freebsd-dev/module/zfs/zfs_znode.c
Nasf-Fan 9c5167d19f Project Quota on ZFS
Project quota is a new ZFS system space/object usage accounting
and enforcement mechanism. Similar as user/group quota, project
quota is another dimension of system quota. It bases on the new
object attribute - project ID.

Project ID is a numerical value to indicate to which project an
object belongs. An object only can belong to one project though
you (the object owner or privileged user) can change the object
project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly.
The object also can inherit the project ID from its parent when
created if the parent has the project inherit flag (that can be
set via 'chattr +P' or 'zfs project -s [-p]').

By accounting the spaces/objects belong to the same project, we
can know how many spaces/objects used by the project. And if we
set the upper limit then we can control the spaces/objects that
are consumed by such project. It is useful when multiple groups
and users cooperate for the same project, or a user/group needs
to participate in multiple projects.

Support the following commands and functionalities:

zfs set projectquota@project
zfs set projectobjquota@project

zfs get projectquota@project
zfs get projectobjquota@project
zfs get projectused@project
zfs get projectobjused@project

zfs projectspace

zfs allow projectquota
zfs allow projectobjquota
zfs allow projectused
zfs allow projectobjused

zfs unallow projectquota
zfs unallow projectobjquota
zfs unallow projectused
zfs unallow projectobjused

chattr +/-P
chattr -p project_id
lsattr -p

This patch also supports tree quota based on the project quota via
"zfs project" commands set as following:
zfs project [-d|-r] <file|directory ...>
zfs project -C [-k] [-r] <file|directory ...>
zfs project -c [-0] [-d|-r] [-p id] <file|directory ...>
zfs project [-p id] [-r] [-s] <file|directory ...>

For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on
the $DIR, then the proejct [obj]quota and [obj]used values for the
$DIR's project ID will be shown as the total/free (avail) resource.
Keep the same behavior as EXT4/XFS does.

Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by  Ned Bass <bass6@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fan Yong <fan.yong@intel.com>
TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master"
Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c
Closes #6290
2018-02-13 14:54:54 -08:00

2243 lines
57 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
*/
/* Portions Copyright 2007 Jeremy Teo */
#ifdef _KERNEL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/mntent.h>
#include <sys/mkdev.h>
#include <sys/u8_textprep.h>
#include <sys/dsl_dataset.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/mode.h>
#include <sys/atomic.h>
#include <vm/pvn.h>
#include "fs/fs_subr.h"
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_rlock.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_ctldir.h>
#include <sys/dnode.h>
#include <sys/fs/zfs.h>
#include <sys/kidmap.h>
#include <sys/zpl.h>
#endif /* _KERNEL */
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_tx.h>
#include <sys/refcount.h>
#include <sys/stat.h>
#include <sys/zap.h>
#include <sys/zfs_znode.h>
#include <sys/sa.h>
#include <sys/zfs_sa.h>
#include <sys/zfs_stat.h>
#include "zfs_prop.h"
#include "zfs_comutil.h"
/*
* Define ZNODE_STATS to turn on statistic gathering. By default, it is only
* turned on when DEBUG is also defined.
*/
#ifdef DEBUG
#define ZNODE_STATS
#endif /* DEBUG */
#ifdef ZNODE_STATS
#define ZNODE_STAT_ADD(stat) ((stat)++)
#else
#define ZNODE_STAT_ADD(stat) /* nothing */
#endif /* ZNODE_STATS */
/*
* Functions needed for userland (ie: libzpool) are not put under
* #ifdef_KERNEL; the rest of the functions have dependencies
* (such as VFS logic) that will not compile easily in userland.
*/
#ifdef _KERNEL
static kmem_cache_t *znode_cache = NULL;
static kmem_cache_t *znode_hold_cache = NULL;
unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
/*ARGSUSED*/
static int
zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
{
znode_t *zp = buf;
inode_init_once(ZTOI(zp));
list_link_init(&zp->z_link_node);
mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
zfs_rlock_init(&zp->z_range_lock);
zp->z_dirlocks = NULL;
zp->z_acl_cached = NULL;
zp->z_xattr_cached = NULL;
zp->z_xattr_parent = 0;
zp->z_moved = 0;
return (0);
}
/*ARGSUSED*/
static void
zfs_znode_cache_destructor(void *buf, void *arg)
{
znode_t *zp = buf;
ASSERT(!list_link_active(&zp->z_link_node));
mutex_destroy(&zp->z_lock);
rw_destroy(&zp->z_parent_lock);
rw_destroy(&zp->z_name_lock);
mutex_destroy(&zp->z_acl_lock);
rw_destroy(&zp->z_xattr_lock);
zfs_rlock_destroy(&zp->z_range_lock);
ASSERT(zp->z_dirlocks == NULL);
ASSERT(zp->z_acl_cached == NULL);
ASSERT(zp->z_xattr_cached == NULL);
}
static int
zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
{
znode_hold_t *zh = buf;
mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
refcount_create(&zh->zh_refcount);
zh->zh_obj = ZFS_NO_OBJECT;
return (0);
}
static void
zfs_znode_hold_cache_destructor(void *buf, void *arg)
{
znode_hold_t *zh = buf;
mutex_destroy(&zh->zh_lock);
refcount_destroy(&zh->zh_refcount);
}
void
zfs_znode_init(void)
{
/*
* Initialize zcache. The KMC_SLAB hint is used in order that it be
* backed by kmalloc() when on the Linux slab in order that any
* wait_on_bit() operations on the related inode operate properly.
*/
ASSERT(znode_cache == NULL);
znode_cache = kmem_cache_create("zfs_znode_cache",
sizeof (znode_t), 0, zfs_znode_cache_constructor,
zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_SLAB);
ASSERT(znode_hold_cache == NULL);
znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
}
void
zfs_znode_fini(void)
{
/*
* Cleanup zcache
*/
if (znode_cache)
kmem_cache_destroy(znode_cache);
znode_cache = NULL;
if (znode_hold_cache)
kmem_cache_destroy(znode_hold_cache);
znode_hold_cache = NULL;
}
/*
* The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
* serialize access to a znode and its SA buffer while the object is being
* created or destroyed. This kind of locking would normally reside in the
* znode itself but in this case that's impossible because the znode and SA
* buffer may not yet exist. Therefore the locking is handled externally
* with an array of mutexs and AVLs trees which contain per-object locks.
*
* In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
* in to the correct AVL tree and finally the per-object lock is held. In
* zfs_znode_hold_exit() the process is reversed. The per-object lock is
* released, removed from the AVL tree and destroyed if there are no waiters.
*
* This scheme has two important properties:
*
* 1) No memory allocations are performed while holding one of the z_hold_locks.
* This ensures evict(), which can be called from direct memory reclaim, will
* never block waiting on a z_hold_locks which just happens to have hashed
* to the same index.
*
* 2) All locks used to serialize access to an object are per-object and never
* shared. This minimizes lock contention without creating a large number
* of dedicated locks.
*
* On the downside it does require znode_lock_t structures to be frequently
* allocated and freed. However, because these are backed by a kmem cache
* and very short lived this cost is minimal.
*/
int
zfs_znode_hold_compare(const void *a, const void *b)
{
const znode_hold_t *zh_a = (const znode_hold_t *)a;
const znode_hold_t *zh_b = (const znode_hold_t *)b;
return (AVL_CMP(zh_a->zh_obj, zh_b->zh_obj));
}
boolean_t
zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
{
znode_hold_t *zh, search;
int i = ZFS_OBJ_HASH(zfsvfs, obj);
boolean_t held;
search.zh_obj = obj;
mutex_enter(&zfsvfs->z_hold_locks[i]);
zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
mutex_exit(&zfsvfs->z_hold_locks[i]);
return (held);
}
static znode_hold_t *
zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
{
znode_hold_t *zh, *zh_new, search;
int i = ZFS_OBJ_HASH(zfsvfs, obj);
boolean_t found = B_FALSE;
zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
zh_new->zh_obj = obj;
search.zh_obj = obj;
mutex_enter(&zfsvfs->z_hold_locks[i]);
zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
if (likely(zh == NULL)) {
zh = zh_new;
avl_add(&zfsvfs->z_hold_trees[i], zh);
} else {
ASSERT3U(zh->zh_obj, ==, obj);
found = B_TRUE;
}
refcount_add(&zh->zh_refcount, NULL);
mutex_exit(&zfsvfs->z_hold_locks[i]);
if (found == B_TRUE)
kmem_cache_free(znode_hold_cache, zh_new);
ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
ASSERT3S(refcount_count(&zh->zh_refcount), >, 0);
mutex_enter(&zh->zh_lock);
return (zh);
}
static void
zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
{
int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
boolean_t remove = B_FALSE;
ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
ASSERT3S(refcount_count(&zh->zh_refcount), >, 0);
mutex_exit(&zh->zh_lock);
mutex_enter(&zfsvfs->z_hold_locks[i]);
if (refcount_remove(&zh->zh_refcount, NULL) == 0) {
avl_remove(&zfsvfs->z_hold_trees[i], zh);
remove = B_TRUE;
}
mutex_exit(&zfsvfs->z_hold_locks[i]);
if (remove == B_TRUE)
kmem_cache_free(znode_hold_cache, zh);
}
int
zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
{
#ifdef HAVE_SMB_SHARE
zfs_acl_ids_t acl_ids;
vattr_t vattr;
znode_t *sharezp;
vnode_t *vp;
znode_t *zp;
int error;
vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
vattr.va_mode = S_IFDIR | 0555;
vattr.va_uid = crgetuid(kcred);
vattr.va_gid = crgetgid(kcred);
sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
sharezp->z_moved = 0;
sharezp->z_unlinked = 0;
sharezp->z_atime_dirty = 0;
sharezp->z_zfsvfs = zfsvfs;
sharezp->z_is_sa = zfsvfs->z_use_sa;
sharezp->z_pflags = 0;
vp = ZTOV(sharezp);
vn_reinit(vp);
vp->v_type = VDIR;
VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
kcred, NULL, &acl_ids));
zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
ASSERT3P(zp, ==, sharezp);
ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
POINTER_INVALIDATE(&sharezp->z_zfsvfs);
error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
zfsvfs->z_shares_dir = sharezp->z_id;
zfs_acl_ids_free(&acl_ids);
// ZTOV(sharezp)->v_count = 0;
sa_handle_destroy(sharezp->z_sa_hdl);
kmem_cache_free(znode_cache, sharezp);
return (error);
#else
return (0);
#endif /* HAVE_SMB_SHARE */
}
static void
zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
{
ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
mutex_enter(&zp->z_lock);
ASSERT(zp->z_sa_hdl == NULL);
ASSERT(zp->z_acl_cached == NULL);
if (sa_hdl == NULL) {
VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
SA_HDL_SHARED, &zp->z_sa_hdl));
} else {
zp->z_sa_hdl = sa_hdl;
sa_set_userp(sa_hdl, zp);
}
zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
mutex_exit(&zp->z_lock);
}
void
zfs_znode_dmu_fini(znode_t *zp)
{
ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) || zp->z_unlinked ||
RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
sa_handle_destroy(zp->z_sa_hdl);
zp->z_sa_hdl = NULL;
}
/*
* Called by new_inode() to allocate a new inode.
*/
int
zfs_inode_alloc(struct super_block *sb, struct inode **ip)
{
znode_t *zp;
zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
*ip = ZTOI(zp);
return (0);
}
/*
* Called in multiple places when an inode should be destroyed.
*/
void
zfs_inode_destroy(struct inode *ip)
{
znode_t *zp = ITOZ(ip);
zfsvfs_t *zfsvfs = ZTOZSB(zp);
mutex_enter(&zfsvfs->z_znodes_lock);
if (list_link_active(&zp->z_link_node)) {
list_remove(&zfsvfs->z_all_znodes, zp);
zfsvfs->z_nr_znodes--;
}
mutex_exit(&zfsvfs->z_znodes_lock);
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
if (zp->z_xattr_cached) {
nvlist_free(zp->z_xattr_cached);
zp->z_xattr_cached = NULL;
}
kmem_cache_free(znode_cache, zp);
}
static void
zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
{
uint64_t rdev = 0;
switch (ip->i_mode & S_IFMT) {
case S_IFREG:
ip->i_op = &zpl_inode_operations;
ip->i_fop = &zpl_file_operations;
ip->i_mapping->a_ops = &zpl_address_space_operations;
break;
case S_IFDIR:
ip->i_op = &zpl_dir_inode_operations;
ip->i_fop = &zpl_dir_file_operations;
ITOZ(ip)->z_zn_prefetch = B_TRUE;
break;
case S_IFLNK:
ip->i_op = &zpl_symlink_inode_operations;
break;
/*
* rdev is only stored in a SA only for device files.
*/
case S_IFCHR:
case S_IFBLK:
(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
sizeof (rdev));
/*FALLTHROUGH*/
case S_IFIFO:
case S_IFSOCK:
init_special_inode(ip, ip->i_mode, rdev);
ip->i_op = &zpl_special_inode_operations;
break;
default:
zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
(u_longlong_t)ip->i_ino, ip->i_mode);
/* Assume the inode is a file and attempt to continue */
ip->i_mode = S_IFREG | 0644;
ip->i_op = &zpl_inode_operations;
ip->i_fop = &zpl_file_operations;
ip->i_mapping->a_ops = &zpl_address_space_operations;
break;
}
}
void
zfs_set_inode_flags(znode_t *zp, struct inode *ip)
{
/*
* Linux and Solaris have different sets of file attributes, so we
* restrict this conversion to the intersection of the two.
*/
#ifdef HAVE_INODE_SET_FLAGS
unsigned int flags = 0;
if (zp->z_pflags & ZFS_IMMUTABLE)
flags |= S_IMMUTABLE;
if (zp->z_pflags & ZFS_APPENDONLY)
flags |= S_APPEND;
inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
#else
if (zp->z_pflags & ZFS_IMMUTABLE)
ip->i_flags |= S_IMMUTABLE;
else
ip->i_flags &= ~S_IMMUTABLE;
if (zp->z_pflags & ZFS_APPENDONLY)
ip->i_flags |= S_APPEND;
else
ip->i_flags &= ~S_APPEND;
#endif
}
/*
* Update the embedded inode given the znode. We should work toward
* eliminating this function as soon as possible by removing values
* which are duplicated between the znode and inode. If the generic
* inode has the correct field it should be used, and the ZFS code
* updated to access the inode. This can be done incrementally.
*/
void
zfs_inode_update(znode_t *zp)
{
zfsvfs_t *zfsvfs;
struct inode *ip;
uint32_t blksize;
u_longlong_t i_blocks;
ASSERT(zp != NULL);
zfsvfs = ZTOZSB(zp);
ip = ZTOI(zp);
/* Skip .zfs control nodes which do not exist on disk. */
if (zfsctl_is_node(ip))
return;
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
spin_lock(&ip->i_lock);
ip->i_blocks = i_blocks;
i_size_write(ip, zp->z_size);
spin_unlock(&ip->i_lock);
}
/*
* Construct a znode+inode and initialize.
*
* This does not do a call to dmu_set_user() that is
* up to the caller to do, in case you don't want to
* return the znode
*/
static znode_t *
zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
dmu_object_type_t obj_type, uint64_t obj, sa_handle_t *hdl)
{
znode_t *zp;
struct inode *ip;
uint64_t mode;
uint64_t parent;
uint64_t tmp_gen;
uint64_t links;
uint64_t z_uid, z_gid;
uint64_t atime[2], mtime[2], ctime[2];
uint64_t projid = ZFS_DEFAULT_PROJID;
sa_bulk_attr_t bulk[11];
int count = 0;
ASSERT(zfsvfs != NULL);
ip = new_inode(zfsvfs->z_sb);
if (ip == NULL)
return (NULL);
zp = ITOZ(ip);
ASSERT(zp->z_dirlocks == NULL);
ASSERT3P(zp->z_acl_cached, ==, NULL);
ASSERT3P(zp->z_xattr_cached, ==, NULL);
zp->z_moved = 0;
zp->z_sa_hdl = NULL;
zp->z_unlinked = 0;
zp->z_atime_dirty = 0;
zp->z_mapcnt = 0;
zp->z_id = db->db_object;
zp->z_blksz = blksz;
zp->z_seq = 0x7A4653;
zp->z_sync_cnt = 0;
zp->z_is_mapped = B_FALSE;
zp->z_is_ctldir = B_FALSE;
zp->z_is_stale = B_FALSE;
zp->z_range_lock.zr_size = &zp->z_size;
zp->z_range_lock.zr_blksz = &zp->z_blksz;
zp->z_range_lock.zr_max_blksz = &ZTOZSB(zp)->z_max_blksz;
zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
&zp->z_size, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
&parent, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
(dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
(zp->z_pflags & ZFS_PROJID) &&
sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
if (hdl == NULL)
sa_handle_destroy(zp->z_sa_hdl);
zp->z_sa_hdl = NULL;
goto error;
}
zp->z_projid = projid;
zp->z_mode = ip->i_mode = mode;
ip->i_generation = (uint32_t)tmp_gen;
ip->i_blkbits = SPA_MINBLOCKSHIFT;
set_nlink(ip, (uint32_t)links);
zfs_uid_write(ip, z_uid);
zfs_gid_write(ip, z_gid);
zfs_set_inode_flags(zp, ip);
/* Cache the xattr parent id */
if (zp->z_pflags & ZFS_XATTR)
zp->z_xattr_parent = parent;
ZFS_TIME_DECODE(&ip->i_atime, atime);
ZFS_TIME_DECODE(&ip->i_mtime, mtime);
ZFS_TIME_DECODE(&ip->i_ctime, ctime);
ip->i_ino = obj;
zfs_inode_update(zp);
zfs_inode_set_ops(zfsvfs, ip);
/*
* The only way insert_inode_locked() can fail is if the ip->i_ino
* number is already hashed for this super block. This can never
* happen because the inode numbers map 1:1 with the object numbers.
*
* The one exception is rolling back a mounted file system, but in
* this case all the active inode are unhashed during the rollback.
*/
VERIFY3S(insert_inode_locked(ip), ==, 0);
mutex_enter(&zfsvfs->z_znodes_lock);
list_insert_tail(&zfsvfs->z_all_znodes, zp);
zfsvfs->z_nr_znodes++;
membar_producer();
mutex_exit(&zfsvfs->z_znodes_lock);
unlock_new_inode(ip);
return (zp);
error:
iput(ip);
return (NULL);
}
/*
* Safely mark an inode dirty. Inodes which are part of a read-only
* file system or snapshot may not be dirtied.
*/
void
zfs_mark_inode_dirty(struct inode *ip)
{
zfsvfs_t *zfsvfs = ITOZSB(ip);
if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
return;
mark_inode_dirty(ip);
}
static uint64_t empty_xattr;
static uint64_t pad[4];
static zfs_acl_phys_t acl_phys;
/*
* Create a new DMU object to hold a zfs znode.
*
* IN: dzp - parent directory for new znode
* vap - file attributes for new znode
* tx - dmu transaction id for zap operations
* cr - credentials of caller
* flag - flags:
* IS_ROOT_NODE - new object will be root
* IS_XATTR - new object is an attribute
* bonuslen - length of bonus buffer
* setaclp - File/Dir initial ACL
* fuidp - Tracks fuid allocation.
*
* OUT: zpp - allocated znode
*
*/
void
zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
{
uint64_t crtime[2], atime[2], mtime[2], ctime[2];
uint64_t mode, size, links, parent, pflags;
uint64_t projid = ZFS_DEFAULT_PROJID;
uint64_t rdev = 0;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
dmu_buf_t *db;
timestruc_t now;
uint64_t gen, obj;
int bonuslen;
int dnodesize;
sa_handle_t *sa_hdl;
dmu_object_type_t obj_type;
sa_bulk_attr_t *sa_attrs;
int cnt = 0;
zfs_acl_locator_cb_t locate = { 0 };
znode_hold_t *zh;
if (zfsvfs->z_replay) {
obj = vap->va_nodeid;
now = vap->va_ctime; /* see zfs_replay_create() */
gen = vap->va_nblocks; /* ditto */
dnodesize = vap->va_fsid; /* ditto */
} else {
obj = 0;
gethrestime(&now);
gen = dmu_tx_get_txg(tx);
dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
}
if (dnodesize == 0)
dnodesize = DNODE_MIN_SIZE;
obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
bonuslen = (obj_type == DMU_OT_SA) ?
DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
/*
* Create a new DMU object.
*/
/*
* There's currently no mechanism for pre-reading the blocks that will
* be needed to allocate a new object, so we accept the small chance
* that there will be an i/o error and we will fail one of the
* assertions below.
*/
if (S_ISDIR(vap->va_mode)) {
if (zfsvfs->z_replay) {
VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
obj_type, bonuslen, dnodesize, tx));
} else {
obj = zap_create_norm_dnsize(zfsvfs->z_os,
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
obj_type, bonuslen, dnodesize, tx);
}
} else {
if (zfsvfs->z_replay) {
VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
obj_type, bonuslen, dnodesize, tx));
} else {
obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
DMU_OT_PLAIN_FILE_CONTENTS, 0,
obj_type, bonuslen, dnodesize, tx);
}
}
zh = zfs_znode_hold_enter(zfsvfs, obj);
VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
/*
* If this is the root, fix up the half-initialized parent pointer
* to reference the just-allocated physical data area.
*/
if (flag & IS_ROOT_NODE) {
dzp->z_id = obj;
}
/*
* If parent is an xattr, so am I.
*/
if (dzp->z_pflags & ZFS_XATTR) {
flag |= IS_XATTR;
}
if (zfsvfs->z_use_fuids)
pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
else
pflags = 0;
if (S_ISDIR(vap->va_mode)) {
size = 2; /* contents ("." and "..") */
links = 2;
} else {
size = 0;
links = (flag & IS_TMPFILE) ? 0 : 1;
}
if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
rdev = vap->va_rdev;
parent = dzp->z_id;
mode = acl_ids->z_mode;
if (flag & IS_XATTR)
pflags |= ZFS_XATTR;
if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
/*
* With ZFS_PROJID flag, we can easily know whether there is
* project ID stored on disk or not. See zfs_space_delta_cb().
*/
if (obj_type != DMU_OT_ZNODE &&
dmu_objset_projectquota_enabled(zfsvfs->z_os))
pflags |= ZFS_PROJID;
/*
* Inherit project ID from parent if required.
*/
projid = zfs_inherit_projid(dzp);
if (dzp->z_pflags & ZFS_PROJINHERIT)
pflags |= ZFS_PROJINHERIT;
}
/*
* No execs denied will be deterimed when zfs_mode_compute() is called.
*/
pflags |= acl_ids->z_aclp->z_hints &
(ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
ZFS_TIME_ENCODE(&now, crtime);
ZFS_TIME_ENCODE(&now, ctime);
if (vap->va_mask & ATTR_ATIME) {
ZFS_TIME_ENCODE(&vap->va_atime, atime);
} else {
ZFS_TIME_ENCODE(&now, atime);
}
if (vap->va_mask & ATTR_MTIME) {
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
} else {
ZFS_TIME_ENCODE(&now, mtime);
}
/* Now add in all of the "SA" attributes */
VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
&sa_hdl));
/*
* Setup the array of attributes to be replaced/set on the new file
*
* order for DMU_OT_ZNODE is critical since it needs to be constructed
* in the old znode_phys_t format. Don't change this ordering
*/
sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
NULL, &atime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
NULL, &mtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
NULL, &ctime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
NULL, &crtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
NULL, &gen, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
NULL, &mode, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
NULL, &size, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
NULL, &parent, 8);
} else {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
NULL, &mode, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
NULL, &size, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
NULL, &gen, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
NULL, &acl_ids->z_fuid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
NULL, &acl_ids->z_fgid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
NULL, &parent, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
NULL, &pflags, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
NULL, &atime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
NULL, &mtime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
NULL, &ctime, 16);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
NULL, &crtime, 16);
}
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
&empty_xattr, 8);
} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
pflags & ZFS_PROJID) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
NULL, &projid, 8);
}
if (obj_type == DMU_OT_ZNODE ||
(S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
NULL, &rdev, 8);
}
if (obj_type == DMU_OT_ZNODE) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
NULL, &pflags, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
&acl_ids->z_fuid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
&acl_ids->z_fgid, 8);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
sizeof (uint64_t) * 4);
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
&acl_phys, sizeof (zfs_acl_phys_t));
} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
&acl_ids->z_aclp->z_acl_count, 8);
locate.cb_aclp = acl_ids->z_aclp;
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
zfs_acl_data_locator, &locate,
acl_ids->z_aclp->z_acl_bytes);
mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
acl_ids->z_fuid, acl_ids->z_fgid);
}
VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
if (!(flag & IS_ROOT_NODE)) {
/*
* The call to zfs_znode_alloc() may fail if memory is low
* via the call path: alloc_inode() -> inode_init_always() ->
* security_inode_alloc() -> inode_alloc_security(). Since
* the existing code is written such that zfs_mknode() can
* not fail retry until sufficient memory has been reclaimed.
*/
do {
*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, obj,
sa_hdl);
} while (*zpp == NULL);
VERIFY(*zpp != NULL);
VERIFY(dzp != NULL);
} else {
/*
* If we are creating the root node, the "parent" we
* passed in is the znode for the root.
*/
*zpp = dzp;
(*zpp)->z_sa_hdl = sa_hdl;
}
(*zpp)->z_pflags = pflags;
(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
(*zpp)->z_dnodesize = dnodesize;
(*zpp)->z_projid = projid;
if (obj_type == DMU_OT_ZNODE ||
acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
}
kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
zfs_znode_hold_exit(zfsvfs, zh);
}
/*
* Update in-core attributes. It is assumed the caller will be doing an
* sa_bulk_update to push the changes out.
*/
void
zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
{
xoptattr_t *xoap;
boolean_t update_inode = B_FALSE;
xoap = xva_getxoptattr(xvap);
ASSERT(xoap);
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
uint64_t times[2];
ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
&times, sizeof (times), tx);
XVA_SET_RTN(xvap, XAT_CREATETIME);
}
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_READONLY);
}
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_HIDDEN);
}
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_SYSTEM);
}
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_ARCHIVE);
}
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
update_inode = B_TRUE;
}
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_NOUNLINK);
}
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_APPENDONLY);
update_inode = B_TRUE;
}
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_NODUMP);
}
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_OPAQUE);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
xoap->xoa_av_quarantined, zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
}
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
zfs_sa_set_scanstamp(zp, xvap, tx);
XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
}
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_REPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_OFFLINE);
}
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_SPARSE);
}
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
zp->z_pflags, tx);
XVA_SET_RTN(xvap, XAT_PROJINHERIT);
}
if (update_inode)
zfs_set_inode_flags(zp, ZTOI(zp));
}
int
zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
{
dmu_object_info_t doi;
dmu_buf_t *db;
znode_t *zp;
znode_hold_t *zh;
int err;
sa_handle_t *hdl;
*zpp = NULL;
again:
zh = zfs_znode_hold_enter(zfsvfs, obj_num);
err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
if (err) {
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_SA &&
(doi.doi_bonus_type != DMU_OT_ZNODE ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EINVAL));
}
hdl = dmu_buf_get_user(db);
if (hdl != NULL) {
zp = sa_get_userdata(hdl);
/*
* Since "SA" does immediate eviction we
* should never find a sa handle that doesn't
* know about the znode.
*/
ASSERT3P(zp, !=, NULL);
mutex_enter(&zp->z_lock);
ASSERT3U(zp->z_id, ==, obj_num);
/*
* If igrab() returns NULL the VFS has independently
* determined the inode should be evicted and has
* called iput_final() to start the eviction process.
* The SA handle is still valid but because the VFS
* requires that the eviction succeed we must drop
* our locks and references to allow the eviction to
* complete. The zfs_zget() may then be retried.
*
* This unlikely case could be optimized by registering
* a sops->drop_inode() callback. The callback would
* need to detect the active SA hold thereby informing
* the VFS that this inode should not be evicted.
*/
if (igrab(ZTOI(zp)) == NULL) {
mutex_exit(&zp->z_lock);
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
/* inode might need this to finish evict */
cond_resched();
goto again;
}
*zpp = zp;
err = 0;
mutex_exit(&zp->z_lock);
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
/*
* Not found create new znode/vnode but only if file exists.
*
* There is a small window where zfs_vget() could
* find this object while a file create is still in
* progress. This is checked for in zfs_znode_alloc()
*
* if zfs_znode_alloc() fails it will drop the hold on the
* bonus buffer.
*/
zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
doi.doi_bonus_type, obj_num, NULL);
if (zp == NULL) {
err = SET_ERROR(ENOENT);
} else {
*zpp = zp;
}
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
int
zfs_rezget(znode_t *zp)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
dmu_object_info_t doi;
dmu_buf_t *db;
uint64_t obj_num = zp->z_id;
uint64_t mode;
uint64_t links;
sa_bulk_attr_t bulk[10];
int err;
int count = 0;
uint64_t gen;
uint64_t z_uid, z_gid;
uint64_t atime[2], mtime[2], ctime[2];
uint64_t projid = ZFS_DEFAULT_PROJID;
znode_hold_t *zh;
/*
* skip ctldir, otherwise they will always get invalidated. This will
* cause funny behaviour for the mounted snapdirs. Especially for
* Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
* anyone automount it again as long as someone is still using the
* detached mount.
*/
if (zp->z_is_ctldir)
return (0);
zh = zfs_znode_hold_enter(zfsvfs, obj_num);
mutex_enter(&zp->z_acl_lock);
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
mutex_exit(&zp->z_acl_lock);
rw_enter(&zp->z_xattr_lock, RW_WRITER);
if (zp->z_xattr_cached) {
nvlist_free(zp->z_xattr_cached);
zp->z_xattr_cached = NULL;
}
rw_exit(&zp->z_xattr_lock);
ASSERT(zp->z_sa_hdl == NULL);
err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
if (err) {
zfs_znode_hold_exit(zfsvfs, zh);
return (err);
}
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_type != DMU_OT_SA &&
(doi.doi_bonus_type != DMU_OT_ZNODE ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
sa_buf_rele(db, NULL);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EINVAL));
}
zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
/* reload cached values */
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
&gen, sizeof (gen));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
&zp->z_size, sizeof (zp->z_size));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
&links, sizeof (links));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
&z_uid, sizeof (z_uid));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
&z_gid, sizeof (z_gid));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
&mode, sizeof (mode));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
&atime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
&mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, 16);
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EIO));
}
if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
&projid, 8);
if (err != 0 && err != ENOENT) {
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(err));
}
}
zp->z_projid = projid;
zp->z_mode = ZTOI(zp)->i_mode = mode;
zfs_uid_write(ZTOI(zp), z_uid);
zfs_gid_write(ZTOI(zp), z_gid);
ZFS_TIME_DECODE(&ZTOI(zp)->i_atime, atime);
ZFS_TIME_DECODE(&ZTOI(zp)->i_mtime, mtime);
ZFS_TIME_DECODE(&ZTOI(zp)->i_ctime, ctime);
if (gen != ZTOI(zp)->i_generation) {
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (SET_ERROR(EIO));
}
set_nlink(ZTOI(zp), (uint32_t)links);
zfs_set_inode_flags(zp, ZTOI(zp));
zp->z_blksz = doi.doi_data_block_size;
zp->z_atime_dirty = 0;
zfs_inode_update(zp);
/*
* If the file has zero links, then it has been unlinked on the send
* side and it must be in the received unlinked set.
* We call zfs_znode_dmu_fini() now to prevent any accesses to the
* stale data and to prevent automatical removal of the file in
* zfs_zinactive(). The file will be removed either when it is removed
* on the send side and the next incremental stream is received or
* when the unlinked set gets processed.
*/
zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
if (zp->z_unlinked)
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
return (0);
}
void
zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
objset_t *os = zfsvfs->z_os;
uint64_t obj = zp->z_id;
uint64_t acl_obj = zfs_external_acl(zp);
znode_hold_t *zh;
zh = zfs_znode_hold_enter(zfsvfs, obj);
if (acl_obj) {
VERIFY(!zp->z_is_sa);
VERIFY(0 == dmu_object_free(os, acl_obj, tx));
}
VERIFY(0 == dmu_object_free(os, obj, tx));
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
}
void
zfs_zinactive(znode_t *zp)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
uint64_t z_id = zp->z_id;
znode_hold_t *zh;
ASSERT(zp->z_sa_hdl);
/*
* Don't allow a zfs_zget() while were trying to release this znode.
*/
zh = zfs_znode_hold_enter(zfsvfs, z_id);
mutex_enter(&zp->z_lock);
/*
* If this was the last reference to a file with no links, remove
* the file from the file system unless the file system is mounted
* read-only. That can happen, for example, if the file system was
* originally read-write, the file was opened, then unlinked and
* the file system was made read-only before the file was finally
* closed. The file will remain in the unlinked set.
*/
if (zp->z_unlinked) {
ASSERT(!zfsvfs->z_issnap);
if (!zfs_is_readonly(zfsvfs)) {
mutex_exit(&zp->z_lock);
zfs_znode_hold_exit(zfsvfs, zh);
zfs_rmnode(zp);
return;
}
}
mutex_exit(&zp->z_lock);
zfs_znode_dmu_fini(zp);
zfs_znode_hold_exit(zfsvfs, zh);
}
static inline int
zfs_compare_timespec(struct timespec *t1, struct timespec *t2)
{
if (t1->tv_sec < t2->tv_sec)
return (-1);
if (t1->tv_sec > t2->tv_sec)
return (1);
return (t1->tv_nsec - t2->tv_nsec);
}
/*
* Prepare to update znode time stamps.
*
* IN: zp - znode requiring timestamp update
* flag - ATTR_MTIME, ATTR_CTIME flags
*
* OUT: zp - z_seq
* mtime - new mtime
* ctime - new ctime
*
* Note: We don't update atime here, because we rely on Linux VFS to do
* atime updating.
*/
void
zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
uint64_t ctime[2])
{
timestruc_t now;
gethrestime(&now);
zp->z_seq++;
if (flag & ATTR_MTIME) {
ZFS_TIME_ENCODE(&now, mtime);
ZFS_TIME_DECODE(&(ZTOI(zp)->i_mtime), mtime);
if (ZTOZSB(zp)->z_use_fuids) {
zp->z_pflags |= (ZFS_ARCHIVE |
ZFS_AV_MODIFIED);
}
}
if (flag & ATTR_CTIME) {
ZFS_TIME_ENCODE(&now, ctime);
ZFS_TIME_DECODE(&(ZTOI(zp)->i_ctime), ctime);
if (ZTOZSB(zp)->z_use_fuids)
zp->z_pflags |= ZFS_ARCHIVE;
}
}
/*
* Grow the block size for a file.
*
* IN: zp - znode of file to free data in.
* size - requested block size
* tx - open transaction.
*
* NOTE: this function assumes that the znode is write locked.
*/
void
zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
{
int error;
u_longlong_t dummy;
if (size <= zp->z_blksz)
return;
/*
* If the file size is already greater than the current blocksize,
* we will not grow. If there is more than one block in a file,
* the blocksize cannot change.
*/
if (zp->z_blksz && zp->z_size > zp->z_blksz)
return;
error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
size, 0, tx);
if (error == ENOTSUP)
return;
ASSERT0(error);
/* What blocksize did we actually get? */
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
}
/*
* Increase the file length
*
* IN: zp - znode of file to free data in.
* end - new end-of-file
*
* RETURN: 0 on success, error code on failure
*/
static int
zfs_extend(znode_t *zp, uint64_t end)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
dmu_tx_t *tx;
rl_t *rl;
uint64_t newblksz;
int error;
/*
* We will change zp_size, lock the whole file.
*/
rl = zfs_range_lock(&zp->z_range_lock, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end <= zp->z_size) {
zfs_range_unlock(rl);
return (0);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
if (end > zp->z_blksz &&
(!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
/*
* We are growing the file past the current block size.
*/
if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
/*
* File's blocksize is already larger than the
* "recordsize" property. Only let it grow to
* the next power of 2.
*/
ASSERT(!ISP2(zp->z_blksz));
newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
} else {
newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
}
dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
} else {
newblksz = 0;
}
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
zfs_range_unlock(rl);
return (error);
}
if (newblksz)
zfs_grow_blocksize(zp, newblksz, tx);
zp->z_size = end;
VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
&zp->z_size, sizeof (zp->z_size), tx));
zfs_range_unlock(rl);
dmu_tx_commit(tx);
return (0);
}
/*
* zfs_zero_partial_page - Modeled after update_pages() but
* with different arguments and semantics for use by zfs_freesp().
*
* Zeroes a piece of a single page cache entry for zp at offset
* start and length len.
*
* Caller must acquire a range lock on the file for the region
* being zeroed in order that the ARC and page cache stay in sync.
*/
static void
zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
{
struct address_space *mp = ZTOI(zp)->i_mapping;
struct page *pp;
int64_t off;
void *pb;
ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
off = start & (PAGE_SIZE - 1);
start &= PAGE_MASK;
pp = find_lock_page(mp, start >> PAGE_SHIFT);
if (pp) {
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
pb = kmap(pp);
bzero(pb + off, len);
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
SetPageUptodate(pp);
ClearPageError(pp);
unlock_page(pp);
put_page(pp);
}
}
/*
* Free space in a file.
*
* IN: zp - znode of file to free data in.
* off - start of section to free.
* len - length of section to free.
*
* RETURN: 0 on success, error code on failure
*/
static int
zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
rl_t *rl;
int error;
/*
* Lock the range being freed.
*/
rl = zfs_range_lock(&zp->z_range_lock, off, len, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (off >= zp->z_size) {
zfs_range_unlock(rl);
return (0);
}
if (off + len > zp->z_size)
len = zp->z_size - off;
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
/*
* Zero partial page cache entries. This must be done under a
* range lock in order to keep the ARC and page cache in sync.
*/
if (zp->z_is_mapped) {
loff_t first_page, last_page, page_len;
loff_t first_page_offset, last_page_offset;
/* first possible full page in hole */
first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* last page of hole */
last_page = (off + len) >> PAGE_SHIFT;
/* offset of first_page */
first_page_offset = first_page << PAGE_SHIFT;
/* offset of last_page */
last_page_offset = last_page << PAGE_SHIFT;
/* truncate whole pages */
if (last_page_offset > first_page_offset) {
truncate_inode_pages_range(ZTOI(zp)->i_mapping,
first_page_offset, last_page_offset - 1);
}
/* truncate sub-page ranges */
if (first_page > last_page) {
/* entire punched area within a single page */
zfs_zero_partial_page(zp, off, len);
} else {
/* beginning of punched area at the end of a page */
page_len = first_page_offset - off;
if (page_len > 0)
zfs_zero_partial_page(zp, off, page_len);
/* end of punched area at the beginning of a page */
page_len = off + len - last_page_offset;
if (page_len > 0)
zfs_zero_partial_page(zp, last_page_offset,
page_len);
}
}
zfs_range_unlock(rl);
return (error);
}
/*
* Truncate a file
*
* IN: zp - znode of file to free data in.
* end - new end-of-file.
*
* RETURN: 0 on success, error code on failure
*/
static int
zfs_trunc(znode_t *zp, uint64_t end)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
dmu_tx_t *tx;
rl_t *rl;
int error;
sa_bulk_attr_t bulk[2];
int count = 0;
/*
* We will change zp_size, lock the whole file.
*/
rl = zfs_range_lock(&zp->z_range_lock, 0, UINT64_MAX, RL_WRITER);
/*
* Nothing to do if file already at desired length.
*/
if (end >= zp->z_size) {
zfs_range_unlock(rl);
return (0);
}
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
DMU_OBJECT_END);
if (error) {
zfs_range_unlock(rl);
return (error);
}
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
zfs_range_unlock(rl);
return (error);
}
zp->z_size = end;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
NULL, &zp->z_size, sizeof (zp->z_size));
if (end == 0) {
zp->z_pflags &= ~ZFS_SPARSE;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
NULL, &zp->z_pflags, 8);
}
VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
dmu_tx_commit(tx);
zfs_range_unlock(rl);
return (0);
}
/*
* Free space in a file
*
* IN: zp - znode of file to free data in.
* off - start of range
* len - end of range (0 => EOF)
* flag - current file open mode flags.
* log - TRUE if this action should be logged
*
* RETURN: 0 on success, error code on failure
*/
int
zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
{
dmu_tx_t *tx;
zfsvfs_t *zfsvfs = ZTOZSB(zp);
zilog_t *zilog = zfsvfs->z_log;
uint64_t mode;
uint64_t mtime[2], ctime[2];
sa_bulk_attr_t bulk[3];
int count = 0;
int error;
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
sizeof (mode))) != 0)
return (error);
if (off > zp->z_size) {
error = zfs_extend(zp, off+len);
if (error == 0 && log)
goto log;
goto out;
}
if (len == 0) {
error = zfs_trunc(zp, off);
} else {
if ((error = zfs_free_range(zp, off, len)) == 0 &&
off + len > zp->z_size)
error = zfs_extend(zp, off+len);
}
if (error || !log)
goto out;
log:
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
goto out;
}
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
NULL, &zp->z_pflags, 8);
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
ASSERT(error == 0);
zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
dmu_tx_commit(tx);
zfs_inode_update(zp);
error = 0;
out:
/*
* Truncate the page cache - for file truncate operations, use
* the purpose-built API for truncations. For punching operations,
* the truncation is handled under a range lock in zfs_free_range.
*/
if (len == 0)
truncate_setsize(ZTOI(zp), off);
return (error);
}
void
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
{
struct super_block *sb;
zfsvfs_t *zfsvfs;
uint64_t moid, obj, sa_obj, version;
uint64_t sense = ZFS_CASE_SENSITIVE;
uint64_t norm = 0;
nvpair_t *elem;
int size;
int error;
int i;
znode_t *rootzp = NULL;
vattr_t vattr;
znode_t *zp;
zfs_acl_ids_t acl_ids;
/*
* First attempt to create master node.
*/
/*
* In an empty objset, there are no blocks to read and thus
* there can be no i/o errors (which we assert below).
*/
moid = MASTER_NODE_OBJ;
error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
/*
* Set starting attributes.
*/
version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
elem = NULL;
while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
/* For the moment we expect all zpl props to be uint64_ts */
uint64_t val;
char *name;
ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
VERIFY(nvpair_value_uint64(elem, &val) == 0);
name = nvpair_name(elem);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
if (val < version)
version = val;
} else {
error = zap_update(os, moid, name, 8, 1, &val, tx);
}
ASSERT(error == 0);
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
norm = val;
else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
sense = val;
}
ASSERT(version != 0);
error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
/*
* Create zap object used for SA attribute registration
*/
if (version >= ZPL_VERSION_SA) {
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
DMU_OT_NONE, 0, tx);
error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
ASSERT(error == 0);
} else {
sa_obj = 0;
}
/*
* Create a delete queue.
*/
obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
ASSERT(error == 0);
/*
* Create root znode. Create minimal znode/inode/zfsvfs/sb
* to allow zfs_mknode to work.
*/
vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
vattr.va_mode = S_IFDIR|0755;
vattr.va_uid = crgetuid(cr);
vattr.va_gid = crgetgid(cr);
rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
rootzp->z_moved = 0;
rootzp->z_unlinked = 0;
rootzp->z_atime_dirty = 0;
rootzp->z_is_sa = USE_SA(version, os);
rootzp->z_pflags = 0;
zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
zfsvfs->z_os = os;
zfsvfs->z_parent = zfsvfs;
zfsvfs->z_version = version;
zfsvfs->z_use_fuids = USE_FUIDS(version, os);
zfsvfs->z_use_sa = USE_SA(version, os);
zfsvfs->z_norm = norm;
sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
sb->s_fs_info = zfsvfs;
ZTOI(rootzp)->i_sb = sb;
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
&zfsvfs->z_attr_table);
ASSERT(error == 0);
/*
* Fold case on file systems that are always or sometimes case
* insensitive.
*/
if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
offsetof(znode_t, z_link_node));
size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
zfsvfs->z_hold_size = size;
zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
KM_SLEEP);
zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
for (i = 0; i != size; i++) {
avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
}
VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
cr, NULL, &acl_ids));
zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
ASSERT3P(zp, ==, rootzp);
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
ASSERT(error == 0);
zfs_acl_ids_free(&acl_ids);
atomic_set(&ZTOI(rootzp)->i_count, 0);
sa_handle_destroy(rootzp->z_sa_hdl);
kmem_cache_free(znode_cache, rootzp);
/*
* Create shares directory
*/
error = zfs_create_share_dir(zfsvfs, tx);
ASSERT(error == 0);
for (i = 0; i != size; i++) {
avl_destroy(&zfsvfs->z_hold_trees[i]);
mutex_destroy(&zfsvfs->z_hold_locks[i]);
}
mutex_destroy(&zfsvfs->z_znodes_lock);
vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
kmem_free(sb, sizeof (struct super_block));
kmem_free(zfsvfs, sizeof (zfsvfs_t));
}
#endif /* _KERNEL */
static int
zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
{
uint64_t sa_obj = 0;
int error;
error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
if (error != 0 && error != ENOENT)
return (error);
error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
return (error);
}
static int
zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
dmu_buf_t **db, void *tag)
{
dmu_object_info_t doi;
int error;
if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
return (error);
dmu_object_info_from_db(*db, &doi);
if ((doi.doi_bonus_type != DMU_OT_SA &&
doi.doi_bonus_type != DMU_OT_ZNODE) ||
(doi.doi_bonus_type == DMU_OT_ZNODE &&
doi.doi_bonus_size < sizeof (znode_phys_t))) {
sa_buf_rele(*db, tag);
return (SET_ERROR(ENOTSUP));
}
error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
if (error != 0) {
sa_buf_rele(*db, tag);
return (error);
}
return (0);
}
void
zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
{
sa_handle_destroy(hdl);
sa_buf_rele(db, tag);
}
/*
* Given an object number, return its parent object number and whether
* or not the object is an extended attribute directory.
*/
static int
zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
uint64_t *pobjp, int *is_xattrdir)
{
uint64_t parent;
uint64_t pflags;
uint64_t mode;
uint64_t parent_mode;
sa_bulk_attr_t bulk[3];
sa_handle_t *sa_hdl;
dmu_buf_t *sa_db;
int count = 0;
int error;
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
&parent, sizeof (parent));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
&pflags, sizeof (pflags));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
&mode, sizeof (mode));
if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
return (error);
/*
* When a link is removed its parent pointer is not changed and will
* be invalid. There are two cases where a link is removed but the
* file stays around, when it goes to the delete queue and when there
* are additional links.
*/
error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
if (error != 0)
return (error);
error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
if (error != 0)
return (error);
*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
/*
* Extended attributes can be applied to files, directories, etc.
* Otherwise the parent must be a directory.
*/
if (!*is_xattrdir && !S_ISDIR(parent_mode))
return (SET_ERROR(EINVAL));
*pobjp = parent;
return (0);
}
/*
* Given an object number, return some zpl level statistics
*/
static int
zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
zfs_stat_t *sb)
{
sa_bulk_attr_t bulk[4];
int count = 0;
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
&sb->zs_mode, sizeof (sb->zs_mode));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
&sb->zs_gen, sizeof (sb->zs_gen));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
&sb->zs_links, sizeof (sb->zs_links));
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
&sb->zs_ctime, sizeof (sb->zs_ctime));
return (sa_bulk_lookup(hdl, bulk, count));
}
static int
zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
sa_attr_type_t *sa_table, char *buf, int len)
{
sa_handle_t *sa_hdl;
sa_handle_t *prevhdl = NULL;
dmu_buf_t *prevdb = NULL;
dmu_buf_t *sa_db = NULL;
char *path = buf + len - 1;
int error;
*path = '\0';
sa_hdl = hdl;
for (;;) {
uint64_t pobj = 0;
char component[MAXNAMELEN + 2];
size_t complen;
int is_xattrdir = 0;
if (prevdb)
zfs_release_sa_handle(prevhdl, prevdb, FTAG);
if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
&is_xattrdir)) != 0)
break;
if (pobj == obj) {
if (path[0] != '/')
*--path = '/';
break;
}
component[0] = '/';
if (is_xattrdir) {
(void) sprintf(component + 1, "<xattrdir>");
} else {
error = zap_value_search(osp, pobj, obj,
ZFS_DIRENT_OBJ(-1ULL), component + 1);
if (error != 0)
break;
}
complen = strlen(component);
path -= complen;
ASSERT(path >= buf);
bcopy(component, path, complen);
obj = pobj;
if (sa_hdl != hdl) {
prevhdl = sa_hdl;
prevdb = sa_db;
}
error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
if (error != 0) {
sa_hdl = prevhdl;
sa_db = prevdb;
break;
}
}
if (sa_hdl != NULL && sa_hdl != hdl) {
ASSERT(sa_db != NULL);
zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
}
if (error == 0)
(void) memmove(buf, path, buf + len - path);
return (error);
}
int
zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
{
sa_attr_type_t *sa_table;
sa_handle_t *hdl;
dmu_buf_t *db;
int error;
error = zfs_sa_setup(osp, &sa_table);
if (error != 0)
return (error);
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
if (error != 0)
return (error);
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
int
zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
char *buf, int len)
{
char *path = buf + len - 1;
sa_attr_type_t *sa_table;
sa_handle_t *hdl;
dmu_buf_t *db;
int error;
*path = '\0';
error = zfs_sa_setup(osp, &sa_table);
if (error != 0)
return (error);
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
if (error != 0)
return (error);
error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
if (error != 0) {
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
zfs_release_sa_handle(hdl, db, FTAG);
return (error);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(zfs_create_fs);
EXPORT_SYMBOL(zfs_obj_to_path);
/* CSTYLED */
module_param(zfs_object_mutex_size, uint, 0644);
MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
#endif