) interval to access slow
|
|
* EEPROMs. The following redundant code provides enough
|
|
* delay with ISA timing. (Even if the bus clock is "tuned.")
|
|
* Some modification will be needed on faster busses.
|
|
*/
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
|
|
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
}
|
|
|
|
static void
|
|
fe_read_eeprom_jli ( struct fe_softc * sc, u_char * data )
|
|
{
|
|
u_short bmpr16 = sc->ioaddr[ FE_BMPR16 ];
|
|
u_short bmpr17 = sc->ioaddr[ FE_BMPR17 ];
|
|
u_char n, val, bit;
|
|
u_char save16, save17;
|
|
|
|
/* Save the current value of the EEPROM interface registers. */
|
|
save16 = inb(bmpr16);
|
|
save17 = inb(bmpr17);
|
|
|
|
/* Read bytes from EEPROM; two bytes per an iteration. */
|
|
for ( n = 0; n < JLI_EEPROM_SIZE / 2; n++ ) {
|
|
|
|
/* Reset the EEPROM interface. */
|
|
outb( bmpr16, 0x00 );
|
|
outb( bmpr17, 0x00 );
|
|
|
|
/* Start EEPROM access. */
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
outb( bmpr17, FE_B17_DATA );
|
|
fe_strobe_eeprom_jli( bmpr16 );
|
|
|
|
/* Pass the iteration count as well as a READ command. */
|
|
val = 0x80 | n;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
outb( bmpr17, ( val & bit ) ? FE_B17_DATA : 0 );
|
|
fe_strobe_eeprom_jli( bmpr16 );
|
|
}
|
|
outb( bmpr17, 0x00 );
|
|
|
|
/* Read a byte. */
|
|
val = 0;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
fe_strobe_eeprom_jli( bmpr16 );
|
|
if ( inb( bmpr17 ) & FE_B17_DATA ) {
|
|
val |= bit;
|
|
}
|
|
}
|
|
*data++ = val;
|
|
|
|
/* Read one more byte. */
|
|
val = 0;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
fe_strobe_eeprom_jli( bmpr16 );
|
|
if ( inb( bmpr17 ) & FE_B17_DATA ) {
|
|
val |= bit;
|
|
}
|
|
}
|
|
*data++ = val;
|
|
}
|
|
|
|
#if 0
|
|
/* Reset the EEPROM interface, again. */
|
|
outb( bmpr16, 0x00 );
|
|
outb( bmpr17, 0x00 );
|
|
#else
|
|
/* Make sure to restore the original value of EEPROM interface
|
|
registers, since we are not yet sure we have MB86965A on
|
|
the address. */
|
|
outb(bmpr17, save17);
|
|
outb(bmpr16, save16);
|
|
#endif
|
|
|
|
#if 1
|
|
/* Report what we got. */
|
|
if (bootverbose) {
|
|
int i;
|
|
data -= JLI_EEPROM_SIZE;
|
|
for (i = 0; i < JLI_EEPROM_SIZE; i += 16) {
|
|
printf("fe%d: EEPROM(JLI):%3x: %16D\n",
|
|
sc->sc_unit, i, data + i, " ");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
fe_init_jli (struct fe_softc * sc)
|
|
{
|
|
/* "Reset" by writing into a magic location. */
|
|
DELAY(200);
|
|
outb(sc->ioaddr[0x1E], inb(sc->ioaddr[0x1E]));
|
|
DELAY(300);
|
|
}
|
|
|
|
/*
|
|
* SSi 78Q8377A support routines.
|
|
*/
|
|
|
|
#define SSI_EEPROM_SIZE 512
|
|
#define SSI_DIN 0x01
|
|
#define SSI_DAT 0x01
|
|
#define SSI_CSL 0x02
|
|
#define SSI_CLK 0x04
|
|
#define SSI_EEP 0x10
|
|
|
|
/*
|
|
* Routines to read all bytes from the config EEPROM through 78Q8377A.
|
|
* It is a MicroWire (3-wire) serial EEPROM with 8-bit address. (I.e.,
|
|
* 93C56 or 93C66.)
|
|
*
|
|
* As I don't have SSi manuals, (hmm, an old song again!) I'm not exactly
|
|
* sure the following code is correct... It is just stolen from the
|
|
* C-NET(98)P2 support routine in FreeBSD(98).
|
|
*/
|
|
|
|
static void
|
|
fe_read_eeprom_ssi (struct fe_softc *sc, u_char *data)
|
|
{
|
|
u_short bmpr12 = sc->ioaddr[FE_DLCR12];
|
|
u_char val, bit;
|
|
int n;
|
|
u_char save6, save7, save12;
|
|
|
|
/* Save the current value for the DLCR registers we are about
|
|
to destroy. */
|
|
save6 = inb(sc->ioaddr[FE_DLCR6]);
|
|
save7 = inb(sc->ioaddr[FE_DLCR7]);
|
|
|
|
/* Put the 78Q8377A into a state that we can access the EEPROM. */
|
|
outb(sc->ioaddr[FE_DLCR6],
|
|
FE_D6_BBW_WORD | FE_D6_SBW_WORD | FE_D6_DLC_DISABLE);
|
|
outb(sc->ioaddr[FE_DLCR7],
|
|
FE_D7_BYTSWP_LH | FE_D7_RBS_BMPR | FE_D7_RDYPNS | FE_D7_POWER_UP);
|
|
|
|
/* Save the current value for the BMPR12 register, too. */
|
|
save12 = inb(bmpr12);
|
|
|
|
/* Read bytes from EEPROM; two bytes per an iteration. */
|
|
for ( n = 0; n < SSI_EEPROM_SIZE / 2; n++ ) {
|
|
|
|
/* Start EEPROM access */
|
|
outb(bmpr12, SSI_EEP);
|
|
outb(bmpr12, SSI_EEP | SSI_CSL);
|
|
|
|
/* Send the following four bits to the EEPROM in the
|
|
specified order: a dummy bit, a start bit, and
|
|
command bits (10) for READ. */
|
|
outb(bmpr12, SSI_EEP | SSI_CSL );
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_CLK ); /* 0 */
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_DAT);
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_CLK | SSI_DAT); /* 1 */
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_DAT);
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_CLK | SSI_DAT); /* 1 */
|
|
outb(bmpr12, SSI_EEP | SSI_CSL );
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_CLK ); /* 0 */
|
|
|
|
/* Pass the iteration count to the chip. */
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
val = ( n & bit ) ? SSI_DAT : 0;
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | val);
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_CLK | val);
|
|
}
|
|
|
|
/* Read a byte. */
|
|
val = 0;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
outb(bmpr12, SSI_EEP | SSI_CSL);
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_CLK);
|
|
if (inb(bmpr12) & SSI_DIN) val |= bit;
|
|
}
|
|
*data++ = val;
|
|
|
|
/* Read one more byte. */
|
|
val = 0;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
outb(bmpr12, SSI_EEP | SSI_CSL);
|
|
outb(bmpr12, SSI_EEP | SSI_CSL | SSI_CLK);
|
|
if (inb(bmpr12) & SSI_DIN) val |= bit;
|
|
}
|
|
*data++ = val;
|
|
|
|
outb(bmpr12, SSI_EEP);
|
|
}
|
|
|
|
/* Reset the EEPROM interface. (For now.) */
|
|
outb( bmpr12, 0x00 );
|
|
|
|
/* Restore the saved register values, for the case that we
|
|
didn't have 78Q8377A at the given address. */
|
|
outb(bmpr12, save12);
|
|
outb(sc->ioaddr[FE_DLCR7], save7);
|
|
outb(sc->ioaddr[FE_DLCR6], save6);
|
|
|
|
#if 1
|
|
/* Report what we got. */
|
|
if (bootverbose) {
|
|
int i;
|
|
data -= SSI_EEPROM_SIZE;
|
|
for (i = 0; i < SSI_EEPROM_SIZE; i += 16) {
|
|
printf("fe%d: EEPROM(SSI):%3x: %16D\n",
|
|
sc->sc_unit, i, data + i, " ");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define FE_SSI_EEP_IRQ 9 /* Irq ??? */
|
|
#define FE_SSI_EEP_ADDR 16 /* Station(MAC) address */
|
|
#define FE_SSI_EEP_DUPLEX 25 /* Duplex mode ??? */
|
|
|
|
/*
|
|
* TDK/LANX boards support routines.
|
|
*/
|
|
|
|
/* AX012/AX013 equips an X24C01 chip, which has 128 bytes of memory cells. */
|
|
#define LNX_EEPROM_SIZE 128
|
|
|
|
/* Bit assignments and command definitions for the serial EEPROM
|
|
interface register in LANX ASIC. */
|
|
#define LNX_SDA_HI 0x08 /* Drive SDA line high (logical 1.) */
|
|
#define LNX_SDA_LO 0x00 /* Drive SDA line low (logical 0.) */
|
|
#define LNX_SDA_FL 0x08 /* Float (don't drive) SDA line. */
|
|
#define LNX_SDA_IN 0x01 /* Mask for reading SDA line. */
|
|
#define LNX_CLK_HI 0x04 /* Drive clock line high (active.) */
|
|
#define LNX_CLK_LO 0x00 /* Drive clock line low (inactive.) */
|
|
|
|
/* It is assumed that the CLK line is low and SDA is high (float) upon entry. */
|
|
#define LNX_PH(D,K,N) \
|
|
((LNX_SDA_##D | LNX_CLK_##K) << N)
|
|
#define LNX_CYCLE(D1,D2,D3,D4,K1,K2,K3,K4) \
|
|
(LNX_PH(D1,K1,0)|LNX_PH(D2,K2,8)|LNX_PH(D3,K3,16)|LNX_PH(D4,K4,24))
|
|
|
|
#define LNX_CYCLE_START LNX_CYCLE(HI,LO,LO,HI, HI,HI,LO,LO)
|
|
#define LNX_CYCLE_STOP LNX_CYCLE(LO,LO,HI,HI, LO,HI,HI,LO)
|
|
#define LNX_CYCLE_HI LNX_CYCLE(HI,HI,HI,HI, LO,HI,LO,LO)
|
|
#define LNX_CYCLE_LO LNX_CYCLE(LO,LO,LO,HI, LO,HI,LO,LO)
|
|
#define LNX_CYCLE_INIT LNX_CYCLE(LO,HI,HI,HI, LO,LO,LO,LO)
|
|
|
|
static void
|
|
fe_eeprom_cycle_lnx (u_short reg20, u_long cycle)
|
|
{
|
|
outb(reg20, (cycle ) & 0xFF);
|
|
DELAY(15);
|
|
outb(reg20, (cycle >> 8) & 0xFF);
|
|
DELAY(15);
|
|
outb(reg20, (cycle >> 16) & 0xFF);
|
|
DELAY(15);
|
|
outb(reg20, (cycle >> 24) & 0xFF);
|
|
DELAY(15);
|
|
}
|
|
|
|
static u_char
|
|
fe_eeprom_receive_lnx (u_short reg20)
|
|
{
|
|
u_char dat;
|
|
|
|
outb(reg20, LNX_CLK_HI | LNX_SDA_FL);
|
|
DELAY(15);
|
|
dat = inb(reg20);
|
|
outb(reg20, LNX_CLK_LO | LNX_SDA_FL);
|
|
DELAY(15);
|
|
return (dat & LNX_SDA_IN);
|
|
}
|
|
|
|
static void
|
|
fe_read_eeprom_lnx (struct fe_softc *sc, u_char *data)
|
|
{
|
|
int i;
|
|
u_char n, bit, val;
|
|
u_char save20;
|
|
u_short reg20 = sc->ioaddr[0x14];
|
|
|
|
save20 = inb(reg20);
|
|
|
|
/* NOTE: DELAY() timing constants are approximately three
|
|
times longer (slower) than the required minimum. This is
|
|
to guarantee a reliable operation under some tough
|
|
conditions... Fortunately, this routine is only called
|
|
during the boot phase, so the speed is less important than
|
|
stability. */
|
|
|
|
#if 1
|
|
/* Reset the X24C01's internal state machine and put it into
|
|
the IDLE state. We usually don't need this, but *if*
|
|
someone (e.g., probe routine of other driver) write some
|
|
garbage into the register at 0x14, synchronization will be
|
|
lost, and the normal EEPROM access protocol won't work.
|
|
Moreover, as there are no easy way to reset, we need a
|
|
_manoeuvre_ here. (It even lacks a reset pin, so pushing
|
|
the RESET button on the PC doesn't help!) */
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_INIT);
|
|
for (i = 0; i < 10; i++) {
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_START);
|
|
}
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_STOP);
|
|
DELAY(10000);
|
|
#endif
|
|
|
|
/* Issue a start condition. */
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_START);
|
|
|
|
/* Send seven bits of the starting address (zero, in this
|
|
case) and a command bit for READ. */
|
|
val = 0x01;
|
|
for (bit = 0x80; bit != 0x00; bit >>= 1) {
|
|
if (val & bit) {
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_HI);
|
|
} else {
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_LO);
|
|
}
|
|
}
|
|
|
|
/* Receive an ACK bit. */
|
|
if (fe_eeprom_receive_lnx(reg20)) {
|
|
/* ACK was not received. EEPROM is not present (i.e.,
|
|
this board was not a TDK/LANX) or not working
|
|
properly. */
|
|
if (bootverbose) {
|
|
printf("fe%d: no ACK received from EEPROM(LNX)\n",
|
|
sc->sc_unit);
|
|
}
|
|
/* Clear the given buffer to indicate we could not get
|
|
any info. and return. */
|
|
bzero(data, LNX_EEPROM_SIZE);
|
|
goto RET;
|
|
}
|
|
|
|
/* Read bytes from EEPROM. */
|
|
for (n = 0; n < LNX_EEPROM_SIZE; n++) {
|
|
|
|
/* Read a byte and store it into the buffer. */
|
|
val = 0x00;
|
|
for (bit = 0x80; bit != 0x00; bit >>= 1) {
|
|
if (fe_eeprom_receive_lnx(reg20)) val |= bit;
|
|
}
|
|
*data++ = val;
|
|
|
|
/* Acknowledge if we have to read more. */
|
|
if (n < LNX_EEPROM_SIZE - 1) {
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_LO);
|
|
}
|
|
}
|
|
|
|
/* Issue a STOP condition, de-activating the clock line.
|
|
It will be safer to keep the clock line low than to leave
|
|
it high. */
|
|
fe_eeprom_cycle_lnx(reg20, LNX_CYCLE_STOP);
|
|
|
|
RET:
|
|
outb(reg20, save20);
|
|
|
|
#if 1
|
|
/* Report what we got. */
|
|
if (bootverbose) {
|
|
data -= LNX_EEPROM_SIZE;
|
|
for (i = 0; i < LNX_EEPROM_SIZE; i += 16) {
|
|
printf("fe%d: EEPROM(LNX):%3x: %16D\n",
|
|
sc->sc_unit, i, data + i, " ");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
fe_init_lnx ( struct fe_softc * sc )
|
|
{
|
|
/* Reset the 86960. Do we need this? FIXME. */
|
|
outb(sc->ioaddr[0x12], 0x06);
|
|
DELAY(100);
|
|
outb(sc->ioaddr[0x12], 0x07);
|
|
DELAY(100);
|
|
|
|
/* Setup IRQ control register on the ASIC. */
|
|
outb(sc->ioaddr[0x14], sc->priv_info);
|
|
}
|
|
|
|
/*
|
|
* Ungermann-Bass boards support routine.
|
|
*/
|
|
static void
|
|
fe_init_ubn ( struct fe_softc * sc )
|
|
{
|
|
/* Do we need this? FIXME. */
|
|
outb(sc->ioaddr[FE_DLCR7],
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
|
|
outb(sc->ioaddr[0x18], 0x00);
|
|
DELAY( 200 );
|
|
|
|
/* Setup IRQ control register on the ASIC. */
|
|
outb(sc->ioaddr[0x14], sc->priv_info);
|
|
}
|
|
|
|
/*
|
|
* Machine dependent probe routines.
|
|
*/
|
|
|
|
#ifdef PC98
|
|
static int
|
|
fe_probe_fmv ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
/* PC-98 has no board of this architechture. */
|
|
return 0;
|
|
}
|
|
|
|
/* ioaddr for RE1000/1000Plus - Very dirty! */
|
|
static u_short ioaddr_re1000[MAXREGISTERS] = {
|
|
0x0000, 0x0001, 0x0200, 0x0201, 0x0400, 0x0401, 0x0600, 0x0601,
|
|
0x0800, 0x0801, 0x0a00, 0x0a01, 0x0c00, 0x0c01, 0x0e00, 0x0e01,
|
|
0x1000, 0x1200, 0x1400, 0x1600, 0x1800, 0x1a00, 0x1c00, 0x1e00,
|
|
0x1001, 0x1201, 0x1401, 0x1601, 0x1801, 0x1a01, 0x1c01, 0x1e01,
|
|
};
|
|
|
|
/*
|
|
* Probe and initialization for Allied-Telesis RE1000 series.
|
|
*/
|
|
static void
|
|
fe_init_re1000 ( struct fe_softc * sc )
|
|
{
|
|
/* Setup IRQ control register on the ASIC. */
|
|
outb(sc->ioaddr[FE_RE1000_IRQCONF], sc->priv_info);
|
|
}
|
|
|
|
static int
|
|
fe_probe_re1000 ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
int i, n;
|
|
u_char sum;
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for RE1000. */
|
|
/* [01]D[02468ACE] are allowed. */
|
|
if ((sc->iobase & ~0x10E) != 0xD0) return 0;
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Re-map ioaddr for RE1000. */
|
|
for (i = 0; i < MAXREGISTERS; i++)
|
|
sc->ioaddr[i] = sc->iobase + ioaddr_re1000[i];
|
|
|
|
/* See if the card is on its address. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk(sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Make sure it is Allied-Telesis's. */
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x0000F4)) return 0;
|
|
#if 1
|
|
/* Calculate checksum. */
|
|
sum = inb(sc->ioaddr[0x1e]);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
sum ^= sc->sc_enaddr[i];
|
|
}
|
|
if (sum != 0) return 0;
|
|
#endif
|
|
/* Setup the board type. */
|
|
sc->typestr = "RE1000";
|
|
|
|
/* This looks like an RE1000 board. It requires an
|
|
explicit IRQ setting in config. Make sure we have one,
|
|
determining an appropriate value for the IRQ control
|
|
register. */
|
|
switch (dev->id_irq) {
|
|
case IRQ3: n = 0x10; break;
|
|
case IRQ5: n = 0x20; break;
|
|
case IRQ6: n = 0x40; break;
|
|
case IRQ12: n = 0x80; break;
|
|
default:
|
|
fe_irq_failure(sc->typestr,
|
|
sc->sc_unit, dev->id_irq, "3/5/6/12");
|
|
return 0;
|
|
}
|
|
sc->priv_info = inb(sc->ioaddr[FE_RE1000_IRQCONF]) & 0x0f | n;
|
|
|
|
/* Setup hooks. We need a special initialization procedure. */
|
|
sc->init = fe_init_re1000;
|
|
|
|
/* The I/O address range is fragmented in the RE1000.
|
|
It occupies 2*16 I/O addresses, by the way. */
|
|
return 2;
|
|
}
|
|
|
|
/* JLI sub-probe for Allied-Telesis RE1000Plus/ME1500 series. */
|
|
static u_short const *
|
|
fe_probe_jli_re1000p (struct fe_softc * sc, u_char const * eeprom)
|
|
{
|
|
int i;
|
|
static u_short const irqmaps_re1000p [4] = { IRQ3, IRQ5, IRQ6, IRQ12 };
|
|
|
|
/* Make sure the EEPROM contains Allied-Telesis bit pattern. */
|
|
if (eeprom[1] != 0xFF) return NULL;
|
|
for (i = 2; i < 8; i++) if (eeprom[i] != 0xFF) return NULL;
|
|
for (i = 14; i < 24; i++) if (eeprom[i] != 0xFF) return NULL;
|
|
|
|
/* Get our station address from EEPROM, and make sure the
|
|
EEPROM contains Allied-Telesis's address. */
|
|
bcopy(eeprom+8, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x0000F4)) return NULL;
|
|
|
|
/* I don't know any sub-model identification. */
|
|
sc->typestr = "RE1000Plus/ME1500";
|
|
|
|
/* Returns the IRQ table for the RE1000Plus. */
|
|
return irqmaps_re1000p;
|
|
}
|
|
|
|
/*
|
|
* Probe for Allied-Telesis RE1000Plus/ME1500 series.
|
|
*/
|
|
static int
|
|
fe_probe_jli (struct isa_device * dev, struct fe_softc * sc)
|
|
{
|
|
int i, n;
|
|
int irq;
|
|
u_char eeprom [JLI_EEPROM_SIZE];
|
|
u_short const * irqmap;
|
|
|
|
static u_short const baseaddr [8] =
|
|
{ 0x1D6, 0x1D8, 0x1DA, 0x1D4, 0x0D4, 0x0D2, 0x0D8, 0x0D0 };
|
|
static struct fe_simple_probe_struct const probe_table [] = {
|
|
/* { FE_DLCR1, 0x20, 0x00 }, Doesn't work. */
|
|
{ FE_DLCR2, 0x50, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
/* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
|
|
#if 0
|
|
{ FE_BMPR16, 0x1B, 0x00 },
|
|
{ FE_BMPR17, 0x7F, 0x00 },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* See if the specified address is possible for MB86965A JLI mode.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (baseaddr[i] == sc->iobase) break;
|
|
}
|
|
if (i == 8) return 0;
|
|
|
|
/* Fill the softc struct with reasonable default. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Re-map ioaddr for RE1000Plus. */
|
|
for (i = 0; i < MAXREGISTERS; i++)
|
|
sc->ioaddr[i] = sc->iobase + ioaddr_re1000[i];
|
|
|
|
/*
|
|
* We should test if MB86965A is on the base address now.
|
|
* Unfortunately, it is very hard to probe it reliably, since
|
|
* we have no way to reset the chip under software control.
|
|
* On cold boot, we could check the "signature" bit patterns
|
|
* described in the Fujitsu document. On warm boot, however,
|
|
* we can predict almost nothing about register values.
|
|
*/
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* Check if our I/O address matches config info on 86965. */
|
|
n = (inb(sc->ioaddr[FE_BMPR19]) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
|
|
if (baseaddr[n] != sc->iobase) return 0;
|
|
|
|
/*
|
|
* We are now almost sure we have an MB86965 at the given
|
|
* address. So, read EEPROM through it. We have to write
|
|
* into LSI registers to read from EEPROM. I want to avoid it
|
|
* at this stage, but I cannot test the presence of the chip
|
|
* any further without reading EEPROM. FIXME.
|
|
*/
|
|
fe_read_eeprom_jli(sc, eeprom);
|
|
|
|
/* Make sure that config info in EEPROM and 86965 agree. */
|
|
if (eeprom[FE_EEPROM_CONF] != inb(sc->ioaddr[FE_BMPR19])) {
|
|
return 0;
|
|
}
|
|
|
|
/* Use 86965 media selection scheme, unless othewise
|
|
specified. It is "AUTO always" and "select with BMPR13".
|
|
This behaviour covers most of the 86965 based board (as
|
|
minimum requirements.) It is backward compatible with
|
|
previous versions, also. */
|
|
sc->mbitmap = MB_HA;
|
|
sc->defmedia = MB_HA;
|
|
sc->msel = fe_msel_965;
|
|
|
|
/* Perform board-specific probe. */
|
|
if ((irqmap = fe_probe_jli_re1000p(sc, eeprom)) == NULL) return 0;
|
|
|
|
/* Find the IRQ read from EEPROM. */
|
|
n = (inb(sc->ioaddr[FE_BMPR19]) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
|
|
irq = irqmap[n];
|
|
|
|
/* Try to determine IRQ setting. */
|
|
if (dev->id_irq == NO_IRQ && irq == NO_IRQ) {
|
|
/* The device must be configured with an explicit IRQ. */
|
|
printf("fe%d: IRQ auto-detection does not work\n",
|
|
sc->sc_unit);
|
|
return 0;
|
|
} else if (dev->id_irq == NO_IRQ && irq != NO_IRQ) {
|
|
/* Just use the probed IRQ value. */
|
|
dev->id_irq = irq;
|
|
} else if (dev->id_irq != NO_IRQ && irq == NO_IRQ) {
|
|
/* No problem. Go ahead. */
|
|
} else if (dev->id_irq == irq) {
|
|
/* Good. Go ahead. */
|
|
} else {
|
|
/* User must be warned in this case. */
|
|
sc->stability |= UNSTABLE_IRQ;
|
|
}
|
|
|
|
/* Setup a hook, which resets te 86965 when the driver is being
|
|
initialized. This may solve a nasty bug. FIXME. */
|
|
sc->init = fe_init_jli;
|
|
|
|
/* The I/O address range is fragmented in the RE1000Plus.
|
|
It occupies 2*16 I/O addresses, by the way. */
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for Contec C-NET(9N)E series.
|
|
*/
|
|
|
|
/* TODO: Should be in "if_fereg.h" */
|
|
#define FE_CNET9NE_INTR 0x10 /* Interrupt Mask? */
|
|
|
|
static void
|
|
fe_init_cnet9ne ( struct fe_softc * sc )
|
|
{
|
|
/* Enable interrupt? FIXME. */
|
|
outb(sc->ioaddr[FE_CNET9NE_INTR], 0x10);
|
|
}
|
|
|
|
static int
|
|
fe_probe_cnet9ne ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
int i;
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
static u_short ioaddr[MAXREGISTERS - 16] = {
|
|
/* 0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, */
|
|
/* 0x008, 0x009, 0x00a, 0x00b, 0x00c, 0x00d, 0x00e, 0x00f, */
|
|
0x400, 0x402, 0x404, 0x406, 0x408, 0x40a, 0x40c, 0x40e,
|
|
0x401, 0x403, 0x405, 0x407, 0x409, 0x40b, 0x40d, 0x40f,
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for C-NET(9N)E. */
|
|
if (sc->iobase != 0x73D0) return 0;
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Re-map ioaddr for C-NET(9N)E. */
|
|
for (i = 16; i < MAXREGISTERS; i++)
|
|
sc->ioaddr[i] = sc->iobase + ioaddr[i - 16];
|
|
|
|
/* See if the card is on its address. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk(sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Make sure it is Contec's. */
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x00804C)) return 0;
|
|
|
|
/* Determine the card type. */
|
|
if (sc->sc_enaddr[3] == 0x06) {
|
|
sc->typestr = "C-NET(9N)C";
|
|
|
|
/* We seems to need our own IDENT bits... FIXME. */
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
|
|
|
|
/* C-NET(9N)C requires an explicit IRQ to work. */
|
|
if (dev->id_irq == NO_IRQ) {
|
|
fe_irq_failure(sc->typestr, sc->sc_unit, NO_IRQ, NULL);
|
|
return 0;
|
|
}
|
|
} else {
|
|
sc->typestr = "C-NET(9N)E";
|
|
|
|
/* C-NET(9N)E works only IRQ5. */
|
|
if (dev->id_irq != IRQ5) {
|
|
fe_irq_failure(sc->typestr,
|
|
sc->sc_unit, dev->id_irq, "5");
|
|
return 0;
|
|
}
|
|
|
|
/* We need an init hook to initialize ASIC before we start. */
|
|
sc->init = fe_init_cnet9ne;
|
|
}
|
|
|
|
/* C-NET(9N)E has 64KB SRAM. */
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_64KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_WORD | FE_D6_SBW_WORD | FE_D6_SRAM;
|
|
|
|
/* The I/O address range is fragmented in the C-NET(9N)E.
|
|
This is the number of regs at iobase. */
|
|
return 16;
|
|
}
|
|
|
|
/*
|
|
* Probe for Contec C-NET(98)P2 series.
|
|
* (Logitec LAN-98TP/LAN-98T25P - parhaps)
|
|
*/
|
|
static int
|
|
fe_probe_ssi (struct isa_device *dev, struct fe_softc *sc)
|
|
{
|
|
u_char eeprom [SSI_EEPROM_SIZE];
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x08, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
static u_short const irqmap[] = {
|
|
/* INT0 INT1 INT2 */
|
|
NO_IRQ, NO_IRQ, NO_IRQ, IRQ3 , NO_IRQ, IRQ5 , IRQ6 , NO_IRQ,
|
|
NO_IRQ, IRQ9 , IRQ10 , NO_IRQ, IRQ12 , IRQ13 , NO_IRQ, NO_IRQ,
|
|
/* INT3 INT41 INT5 INT6 */
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for 78Q8377A. */
|
|
/* [0-D]3D0 are allowed. */
|
|
if ((sc->iobase & 0xFFF) != 0x3D0) return 0; /* XXX */
|
|
|
|
/* Fill the softc struct with default values. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* See if the card is on its address. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* We now have to read the config EEPROM. We should be very
|
|
careful, since doing so destroys a register. (Remember, we
|
|
are not yet sure we have a C-NET(98)P2 board here.) Don't
|
|
remember to select BMPRs bofore reading EEPROM, since other
|
|
register bank may be selected before the probe() is called. */
|
|
fe_read_eeprom_ssi(sc, eeprom);
|
|
|
|
/* Make sure the Ethernet (MAC) station address is of Contec's. */
|
|
if (!valid_Ether_p(eeprom+FE_SSI_EEP_ADDR, 0x00804C)) return 0;
|
|
bcopy(eeprom+FE_SSI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Setup the board type. */
|
|
sc->typestr = "C-NET(98)P2";
|
|
|
|
/* Get IRQ configuration from EEPROM. */
|
|
dev->id_irq = irqmap[eeprom[FE_SSI_EEP_IRQ]];
|
|
if (dev->id_irq == NO_IRQ) {
|
|
fe_irq_failure(sc->typestr,
|
|
sc->sc_unit, dev->id_irq, "3/5/6/9/10/12/13");
|
|
return 0;
|
|
}
|
|
|
|
/* Get Duplex-mode configuration from EEPROM. */
|
|
sc->proto_dlcr4 |= (eeprom[FE_SSI_EEP_DUPLEX] & FE_D4_DSC);
|
|
|
|
/* Fill softc struct accordingly. */
|
|
sc->mbitmap = MB_HT;
|
|
sc->defmedia = MB_HT;
|
|
|
|
/* We have 16 registers. */
|
|
return 16;
|
|
}
|
|
|
|
/*
|
|
* Probe for TDK LAC-98012/013/025/9N011 - parhaps.
|
|
*/
|
|
static int
|
|
fe_probe_lnx (struct isa_device *dev, struct fe_softc *sc)
|
|
{
|
|
#ifndef FE_8BIT_SUPPORT
|
|
printf("fe%d: skip LAC-98012/013(only 16-bit cards are supported)\n",
|
|
sc->sc_unit);
|
|
return 0;
|
|
#else
|
|
int i;
|
|
u_char eeprom [LNX_EEPROM_SIZE];
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for TDK/LANX boards. */
|
|
/* 0D0, 4D0, 8D0, and CD0 are allowed. */
|
|
if ((sc->iobase & ~0xC00) != 0xD0) return 0;
|
|
|
|
/* Fill the softc struct with default values. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Re-map ioaddr for LAC-98.
|
|
* 0x000, 0x002, 0x004, 0x006, 0x008, 0x00a, 0x00c, 0x00e,
|
|
* 0x100, 0x102, 0x104, 0x106, 0x108, 0x10a, 0x10c, 0x10e,
|
|
* 0x200, 0x202, 0x204, 0x206, 0x208, 0x20a, 0x20c, 0x20e,
|
|
* 0x300, 0x302, 0x304, 0x306, 0x308, 0x30a, 0x30c, 0x30e,
|
|
*/
|
|
for (i = 0; i < MAXREGISTERS; i++)
|
|
sc->ioaddr[i] = sc->iobase + ((i & 7) << 1) + ((i & 0x18) << 5);
|
|
|
|
/* See if the card is on its address. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* We now have to read the config EEPROM. We should be very
|
|
careful, since doing so destroys a register. (Remember, we
|
|
are not yet sure we have a LAC-98012/98013 board here.) */
|
|
fe_read_eeprom_lnx(sc, eeprom);
|
|
|
|
/* Make sure the Ethernet (MAC) station address is of TDK/LANX's. */
|
|
if (!valid_Ether_p(eeprom, 0x008098)) return 0;
|
|
bcopy(eeprom, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* Setup the board type. */
|
|
sc->typestr = "LAC-98012/98013";
|
|
|
|
/* This looks like a TDK/LANX board. It requires an
|
|
explicit IRQ setting in config. Make sure we have one,
|
|
determining an appropriate value for the IRQ control
|
|
register. */
|
|
switch (dev->id_irq) {
|
|
case IRQ3 : sc->priv_info = 0x10 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
case IRQ5 : sc->priv_info = 0x20 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
case IRQ6 : sc->priv_info = 0x40 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
case IRQ12: sc->priv_info = 0x80 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
default:
|
|
fe_irq_failure(sc->typestr,
|
|
sc->sc_unit, dev->id_irq, "3/5/6/12");
|
|
return 0;
|
|
}
|
|
|
|
/* LAC-98's system bus width is 8-bit. */
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x2KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_BYTE | FE_D6_SRAM_150ns;
|
|
|
|
/* Setup hooks. We need a special initialization procedure. */
|
|
sc->init = fe_init_lnx;
|
|
|
|
/* The I/O address range is fragmented in the LAC-98.
|
|
It occupies 16*4 I/O addresses, by the way. */
|
|
return 16;
|
|
#endif /* FE_8BIT_SUPPORT */
|
|
}
|
|
|
|
/*
|
|
* Probe for Gateway Communications' old cards.
|
|
* (both as Generic MB86960 probe routine)
|
|
*/
|
|
static int
|
|
fe_probe_gwy ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
/* { FE_DLCR2, 0x70, 0x00 }, */
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* I'm not sure which address is possible, so accepts any. FIXME. */
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Does we need to re-map ioaddr? FIXME. */
|
|
|
|
/* See if the card is on its address. */
|
|
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk( sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x000000)) return 0;
|
|
|
|
/* Determine the card type. */
|
|
sc->typestr = "Generic MB86960 Ethernet";
|
|
if (valid_Ether_p(sc->sc_enaddr, 0x000061))
|
|
sc->typestr = "Gateway Ethernet (Fujitsu chipset)";
|
|
|
|
/* Gateway's board requires an explicit IRQ to work, since it
|
|
is not possible to probe the setting of jumpers. */
|
|
if (dev->id_irq == NO_IRQ) {
|
|
fe_irq_failure(sc->typestr, sc->sc_unit, NO_IRQ, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* We should change return value when re-mapping ioaddr. FIXME. */
|
|
return 32;
|
|
}
|
|
|
|
/*
|
|
* Probe for Ungermann-Bass Access/PC N98C+(Model 85152).
|
|
*/
|
|
static int
|
|
fe_probe_ubn (struct isa_device * dev, struct fe_softc * sc)
|
|
{
|
|
u_char sum, save7;
|
|
int i;
|
|
static struct fe_simple_probe_struct const probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for Access/PC. */
|
|
/* [01][048C]D0 are allowed. */
|
|
if ((sc->iobase & ~0x1C00) != 0xD0) return 0;
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Re-map ioaddr for Access/PC N98C+.
|
|
* 0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007,
|
|
* 0x008, 0x009, 0x00a, 0x00b, 0x00c, 0x00d, 0x00e, 0x00f,
|
|
* 0x200, 0x201, 0x202, 0x203, 0x204, 0x205, 0x206, 0x207,
|
|
* 0x208, 0x209, 0x20a, 0x20b, 0x20c, 0x20d, 0x20e, 0x20f,
|
|
*/
|
|
for (i = 16; i < MAXREGISTERS; i++)
|
|
sc->ioaddr[i] = sc->iobase + 0x200 - 16 + i;
|
|
|
|
/* Simple probe. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* NOTE: Access/NOTE N98 sometimes freeze when reading station
|
|
address. In case of using it togather with C-NET(9N)C,
|
|
this problem usually happens.
|
|
Writing DLCR7 prevents freezing, but I don't know why. FIXME. */
|
|
|
|
/* Save the current value for the DLCR7 register we are about
|
|
to destroy. */
|
|
save7 = inb(sc->ioaddr[FE_DLCR7]);
|
|
outb(sc->ioaddr[FE_DLCR7],
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
|
|
|
|
/* Get our station address form ID ROM and make sure it is UBN's. */
|
|
inblk(sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x00DD01)) goto fail_ubn;
|
|
#if 1
|
|
/* Calculate checksum. */
|
|
sum = inb(sc->ioaddr[0x1e]);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
sum ^= sc->sc_enaddr[i];
|
|
}
|
|
if (sum != 0) goto fail_ubn;
|
|
#endif
|
|
/* Setup the board type. */
|
|
sc->typestr = "Access/PC";
|
|
|
|
/* This looks like an AccessPC/N98C+ board. It requires an
|
|
explicit IRQ setting in config. Make sure we have one,
|
|
determining an appropriate value for the IRQ control
|
|
register. */
|
|
switch (dev->id_irq) {
|
|
case IRQ3: sc->priv_info = 0x01; break;
|
|
case IRQ5: sc->priv_info = 0x02; break;
|
|
case IRQ6: sc->priv_info = 0x04; break;
|
|
case IRQ12: sc->priv_info = 0x08; break;
|
|
default:
|
|
fe_irq_failure(sc->typestr,
|
|
sc->sc_unit, dev->id_irq, "3/5/6/12");
|
|
goto fail_ubn;
|
|
}
|
|
|
|
/* Setup hooks. We need a special initialization procedure. */
|
|
sc->init = fe_init_ubn;
|
|
|
|
/* The I/O address range is fragmented in the Access/PC N98C+.
|
|
This is the number of regs at iobase. */
|
|
return 16;
|
|
|
|
fail_ubn:
|
|
outb(sc->ioaddr[FE_DLCR7], save7);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* REX boards(non-JLI type) support routine.
|
|
*/
|
|
|
|
#define REX_EEPROM_SIZE 32
|
|
#define REX_DAT 0x01
|
|
|
|
static void
|
|
fe_read_eeprom_rex (struct fe_softc *sc, u_char *data)
|
|
{
|
|
int i;
|
|
u_char bit, val;
|
|
u_char save16;
|
|
u_short reg16 = sc->ioaddr[0x10];
|
|
|
|
save16 = inb(reg16);
|
|
|
|
/* Issue a start condition. */
|
|
val = inb(reg16) & 0xf0;
|
|
outb(reg16, val);
|
|
|
|
(void)inb(reg16);
|
|
(void)inb(reg16);
|
|
(void)inb(reg16);
|
|
(void)inb(reg16);
|
|
|
|
/* Read bytes from EEPROM. */
|
|
for (i = 0; i < REX_EEPROM_SIZE; i++) {
|
|
/* Read a byte and store it into the buffer. */
|
|
val = 0x00;
|
|
for (bit = 0x01; bit != 0x00; bit <<= 1) {
|
|
if (inb(reg16) & REX_DAT) val |= bit;
|
|
}
|
|
*data++ = val;
|
|
}
|
|
|
|
outb(reg16, save16);
|
|
|
|
#if 1
|
|
/* Report what we got. */
|
|
if (bootverbose) {
|
|
data -= REX_EEPROM_SIZE;
|
|
for (i = 0; i < REX_EEPROM_SIZE; i += 16) {
|
|
printf("fe%d: EEPROM(REX):%3x: %16D\n",
|
|
sc->sc_unit, i, data + i, " ");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
fe_init_rex ( struct fe_softc * sc )
|
|
{
|
|
/* Setup IRQ control register on the ASIC. */
|
|
outb(sc->ioaddr[0x10], sc->priv_info);
|
|
}
|
|
|
|
/*
|
|
* Probe for RATOC REX-9880/81/82/83 series.
|
|
*/
|
|
static int
|
|
fe_probe_rex (struct isa_device * dev, struct fe_softc * sc)
|
|
{
|
|
int i;
|
|
u_char eeprom [REX_EEPROM_SIZE];
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for REX-9880. */
|
|
/* 6[46CE]D0 are allowed. */
|
|
if ((sc->iobase & ~0xA00) != 0x64D0) return 0;
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Re-map ioaddr for REX-9880. */
|
|
for (i = 16; i < MAXREGISTERS; i++)
|
|
sc->ioaddr[i] = sc->iobase + 0x100 - 16 + i;
|
|
|
|
/* See if the card is on its address. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* We now have to read the config EEPROM. We should be very
|
|
careful, since doing so destroys a register. (Remember, we
|
|
are not yet sure we have a REX-9880 board here.) */
|
|
fe_read_eeprom_rex(sc, eeprom);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
sc->sc_enaddr[i] = eeprom[7 - i];
|
|
|
|
/* Make sure it is RATOC's. */
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x00C0D0)) return 0;
|
|
|
|
/* Setup the board type. */
|
|
sc->typestr = "REX-9880/9883";
|
|
|
|
/* This looks like a REX-9880 board. It requires an
|
|
explicit IRQ setting in config. Make sure we have one,
|
|
determining an appropriate value for the IRQ control
|
|
register. */
|
|
switch (dev->id_irq) {
|
|
case IRQ3: sc->priv_info = 0x10; break;
|
|
case IRQ5: sc->priv_info = 0x20; break;
|
|
case IRQ6: sc->priv_info = 0x40; break;
|
|
case IRQ12: sc->priv_info = 0x80; break;
|
|
default:
|
|
fe_irq_failure(sc->typestr,
|
|
sc->sc_unit, dev->id_irq, "3/5/6/12");
|
|
return 0;
|
|
}
|
|
|
|
/* Setup hooks. We need a special initialization procedure. */
|
|
sc->init = fe_init_rex;
|
|
|
|
/* REX-9880 has 64KB SRAM. */
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_64KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_WORD | FE_D6_SBW_WORD | FE_D6_SRAM;
|
|
#if 1
|
|
sc->proto_dlcr7 |= FE_D7_EOPPOL; /* XXX */
|
|
#endif
|
|
/* The I/O address range is fragmented in the REX-9880.
|
|
This is the number of regs at iobase. */
|
|
return 16;
|
|
}
|
|
#else /* !PC98 */
|
|
/*
|
|
* Probe and initialization for Fujitsu FMV-180 series boards
|
|
*/
|
|
|
|
static void
|
|
fe_init_fmv (struct fe_softc *sc)
|
|
{
|
|
/* Initialize ASIC. */
|
|
outb( sc->ioaddr[ FE_FMV3 ], 0 );
|
|
outb( sc->ioaddr[ FE_FMV10 ], 0 );
|
|
|
|
#if 0
|
|
/* "Refresh" hardware configuration. FIXME. */
|
|
outb( sc->ioaddr[ FE_FMV2 ], inb( sc->ioaddr[ FE_FMV2 ] ) );
|
|
#endif
|
|
|
|
/* Turn the "master interrupt control" flag of ASIC on. */
|
|
outb( sc->ioaddr[ FE_FMV3 ], FE_FMV3_IRQENB );
|
|
}
|
|
|
|
static void
|
|
fe_msel_fmv184 (struct fe_softc *sc)
|
|
{
|
|
u_char port;
|
|
|
|
/* FMV-184 has a special "register" to switch between AUI/BNC.
|
|
Determine the value to write into the register, based on the
|
|
user-specified media selection. */
|
|
port = (IFM_SUBTYPE(sc->media.ifm_media) == IFM_10_2) ? 0x00 : 0x01;
|
|
|
|
/* The register is #5 on exntesion register bank...
|
|
(Details of the register layout is not yet discovered.) */
|
|
outb(sc->ioaddr[0x1B], 0x46); /* ??? */
|
|
outb(sc->ioaddr[0x1E], 0x04); /* select ex-reg #4. */
|
|
outb(sc->ioaddr[0x1F], 0xC8); /* ??? */
|
|
outb(sc->ioaddr[0x1E], 0x05); /* select ex-reg #5. */
|
|
outb(sc->ioaddr[0x1F], port); /* Switch the media. */
|
|
outb(sc->ioaddr[0x1E], 0x04); /* select ex-reg #4. */
|
|
outb(sc->ioaddr[0x1F], 0x00); /* ??? */
|
|
outb(sc->ioaddr[0x1B], 0x00); /* ??? */
|
|
|
|
/* Make sure to select "external tranceiver" on MB86964. */
|
|
outb(sc->ioaddr[FE_BMPR13], sc->proto_bmpr13 | FE_B13_PORT_AUI);
|
|
}
|
|
|
|
static int
|
|
fe_probe_fmv ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
int n;
|
|
|
|
static u_short const irqmap [ 4 ] =
|
|
{ IRQ3, IRQ7, IRQ10, IRQ15 };
|
|
|
|
static struct fe_simple_probe_struct const probe_table [] = {
|
|
{ FE_DLCR2, 0x71, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
|
|
{ FE_FMV0, 0x78, 0x50 }, /* ERRDY+PRRDY */
|
|
{ FE_FMV1, 0xB0, 0x00 }, /* FMV-183/4 has 0x48 bits. */
|
|
{ FE_FMV3, 0x7F, 0x00 },
|
|
|
|
{ 0 }
|
|
};
|
|
|
|
/* Board subtypes; it lists known FMV-180 variants. */
|
|
struct subtype {
|
|
u_short mcode;
|
|
u_short mbitmap;
|
|
u_short defmedia;
|
|
char const * str;
|
|
};
|
|
static struct subtype const typelist [] = {
|
|
{ 0x0005, MB_HA|MB_HT|MB_H5, MB_HA, "FMV-181" },
|
|
{ 0x0105, MB_HA|MB_HT|MB_H5, MB_HA, "FMV-181A" },
|
|
{ 0x0003, MB_HM, MB_HM, "FMV-182" },
|
|
{ 0x0103, MB_HM, MB_HM, "FMV-182A" },
|
|
{ 0x0804, MB_HT, MB_HT, "FMV-183" },
|
|
{ 0x0C04, MB_HT, MB_HT, "FMV-183 (on-board)" },
|
|
{ 0x0803, MB_H2|MB_H5, MB_H2, "FMV-184" },
|
|
{ 0, MB_HA, MB_HA, "unknown FMV-180 (?)" },
|
|
};
|
|
struct subtype const * type;
|
|
|
|
/* Media indicator and "Hardware revision ID" */
|
|
u_short mcode;
|
|
|
|
/* See if the specified address is possible for FMV-180
|
|
series. 220, 240, 260, 280, 2A0, 2C0, 300, and 340 are
|
|
allowed for all boards, and 200, 2E0, 320, 360, 380, 3A0,
|
|
3C0, and 3E0 for PnP boards. */
|
|
if ((sc->iobase & ~0x1E0) != 0x200) return 0;
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Simple probe. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* Get our station address from EEPROM, and make sure it is
|
|
Fujitsu's. */
|
|
inblk(sc, FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x00000E)) return 0;
|
|
|
|
/* Find the supported media and "hardware revision" to know
|
|
the model identification. */
|
|
mcode = (inb(sc->ioaddr[FE_FMV0]) & FE_FMV0_MEDIA)
|
|
| ((inb(sc->ioaddr[FE_FMV1]) & FE_FMV1_REV) << 8);
|
|
|
|
/* Determine the card type. */
|
|
for (type = typelist; type->mcode != 0; type++) {
|
|
if (type->mcode == mcode) break;
|
|
}
|
|
if (type->mcode == 0) {
|
|
/* Unknown card type... Hope the driver works. */
|
|
sc->stability |= UNSTABLE_TYPE;
|
|
if (bootverbose) {
|
|
printf("fe%d: unknown config: %x-%x-%x-%x\n",
|
|
sc->sc_unit,
|
|
inb(sc->ioaddr[FE_FMV0]),
|
|
inb(sc->ioaddr[FE_FMV1]),
|
|
inb(sc->ioaddr[FE_FMV2]),
|
|
inb(sc->ioaddr[FE_FMV3]));
|
|
}
|
|
}
|
|
|
|
/* Setup the board type and media information. */
|
|
sc->typestr = type->str;
|
|
sc->mbitmap = type->mbitmap;
|
|
sc->defmedia = type->defmedia;
|
|
sc->msel = fe_msel_965;
|
|
|
|
if (type->mbitmap == (MB_H2 | MB_H5)) {
|
|
/* FMV184 requires a special media selection procedure. */
|
|
sc->msel = fe_msel_fmv184;
|
|
}
|
|
|
|
/*
|
|
* An FMV-180 has been probed.
|
|
* Determine which IRQ to be used.
|
|
*
|
|
* In this version, we give a priority to the kernel config file.
|
|
* If the EEPROM and config don't match, say it to the user for
|
|
* an attention.
|
|
*/
|
|
n = ( inb( sc->ioaddr[ FE_FMV2 ] ) & FE_FMV2_IRS )
|
|
>> FE_FMV2_IRS_SHIFT;
|
|
if ( dev->id_irq == NO_IRQ ) {
|
|
/* Just use the probed value. */
|
|
dev->id_irq = irqmap[ n ];
|
|
} else if ( dev->id_irq != irqmap[ n ] ) {
|
|
/* Don't match. */
|
|
sc->stability |= UNSTABLE_IRQ;
|
|
}
|
|
|
|
/* We need an init hook to initialize ASIC before we start. */
|
|
sc->init = fe_init_fmv;
|
|
|
|
/*
|
|
* That's all. FMV-180 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
return 32;
|
|
}
|
|
|
|
/*
|
|
* Fujitsu MB86965 JLI mode probe routines.
|
|
*
|
|
* 86965 has a special operating mode called JLI (mode 0), under which
|
|
* the chip interfaces with ISA bus with a software-programmable
|
|
* configuration. (The Fujitsu document calls the feature "Plug and
|
|
* play," but it is not compatible with the ISA-PnP spec. designed by
|
|
* Intel and Microsoft.) Ethernet cards designed to use JLI are
|
|
* almost same, but there are two things which require board-specific
|
|
* probe routines: EEPROM layout and IRQ pin connection.
|
|
*
|
|
* JLI provides a handy way to access EEPROM which should contains the
|
|
* chip configuration information (such as I/O port address) as well
|
|
* as Ethernet station (MAC) address. The chip configuration info. is
|
|
* stored on a fixed location. However, the station address can be
|
|
* located anywhere in the EEPROM; it is up to the board designer to
|
|
* determine the location. (The manual just says "somewhere in the
|
|
* EEPROM.") The fe driver must somehow find out the correct
|
|
* location.
|
|
*
|
|
* Another problem resides in the IRQ pin connection. JLI provides a
|
|
* user to choose an IRQ from up to four predefined IRQs. The 86965
|
|
* chip has a register to select one out of the four possibilities.
|
|
* However, the selection is against the four IRQ pins on the chip.
|
|
* (So-called IRQ-A, -B, -C and -D.) It is (again) up to the board
|
|
* designer to determine which pin to connect which IRQ line on the
|
|
* ISA bus. We need a vendor (or model, for some vendor) specific IRQ
|
|
* mapping table.
|
|
*
|
|
* The routine fe_probe_jli() provides all probe and initialization
|
|
* processes which are common to all JLI implementation, and sub-probe
|
|
* routines supply board-specific actions.
|
|
*
|
|
* JLI sub-probe routine has the following template:
|
|
*
|
|
* u_short const * func (struct fe_softc * sc, u_char const * eeprom);
|
|
*
|
|
* where eeprom is a pointer to an array of 32 byte data read from the
|
|
* config EEPROM on the board. It retuns an IRQ mapping table for the
|
|
* board, when the corresponding implementation is detected. It
|
|
* returns a NULL otherwise.
|
|
*
|
|
* Primary purpose of the functin is to analize the config EEPROM,
|
|
* determine if it matches with the pattern of that of supported card,
|
|
* and extract necessary information from it. One of the information
|
|
* expected to be extracted from EEPROM is the Ethernet station (MAC)
|
|
* address, which must be set to the softc table of the interface by
|
|
* the board-specific routine.
|
|
*/
|
|
|
|
/* JLI sub-probe for Allied-Telesyn/Allied-Telesis AT1700/RE2000 series. */
|
|
static u_short const *
|
|
fe_probe_jli_ati (struct fe_softc * sc, u_char const * eeprom)
|
|
{
|
|
int i;
|
|
static u_short const irqmaps_ati [4][4] =
|
|
{
|
|
{ IRQ3, IRQ4, IRQ5, IRQ9 },
|
|
{ IRQ10, IRQ11, IRQ12, IRQ15 },
|
|
{ IRQ3, IRQ11, IRQ5, IRQ15 },
|
|
{ IRQ10, IRQ11, IRQ14, IRQ15 },
|
|
};
|
|
|
|
/* Make sure the EEPROM contains Allied-Telesis/Allied-Telesyn
|
|
bit pattern. */
|
|
if (eeprom[1] != 0x00) return NULL;
|
|
for (i = 2; i < 8; i++) if (eeprom[i] != 0xFF) return NULL;
|
|
for (i = 14; i < 24; i++) if (eeprom[i] != 0xFF) return NULL;
|
|
|
|
/* Get our station address from EEPROM, and make sure the
|
|
EEPROM contains ATI's address. */
|
|
bcopy(eeprom+8, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x0000F4)) return NULL;
|
|
|
|
/*
|
|
* The following model identification codes are stolen
|
|
* from the NetBSD port of the fe driver. My reviewers
|
|
* suggested minor revision.
|
|
*/
|
|
|
|
/* Determine the card type. */
|
|
switch (eeprom[FE_ATI_EEP_MODEL]) {
|
|
case FE_ATI_MODEL_AT1700T:
|
|
sc->typestr = "AT-1700T/RE2001";
|
|
sc->mbitmap = MB_HT;
|
|
sc->defmedia = MB_HT;
|
|
break;
|
|
case FE_ATI_MODEL_AT1700BT:
|
|
sc->typestr = "AT-1700BT/RE2003";
|
|
sc->mbitmap = MB_HA | MB_HT | MB_H2;
|
|
break;
|
|
case FE_ATI_MODEL_AT1700FT:
|
|
sc->typestr = "AT-1700FT/RE2009";
|
|
sc->mbitmap = MB_HA | MB_HT | MB_HF;
|
|
break;
|
|
case FE_ATI_MODEL_AT1700AT:
|
|
sc->typestr = "AT-1700AT/RE2005";
|
|
sc->mbitmap = MB_HA | MB_HT | MB_H5;
|
|
break;
|
|
default:
|
|
sc->typestr = "unknown AT-1700/RE2000";
|
|
sc->stability |= UNSTABLE_TYPE | UNSTABLE_IRQ;
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
/* Should we extract default media from eeprom? Linux driver
|
|
for AT1700 does it, although previous releases of FreeBSD
|
|
don't. FIXME. */
|
|
/* Determine the default media selection from the config
|
|
EEPROM. The byte at offset EEP_MEDIA is believed to
|
|
contain BMPR13 value to be set. We just ignore STP bit or
|
|
squelch bit, since we don't support those. (It is
|
|
intentional.) */
|
|
switch (eeprom[FE_ATI_EEP_MEDIA] & FE_B13_PORT) {
|
|
case FE_B13_AUTO:
|
|
sc->defmedia = MB_HA;
|
|
break;
|
|
case FE_B13_TP:
|
|
sc->defmedia = MB_HT;
|
|
break;
|
|
case FE_B13_AUI:
|
|
sc->defmedia = sc->mbitmap & (MB_H2|MB_H5|MB_H5); /*XXX*/
|
|
break;
|
|
default:
|
|
sc->defmedia = MB_HA;
|
|
break;
|
|
}
|
|
|
|
/* Make sure the default media is compatible with the supported
|
|
ones. */
|
|
if ((sc->defmedia & sc->mbitmap) == 0) {
|
|
if (sc->defmedia == MB_HA) {
|
|
sc->defmedia = MB_HT;
|
|
} else {
|
|
sc->defmedia = MB_HA;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Try to determine IRQ settings.
|
|
* Different models use different ranges of IRQs.
|
|
*/
|
|
switch ((eeprom[FE_ATI_EEP_REVISION] & 0xf0)
|
|
|(eeprom[FE_ATI_EEP_MAGIC] & 0x04)) {
|
|
case 0x30: case 0x34: return irqmaps_ati[3];
|
|
case 0x10: case 0x14:
|
|
case 0x50: case 0x54: return irqmaps_ati[2];
|
|
case 0x44: case 0x64: return irqmaps_ati[1];
|
|
default: return irqmaps_ati[0];
|
|
}
|
|
}
|
|
|
|
/* JLI sub-probe and msel hook for ICL Ethernet. */
|
|
|
|
static void
|
|
fe_msel_icl (struct fe_softc *sc)
|
|
{
|
|
u_char d4;
|
|
|
|
/* Switch between UTP and "external tranceiver" as always. */
|
|
fe_msel_965(sc);
|
|
|
|
/* The board needs one more bit (on DLCR4) be set appropriately. */
|
|
if (IFM_SUBTYPE(sc->media.ifm_media) == IFM_10_5) {
|
|
d4 = sc->proto_dlcr4 | FE_D4_CNTRL;
|
|
} else {
|
|
d4 = sc->proto_dlcr4 & ~FE_D4_CNTRL;
|
|
}
|
|
outb(sc->ioaddr[FE_DLCR4], d4);
|
|
}
|
|
|
|
static u_short const *
|
|
fe_probe_jli_icl (struct fe_softc * sc, u_char const * eeprom)
|
|
{
|
|
int i;
|
|
u_short defmedia;
|
|
u_char d6;
|
|
static u_short const irqmap_icl [4] = { IRQ9, IRQ10, IRQ5, IRQ15 };
|
|
|
|
/* Make sure the EEPROM contains ICL bit pattern. */
|
|
for (i = 24; i < 39; i++) {
|
|
if (eeprom[i] != 0x20 && (eeprom[i] & 0xF0) != 0x30) return NULL;
|
|
}
|
|
for (i = 112; i < 122; i++) {
|
|
if (eeprom[i] != 0x20 && (eeprom[i] & 0xF0) != 0x30) return NULL;
|
|
}
|
|
|
|
/* Make sure the EEPROM contains ICL's permanent station
|
|
address. If it isn't, probably this board is not an
|
|
ICL's. */
|
|
if (!valid_Ether_p(eeprom+122, 0x00004B)) return NULL;
|
|
|
|
/* Check if the "configured" Ethernet address in the EEPROM is
|
|
valid. Use it if it is, or use the "permanent" address instead. */
|
|
if (valid_Ether_p(eeprom+4, 0x020000)) {
|
|
/* The configured address is valid. Use it. */
|
|
bcopy(eeprom+4, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
} else {
|
|
/* The configured address is invalid. Use permanent. */
|
|
bcopy(eeprom+122, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
}
|
|
|
|
/* Determine model and supported media. */
|
|
switch (eeprom[0x5E]) {
|
|
case 0:
|
|
sc->typestr = "EtherTeam16i/COMBO";
|
|
sc->mbitmap = MB_HA | MB_HT | MB_H5 | MB_H2;
|
|
break;
|
|
case 1:
|
|
sc->typestr = "EtherTeam16i/TP";
|
|
sc->mbitmap = MB_HT;
|
|
break;
|
|
case 2:
|
|
sc->typestr = "EtherTeam16i/ErgoPro";
|
|
sc->mbitmap = MB_HA | MB_HT | MB_H5;
|
|
break;
|
|
case 4:
|
|
sc->typestr = "EtherTeam16i/DUO";
|
|
sc->mbitmap = MB_HA | MB_HT | MB_H2;
|
|
break;
|
|
default:
|
|
sc->typestr = "EtherTeam16i";
|
|
sc->stability |= UNSTABLE_TYPE;
|
|
if (bootverbose) {
|
|
printf("fe%d: unknown model code %02x for EtherTeam16i\n",
|
|
sc->sc_unit, eeprom[0x5E]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* I'm not sure the following msel hook is required by all
|
|
models or COMBO only... FIXME. */
|
|
sc->msel = fe_msel_icl;
|
|
|
|
/* Make the configured media selection the default media. */
|
|
switch (eeprom[0x28]) {
|
|
case 0: defmedia = MB_HA; break;
|
|
case 1: defmedia = MB_H5; break;
|
|
case 2: defmedia = MB_HT; break;
|
|
case 3: defmedia = MB_H2; break;
|
|
default:
|
|
if (bootverbose) {
|
|
printf("fe%d: unknown default media: %02x\n",
|
|
sc->sc_unit, eeprom[0x28]);
|
|
}
|
|
defmedia = MB_HA;
|
|
break;
|
|
}
|
|
|
|
/* Make sure the default media is compatible with the
|
|
supported media. */
|
|
if ((defmedia & sc->mbitmap) == 0) {
|
|
if (bootverbose) {
|
|
printf("fe%d: default media adjusted\n", sc->sc_unit);
|
|
}
|
|
defmedia = sc->mbitmap;
|
|
}
|
|
|
|
/* Keep the determined default media. */
|
|
sc->defmedia = defmedia;
|
|
|
|
/* ICL has "fat" models. We have to program 86965 to properly
|
|
reflect the hardware. */
|
|
d6 = sc->proto_dlcr6 & ~(FE_D6_BUFSIZ | FE_D6_BBW);
|
|
switch ((eeprom[0x61] << 8) | eeprom[0x60]) {
|
|
case 0x2008: d6 |= FE_D6_BUFSIZ_32KB | FE_D6_BBW_BYTE; break;
|
|
case 0x4010: d6 |= FE_D6_BUFSIZ_64KB | FE_D6_BBW_WORD; break;
|
|
default:
|
|
/* We can't support it, since we don't know which bits
|
|
to set in DLCR6. */
|
|
printf("fe%d: unknown SRAM config for ICL\n", sc->sc_unit);
|
|
return NULL;
|
|
}
|
|
sc->proto_dlcr6 = d6;
|
|
|
|
/* Returns the IRQ table for the ICL board. */
|
|
return irqmap_icl;
|
|
}
|
|
|
|
/* JLI sub-probe for RATOC REX-5586/5587. */
|
|
static u_short const *
|
|
fe_probe_jli_rex (struct fe_softc * sc, u_char const * eeprom)
|
|
{
|
|
int i;
|
|
static u_short const irqmap_rex [4] = { IRQ3, IRQ4, IRQ5, NO_IRQ };
|
|
|
|
/* Make sure the EEPROM contains RATOC's config pattern. */
|
|
if (eeprom[1] != eeprom[0]) return NULL;
|
|
for (i = 8; i < 32; i++) if (eeprom[i] != 0xFF) return NULL;
|
|
|
|
/* Get our station address from EEPROM. Note that RATOC
|
|
stores it "byte-swapped" in each word. (I don't know why.)
|
|
So, we just can't use bcopy().*/
|
|
sc->sc_enaddr[0] = eeprom[3];
|
|
sc->sc_enaddr[1] = eeprom[2];
|
|
sc->sc_enaddr[2] = eeprom[5];
|
|
sc->sc_enaddr[3] = eeprom[4];
|
|
sc->sc_enaddr[4] = eeprom[7];
|
|
sc->sc_enaddr[5] = eeprom[6];
|
|
|
|
/* Make sure the EEPROM contains RATOC's station address. */
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x00C0D0)) return NULL;
|
|
|
|
/* I don't know any sub-model identification. */
|
|
sc->typestr = "REX-5586/5587";
|
|
|
|
/* Returns the IRQ for the RATOC board. */
|
|
return irqmap_rex;
|
|
}
|
|
|
|
/* JLI sub-probe for Unknown board. */
|
|
static u_short const *
|
|
fe_probe_jli_unk (struct fe_softc * sc, u_char const * eeprom)
|
|
{
|
|
int i, n, romsize;
|
|
static u_short const irqmap [4] = { NO_IRQ, NO_IRQ, NO_IRQ, NO_IRQ };
|
|
|
|
/* The generic JLI probe considered this board has an 86965
|
|
in JLI mode, but any other board-specific routines could
|
|
not find the matching implementation. So, we "guess" the
|
|
location by looking for a bit pattern which looks like a
|
|
MAC address. */
|
|
|
|
/* Determine how large the EEPROM is. */
|
|
for (romsize = JLI_EEPROM_SIZE/2; romsize > 16; romsize >>= 1) {
|
|
for (i = 0; i < romsize; i++) {
|
|
if (eeprom[i] != eeprom[i+romsize]) break;
|
|
}
|
|
if (i < romsize) break;
|
|
}
|
|
romsize <<= 1;
|
|
|
|
/* Look for a bit pattern which looks like a MAC address. */
|
|
for (n = 2; n <= romsize - ETHER_ADDR_LEN; n += 2) {
|
|
if (!valid_Ether_p(eeprom + n, 0x000000)) continue;
|
|
}
|
|
|
|
/* If no reasonable address was found, we can't go further. */
|
|
if (n > romsize - ETHER_ADDR_LEN) return NULL;
|
|
|
|
/* Extract our (guessed) station address. */
|
|
bcopy(eeprom+n, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* We are not sure what type of board it is... */
|
|
sc->typestr = "(unknown JLI)";
|
|
sc->stability |= UNSTABLE_TYPE | UNSTABLE_MAC;
|
|
|
|
/* Returns the totally unknown IRQ mapping table. */
|
|
return irqmap;
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for all JLI implementations.
|
|
*/
|
|
|
|
static int
|
|
fe_probe_jli (struct isa_device * dev, struct fe_softc * sc)
|
|
{
|
|
int i, n;
|
|
int irq;
|
|
u_char eeprom [JLI_EEPROM_SIZE];
|
|
u_short const * irqmap;
|
|
|
|
static u_short const baseaddr [8] =
|
|
{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
|
|
static struct fe_simple_probe_struct const probe_table [] = {
|
|
{ FE_DLCR1, 0x20, 0x00 },
|
|
{ FE_DLCR2, 0x50, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ FE_DLCR5, 0x80, 0x00 },
|
|
#if 0
|
|
{ FE_BMPR16, 0x1B, 0x00 },
|
|
{ FE_BMPR17, 0x7F, 0x00 },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* See if the specified address is possible for MB86965A JLI mode.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (baseaddr[i] == sc->iobase) break;
|
|
}
|
|
if (i == 8) return 0;
|
|
|
|
/* Fill the softc struct with reasonable default. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/*
|
|
* We should test if MB86965A is on the base address now.
|
|
* Unfortunately, it is very hard to probe it reliably, since
|
|
* we have no way to reset the chip under software control.
|
|
* On cold boot, we could check the "signature" bit patterns
|
|
* described in the Fujitsu document. On warm boot, however,
|
|
* we can predict almost nothing about register values.
|
|
*/
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* Check if our I/O address matches config info on 86965. */
|
|
n = (inb(sc->ioaddr[FE_BMPR19]) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
|
|
if (baseaddr[n] != sc->iobase) return 0;
|
|
|
|
/*
|
|
* We are now almost sure we have an MB86965 at the given
|
|
* address. So, read EEPROM through it. We have to write
|
|
* into LSI registers to read from EEPROM. I want to avoid it
|
|
* at this stage, but I cannot test the presence of the chip
|
|
* any further without reading EEPROM. FIXME.
|
|
*/
|
|
fe_read_eeprom_jli(sc, eeprom);
|
|
|
|
/* Make sure that config info in EEPROM and 86965 agree. */
|
|
if (eeprom[FE_EEPROM_CONF] != inb(sc->ioaddr[FE_BMPR19])) {
|
|
return 0;
|
|
}
|
|
|
|
/* Use 86965 media selection scheme, unless othewise
|
|
specified. It is "AUTO always" and "select with BMPR13."
|
|
This behaviour covers most of the 86965 based board (as
|
|
minimum requirements.) It is backward compatible with
|
|
previous versions, also. */
|
|
sc->mbitmap = MB_HA;
|
|
sc->defmedia = MB_HA;
|
|
sc->msel = fe_msel_965;
|
|
|
|
/* Perform board-specific probe, one by one. Note that the
|
|
order of probe is important and should not be changed
|
|
arbitrarily. */
|
|
if ((irqmap = fe_probe_jli_ati(sc, eeprom)) == NULL
|
|
&& (irqmap = fe_probe_jli_rex(sc, eeprom)) == NULL
|
|
&& (irqmap = fe_probe_jli_icl(sc, eeprom)) == NULL
|
|
&& (irqmap = fe_probe_jli_unk(sc, eeprom)) == NULL) return 0;
|
|
|
|
/* Find the IRQ read from EEPROM. */
|
|
n = (inb(sc->ioaddr[FE_BMPR19]) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
|
|
irq = irqmap[n];
|
|
|
|
/* Try to determine IRQ setting. */
|
|
if (dev->id_irq == NO_IRQ && irq == NO_IRQ) {
|
|
/* The device must be configured with an explicit IRQ. */
|
|
printf("fe%d: IRQ auto-detection does not work\n",
|
|
sc->sc_unit);
|
|
return 0;
|
|
} else if (dev->id_irq == NO_IRQ && irq != NO_IRQ) {
|
|
/* Just use the probed IRQ value. */
|
|
dev->id_irq = irq;
|
|
} else if (dev->id_irq != NO_IRQ && irq == NO_IRQ) {
|
|
/* No problem. Go ahead. */
|
|
} else if (dev->id_irq == irq) {
|
|
/* Good. Go ahead. */
|
|
} else {
|
|
/* User must be warned in this case. */
|
|
sc->stability |= UNSTABLE_IRQ;
|
|
}
|
|
|
|
/* Setup a hook, which resets te 86965 when the driver is being
|
|
initialized. This may solve a nasty bug. FIXME. */
|
|
sc->init = fe_init_jli;
|
|
|
|
/*
|
|
* That's all. 86965 JLI occupies 32 I/O addresses, by the way.
|
|
*/
|
|
return 32;
|
|
}
|
|
|
|
/* Probe for TDK LAK-AX031, which is an SSi 78Q8377A based board. */
|
|
|
|
static int
|
|
fe_probe_ssi (struct isa_device *dev, struct fe_softc *sc)
|
|
{
|
|
u_char eeprom [SSI_EEPROM_SIZE];
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x08, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for 78Q8377A. */
|
|
if ((sc->iobase & ~0x3F0) != 0x000) return 0;
|
|
|
|
/* Fill the softc struct with default values. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* See if the card is on its address. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* We now have to read the config EEPROM. We should be very
|
|
careful, since doing so destroys a register. (Remember, we
|
|
are not yet sure we have a LAK-AX031 board here.) Don't
|
|
remember to select BMPRs bofore reading EEPROM, since other
|
|
register bank may be selected before the probe() is called. */
|
|
fe_read_eeprom_ssi(sc, eeprom);
|
|
|
|
/* Make sure the Ethernet (MAC) station address is of TDK's. */
|
|
if (!valid_Ether_p(eeprom+FE_SSI_EEP_ADDR, 0x008098)) return 0;
|
|
bcopy(eeprom+FE_SSI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* This looks like a TDK-AX031 board. It requires an explicit
|
|
IRQ setting in config, since we currently don't know how we
|
|
can find the IRQ value assigned by ISA PnP manager. */
|
|
if (dev->id_irq == NO_IRQ) {
|
|
fe_irq_failure("LAK-AX031", sc->sc_unit, dev->id_irq, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* Fill softc struct accordingly. */
|
|
sc->typestr = "LAK-AX031";
|
|
sc->mbitmap = MB_HT;
|
|
sc->defmedia = MB_HT;
|
|
|
|
/* We have 16 registers. */
|
|
return 16;
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for TDK/LANX LAC-AX012/013 boards.
|
|
*/
|
|
static int
|
|
fe_probe_lnx (struct isa_device *dev, struct fe_softc *sc)
|
|
{
|
|
u_char eeprom [LNX_EEPROM_SIZE];
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for TDK/LANX boards. */
|
|
/* 300, 320, 340, and 360 are allowed. */
|
|
if ((sc->iobase & ~0x060) != 0x300) return 0;
|
|
|
|
/* Fill the softc struct with default values. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* See if the card is on its address. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* We now have to read the config EEPROM. We should be very
|
|
careful, since doing so destroys a register. (Remember, we
|
|
are not yet sure we have a LAC-AX012/AX013 board here.) */
|
|
fe_read_eeprom_lnx(sc, eeprom);
|
|
|
|
/* Make sure the Ethernet (MAC) station address is of TDK/LANX's. */
|
|
if (!valid_Ether_p(eeprom, 0x008098)) return 0;
|
|
bcopy(eeprom, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
|
|
/* This looks like a TDK/LANX board. It requires an
|
|
explicit IRQ setting in config. Make sure we have one,
|
|
determining an appropriate value for the IRQ control
|
|
register. */
|
|
switch (dev->id_irq) {
|
|
case IRQ3: sc->priv_info = 0x40 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
case IRQ4: sc->priv_info = 0x20 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
case IRQ5: sc->priv_info = 0x10 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
case IRQ9: sc->priv_info = 0x80 | LNX_CLK_LO | LNX_SDA_HI; break;
|
|
default:
|
|
fe_irq_failure("LAC-AX012/AX013",
|
|
sc->sc_unit, dev->id_irq, "3/4/5/9");
|
|
return 0;
|
|
}
|
|
|
|
/* Fill softc struct accordingly. */
|
|
sc->typestr = "LAC-AX012/AX013";
|
|
sc->init = fe_init_lnx;
|
|
|
|
/* We have 32 registers. */
|
|
return 32;
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for Gateway Communications' old cards.
|
|
*/
|
|
static int
|
|
fe_probe_gwy ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
/* { FE_DLCR2, 0x70, 0x00 }, */
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for Gateway boards. */
|
|
if ((sc->iobase & ~0x1E0) != 0x200) return 0;
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* See if the card is on its address. */
|
|
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk( sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
/* Make sure it is Gateway Communication's. */
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x000061)) return 0;
|
|
|
|
/* Gateway's board requires an explicit IRQ to work, since it
|
|
is not possible to probe the setting of jumpers. */
|
|
if (dev->id_irq == NO_IRQ) {
|
|
fe_irq_failure("Gateway Ethernet", sc->sc_unit, NO_IRQ, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* Fill softc struct accordingly. */
|
|
sc->typestr = "Gateway Ethernet (Fujitsu chipset)";
|
|
|
|
/* That's all. The card occupies 32 I/O addresses, as always. */
|
|
return 32;
|
|
}
|
|
|
|
/* Probe and initialization for Ungermann-Bass Network
|
|
K.K. "Access/PC" boards. */
|
|
static int
|
|
fe_probe_ubn (struct isa_device * dev, struct fe_softc * sc)
|
|
{
|
|
#if 0
|
|
u_char sum;
|
|
#endif
|
|
static struct fe_simple_probe_struct const probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ 0 }
|
|
};
|
|
|
|
/* See if the specified I/O address is possible for AccessPC/ISA. */
|
|
if ((sc->iobase & ~0x0E0) != 0x300) return 0;
|
|
|
|
/* Setup an I/O address mapping table and some others. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/* Simple probe. */
|
|
if (!fe_simple_probe(sc, probe_table)) return 0;
|
|
|
|
/* Get our station address form ID ROM and make sure it is UBN's. */
|
|
inblk(sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0x00DD01)) return 0;
|
|
#if 0
|
|
/* Calculate checksum. */
|
|
sum = inb(sc->ioaddr[0x1e]);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
sum ^= sc->sc_enaddr[i];
|
|
}
|
|
if (sum != 0) return 0;
|
|
#endif
|
|
/* This looks like an AccessPC/ISA board. It requires an
|
|
explicit IRQ setting in config. Make sure we have one,
|
|
determining an appropriate value for the IRQ control
|
|
register. */
|
|
switch (dev->id_irq) {
|
|
case IRQ3: sc->priv_info = 0x02; break;
|
|
case IRQ4: sc->priv_info = 0x04; break;
|
|
case IRQ5: sc->priv_info = 0x08; break;
|
|
case IRQ10: sc->priv_info = 0x10; break;
|
|
default:
|
|
fe_irq_failure("Access/PC",
|
|
sc->sc_unit, dev->id_irq, "3/4/5/10");
|
|
return 0;
|
|
}
|
|
|
|
/* Fill softc struct accordingly. */
|
|
sc->typestr = "Access/PC";
|
|
sc->init = fe_init_ubn;
|
|
|
|
/* We have 32 registers. */
|
|
return 32;
|
|
}
|
|
#endif /* PC98 */
|
|
|
|
#if NCARD > 0
|
|
/*
|
|
* Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
|
|
* Note that this is for 10302 only; MBH10304 is handled by fe_probe_tdk().
|
|
*/
|
|
|
|
static void
|
|
fe_init_mbh ( struct fe_softc * sc )
|
|
{
|
|
/* Minimal initialization of 86960. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Disable all interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
|
|
|
|
/* Enable master interrupt flag. */
|
|
outb( sc->ioaddr[ FE_MBH0 ], FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE );
|
|
}
|
|
|
|
static int
|
|
fe_probe_mbh ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x58, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ FE_DLCR6, 0xFF, 0xB6 },
|
|
{ 0 }
|
|
};
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* We need an explicit IRQ. */
|
|
if (dev->id_irq == NO_IRQ) return 0;
|
|
#endif
|
|
|
|
/* Ethernet MAC address should *NOT* have been given by pccardd,
|
|
if this is a true MBH10302; i.e., Ethernet address must be
|
|
"all-zero" upon entry. */
|
|
if (sc->sc_enaddr[0] || sc->sc_enaddr[1] || sc->sc_enaddr[2] ||
|
|
sc->sc_enaddr[3] || sc->sc_enaddr[4] || sc->sc_enaddr[5]) {
|
|
return 0;
|
|
}
|
|
|
|
/* Fill the softc struct with default values. */
|
|
fe_softc_defaults(sc);
|
|
|
|
/*
|
|
* See if MBH10302 is on its address.
|
|
* I'm not sure the following probe code works. FIXME.
|
|
*/
|
|
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk( sc, FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
/* Make sure we got a valid station address. */
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0)) return 0;
|
|
|
|
/* Determine the card type. */
|
|
sc->typestr = "MBH10302 (PCMCIA)";
|
|
|
|
/* We seems to need our own IDENT bits... FIXME. */
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
|
|
|
|
/* Setup hooks. We need a special initialization procedure. */
|
|
sc->init = fe_init_mbh;
|
|
|
|
/*
|
|
* That's all. MBH10302 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
return 32;
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for TDK/CONTEC PCMCIA Ethernet interface.
|
|
* by MASUI Kenji <masui@cs.titech.ac.jp>
|
|
*
|
|
* (Contec uses TDK Ethenet chip -- hosokawa)
|
|
*
|
|
* This version of fe_probe_tdk has been rewrote to handle
|
|
* *generic* PC card implementation of Fujitsu MB8696x family. The
|
|
* name _tdk is just for a historical reason. :-)
|
|
*/
|
|
static int
|
|
fe_probe_tdk ( struct isa_device * dev, struct fe_softc * sc )
|
|
{
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x50, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
/* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
|
|
{ 0 }
|
|
};
|
|
|
|
if ( dev->id_irq == NO_IRQ ) {
|
|
return ( 0 );
|
|
}
|
|
|
|
fe_softc_defaults(sc);
|
|
|
|
/*
|
|
* See if C-NET(PC)C is on its address.
|
|
*/
|
|
|
|
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
|
|
|
|
/* Determine the card type. */
|
|
sc->typestr = "Generic MB8696x/78Q837x Ethernet (PCMCIA)";
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* Make sure we got a valid station address. */
|
|
if (!valid_Ether_p(sc->sc_enaddr, 0)) return 0;
|
|
|
|
/*
|
|
* That's all. C-NET(PC)C occupies 16 I/O addresses.
|
|
* XXX: Are there any card with 32 I/O addresses? FIXME.
|
|
*/
|
|
return 16;
|
|
}
|
|
#endif /* NCARD > 0 */
|
|
|
|
/*
|
|
* Install interface into kernel networking data structures
|
|
*/
|
|
static int
|
|
fe_attach ( struct isa_device * dev )
|
|
{
|
|
#if NCARD > 0
|
|
static int already_ifattach[NFE];
|
|
#endif
|
|
struct fe_softc *sc = &fe_softc[dev->id_unit];
|
|
int b;
|
|
|
|
dev->id_ointr = feintr;
|
|
|
|
/*
|
|
* Initialize ifnet structure
|
|
*/
|
|
sc->sc_if.if_softc = sc;
|
|
sc->sc_if.if_unit = sc->sc_unit;
|
|
sc->sc_if.if_name = "fe";
|
|
sc->sc_if.if_output = ether_output;
|
|
sc->sc_if.if_start = fe_start;
|
|
sc->sc_if.if_ioctl = fe_ioctl;
|
|
sc->sc_if.if_watchdog = fe_watchdog;
|
|
sc->sc_if.if_init = fe_init;
|
|
sc->sc_if.if_linkmib = &sc->mibdata;
|
|
sc->sc_if.if_linkmiblen = sizeof (sc->mibdata);
|
|
|
|
#if 0 /* I'm not sure... */
|
|
sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
|
|
#endif
|
|
|
|
/*
|
|
* Set fixed interface flags.
|
|
*/
|
|
sc->sc_if.if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
|
|
#if 1
|
|
/*
|
|
* Set maximum size of output queue, if it has not been set.
|
|
* It is done here as this driver may be started after the
|
|
* system initialization (i.e., the interface is PCMCIA.)
|
|
*
|
|
* I'm not sure this is really necessary, but, even if it is,
|
|
* it should be done somewhere else, e.g., in if_attach(),
|
|
* since it must be a common workaround for all network drivers.
|
|
* FIXME.
|
|
*/
|
|
if ( sc->sc_if.if_snd.ifq_maxlen == 0 ) {
|
|
sc->sc_if.if_snd.ifq_maxlen = ifqmaxlen;
|
|
}
|
|
#endif
|
|
|
|
#if FE_SINGLE_TRANSMISSION
|
|
/* Override txb config to allocate minimum. */
|
|
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
|
|
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
|
|
#endif
|
|
|
|
/* Modify hardware config if it is requested. */
|
|
if ( dev->id_flags & FE_FLAGS_OVERRIDE_DLCR6 ) {
|
|
sc->proto_dlcr6 = dev->id_flags & FE_FLAGS_DLCR6_VALUE;
|
|
}
|
|
|
|
/* Find TX buffer size, based on the hardware dependent proto. */
|
|
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
|
|
case FE_D6_TXBSIZ_2x2KB: sc->txb_size = 2048; break;
|
|
case FE_D6_TXBSIZ_2x4KB: sc->txb_size = 4096; break;
|
|
case FE_D6_TXBSIZ_2x8KB: sc->txb_size = 8192; break;
|
|
default:
|
|
/* Oops, we can't work with single buffer configuration. */
|
|
if (bootverbose) {
|
|
printf("fe%d: strange TXBSIZ config; fixing\n",
|
|
sc->sc_unit);
|
|
}
|
|
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
|
|
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
|
|
sc->txb_size = 2048;
|
|
break;
|
|
}
|
|
|
|
/* Initialize the if_media interface. */
|
|
ifmedia_init(&sc->media, 0, fe_medchange, fe_medstat );
|
|
for (b = 0; bit2media[b] != 0; b++) {
|
|
if (sc->mbitmap & (1 << b)) {
|
|
ifmedia_add(&sc->media, bit2media[b], 0, NULL);
|
|
}
|
|
}
|
|
for (b = 0; bit2media[b] != 0; b++) {
|
|
if (sc->defmedia & (1 << b)) {
|
|
ifmedia_set(&sc->media, bit2media[b]);
|
|
break;
|
|
}
|
|
}
|
|
#if 0 /* Turned off; this is called later, when the interface UPs. */
|
|
fe_medchange(sc);
|
|
#endif
|
|
|
|
/* Attach and stop the interface. */
|
|
#if NCARD > 0
|
|
if (already_ifattach[dev->id_unit] != 1) {
|
|
if_attach(&sc->sc_if);
|
|
already_ifattach[dev->id_unit] = 1;
|
|
}
|
|
#else
|
|
if_attach(&sc->sc_if);
|
|
#endif
|
|
fe_stop(sc);
|
|
ether_ifattach(&sc->sc_if);
|
|
|
|
/* Print additional info when attached. */
|
|
printf("fe%d: address %6D, type %s%s\n", sc->sc_unit,
|
|
sc->sc_enaddr, ":" , sc->typestr,
|
|
(sc->proto_dlcr4 & FE_D4_DSC) ? ", full duplex" : "");
|
|
if (bootverbose) {
|
|
int buf, txb, bbw, sbw, ram;
|
|
|
|
buf = txb = bbw = sbw = ram = -1;
|
|
switch ( sc->proto_dlcr6 & FE_D6_BUFSIZ ) {
|
|
case FE_D6_BUFSIZ_8KB: buf = 8; break;
|
|
case FE_D6_BUFSIZ_16KB: buf = 16; break;
|
|
case FE_D6_BUFSIZ_32KB: buf = 32; break;
|
|
case FE_D6_BUFSIZ_64KB: buf = 64; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
|
|
case FE_D6_TXBSIZ_2x2KB: txb = 2; break;
|
|
case FE_D6_TXBSIZ_2x4KB: txb = 4; break;
|
|
case FE_D6_TXBSIZ_2x8KB: txb = 8; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_BBW ) {
|
|
case FE_D6_BBW_BYTE: bbw = 8; break;
|
|
case FE_D6_BBW_WORD: bbw = 16; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_SBW ) {
|
|
case FE_D6_SBW_BYTE: sbw = 8; break;
|
|
case FE_D6_SBW_WORD: sbw = 16; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_SRAM ) {
|
|
case FE_D6_SRAM_100ns: ram = 100; break;
|
|
case FE_D6_SRAM_150ns: ram = 150; break;
|
|
}
|
|
printf("fe%d: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
|
|
sc->sc_unit, buf, bbw, ram, txb, sbw);
|
|
}
|
|
if (sc->stability & UNSTABLE_IRQ) {
|
|
printf("fe%d: warning: IRQ number may be incorrect\n",
|
|
sc->sc_unit);
|
|
}
|
|
if (sc->stability & UNSTABLE_MAC) {
|
|
printf("fe%d: warning: above MAC address may be incorrect\n",
|
|
sc->sc_unit);
|
|
}
|
|
if (sc->stability & UNSTABLE_TYPE) {
|
|
printf("fe%d: warning: hardware type was not validated\n",
|
|
sc->sc_unit);
|
|
}
|
|
|
|
/* If BPF is in the kernel, call the attach for it. */
|
|
bpfattach(&sc->sc_if, DLT_EN10MB, sizeof(struct ether_header));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Reset interface, after some (hardware) trouble is deteced.
|
|
*/
|
|
static void
|
|
fe_reset (struct fe_softc *sc)
|
|
{
|
|
/* Record how many packets are lost by this accident. */
|
|
sc->sc_if.if_oerrors += sc->txb_sched + sc->txb_count;
|
|
sc->mibdata.dot3StatsInternalMacTransmitErrors++;
|
|
|
|
/* Put the interface into known initial state. */
|
|
fe_stop(sc);
|
|
if (sc->sc_if.if_flags & IFF_UP) fe_init(sc);
|
|
}
|
|
|
|
/*
|
|
* Stop everything on the interface.
|
|
*
|
|
* All buffered packets, both transmitting and receiving,
|
|
* if any, will be lost by stopping the interface.
|
|
*/
|
|
static void
|
|
fe_stop (struct fe_softc *sc)
|
|
{
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
/* Disable interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0x00 );
|
|
|
|
/* Stop interface hardware. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Clear all interrupt status. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF );
|
|
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF );
|
|
|
|
/* Put the chip in stand-by mode. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR7 ], sc->proto_dlcr7 | FE_D7_POWER_DOWN );
|
|
DELAY( 200 );
|
|
|
|
/* Reset transmitter variables and interface flags. */
|
|
sc->sc_if.if_flags &= ~( IFF_OACTIVE | IFF_RUNNING );
|
|
sc->sc_if.if_timer = 0;
|
|
sc->txb_free = sc->txb_size;
|
|
sc->txb_count = 0;
|
|
sc->txb_sched = 0;
|
|
|
|
/* MAR loading can be delayed. */
|
|
sc->filter_change = 0;
|
|
|
|
/* Call a device-specific hook. */
|
|
if ( sc->stop ) sc->stop( sc );
|
|
|
|
(void) splx(s);
|
|
}
|
|
|
|
/*
|
|
* Device timeout/watchdog routine. Entered if the device neglects to
|
|
* generate an interrupt after a transmit has been started on it.
|
|
*/
|
|
static void
|
|
fe_watchdog ( struct ifnet *ifp )
|
|
{
|
|
struct fe_softc *sc = (struct fe_softc *)ifp;
|
|
|
|
/* A "debug" message. */
|
|
printf("fe%d: transmission timeout (%d+%d)%s\n",
|
|
ifp->if_unit, sc->txb_sched, sc->txb_count,
|
|
(ifp->if_flags & IFF_UP) ? "" : " when down");
|
|
if ( sc->sc_if.if_opackets == 0 && sc->sc_if.if_ipackets == 0 ) {
|
|
printf("fe%d: wrong IRQ setting in config?\n", ifp->if_unit);
|
|
}
|
|
fe_reset( sc );
|
|
}
|
|
|
|
/*
|
|
* Initialize device.
|
|
*/
|
|
static void
|
|
fe_init (void * xsc)
|
|
{
|
|
struct fe_softc *sc = xsc;
|
|
int s;
|
|
|
|
/* We need an address. */
|
|
if (TAILQ_EMPTY(&sc->sc_if.if_addrhead)) { /* XXX unlikely */
|
|
#ifdef DIAGNOSTIC
|
|
printf("fe%d: init() without any address\n", sc->sc_unit);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/* Start initializing 86960. */
|
|
s = splimp();
|
|
|
|
/* Call a hook before we start initializing the chip. */
|
|
if ( sc->init ) sc->init( sc );
|
|
|
|
/*
|
|
* Make sure to disable the chip, also.
|
|
* This may also help re-programming the chip after
|
|
* hot insertion of PCMCIAs.
|
|
*/
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Power up the chip and select register bank for DLCRs. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP );
|
|
DELAY( 200 );
|
|
|
|
/* Feed the station address. */
|
|
outblk( sc, FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
/* Clear multicast address filter to receive nothing. */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
|
|
outblk( sc, FE_MAR8, fe_filter_nothing.data, FE_FILTER_LEN );
|
|
|
|
/* Select the BMPR bank for runtime register access. */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
|
|
|
|
/* Initialize registers. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF ); /* Clear all bits. */
|
|
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF ); /* ditto. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_DLCR4 ], sc->proto_dlcr4 );
|
|
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 );
|
|
outb( sc->ioaddr[ FE_BMPR10 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_BMPR11 ], FE_B11_CTRL_SKIP | FE_B11_MODE1 );
|
|
outb( sc->ioaddr[ FE_BMPR12 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_BMPR13 ], sc->proto_bmpr13 );
|
|
outb( sc->ioaddr[ FE_BMPR14 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_BMPR15 ], 0x00 );
|
|
|
|
/* Enable interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], FE_TMASK );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], FE_RMASK );
|
|
|
|
/* Select requested media, just before enabling DLC. */
|
|
if (sc->msel) sc->msel(sc);
|
|
|
|
/* Enable transmitter and receiver. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
|
|
DELAY( 200 );
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Make sure to empty the receive buffer.
|
|
*
|
|
* This may be redundant, but *if* the receive buffer were full
|
|
* at this point, then the driver would hang. I have experienced
|
|
* some strange hang-up just after UP. I hope the following
|
|
* code solve the problem.
|
|
*
|
|
* I have changed the order of hardware initialization.
|
|
* I think the receive buffer cannot have any packets at this
|
|
* point in this version. The following code *must* be
|
|
* redundant now. FIXME.
|
|
*
|
|
* I've heard a rumore that on some PC card implementation of
|
|
* 8696x, the receive buffer can have some data at this point.
|
|
* The following message helps discovering the fact. FIXME.
|
|
*/
|
|
if ( !( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) ) {
|
|
printf("fe%d: receive buffer has some data after reset\n",
|
|
sc->sc_unit);
|
|
fe_emptybuffer( sc );
|
|
}
|
|
|
|
/* Do we need this here? Actually, no. I must be paranoia. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF ); /* Clear all bits. */
|
|
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF ); /* ditto. */
|
|
#endif
|
|
|
|
/* Set 'running' flag, because we are now running. */
|
|
sc->sc_if.if_flags |= IFF_RUNNING;
|
|
|
|
/*
|
|
* At this point, the interface is running properly,
|
|
* except that it receives *no* packets. we then call
|
|
* fe_setmode() to tell the chip what packets to be
|
|
* received, based on the if_flags and multicast group
|
|
* list. It completes the initialization process.
|
|
*/
|
|
fe_setmode( sc );
|
|
|
|
#if 0
|
|
/* ...and attempt to start output queued packets. */
|
|
/* TURNED OFF, because the semi-auto media prober wants to UP
|
|
the interface keeping it idle. The upper layer will soon
|
|
start the interface anyway, and there are no significant
|
|
delay. */
|
|
fe_start( &sc->sc_if );
|
|
#endif
|
|
|
|
(void) splx(s);
|
|
}
|
|
|
|
/*
|
|
* This routine actually starts the transmission on the interface
|
|
*/
|
|
static void
|
|
fe_xmit ( struct fe_softc * sc )
|
|
{
|
|
/*
|
|
* Set a timer just in case we never hear from the board again.
|
|
* We use longer timeout for multiple packet transmission.
|
|
* I'm not sure this timer value is appropriate. FIXME.
|
|
*/
|
|
sc->sc_if.if_timer = 1 + sc->txb_count;
|
|
|
|
/* Update txb variables. */
|
|
sc->txb_sched = sc->txb_count;
|
|
sc->txb_count = 0;
|
|
sc->txb_free = sc->txb_size;
|
|
sc->tx_excolls = 0;
|
|
|
|
/* Start transmitter, passing packets in TX buffer. */
|
|
outb( sc->ioaddr[ FE_BMPR10 ], sc->txb_sched | FE_B10_START );
|
|
}
|
|
|
|
/*
|
|
* Start output on interface.
|
|
* We make two assumptions here:
|
|
* 1) that the current priority is set to splimp _before_ this code
|
|
* is called *and* is returned to the appropriate priority after
|
|
* return
|
|
* 2) that the IFF_OACTIVE flag is checked before this code is called
|
|
* (i.e. that the output part of the interface is idle)
|
|
*/
|
|
void
|
|
fe_start ( struct ifnet *ifp )
|
|
{
|
|
struct fe_softc *sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Just a sanity check. */
|
|
if ( ( sc->txb_count == 0 ) != ( sc->txb_free == sc->txb_size ) ) {
|
|
/*
|
|
* Txb_count and txb_free co-works to manage the
|
|
* transmission buffer. Txb_count keeps track of the
|
|
* used potion of the buffer, while txb_free does unused
|
|
* potion. So, as long as the driver runs properly,
|
|
* txb_count is zero if and only if txb_free is same
|
|
* as txb_size (which represents whole buffer.)
|
|
*/
|
|
printf("fe%d: inconsistent txb variables (%d, %d)\n",
|
|
sc->sc_unit, sc->txb_count, sc->txb_free);
|
|
/*
|
|
* So, what should I do, then?
|
|
*
|
|
* We now know txb_count and txb_free contradicts. We
|
|
* cannot, however, tell which is wrong. More
|
|
* over, we cannot peek 86960 transmission buffer or
|
|
* reset the transmission buffer. (In fact, we can
|
|
* reset the entire interface. I don't want to do it.)
|
|
*
|
|
* If txb_count is incorrect, leaving it as-is will cause
|
|
* sending of garbage after next interrupt. We have to
|
|
* avoid it. Hence, we reset the txb_count here. If
|
|
* txb_free was incorrect, resetting txb_count just loose
|
|
* some packets. We can live with it.
|
|
*/
|
|
sc->txb_count = 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* First, see if there are buffered packets and an idle
|
|
* transmitter - should never happen at this point.
|
|
*/
|
|
if ( ( sc->txb_count > 0 ) && ( sc->txb_sched == 0 ) ) {
|
|
printf("fe%d: transmitter idle with %d buffered packets\n",
|
|
sc->sc_unit, sc->txb_count);
|
|
fe_xmit( sc );
|
|
}
|
|
|
|
/*
|
|
* Stop accepting more transmission packets temporarily, when
|
|
* a filter change request is delayed. Updating the MARs on
|
|
* 86960 flushes the transmission buffer, so it is delayed
|
|
* until all buffered transmission packets have been sent
|
|
* out.
|
|
*/
|
|
if ( sc->filter_change ) {
|
|
/*
|
|
* Filter change request is delayed only when the DLC is
|
|
* working. DLC soon raise an interrupt after finishing
|
|
* the work.
|
|
*/
|
|
goto indicate_active;
|
|
}
|
|
|
|
for (;;) {
|
|
|
|
/*
|
|
* See if there is room to put another packet in the buffer.
|
|
* We *could* do better job by peeking the send queue to
|
|
* know the length of the next packet. Current version just
|
|
* tests against the worst case (i.e., longest packet). FIXME.
|
|
*
|
|
* When adding the packet-peek feature, don't forget adding a
|
|
* test on txb_count against QUEUEING_MAX.
|
|
* There is a little chance the packet count exceeds
|
|
* the limit. Assume transmission buffer is 8KB (2x8KB
|
|
* configuration) and an application sends a bunch of small
|
|
* (i.e., minimum packet sized) packets rapidly. An 8KB
|
|
* buffer can hold 130 blocks of 62 bytes long...
|
|
*/
|
|
if ( sc->txb_free
|
|
< ETHER_MAX_LEN - ETHER_CRC_LEN + FE_DATA_LEN_LEN ) {
|
|
/* No room. */
|
|
goto indicate_active;
|
|
}
|
|
|
|
#if FE_SINGLE_TRANSMISSION
|
|
if ( sc->txb_count > 0 ) {
|
|
/* Just one packet per a transmission buffer. */
|
|
goto indicate_active;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Get the next mbuf chain for a packet to send.
|
|
*/
|
|
IF_DEQUEUE( &sc->sc_if.if_snd, m );
|
|
if ( m == NULL ) {
|
|
/* No more packets to send. */
|
|
goto indicate_inactive;
|
|
}
|
|
|
|
/*
|
|
* Copy the mbuf chain into the transmission buffer.
|
|
* txb_* variables are updated as necessary.
|
|
*/
|
|
fe_write_mbufs( sc, m );
|
|
|
|
/* Start transmitter if it's idle. */
|
|
if ( ( sc->txb_count > 0 ) && ( sc->txb_sched == 0 ) ) {
|
|
fe_xmit( sc );
|
|
}
|
|
|
|
/*
|
|
* Tap off here if there is a bpf listener,
|
|
* and the device is *not* in promiscuous mode.
|
|
* (86960 receives self-generated packets if
|
|
* and only if it is in "receive everything"
|
|
* mode.)
|
|
*/
|
|
if ( sc->sc_if.if_bpf
|
|
&& !( sc->sc_if.if_flags & IFF_PROMISC ) ) {
|
|
bpf_mtap( &sc->sc_if, m );
|
|
}
|
|
|
|
m_freem( m );
|
|
}
|
|
|
|
indicate_inactive:
|
|
/*
|
|
* We are using the !OACTIVE flag to indicate to
|
|
* the outside world that we can accept an
|
|
* additional packet rather than that the
|
|
* transmitter is _actually_ active. Indeed, the
|
|
* transmitter may be active, but if we haven't
|
|
* filled all the buffers with data then we still
|
|
* want to accept more.
|
|
*/
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
return;
|
|
|
|
indicate_active:
|
|
/*
|
|
* The transmitter is active, and there are no room for
|
|
* more outgoing packets in the transmission buffer.
|
|
*/
|
|
sc->sc_if.if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Drop (skip) a packet from receive buffer in 86960 memory.
|
|
*/
|
|
static void
|
|
fe_droppacket ( struct fe_softc * sc, int len )
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* 86960 manual says that we have to read 8 bytes from the buffer
|
|
* before skip the packets and that there must be more than 8 bytes
|
|
* remaining in the buffer when issue a skip command.
|
|
* Remember, we have already read 4 bytes before come here.
|
|
*/
|
|
if ( len > 12 ) {
|
|
/* Read 4 more bytes, and skip the rest of the packet. */
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
( void )inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
( void )inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
( void )inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
( void )inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
outb( sc->ioaddr[ FE_BMPR14 ], FE_B14_SKIP );
|
|
} else {
|
|
/* We should not come here unless receiving RUNTs. */
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
for ( i = 0; i < len; i++ ) {
|
|
( void )inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for ( i = 0; i < len; i += 2 ) {
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Empty receiving buffer.
|
|
*/
|
|
static void
|
|
fe_emptybuffer ( struct fe_softc * sc )
|
|
{
|
|
int i;
|
|
u_char saved_dlcr5;
|
|
|
|
#ifdef FE_DEBUG
|
|
printf("fe%d: emptying receive buffer\n", sc->sc_unit);
|
|
#endif
|
|
|
|
/*
|
|
* Stop receiving packets, temporarily.
|
|
*/
|
|
saved_dlcr5 = inb( sc->ioaddr[ FE_DLCR5 ] );
|
|
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 );
|
|
DELAY(1300);
|
|
|
|
/*
|
|
* When we come here, the receive buffer management may
|
|
* have been broken. So, we cannot use skip operation.
|
|
* Just discard everything in the buffer.
|
|
*/
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
for ( i = 0; i < 65536; i++ ) {
|
|
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) break;
|
|
( void )inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for ( i = 0; i < 65536; i += 2 ) {
|
|
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) break;
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Double check.
|
|
*/
|
|
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) {
|
|
printf("fe%d: could not empty receive buffer\n", sc->sc_unit);
|
|
/* Hmm. What should I do if this happens? FIXME. */
|
|
}
|
|
|
|
/*
|
|
* Restart receiving packets.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR5 ], saved_dlcr5 );
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Transmission interrupt handler
|
|
* The control flow of this function looks silly. FIXME.
|
|
*/
|
|
static void
|
|
fe_tint ( struct fe_softc * sc, u_char tstat )
|
|
{
|
|
int left;
|
|
int col;
|
|
|
|
/*
|
|
* Handle "excessive collision" interrupt.
|
|
*/
|
|
if ( tstat & FE_D0_COLL16 ) {
|
|
|
|
/*
|
|
* Find how many packets (including this collided one)
|
|
* are left unsent in transmission buffer.
|
|
*/
|
|
left = inb( sc->ioaddr[ FE_BMPR10 ] );
|
|
printf("fe%d: excessive collision (%d/%d)\n",
|
|
sc->sc_unit, left, sc->txb_sched);
|
|
|
|
/*
|
|
* Clear the collision flag (in 86960) here
|
|
* to avoid confusing statistics.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR0 ], FE_D0_COLLID );
|
|
|
|
/*
|
|
* Restart transmitter, skipping the
|
|
* collided packet.
|
|
*
|
|
* We *must* skip the packet to keep network running
|
|
* properly. Excessive collision error is an
|
|
* indication of the network overload. If we
|
|
* tried sending the same packet after excessive
|
|
* collision, the network would be filled with
|
|
* out-of-time packets. Packets belonging
|
|
* to reliable transport (such as TCP) are resent
|
|
* by some upper layer.
|
|
*/
|
|
outb( sc->ioaddr[ FE_BMPR11 ],
|
|
FE_B11_CTRL_SKIP | FE_B11_MODE1 );
|
|
|
|
/* Update statistics. */
|
|
sc->tx_excolls++;
|
|
}
|
|
|
|
/*
|
|
* Handle "transmission complete" interrupt.
|
|
*/
|
|
if ( tstat & FE_D0_TXDONE ) {
|
|
|
|
/*
|
|
* Add in total number of collisions on last
|
|
* transmission. We also clear "collision occurred" flag
|
|
* here.
|
|
*
|
|
* 86960 has a design flaw on collision count on multiple
|
|
* packet transmission. When we send two or more packets
|
|
* with one start command (that's what we do when the
|
|
* transmission queue is crowded), 86960 informs us number
|
|
* of collisions occurred on the last packet on the
|
|
* transmission only. Number of collisions on previous
|
|
* packets are lost. I have told that the fact is clearly
|
|
* stated in the Fujitsu document.
|
|
*
|
|
* I considered not to mind it seriously. Collision
|
|
* count is not so important, anyway. Any comments? FIXME.
|
|
*/
|
|
|
|
if ( inb( sc->ioaddr[ FE_DLCR0 ] ) & FE_D0_COLLID ) {
|
|
|
|
/* Clear collision flag. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], FE_D0_COLLID );
|
|
|
|
/* Extract collision count from 86960. */
|
|
col = inb( sc->ioaddr[ FE_DLCR4 ] );
|
|
col = ( col & FE_D4_COL ) >> FE_D4_COL_SHIFT;
|
|
if ( col == 0 ) {
|
|
/*
|
|
* Status register indicates collisions,
|
|
* while the collision count is zero.
|
|
* This can happen after multiple packet
|
|
* transmission, indicating that one or more
|
|
* previous packet(s) had been collided.
|
|
*
|
|
* Since the accurate number of collisions
|
|
* has been lost, we just guess it as 1;
|
|
* Am I too optimistic? FIXME.
|
|
*/
|
|
col = 1;
|
|
}
|
|
sc->sc_if.if_collisions += col;
|
|
if ( col == 1 ) {
|
|
sc->mibdata.dot3StatsSingleCollisionFrames++;
|
|
} else {
|
|
sc->mibdata.dot3StatsMultipleCollisionFrames++;
|
|
}
|
|
sc->mibdata.dot3StatsCollFrequencies[col-1]++;
|
|
}
|
|
|
|
/*
|
|
* Update transmission statistics.
|
|
* Be sure to reflect number of excessive collisions.
|
|
*/
|
|
col = sc->tx_excolls;
|
|
sc->sc_if.if_opackets += sc->txb_sched - col;
|
|
sc->sc_if.if_oerrors += col;
|
|
sc->sc_if.if_collisions += col * 16;
|
|
sc->mibdata.dot3StatsExcessiveCollisions += col;
|
|
sc->mibdata.dot3StatsCollFrequencies[15] += col;
|
|
sc->txb_sched = 0;
|
|
|
|
/*
|
|
* The transmitter is no more active.
|
|
* Reset output active flag and watchdog timer.
|
|
*/
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_if.if_timer = 0;
|
|
|
|
/*
|
|
* If more data is ready to transmit in the buffer, start
|
|
* transmitting them. Otherwise keep transmitter idle,
|
|
* even if more data is queued. This gives receive
|
|
* process a slight priority.
|
|
*/
|
|
if ( sc->txb_count > 0 ) fe_xmit( sc );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface receiver interrupt.
|
|
*/
|
|
static void
|
|
fe_rint ( struct fe_softc * sc, u_char rstat )
|
|
{
|
|
u_short len;
|
|
u_char status;
|
|
int i;
|
|
|
|
/*
|
|
* Update statistics if this interrupt is caused by an error.
|
|
* Note that, when the system was not sufficiently fast, the
|
|
* receive interrupt might not be acknowledged immediately. If
|
|
* one or more errornous frames were received before this routine
|
|
* was scheduled, they are ignored, and the following error stats
|
|
* give less than real values.
|
|
*/
|
|
if ( rstat & ( FE_D1_OVRFLO | FE_D1_CRCERR
|
|
| FE_D1_ALGERR | FE_D1_SRTPKT ) ) {
|
|
if ( rstat & FE_D1_OVRFLO )
|
|
sc->mibdata.dot3StatsInternalMacReceiveErrors++;
|
|
if ( rstat & FE_D1_CRCERR )
|
|
sc->mibdata.dot3StatsFCSErrors++;
|
|
if ( rstat & FE_D1_ALGERR )
|
|
sc->mibdata.dot3StatsAlignmentErrors++;
|
|
#if 0
|
|
/* The reference MAC receiver defined in 802.3
|
|
silently ignores short frames (RUNTs) without
|
|
notifying upper layer. RFC 1650 (dot3 MIB) is
|
|
based on the 802.3, and it has no stats entry for
|
|
RUNTs... */
|
|
if ( rstat & FE_D1_SRTPKT )
|
|
sc->mibdata.dot3StatsFrameTooShorts++; /* :-) */
|
|
#endif
|
|
sc->sc_if.if_ierrors++;
|
|
}
|
|
|
|
/*
|
|
* MB86960 has a flag indicating "receive queue empty."
|
|
* We just loop, checking the flag, to pull out all received
|
|
* packets.
|
|
*
|
|
* We limit the number of iterations to avoid infinite-loop.
|
|
* The upper bound is set to unrealistic high value.
|
|
*/
|
|
for ( i = 0; i < FE_MAX_RECV_COUNT * 2; i++ ) {
|
|
|
|
/* Stop the iteration if 86960 indicates no packets. */
|
|
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) return;
|
|
|
|
/*
|
|
* Extract a receive status byte.
|
|
* As our 86960 is in 16 bit bus access mode, we have to
|
|
* use inw() to get the status byte. The significant
|
|
* value is returned in lower 8 bits.
|
|
*/
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
status = inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
( void ) inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
status = ( u_char )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
|
|
/*
|
|
* Extract the packet length.
|
|
* It is a sum of a header (14 bytes) and a payload.
|
|
* CRC has been stripped off by the 86960.
|
|
*/
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
len = inb( sc->ioaddr[ FE_BMPR8 ] );
|
|
len |= ( inb( sc->ioaddr[ FE_BMPR8 ] ) << 8 );
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
len = inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
|
|
/*
|
|
* AS our 86960 is programed to ignore errored frame,
|
|
* we must not see any error indication in the
|
|
* receive buffer. So, any error condition is a
|
|
* serious error, e.g., out-of-sync of the receive
|
|
* buffer pointers.
|
|
*/
|
|
if ( ( status & 0xF0 ) != 0x20
|
|
|| len > ETHER_MAX_LEN - ETHER_CRC_LEN
|
|
|| len < ETHER_MIN_LEN - ETHER_CRC_LEN ) {
|
|
printf("fe%d: RX buffer out-of-sync\n", sc->sc_unit);
|
|
sc->sc_if.if_ierrors++;
|
|
sc->mibdata.dot3StatsInternalMacReceiveErrors++;
|
|
fe_reset(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Go get a packet.
|
|
*/
|
|
if ( fe_get_packet( sc, len ) < 0 ) {
|
|
/*
|
|
* Negative return from fe_get_packet()
|
|
* indicates no available mbuf. We stop
|
|
* receiving packets, even if there are more
|
|
* in the buffer. We hope we can get more
|
|
* mbuf next time.
|
|
*/
|
|
sc->sc_if.if_ierrors++;
|
|
sc->mibdata.dot3StatsMissedFrames++;
|
|
fe_droppacket( sc, len );
|
|
return;
|
|
}
|
|
|
|
/* Successfully received a packet. Update stat. */
|
|
sc->sc_if.if_ipackets++;
|
|
}
|
|
|
|
/* Maximum number of frames has been received. Something
|
|
strange is happening here... */
|
|
printf("fe%d: unusual receive flood\n", sc->sc_unit);
|
|
sc->mibdata.dot3StatsInternalMacReceiveErrors++;
|
|
fe_reset(sc);
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface interrupt processor
|
|
*/
|
|
static void
|
|
feintr ( int unit )
|
|
{
|
|
struct fe_softc *sc = &fe_softc[unit];
|
|
u_char tstat, rstat;
|
|
int loop_count = FE_MAX_LOOP;
|
|
|
|
/* Loop until there are no more new interrupt conditions. */
|
|
while (loop_count-- > 0) {
|
|
/*
|
|
* Get interrupt conditions, masking unneeded flags.
|
|
*/
|
|
tstat = inb( sc->ioaddr[ FE_DLCR0 ] ) & FE_TMASK;
|
|
rstat = inb( sc->ioaddr[ FE_DLCR1 ] ) & FE_RMASK;
|
|
if ( tstat == 0 && rstat == 0 ) return;
|
|
|
|
/*
|
|
* Reset the conditions we are acknowledging.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR0 ], tstat );
|
|
outb( sc->ioaddr[ FE_DLCR1 ], rstat );
|
|
|
|
/*
|
|
* Handle transmitter interrupts.
|
|
*/
|
|
if ( tstat ) {
|
|
fe_tint( sc, tstat );
|
|
}
|
|
|
|
/*
|
|
* Handle receiver interrupts
|
|
*/
|
|
if ( rstat ) {
|
|
fe_rint( sc, rstat );
|
|
}
|
|
|
|
/*
|
|
* Update the multicast address filter if it is
|
|
* needed and possible. We do it now, because
|
|
* we can make sure the transmission buffer is empty,
|
|
* and there is a good chance that the receive queue
|
|
* is empty. It will minimize the possibility of
|
|
* packet loss.
|
|
*/
|
|
if ( sc->filter_change
|
|
&& sc->txb_count == 0 && sc->txb_sched == 0 ) {
|
|
fe_loadmar(sc);
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* If it looks like the transmitter can take more data,
|
|
* attempt to start output on the interface. This is done
|
|
* after handling the receiver interrupt to give the
|
|
* receive operation priority.
|
|
*
|
|
* BTW, I'm not sure in what case the OACTIVE is on at
|
|
* this point. Is the following test redundant?
|
|
*
|
|
* No. This routine polls for both transmitter and
|
|
* receiver interrupts. 86960 can raise a receiver
|
|
* interrupt when the transmission buffer is full.
|
|
*/
|
|
if ( ( sc->sc_if.if_flags & IFF_OACTIVE ) == 0 ) {
|
|
fe_start( &sc->sc_if );
|
|
}
|
|
|
|
}
|
|
|
|
printf("fe%d: too many loops\n", sc->sc_unit);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request. This code needs some work - it looks
|
|
* pretty ugly.
|
|
*/
|
|
static int
|
|
fe_ioctl ( struct ifnet * ifp, u_long command, caddr_t data )
|
|
{
|
|
struct fe_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch (command) {
|
|
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
/* Just an ordinary action. */
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
/*
|
|
* Switch interface state between "running" and
|
|
* "stopped", reflecting the UP flag.
|
|
*/
|
|
if ( sc->sc_if.if_flags & IFF_UP ) {
|
|
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) == 0 ) {
|
|
fe_init(sc);
|
|
}
|
|
} else {
|
|
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) != 0 ) {
|
|
fe_stop(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Promiscuous and/or multicast flags may have changed,
|
|
* so reprogram the multicast filter and/or receive mode.
|
|
*/
|
|
fe_setmode( sc );
|
|
|
|
/* Done. */
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
fe_setmode( sc );
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
/* Let if_media to handle these commands and to call
|
|
us back. */
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
(void) splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Retrieve packet from receive buffer and send to the next level up via
|
|
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
|
|
* Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
|
|
*/
|
|
static int
|
|
fe_get_packet ( struct fe_softc * sc, u_short len )
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
|
|
/*
|
|
* NFS wants the data be aligned to the word (4 byte)
|
|
* boundary. Ethernet header has 14 bytes. There is a
|
|
* 2-byte gap.
|
|
*/
|
|
#define NFS_MAGIC_OFFSET 2
|
|
|
|
/*
|
|
* This function assumes that an Ethernet packet fits in an
|
|
* mbuf (with a cluster attached when necessary.) On FreeBSD
|
|
* 2.0 for x86, which is the primary target of this driver, an
|
|
* mbuf cluster has 4096 bytes, and we are happy. On ancient
|
|
* BSDs, such as vanilla 4.3 for 386, a cluster size was 1024,
|
|
* however. If the following #error message were printed upon
|
|
* compile, you need to rewrite this function.
|
|
*/
|
|
#if ( MCLBYTES < ETHER_MAX_LEN - ETHER_CRC_LEN + NFS_MAGIC_OFFSET )
|
|
#error "Too small MCLBYTES to use fe driver."
|
|
#endif
|
|
|
|
/*
|
|
* Our strategy has one more problem. There is a policy on
|
|
* mbuf cluster allocation. It says that we must have at
|
|
* least MINCLSIZE (208 bytes on FreeBSD 2.0 for x86) to
|
|
* allocate a cluster. For a packet of a size between
|
|
* (MHLEN - 2) to (MINCLSIZE - 2), our code violates the rule...
|
|
* On the other hand, the current code is short, simple,
|
|
* and fast, however. It does no harmful thing, just waists
|
|
* some memory. Any comments? FIXME.
|
|
*/
|
|
|
|
/* Allocate an mbuf with packet header info. */
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if ( m == NULL ) return -1;
|
|
|
|
/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
|
|
if ( len > MHLEN - NFS_MAGIC_OFFSET ) {
|
|
MCLGET( m, M_DONTWAIT );
|
|
if ( !( m->m_flags & M_EXT ) ) {
|
|
m_freem( m );
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Initialize packet header info. */
|
|
m->m_pkthdr.rcvif = &sc->sc_if;
|
|
m->m_pkthdr.len = len;
|
|
|
|
/* Set the length of this packet. */
|
|
m->m_len = len;
|
|
|
|
/* The following silliness is to make NFS happy */
|
|
m->m_data += NFS_MAGIC_OFFSET;
|
|
|
|
/* Get (actually just point to) the header part. */
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
/* Get a packet. */
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
insb( sc->ioaddr[ FE_BMPR8 ], eh, len );
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
insw( sc->ioaddr[ FE_BMPR8 ], eh, ( len + 1 ) >> 1 );
|
|
}
|
|
|
|
#define ETHER_ADDR_IS_MULTICAST(A) (*(char *)(A) & 1)
|
|
|
|
/*
|
|
* Check if there's a BPF listener on this interface.
|
|
* If it is, hand off the raw packet to bpf.
|
|
*/
|
|
if ( sc->sc_if.if_bpf ) {
|
|
bpf_mtap( &sc->sc_if, m );
|
|
}
|
|
|
|
#ifdef BRIDGE
|
|
if (do_bridge) {
|
|
struct ifnet *ifp;
|
|
|
|
ifp = bridge_in(m);
|
|
if (ifp == BDG_DROP) {
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
if (ifp != BDG_LOCAL)
|
|
bdg_forward(&m, ifp); /* not local, need forwarding */
|
|
if (ifp == BDG_LOCAL || ifp == BDG_BCAST || ifp == BDG_MCAST)
|
|
goto getit;
|
|
/* not local and not multicast, just drop it */
|
|
if (m)
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Make sure this packet is (or may be) directed to us.
|
|
* That is, the packet is either unicasted to our address,
|
|
* or broad/multi-casted. If any other packets are
|
|
* received, it is an indication of an error -- probably
|
|
* 86960 is in a wrong operation mode.
|
|
* Promiscuous mode is an exception. Under the mode, all
|
|
* packets on the media must be received. (We must have
|
|
* programmed the 86960 so.)
|
|
*/
|
|
|
|
if ( ( sc->sc_if.if_flags & IFF_PROMISC )
|
|
&& !ETHER_ADDR_IS_MULTICAST( eh->ether_dhost )
|
|
&& bcmp( eh->ether_dhost, sc->sc_enaddr, ETHER_ADDR_LEN ) != 0 ) {
|
|
/*
|
|
* The packet was not for us. This is normal since
|
|
* we are now in promiscuous mode. Just drop the packet.
|
|
*/
|
|
m_freem( m );
|
|
return 0;
|
|
}
|
|
|
|
#ifdef BRIDGE
|
|
getit:
|
|
#endif
|
|
/* Strip off the Ethernet header. */
|
|
m->m_pkthdr.len -= sizeof ( struct ether_header );
|
|
m->m_len -= sizeof ( struct ether_header );
|
|
m->m_data += sizeof ( struct ether_header );
|
|
|
|
/* Feed the packet to upper layer. */
|
|
ether_input( &sc->sc_if, eh, m );
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
|
|
* Returns number of bytes actually written, including length word.
|
|
*
|
|
* If an mbuf chain is too long for an Ethernet frame, it is not sent.
|
|
* Packets shorter than Ethernet minimum are legal, and we pad them
|
|
* before sending out. An exception is "partial" packets which are
|
|
* shorter than mandatory Ethernet header.
|
|
*/
|
|
static void
|
|
fe_write_mbufs ( struct fe_softc *sc, struct mbuf *m )
|
|
{
|
|
u_short addr_bmpr8 = sc->ioaddr[ FE_BMPR8 ];
|
|
u_short length, len;
|
|
struct mbuf *mp;
|
|
u_char *data;
|
|
u_short savebyte; /* WARNING: Architecture dependent! */
|
|
#define NO_PENDING_BYTE 0xFFFF
|
|
|
|
static u_char padding [ ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_HDR_LEN ];
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* First, count up the total number of bytes to copy */
|
|
length = 0;
|
|
for ( mp = m; mp != NULL; mp = mp->m_next ) {
|
|
length += mp->m_len;
|
|
}
|
|
/* Check if this matches the one in the packet header. */
|
|
if ( length != m->m_pkthdr.len ) {
|
|
printf("fe%d: packet length mismatch? (%d/%d)\n", sc->sc_unit,
|
|
length, m->m_pkthdr.len);
|
|
}
|
|
#else
|
|
/* Just use the length value in the packet header. */
|
|
length = m->m_pkthdr.len;
|
|
#endif
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Should never send big packets. If such a packet is passed,
|
|
* it should be a bug of upper layer. We just ignore it.
|
|
* ... Partial (too short) packets, neither.
|
|
*/
|
|
if ( length < ETHER_HDR_LEN
|
|
|| length > ETHER_MAX_LEN - ETHER_CRC_LEN ) {
|
|
printf("fe%d: got an out-of-spec packet (%u bytes) to send\n",
|
|
sc->sc_unit, length);
|
|
sc->sc_if.if_oerrors++;
|
|
sc->mibdata.dot3StatsInternalMacTransmitErrors++;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Put the length word for this frame.
|
|
* Does 86960 accept odd length? -- Yes.
|
|
* Do we need to pad the length to minimum size by ourselves?
|
|
* -- Generally yes. But for (or will be) the last
|
|
* packet in the transmission buffer, we can skip the
|
|
* padding process. It may gain performance slightly. FIXME.
|
|
*/
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
len = max( length, ETHER_MIN_LEN - ETHER_CRC_LEN );
|
|
outb( addr_bmpr8, len & 0x00ff );
|
|
outb( addr_bmpr8, ( len & 0xff00 ) >> 8 );
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
outw( addr_bmpr8, max( length, ETHER_MIN_LEN - ETHER_CRC_LEN ) );
|
|
}
|
|
|
|
/*
|
|
* Update buffer status now.
|
|
* Truncate the length up to an even number, since we use outw().
|
|
*/
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) != FE_D6_SBW_BYTE)
|
|
#endif
|
|
{
|
|
length = ( length + 1 ) & ~1;
|
|
}
|
|
sc->txb_free -= FE_DATA_LEN_LEN + max( length, ETHER_MIN_LEN - ETHER_CRC_LEN);
|
|
sc->txb_count++;
|
|
|
|
/*
|
|
* Transfer the data from mbuf chain to the transmission buffer.
|
|
* MB86960 seems to require that data be transferred as words, and
|
|
* only words. So that we require some extra code to patch
|
|
* over odd-length mbufs.
|
|
*/
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
/* 8-bit cards are easy. */
|
|
for ( mp = m; mp != 0; mp = mp->m_next ) {
|
|
if ( mp->m_len ) {
|
|
outsb( addr_bmpr8, mtod(mp, caddr_t), mp->m_len );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* 16-bit cards are a pain. */
|
|
savebyte = NO_PENDING_BYTE;
|
|
for ( mp = m; mp != 0; mp = mp->m_next ) {
|
|
|
|
/* Ignore empty mbuf. */
|
|
len = mp->m_len;
|
|
if ( len == 0 ) continue;
|
|
|
|
/* Find the actual data to send. */
|
|
data = mtod(mp, caddr_t);
|
|
|
|
/* Finish the last byte. */
|
|
if ( savebyte != NO_PENDING_BYTE ) {
|
|
outw( addr_bmpr8, savebyte | ( *data << 8 ) );
|
|
data++;
|
|
len--;
|
|
savebyte = NO_PENDING_BYTE;
|
|
}
|
|
|
|
/* output contiguous words */
|
|
if (len > 1) {
|
|
outsw( addr_bmpr8, data, len >> 1);
|
|
data += len & ~1;
|
|
len &= 1;
|
|
}
|
|
|
|
/* Save a remaining byte, if there is one. */
|
|
if ( len > 0 ) {
|
|
savebyte = *data;
|
|
}
|
|
}
|
|
|
|
/* Spit the last byte, if the length is odd. */
|
|
if ( savebyte != NO_PENDING_BYTE ) {
|
|
outw( addr_bmpr8, savebyte );
|
|
}
|
|
}
|
|
|
|
/* Pad to the Ethernet minimum length, if the packet is too short. */
|
|
if ( length < ETHER_MIN_LEN - ETHER_CRC_LEN ) {
|
|
#ifdef FE_8BIT_SUPPORT
|
|
if ((sc->proto_dlcr6 & FE_D6_SBW) == FE_D6_SBW_BYTE)
|
|
{
|
|
outsb( addr_bmpr8, padding, ETHER_MIN_LEN - ETHER_CRC_LEN - length );
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
outsw( addr_bmpr8, padding, ( ETHER_MIN_LEN - ETHER_CRC_LEN - length ) >> 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute hash value for an Ethernet address
|
|
*/
|
|
static int
|
|
fe_hash ( u_char * ep )
|
|
{
|
|
#define FE_HASH_MAGIC_NUMBER 0xEDB88320L
|
|
|
|
u_long hash = 0xFFFFFFFFL;
|
|
int i, j;
|
|
u_char b;
|
|
u_long m;
|
|
|
|
for ( i = ETHER_ADDR_LEN; --i >= 0; ) {
|
|
b = *ep++;
|
|
for ( j = 8; --j >= 0; ) {
|
|
m = hash;
|
|
hash >>= 1;
|
|
if ( ( m ^ b ) & 1 ) hash ^= FE_HASH_MAGIC_NUMBER;
|
|
b >>= 1;
|
|
}
|
|
}
|
|
return ( ( int )( hash >> 26 ) );
|
|
}
|
|
|
|
/*
|
|
* Compute the multicast address filter from the
|
|
* list of multicast addresses we need to listen to.
|
|
*/
|
|
static struct fe_filter
|
|
fe_mcaf ( struct fe_softc *sc )
|
|
{
|
|
int index;
|
|
struct fe_filter filter;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
filter = fe_filter_nothing;
|
|
for (ifma = sc->arpcom.ac_if.if_multiaddrs.lh_first; ifma;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
index = fe_hash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
#ifdef FE_DEBUG
|
|
printf("fe%d: hash(%6D) == %d\n",
|
|
sc->sc_unit, enm->enm_addrlo , ":", index);
|
|
#endif
|
|
|
|
filter.data[index >> 3] |= 1 << (index & 7);
|
|
}
|
|
return ( filter );
|
|
}
|
|
|
|
/*
|
|
* Calculate a new "multicast packet filter" and put the 86960
|
|
* receiver in appropriate mode.
|
|
*/
|
|
static void
|
|
fe_setmode ( struct fe_softc *sc )
|
|
{
|
|
int flags = sc->sc_if.if_flags;
|
|
|
|
/*
|
|
* If the interface is not running, we postpone the update
|
|
* process for receive modes and multicast address filter
|
|
* until the interface is restarted. It reduces some
|
|
* complicated job on maintaining chip states. (Earlier versions
|
|
* of this driver had a bug on that point...)
|
|
*
|
|
* To complete the trick, fe_init() calls fe_setmode() after
|
|
* restarting the interface.
|
|
*/
|
|
if ( !( flags & IFF_RUNNING ) ) return;
|
|
|
|
/*
|
|
* Promiscuous mode is handled separately.
|
|
*/
|
|
if ( flags & IFF_PROMISC ) {
|
|
/*
|
|
* Program 86960 to receive all packets on the segment
|
|
* including those directed to other stations.
|
|
* Multicast filter stored in MARs are ignored
|
|
* under this setting, so we don't need to update it.
|
|
*
|
|
* Promiscuous mode in FreeBSD 2 is used solely by
|
|
* BPF, and BPF only listens to valid (no error) packets.
|
|
* So, we ignore erroneous ones even in this mode.
|
|
* (Older versions of fe driver mistook the point.)
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR5 ],
|
|
sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1 );
|
|
sc->filter_change = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Turn the chip to the normal (non-promiscuous) mode.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 | FE_D5_AFM1 );
|
|
|
|
/*
|
|
* Find the new multicast filter value.
|
|
*/
|
|
if ( flags & IFF_ALLMULTI ) {
|
|
sc->filter = fe_filter_all;
|
|
} else {
|
|
sc->filter = fe_mcaf( sc );
|
|
}
|
|
sc->filter_change = 1;
|
|
|
|
/*
|
|
* We have to update the multicast filter in the 86960, A.S.A.P.
|
|
*
|
|
* Note that the DLC (Data Link Control unit, i.e. transmitter
|
|
* and receiver) must be stopped when feeding the filter, and
|
|
* DLC trashes all packets in both transmission and receive
|
|
* buffers when stopped.
|
|
*
|
|
* To reduce the packet loss, we delay the filter update
|
|
* process until buffers are empty.
|
|
*/
|
|
if ( sc->txb_sched == 0 && sc->txb_count == 0
|
|
&& !( inb( sc->ioaddr[ FE_DLCR1 ] ) & FE_D1_PKTRDY ) ) {
|
|
/*
|
|
* Buffers are (apparently) empty. Load
|
|
* the new filter value into MARs now.
|
|
*/
|
|
fe_loadmar(sc);
|
|
} else {
|
|
/*
|
|
* Buffers are not empty. Mark that we have to update
|
|
* the MARs. The new filter will be loaded by feintr()
|
|
* later.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load a new multicast address filter into MARs.
|
|
*
|
|
* The caller must have splimp'ed before fe_loadmar.
|
|
* This function starts the DLC upon return. So it can be called only
|
|
* when the chip is working, i.e., from the driver's point of view, when
|
|
* a device is RUNNING. (I mistook the point in previous versions.)
|
|
*/
|
|
static void
|
|
fe_loadmar ( struct fe_softc * sc )
|
|
{
|
|
/* Stop the DLC (transmitter and receiver). */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Select register bank 1 for MARs. */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
|
|
|
|
/* Copy filter value into the registers. */
|
|
outblk( sc, FE_MAR8, sc->filter.data, FE_FILTER_LEN );
|
|
|
|
/* Restore the bank selection for BMPRs (i.e., runtime registers). */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
|
|
|
|
/* Restart the DLC. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
|
|
DELAY( 200 );
|
|
|
|
/* We have just updated the filter. */
|
|
sc->filter_change = 0;
|
|
}
|
|
|
|
/* Change the media selection. */
|
|
static int
|
|
fe_medchange (struct ifnet *ifp)
|
|
{
|
|
struct fe_softc *sc = (struct fe_softc *)ifp->if_softc;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* If_media should not pass any request for a media which this
|
|
interface doesn't support. */
|
|
int b;
|
|
|
|
for (b = 0; bit2media[b] != 0; b++) {
|
|
if (bit2media[b] == sc->media.ifm_media) break;
|
|
}
|
|
if (((1 << b) & sc->mbitmap) == 0) {
|
|
printf("fe%d: got an unsupported media request (0x%x)\n",
|
|
sc->sc_unit, sc->media.ifm_media);
|
|
return EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/* We don't actually change media when the interface is down.
|
|
fe_init() will do the job, instead. Should we also wait
|
|
until the transmission buffer being empty? Changing the
|
|
media when we are sending a frame will cause two garbages
|
|
on wires, one on old media and another on new. FIXME */
|
|
if (sc->sc_if.if_flags & IFF_UP) {
|
|
if (sc->msel) sc->msel(sc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* I don't know how I can support media status callback... FIXME. */
|
|
static void
|
|
fe_medstat (struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
(void)ifp;
|
|
(void)ifmr;
|
|
}
|