freebsd-dev/sys/dev/altera/atse/if_atse.c
Brooks Davis f570e9e145 MFP4: 221483, 221567, 221568, 221670, 221677, 221678, 221800, 221801,
221804, 221805, 222004, 222006, 222055, 222820, 1135077, 1135118, 1136259

Add atse(4), a driver for the Altera Triple Speed Ethernet MegaCore.

The current driver support gigabit Ethernet speeds only and works with
the MegaCore only in the internal FIFO configuration in the soon to be
open sourced BERI CPU configuration.

Submitted by:	bz
MFC after:	3 days
Sponsored by:	DARPA/AFRL
2013-10-18 20:44:19 +00:00

1980 lines
54 KiB
C

/*-
* Copyright (c) 2012,2013 Bjoern A. Zeeb
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-11-C-0249)
* ("MRC2"), as part of the DARPA MRC research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Altera Triple-Speed Ethernet MegaCore, Function User Guide
* UG-01008-3.0, Software Version: 12.0, June 2012.
* Available at the time of writing at:
* http://www.altera.com/literature/ug/ug_ethernet.pdf
*
* We are using an Marvell E1111 (Alaska) PHY on the DE4. See mii/e1000phy.c.
*/
/*
* XXX-BZ NOTES:
* - ifOutBroadcastPkts are only counted if both ether dst and src are all-1s;
* seems an IP core bug, they count ether broadcasts as multicast. Is this
* still the case?
* - figure out why the TX FIFO fill status and intr did not work as expected.
* - test 100Mbit/s and 10Mbit/s
* - blacklist the one special factory programmed ethernet address (for now
* hardcoded, later from loader?)
* - resolve all XXX, left as reminders to shake out details later
* - Jumbo frame support
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_device_polling.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/jail.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/types.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/altera/atse/if_atsereg.h>
#include <dev/altera/atse/a_api.h>
MODULE_DEPEND(atse, ether, 1, 1, 1);
MODULE_DEPEND(atse, miibus, 1, 1, 1);
#define ATSE_WATCHDOG_TIME 5
#ifdef DEVICE_POLLING
static poll_handler_t atse_poll;
#endif
/* XXX once we'd do parallel attach, we need a global lock for this. */
#define ATSE_ETHERNET_OPTION_BITS_UNDEF 0
#define ATSE_ETHERNET_OPTION_BITS_READ 1
static int atse_ethernet_option_bits_flag = ATSE_ETHERNET_OPTION_BITS_UNDEF;
static uint8_t atse_ethernet_option_bits[ALTERA_ETHERNET_OPTION_BITS_LEN];
/*
* Softc and critical resource locking.
*/
#define ATSE_LOCK(_sc) mtx_lock(&(_sc)->atse_mtx)
#define ATSE_UNLOCK(_sc) mtx_unlock(&(_sc)->atse_mtx)
#define ATSE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->atse_mtx, MA_OWNED)
#ifdef DEBUG
#define DPRINTF(format, ...) printf(format, __VA_ARGS__)
#else
#define DPRINTF(format, ...)
#endif
/* a_api.c functions; factor out? */
static inline void
a_onchip_fifo_mem_core_write(struct resource *res, uint32_t off,
uint32_t val4, const char *desc, const char *f, const int l)
{
val4 = htole32(val4);
DPRINTF("[%s:%d] FIFOW %s 0x%08x = 0x%08x\n", f, l, desc, off, val4);
bus_write_4(res, off, val4);
}
static inline uint32_t
a_onchip_fifo_mem_core_read(struct resource *res, uint32_t off,
const char *desc, const char *f, const int l)
{
uint32_t val4;
val4 = le32toh(bus_read_4(res, off));
DPRINTF("[%s:%d] FIFOR %s 0x%08x = 0x%08x\n", f, l, desc, off, val4);
return (val4);
}
/* The FIFO does an endian convertion, so we must not do it as well. */
/* XXX-BZ in fact we should do a htobe32 so le would be fine as well? */
#define ATSE_TX_DATA_WRITE(sc, val4) \
bus_write_4((sc)->atse_tx_mem_res, A_ONCHIP_FIFO_MEM_CORE_DATA, val4)
#define ATSE_TX_META_WRITE(sc, val4) \
a_onchip_fifo_mem_core_write((sc)->atse_tx_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_METADATA, \
(val4), "TXM", __func__, __LINE__)
#define ATSE_TX_META_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_tx_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_METADATA, \
"TXM", __func__, __LINE__)
#define ATSE_TX_READ_FILL_LEVEL(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_FILL_LEVEL, \
"TX_FILL", __func__, __LINE__)
#define ATSE_RX_READ_FILL_LEVEL(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_FILL_LEVEL, \
"RX_FILL", __func__, __LINE__)
/* The FIFO does an endian convertion, so we must not do it as well. */
/* XXX-BZ in fact we shoudl do a htobe32 so le would be fine as well? */
#define ATSE_RX_DATA_READ(sc) \
bus_read_4((sc)->atse_rx_mem_res, A_ONCHIP_FIFO_MEM_CORE_DATA)
#define ATSE_RX_META_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rx_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_METADATA, \
"RXM", __func__, __LINE__)
#define ATSE_RX_EVENT_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"RX_EVENT", __func__, __LINE__)
#define ATSE_TX_EVENT_READ(sc) \
a_onchip_fifo_mem_core_read((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"TX_EVENT", __func__, __LINE__)
#define ATSE_RX_EVENT_CLEAR(sc) \
do { \
uint32_t val4; \
\
val4 = a_onchip_fifo_mem_core_read( \
(sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"RX_EVENT", __func__, __LINE__); \
if (val4 != 0x00) \
a_onchip_fifo_mem_core_write( \
(sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
val4, "RX_EVENT", __func__, __LINE__); \
} while(0)
#define ATSE_TX_EVENT_CLEAR(sc) \
do { \
uint32_t val4; \
\
val4 = a_onchip_fifo_mem_core_read( \
(sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
"TX_EVENT", __func__, __LINE__); \
if (val4 != 0x00) \
a_onchip_fifo_mem_core_write( \
(sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_EVENT, \
val4, "TX_EVENT", __func__, __LINE__); \
} while(0)
#define ATSE_RX_INTR_ENABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, \
A_ONCHIP_FIFO_MEM_CORE_INTR_ALL, \
"RX_INTR", __func__, __LINE__) /* XXX-BZ review later. */
#define ATSE_RX_INTR_DISABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_rxc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, 0, \
"RX_INTR", __func__, __LINE__)
#define ATSE_TX_INTR_ENABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, \
A_ONCHIP_FIFO_MEM_CORE_INTR_ALL, \
"TX_INTR", __func__, __LINE__) /* XXX-BZ review later. */
#define ATSE_TX_INTR_DISABLE(sc) \
a_onchip_fifo_mem_core_write((sc)->atse_txc_mem_res, \
A_ONCHIP_FIFO_MEM_CORE_STATUS_REG_INT_ENABLE, 0, \
"TX_INTR", __func__, __LINE__)
/*
* Register space access macros.
*/
static inline void
csr_write_4(struct atse_softc *sc, uint32_t reg, uint32_t val4,
const char *f, const int l)
{
val4 = htole32(val4);
DPRINTF("[%s:%d] CSR W %s 0x%08x (0x%08x) = 0x%08x\n", f, l,
"atse_mem_res", reg, reg * 4, val4);
bus_write_4(sc->atse_mem_res, reg * 4, val4);
}
static inline uint32_t
csr_read_4(struct atse_softc *sc, uint32_t reg, const char *f, const int l)
{
uint32_t val4;
val4 = le32toh(bus_read_4(sc->atse_mem_res, reg * 4));
DPRINTF("[%s:%d] CSR R %s 0x%08x (0x%08x) = 0x%08x\n", f, l,
"atse_mem_res", reg, reg * 4, val4);
return (val4);
}
/*
* See page 5-2 that it's all dword offsets and the MS 16 bits need to be zero
* on write and ignored on read.
*/
static inline void
pxx_write_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, uint16_t val,
const char *f, const int l, const char *s)
{
uint32_t val4;
val4 = htole32(val & 0x0000ffff);
DPRINTF("[%s:%d] %s W %s 0x%08x (0x%08jx) = 0x%08x\n", f, l, s,
"atse_mem_res", reg, (bmcr + reg) * 4, val4);
bus_write_4(sc->atse_mem_res, (bmcr + reg) * 4, val4);
}
static inline uint16_t
pxx_read_2(struct atse_softc *sc, bus_addr_t bmcr, uint32_t reg, const char *f,
const int l, const char *s)
{
uint32_t val4;
uint16_t val;
val4 = bus_read_4(sc->atse_mem_res, (bmcr + reg) * 4);
val = le32toh(val4) & 0x0000ffff;
DPRINTF("[%s:%d] %s R %s 0x%08x (0x%08jx) = 0x%04x\n", f, l, s,
"atse_mem_res", reg, (bmcr + reg) * 4, val);
return (val);
}
#define CSR_WRITE_4(sc, reg, val) \
csr_write_4((sc), (reg), (val), __func__, __LINE__)
#define CSR_READ_4(sc, reg) \
csr_read_4((sc), (reg), __func__, __LINE__)
#define PCS_WRITE_2(sc, reg, val) \
pxx_write_2((sc), sc->atse_bmcr0, (reg), (val), __func__, __LINE__, \
"PCS")
#define PCS_READ_2(sc, reg) \
pxx_read_2((sc), sc->atse_bmcr0, (reg), __func__, __LINE__, "PCS")
#define PHY_WRITE_2(sc, reg, val) \
pxx_write_2((sc), sc->atse_bmcr1, (reg), (val), __func__, __LINE__, \
"PHY")
#define PHY_READ_2(sc, reg) \
pxx_read_2((sc), sc->atse_bmcr1, (reg), __func__, __LINE__, "PHY")
static void atse_tick(void *);
static int atse_detach(device_t);
devclass_t atse_devclass;
static int
atse_tx_locked(struct atse_softc *sc, int *sent)
{
struct mbuf *m;
uint32_t val4, fill_level;
int c;
ATSE_LOCK_ASSERT(sc);
m = sc->atse_tx_m;
KASSERT(m != NULL, ("%s: m is null: sc=%p", __func__, sc));
KASSERT(m->m_flags & M_PKTHDR, ("%s: not a pkthdr: m=%p", __func__, m));
/*
* Copy to buffer to minimize our pain as we can only store
* double words which, after the first mbuf gets out of alignment
* quite quickly.
*/
if (sc->atse_tx_m_offset == 0) {
m_copydata(m, 0, m->m_pkthdr.len, sc->atse_tx_buf);
sc->atse_tx_buf_len = m->m_pkthdr.len;
}
fill_level = ATSE_TX_READ_FILL_LEVEL(sc);
#if 0 /* Returns 0xdeadc0de. */
val4 = ATSE_TX_META_READ(sc);
#endif
if (sc->atse_tx_m_offset == 0) {
/* Write start of packet. */
val4 = A_ONCHIP_FIFO_MEM_CORE_SOP;
val4 &= ~A_ONCHIP_FIFO_MEM_CORE_EOP;
ATSE_TX_META_WRITE(sc, val4);
}
/* TX FIFO is single clock mode, so we have the full FIFO. */
c = 0;
while ((sc->atse_tx_buf_len - sc->atse_tx_m_offset) > 4 &&
fill_level < AVALON_FIFO_TX_BASIC_OPTS_DEPTH) {
bcopy(&sc->atse_tx_buf[sc->atse_tx_m_offset], &val4,
sizeof(val4));
ATSE_TX_DATA_WRITE(sc, val4);
sc->atse_tx_m_offset += sizeof(val4);
c += sizeof(val4);
fill_level++;
if (fill_level == AVALON_FIFO_TX_BASIC_OPTS_DEPTH)
fill_level = ATSE_TX_READ_FILL_LEVEL(sc);
}
if (sent != NULL)
*sent += c;
/* Set EOP *before* writing the last symbol. */
if (sc->atse_tx_m_offset >= (sc->atse_tx_buf_len - 4) &&
fill_level < AVALON_FIFO_TX_BASIC_OPTS_DEPTH) {
int leftm;
uint32_t x;
/* Set EndOfPacket. */
val4 = A_ONCHIP_FIFO_MEM_CORE_EOP;
/* Set EMPTY. */
leftm = sc->atse_tx_buf_len - sc->atse_tx_m_offset;
val4 |= ((4 - leftm) << A_ONCHIP_FIFO_MEM_CORE_EMPTY_SHIFT);
x = val4;
ATSE_TX_META_WRITE(sc, val4);
/* Write last symbol. */
val4 = 0;
bcopy(sc->atse_tx_buf + sc->atse_tx_m_offset, &val4, leftm);
ATSE_TX_DATA_WRITE(sc, val4);
if (sent != NULL)
*sent += leftm;
/* OK, the packet is gone. */
sc->atse_tx_m = NULL;
sc->atse_tx_m_offset = 0;
/* If anyone is interested give them a copy. */
BPF_MTAP(sc->atse_ifp, m);
m_freem(m);
return (0);
}
return (EBUSY);
}
static void
atse_start_locked(struct ifnet *ifp)
{
struct atse_softc *sc;
int error, sent;
sc = ifp->if_softc;
ATSE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->atse_flags & ATSE_FLAGS_LINK) == 0)
return;
#if 1
/*
* Disable the watchdog while sending, we are batching packets.
* Though we should never reach 5 seconds, and are holding the lock,
* but who knows.
*/
sc->atse_watchdog_timer = 0;
#endif
if (sc->atse_tx_m != NULL) {
error = atse_tx_locked(sc, &sent);
if (error != 0)
goto done;
}
/* We have more space to send so continue ... */
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, sc->atse_tx_m);
sc->atse_tx_m_offset = 0;
if (sc->atse_tx_m == NULL)
break;
error = atse_tx_locked(sc, &sent);
if (error != 0)
goto done;
}
done:
/* If the IP core walks into Nekromanteion try to bail out. */
if (sent > 0)
sc->atse_watchdog_timer = ATSE_WATCHDOG_TIME;
}
static void
atse_start(struct ifnet *ifp)
{
struct atse_softc *sc;
sc = ifp->if_softc;
ATSE_LOCK(sc);
atse_start_locked(ifp);
ATSE_UNLOCK(sc);
}
static int
atse_stop_locked(struct atse_softc *sc)
{
struct ifnet *ifp;
uint32_t mask, val4;
int i;
ATSE_LOCK_ASSERT(sc);
sc->atse_watchdog_timer = 0;
callout_stop(&sc->atse_tick);
ifp = sc->atse_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
ATSE_RX_INTR_DISABLE(sc);
ATSE_TX_INTR_DISABLE(sc);
ATSE_RX_EVENT_CLEAR(sc);
ATSE_TX_EVENT_CLEAR(sc);
/* Disable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 &= ~mask;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == 0)
break;
DELAY(10);
}
if ((val4 & mask) != 0)
device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n");
/* Punt. */
sc->atse_flags &= ~ATSE_FLAGS_LINK;
/* XXX-BZ free the RX/TX rings. */
return (0);
}
static uint8_t
atse_mchash(struct atse_softc *sc __unused, const uint8_t *addr)
{
int i, j;
uint8_t x, y;
x = 0;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
y = addr[i] & 0x01;
for (j = 1; j < 8; j++)
y ^= (addr[i] >> j) & 0x01;
x |= (y << i);
}
return (x);
}
static int
atse_rxfilter_locked(struct atse_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t val4;
int i;
/* XXX-BZ can we find out if we have the MHASH synthesized? */
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/* For simplicity always hash full 48 bits of addresses. */
if ((val4 & BASE_CFG_COMMAND_CONFIG_MHASH_SEL) != 0)
val4 &= ~BASE_CFG_COMMAND_CONFIG_MHASH_SEL;
ifp = sc->atse_ifp;
if (ifp->if_flags & IFF_PROMISC)
val4 |= BASE_CFG_COMMAND_CONFIG_PROMIS_EN;
else
val4 &= ~BASE_CFG_COMMAND_CONFIG_PROMIS_EN;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
if (ifp->if_flags & IFF_ALLMULTI) {
/* Accept all multicast addresses. */
for (i = 0; i <= MHASH_LEN; i++)
CSR_WRITE_4(sc, MHASH_START + i, 0x1);
} else {
/*
* Can hold MHASH_LEN entries.
* XXX-BZ bitstring.h would be more general.
*/
uint64_t h;
h = 0;
/*
* Re-build and re-program hash table. First build the
* bit-field "yes" or "no" for each slot per address, then
* do all the programming afterwards.
*/
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h |= (1 << atse_mchash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr)));
}
if_maddr_runlock(ifp);
for (i = 0; i <= MHASH_LEN; i++)
CSR_WRITE_4(sc, MHASH_START + i,
(h & (1 << i)) ? 0x01 : 0x00);
}
return (0);
}
static int
atse_ethernet_option_bits_read_fdt(device_t dev)
{
struct resource *res;
device_t fdev;
int i, rid;
if (atse_ethernet_option_bits_flag & ATSE_ETHERNET_OPTION_BITS_READ)
return (0);
fdev = device_find_child(device_get_parent(dev), "cfi", 0);
if (fdev == NULL)
return (ENOENT);
rid = 0;
res = bus_alloc_resource_any(fdev, SYS_RES_MEMORY, &rid,
RF_ACTIVE | RF_SHAREABLE);
if (res == NULL)
return (ENXIO);
for (i = 0; i < ALTERA_ETHERNET_OPTION_BITS_LEN; i++)
atse_ethernet_option_bits[i] = bus_read_1(res,
ALTERA_ETHERNET_OPTION_BITS_OFF + i);
bus_release_resource(fdev, SYS_RES_MEMORY, rid, res);
atse_ethernet_option_bits_flag |= ATSE_ETHERNET_OPTION_BITS_READ;
return (0);
}
static int
atse_ethernet_option_bits_read(device_t dev)
{
int error;
error = atse_ethernet_option_bits_read_fdt(dev);
if (error == 0)
return (0);
device_printf(dev, "Cannot read Ethernet addresses from flash.\n");
return (error);
}
static int
atse_get_eth_address(struct atse_softc *sc)
{
unsigned long hostid;
uint32_t val4;
int unit;
/*
* Make sure to only ever do this once. Otherwise a reset would
* possibly change our ethernet address, which is not good at all.
*/
if (sc->atse_eth_addr[0] != 0x00 || sc->atse_eth_addr[1] != 0x00 ||
sc->atse_eth_addr[2] != 0x00)
return (0);
if ((atse_ethernet_option_bits_flag &
ATSE_ETHERNET_OPTION_BITS_READ) == 0)
goto get_random;
val4 = atse_ethernet_option_bits[0] << 24;
val4 |= atse_ethernet_option_bits[1] << 16;
val4 |= atse_ethernet_option_bits[2] << 8;
val4 |= atse_ethernet_option_bits[3];
/* They chose "safe". */
if (val4 != le32toh(0x00005afe)) {
device_printf(sc->atse_dev, "Magic '5afe' is not safe: 0x%08x. "
"Falling back to random numbers for hardware address.\n",
val4);
goto get_random;
}
sc->atse_eth_addr[0] = atse_ethernet_option_bits[4];
sc->atse_eth_addr[1] = atse_ethernet_option_bits[5];
sc->atse_eth_addr[2] = atse_ethernet_option_bits[6];
sc->atse_eth_addr[3] = atse_ethernet_option_bits[7];
sc->atse_eth_addr[4] = atse_ethernet_option_bits[8];
sc->atse_eth_addr[5] = atse_ethernet_option_bits[9];
/* Handle factory default ethernet addresss: 00:07:ed:ff:ed:15 */
if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x07 &&
sc->atse_eth_addr[2] == 0xed && sc->atse_eth_addr[3] == 0xff &&
sc->atse_eth_addr[4] == 0xed && sc->atse_eth_addr[5] == 0x15) {
device_printf(sc->atse_dev, "Factory programmed Ethernet "
"hardware address blacklisted. Falling back to random "
"address to avoid collisions.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
if (sc->atse_eth_addr[0] == 0x00 && sc->atse_eth_addr[1] == 0x00 &&
sc->atse_eth_addr[2] == 0x00 && sc->atse_eth_addr[3] == 0x00 &&
sc->atse_eth_addr[4] == 0x00 && sc->atse_eth_addr[5] == 0x00) {
device_printf(sc->atse_dev, "All zero's Ethernet hardware "
"address blacklisted. Falling back to random address.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
if (ETHER_IS_MULTICAST(sc->atse_eth_addr)) {
device_printf(sc->atse_dev, "Multicast Ethernet hardware "
"address blacklisted. Falling back to random address.\n");
device_printf(sc->atse_dev, "Please re-program your flash.\n");
goto get_random;
}
/*
* If we find an Altera prefixed address with a 0x0 ending
* adjust by device unit. If not and this is not the first
* Ethernet, go to random.
*/
unit = device_get_unit(sc->atse_dev);
if (unit == 0x00)
return (0);
if (unit > 0x0f) {
device_printf(sc->atse_dev, "We do not support Ethernet "
"addresses for more than 16 MACs. Falling back to "
"random hadware address.\n");
goto get_random;
}
if ((sc->atse_eth_addr[0] & ~0x2) != 0 ||
sc->atse_eth_addr[1] != 0x07 || sc->atse_eth_addr[2] != 0xed ||
(sc->atse_eth_addr[5] & 0x0f) != 0x0) {
device_printf(sc->atse_dev, "Ethernet address not meeting our "
"multi-MAC standards. Falling back to random hadware "
"address.\n");
goto get_random;
}
sc->atse_eth_addr[5] |= (unit & 0x0f);
return (0);
get_random:
/*
* Fall back to random code we also use on bridge(4).
*/
getcredhostid(curthread->td_ucred, &hostid);
if (hostid == 0) {
arc4rand(sc->atse_eth_addr, ETHER_ADDR_LEN, 1);
sc->atse_eth_addr[0] &= ~1;/* clear multicast bit */
sc->atse_eth_addr[0] |= 2; /* set the LAA bit */
} else {
sc->atse_eth_addr[0] = 0x2;
sc->atse_eth_addr[1] = (hostid >> 24) & 0xff;
sc->atse_eth_addr[2] = (hostid >> 16) & 0xff;
sc->atse_eth_addr[3] = (hostid >> 8 ) & 0xff;
sc->atse_eth_addr[4] = hostid & 0xff;
sc->atse_eth_addr[5] = sc->atse_unit & 0xff;
}
return (0);
}
static int
atse_set_eth_address(struct atse_softc *sc, int n)
{
uint32_t v0, v1;
v0 = (sc->atse_eth_addr[3] << 24) | (sc->atse_eth_addr[2] << 16) |
(sc->atse_eth_addr[1] << 8) | sc->atse_eth_addr[0];
v1 = (sc->atse_eth_addr[5] << 8) | sc->atse_eth_addr[4];
if (n & ATSE_ETH_ADDR_DEF) {
CSR_WRITE_4(sc, BASE_CFG_MAC_0, v0);
CSR_WRITE_4(sc, BASE_CFG_MAC_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP1) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_0_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP2) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_1_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP3) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_2_1, v1);
}
if (n & ATSE_ETH_ADDR_SUPP4) {
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_0, v0);
CSR_WRITE_4(sc, SUPPL_ADDR_SMAC_3_1, v1);
}
return (0);
}
static int
atse_reset(struct atse_softc *sc)
{
int i;
uint32_t val4, mask;
uint16_t val;
/* 1. External PHY Initialization using MDIO. */
/*
* We select the right MDIO space in atse_attach() and let MII do
* anything else.
*/
/* 2. PCS Configuration Register Initialization. */
/* a. Set auto negotiation link timer to 1.6ms for SGMII. */
PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_0, 0x0D40);
PCS_WRITE_2(sc, PCS_EXT_LINK_TIMER_1, 0x0003);
/* b. Configure SGMII. */
val = PCS_EXT_IF_MODE_SGMII_ENA|PCS_EXT_IF_MODE_USE_SGMII_AN;
PCS_WRITE_2(sc, PCS_EXT_IF_MODE, val);
/* c. Enable auto negotiation. */
/* Ignore Bits 6,8,13; should be set,set,unset. */
val = PCS_READ_2(sc, PCS_CONTROL);
val &= ~(PCS_CONTROL_ISOLATE|PCS_CONTROL_POWERDOWN);
val &= ~PCS_CONTROL_LOOPBACK; /* Make this a -link1 option? */
val |= PCS_CONTROL_AUTO_NEGOTIATION_ENABLE;
PCS_WRITE_2(sc, PCS_CONTROL, val);
/* d. PCS reset. */
val = PCS_READ_2(sc, PCS_CONTROL);
val |= PCS_CONTROL_RESET;
PCS_WRITE_2(sc, PCS_CONTROL, val);
/* Wait for reset bit to clear; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val = PCS_READ_2(sc, PCS_CONTROL);
if ((val & PCS_CONTROL_RESET) == 0)
break;
DELAY(10);
}
if ((val & PCS_CONTROL_RESET) != 0) {
device_printf(sc->atse_dev, "PCS reset timed out.\n");
return (ENXIO);
}
/* 3. MAC Configuration Register Initialization. */
/* a. Disable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 &= ~mask;
/* Samples in the manual do have the SW_RESET bit set here, why? */
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == 0)
break;
DELAY(10);
}
if ((val4 & mask) != 0) {
device_printf(sc->atse_dev, "Disabling MAC TX/RX timed out.\n");
return (ENXIO);
}
/* b. MAC FIFO configuration. */
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_EMPTY, FIFO_DEPTH_TX - 16);
CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_FULL, 3);
CSR_WRITE_4(sc, BASE_CFG_TX_ALMOST_EMPTY, 8);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_EMPTY, FIFO_DEPTH_RX - 16);
CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_FULL, 8);
CSR_WRITE_4(sc, BASE_CFG_RX_ALMOST_EMPTY, 8);
#if 0
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 16);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 16);
#else
/* For store-and-forward mode, set this threshold to 0. */
CSR_WRITE_4(sc, BASE_CFG_TX_SECTION_FULL, 0);
CSR_WRITE_4(sc, BASE_CFG_RX_SECTION_FULL, 0);
#endif
/* c. MAC address configuration. */
/* Also intialize supplementary addresses to our primary one. */
/* XXX-BZ FreeBSD really needs to grow and API for using these. */
atse_get_eth_address(sc);
atse_set_eth_address(sc, ATSE_ETH_ADDR_ALL);
/* d. MAC function configuration. */
CSR_WRITE_4(sc, BASE_CFG_FRM_LENGTH, 1518); /* Default. */
CSR_WRITE_4(sc, BASE_CFG_TX_IPG_LENGTH, 12);
CSR_WRITE_4(sc, BASE_CFG_PAUSE_QUANT, 0xFFFF);
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/*
* If 1000BASE-X/SGMII PCS is initialized, set the ETH_SPEED (bit 3)
* and ENA_10 (bit 25) in command_config register to 0. If half duplex
* is reported in the PHY/PCS status register, set the HD_ENA (bit 10)
* to 1 in command_config register.
* BZ: We shoot for 1000 instead.
*/
#if 0
val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
#else
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
#endif
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
#if 0
/*
* We do not want to set this, otherwise, we could not even send
* random raw ethernet frames for various other research. By default
* FreeBSD will use the right ether source address.
*/
val4 |= BASE_CFG_COMMAND_CONFIG_TX_ADDR_INS;
#endif
val4 |= BASE_CFG_COMMAND_CONFIG_PAD_EN;
val4 &= ~BASE_CFG_COMMAND_CONFIG_CRC_FWD;
#if 0
val4 |= BASE_CFG_COMMAND_CONFIG_CNTL_FRM_ENA;
#endif
#if 1
val4 |= BASE_CFG_COMMAND_CONFIG_RX_ERR_DISC;
#endif
val &= ~BASE_CFG_COMMAND_CONFIG_LOOP_ENA; /* link0? */
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/*
* Make sure we do not enable 32bit alignment; FreeBSD cannot
* cope with the additional padding (though we should!?).
* Also make sure we get the CRC appended.
*/
val4 = CSR_READ_4(sc, TX_CMD_STAT);
val4 &= ~(TX_CMD_STAT_OMIT_CRC|TX_CMD_STAT_TX_SHIFT16);
CSR_WRITE_4(sc, TX_CMD_STAT, val4);
val4 = CSR_READ_4(sc, RX_CMD_STAT);
val4 &= ~RX_CMD_STAT_RX_SHIFT16;
CSR_WRITE_4(sc, RX_CMD_STAT, val4);
/* e. Reset MAC. */
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 |= BASE_CFG_COMMAND_CONFIG_SW_RESET;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) == 0)
break;
DELAY(10);
}
if ((val4 & BASE_CFG_COMMAND_CONFIG_SW_RESET) != 0) {
device_printf(sc->atse_dev, "MAC reset timed out.\n");
return (ENXIO);
}
/* f. Enable MAC transmit and receive datapath. */
mask = BASE_CFG_COMMAND_CONFIG_TX_ENA|BASE_CFG_COMMAND_CONFIG_RX_ENA;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
val4 |= mask;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
/* Wait for bits to be cleared; i=100 is excessive. */
for (i = 0; i < 100; i++) {
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
if ((val4 & mask) == mask)
break;
DELAY(10);
}
if ((val4 & mask) != mask) {
device_printf(sc->atse_dev, "Enabling MAC TX/RX timed out.\n");
return (ENXIO);
}
return (0);
}
static void
atse_init_locked(struct atse_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t *eaddr;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Must update the ether address if changed. Given we do not handle
* in atse_ioctl() but it's in the general framework, just always
* do it here before atse_reset().
*/
eaddr = IF_LLADDR(sc->atse_ifp);
bcopy(eaddr, &sc->atse_eth_addr, ETHER_ADDR_LEN);
/* Make things frind to halt, cleanup, ... */
atse_stop_locked(sc);
/* ... reset, ... */
atse_reset(sc);
/* ... and fire up the engine again. */
atse_rxfilter_locked(sc);
/* Memory rings? DMA engine? */
sc->atse_rx_buf_len = 0;
sc->atse_flags &= ATSE_FLAGS_LINK; /* Preserve. */
#ifdef DEVICE_POLLING
/* Only enable interrupts if we are not polling. */
if (ifp->if_capenable & IFCAP_POLLING) {
ATSE_RX_INTR_DISABLE(sc);
ATSE_TX_INTR_DISABLE(sc);
ATSE_RX_EVENT_CLEAR(sc);
ATSE_TX_EVENT_CLEAR(sc);
} else
#endif
{
ATSE_RX_INTR_ENABLE(sc);
ATSE_TX_INTR_ENABLE(sc);
}
mii = device_get_softc(sc->atse_miibus);
sc->atse_flags &= ~ATSE_FLAGS_LINK;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->atse_tick, hz, atse_tick, sc);
}
static void
atse_init(void *xsc)
{
struct atse_softc *sc;
sc = (struct atse_softc *)xsc;
ATSE_LOCK(sc);
atse_init_locked(sc);
ATSE_UNLOCK(sc);
}
static int
atse_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct atse_softc *sc;
struct ifreq *ifr;
int error, mask;
error = 0;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
switch (command) {
case SIOCSIFFLAGS:
ATSE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->atse_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
atse_rxfilter_locked(sc);
else
atse_init_locked(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
atse_stop_locked(sc);
sc->atse_if_flags = ifp->if_flags;
ATSE_UNLOCK(sc);
break;
case SIOCSIFCAP:
ATSE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0 &&
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_POLLING;
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
error = ether_poll_register(atse_poll, ifp);
if (error != 0) {
ATSE_UNLOCK(sc);
break;
}
/* Disable interrupts. */
ATSE_RX_INTR_DISABLE(sc);
ATSE_TX_INTR_DISABLE(sc);
ATSE_RX_EVENT_CLEAR(sc);
ATSE_TX_EVENT_CLEAR(sc);
/*
* Do not allow disabling of polling if we do
* not have interrupts.
*/
} else if (sc->atse_rx_irq_res != NULL ||
sc->atse_tx_irq_res != NULL) {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
ATSE_RX_INTR_ENABLE(sc);
ATSE_TX_INTR_ENABLE(sc);
} else {
ifp->if_capenable ^= IFCAP_POLLING;
error = EINVAL;
}
}
#endif /* DEVICE_POLLING */
ATSE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ATSE_LOCK(sc);
atse_rxfilter_locked(sc);
ATSE_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
{
struct mii_data *mii;
struct ifreq *ifr;
mii = device_get_softc(sc->atse_miibus);
ifr = (struct ifreq *)data;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
}
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
atse_watchdog(struct atse_softc *sc)
{
ATSE_LOCK_ASSERT(sc);
if (sc->atse_watchdog_timer == 0 || --sc->atse_watchdog_timer > 0)
return;
device_printf(sc->atse_dev, "watchdog timeout\n");
sc->atse_ifp->if_oerrors++;
sc->atse_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
atse_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&sc->atse_ifp->if_snd))
atse_start_locked(sc->atse_ifp);
}
static void
atse_tick(void *xsc)
{
struct atse_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = (struct atse_softc *)xsc;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
mii = device_get_softc(sc->atse_miibus);
mii_tick(mii);
atse_watchdog(sc);
if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0)
atse_miibus_statchg(sc->atse_dev);
callout_reset(&sc->atse_tick, hz, atse_tick, sc);
}
/*
* Set media options.
*/
static int
atse_ifmedia_upd(struct ifnet *ifp)
{
struct atse_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
ATSE_LOCK(sc);
mii = device_get_softc(sc->atse_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
ATSE_UNLOCK(sc);
return (error);
}
static void
atse_update_rx_err(struct atse_softc *sc, uint32_t mask)
{
int i;
/* RX error are 6 bits, we only know 4 of them. */
for (i = 0; i < ATSE_RX_ERR_MAX; i++)
if ((mask & (1 << i)) != 0)
sc->atse_rx_err[i]++;
}
static int
atse_rx_locked(struct atse_softc *sc)
{
struct ifnet *ifp;
struct mbuf *m;
uint32_t fill, i, j;
uint32_t data, meta;
int rx_npkts = 0;
ATSE_LOCK_ASSERT(sc);
ifp = sc->atse_ifp;
j = 0;
meta = 0;
do {
outer:
if (sc->atse_rx_cycles <= 0)
return (rx_npkts);
sc->atse_rx_cycles--;
if (sc->atse_rx_m == NULL) {
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (rx_npkts);
m->m_len = m->m_pkthdr.len = MCLBYTES;
/* Make sure upper layers will be aligned. */
m_adj(m, 2);
sc->atse_rx_m = m;
}
fill = ATSE_RX_READ_FILL_LEVEL(sc);
for (i = 0; i < fill; i++) {
/*
* XXX-BZ for whatever reason the FIFO requires the
* the data read before we can access the meta data.
*/
data = ATSE_RX_DATA_READ(sc);
meta = ATSE_RX_META_READ(sc);
if (meta & A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) {
/* XXX-BZ evaluate error. */
atse_update_rx_err(sc, ((meta &
A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_ERROR_SHIFT) & 0xff);
ifp->if_ierrors++;
sc->atse_rx_buf_len = 0;
/*
* Should still read till EOP or next SOP.
*
* XXX-BZ might also depend on
* BASE_CFG_COMMAND_CONFIG_RX_ERR_DISC
*/
sc->atse_flags |= ATSE_FLAGS_ERROR;
return (rx_npkts);
}
if ((meta & A_ONCHIP_FIFO_MEM_CORE_CHANNEL_MASK) != 0)
device_printf(sc->atse_dev, "%s: unexpected "
"channel %u\n", __func__, (meta &
A_ONCHIP_FIFO_MEM_CORE_CHANNEL_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_CHANNEL_SHIFT);
if (meta & A_ONCHIP_FIFO_MEM_CORE_SOP) {
/*
* There is no need to clear SOP between 1st
* and subsequent packet data junks.
*/
if (sc->atse_rx_buf_len != 0 &&
(sc->atse_flags & ATSE_FLAGS_SOP_SEEN) == 0)
{
device_printf(sc->atse_dev, "%s: SOP "
"without empty buffer: %u\n",
__func__, sc->atse_rx_buf_len);
/* XXX-BZ any better counter? */
ifp->if_ierrors++;
}
if ((sc->atse_flags & ATSE_FLAGS_SOP_SEEN) == 0)
{
sc->atse_flags |= ATSE_FLAGS_SOP_SEEN;
sc->atse_rx_buf_len = 0;
}
}
#if 0 /* We had to read the data before we could access meta data. See above. */
data = ATSE_RX_DATA_READ(sc);
#endif
/* Make sure to not overflow the mbuf data size. */
if (sc->atse_rx_buf_len >= sc->atse_rx_m->m_len - 4) {
/*
* XXX-BZ Error. We need more mbufs and are
* not setup for this yet.
*/
ifp->if_ierrors++;
sc->atse_flags |= ATSE_FLAGS_ERROR;
}
if ((sc->atse_flags & ATSE_FLAGS_ERROR) == 0)
/*
* MUST keep this bcopy as m_data after m_adj
* for IP header aligment is on half-word
* and not word alignment.
*/
bcopy(&data, (uint8_t *)(sc->atse_rx_m->m_data +
sc->atse_rx_buf_len), sizeof(data));
if (meta & A_ONCHIP_FIFO_MEM_CORE_EOP) {
uint8_t empty;
empty = (meta &
A_ONCHIP_FIFO_MEM_CORE_EMPTY_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_EMPTY_SHIFT;
sc->atse_rx_buf_len += (4 - empty);
ifp->if_ipackets++;
rx_npkts++;
m = sc->atse_rx_m;
m->m_pkthdr.len = m->m_len =
sc->atse_rx_buf_len;
sc->atse_rx_m = NULL;
sc->atse_rx_buf_len = 0;
sc->atse_flags &= ~ATSE_FLAGS_SOP_SEEN;
if (sc->atse_flags & ATSE_FLAGS_ERROR) {
sc->atse_flags &= ~ATSE_FLAGS_ERROR;
m_freem(m);
/* Need to start with a new packet. */
goto outer;
}
m->m_pkthdr.rcvif = ifp;
ATSE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ATSE_LOCK(sc);
goto outer; /* Need a new mbuf. */
} else {
sc->atse_rx_buf_len += sizeof(data);
}
} /* for */
/* XXX-BZ could optimize in case of another packet waiting. */
} while ((meta & A_ONCHIP_FIFO_MEM_CORE_EOP) == 0 || fill > 0);
return (rx_npkts);
}
/*
* Report current media status.
*/
static void
atse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct atse_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
ATSE_LOCK(sc);
mii = device_get_softc(sc->atse_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
ATSE_UNLOCK(sc);
}
static void
atse_intr(void *arg)
{
struct atse_softc *sc;
struct ifnet *ifp;
uint32_t rx, tx;
sc = (struct atse_softc *)arg;
ifp = sc->atse_ifp;
ATSE_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
ATSE_UNLOCK(sc);
return;
}
#endif
ATSE_RX_INTR_DISABLE(sc);
ATSE_TX_INTR_DISABLE(sc);
rx = ATSE_RX_EVENT_READ(sc);
tx = ATSE_TX_EVENT_READ(sc);
if (rx != 0) {
if (rx & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
atse_update_rx_err(sc, ((rx &
A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_ERROR_SHIFT) & 0xff);
ifp->if_ierrors++;
}
if ((rx & A_ONCHIP_FIFO_MEM_CORE_EVENT_EMPTY) != 0) {
sc->atse_rx_cycles = RX_CYCLES_IN_INTR;
atse_rx_locked(sc);
}
}
if (tx != 0) {
/* XXX-BZ build histogram. */
if (tx & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
ifp->if_oerrors++;
}
if (tx & A_ONCHIP_FIFO_MEM_CORE_EVENT_EMPTY)
sc->atse_watchdog_timer = 0;
#if 0
if (tx & (A_ONCHIP_FIFO_MEM_CORE_EVENT_EMPTY|
A_ONCHIP_FIFO_MEM_CORE_EVENT_ALMOSTEMPTY))
atse_start_locked(ifp);
#endif
}
/* Clear events before re-enabling intrs. */
ATSE_TX_EVENT_CLEAR(sc);
ATSE_RX_EVENT_CLEAR(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Re-enable interrupts. */
ATSE_RX_INTR_ENABLE(sc);
ATSE_TX_INTR_ENABLE(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
atse_start_locked(ifp);
}
ATSE_UNLOCK(sc);
}
#ifdef DEVICE_POLLING
static int
atse_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct atse_softc *sc;
int rx_npkts = 0;
sc = ifp->if_softc;
ATSE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ATSE_UNLOCK(sc);
return (rx_npkts);
}
sc->atse_rx_cycles = count;
rx_npkts = atse_rx_locked(sc);
atse_start_locked(ifp);
if (sc->atse_rx_cycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
uint32_t rx, tx;
rx = ATSE_RX_EVENT_READ(sc);
tx = ATSE_TX_EVENT_READ(sc);
if (rx & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
atse_update_rx_err(sc, ((rx &
A_ONCHIP_FIFO_MEM_CORE_ERROR_MASK) >>
A_ONCHIP_FIFO_MEM_CORE_ERROR_SHIFT) & 0xff);
ifp->if_ierrors++;
}
if (tx & (A_ONCHIP_FIFO_MEM_CORE_EVENT_OVERFLOW|
A_ONCHIP_FIFO_MEM_CORE_EVENT_UNDERFLOW)) {
/* XXX-BZ ERROR HANDLING. */
ifp->if_oerrors++;
}
if (tx & A_ONCHIP_FIFO_MEM_CORE_EVENT_EMPTY)
sc->atse_watchdog_timer = 0;
#if 0
if (/* Severe error; if only we could find out. */) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
atse_init_locked(sc);
}
#endif
}
ATSE_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static struct atse_mac_stats_regs {
const char *name;
const char *descr; /* Mostly copied from Altera datasheet. */
} atse_mac_stats_regs[] = {
[0x1a] =
{ "aFramesTransmittedOK",
"The number of frames that are successfully transmitted including "
"the pause frames." },
{ "aFramesReceivedOK",
"The number of frames that are successfully received including the "
"pause frames." },
{ "aFrameCheckSequenceErrors",
"The number of receive frames with CRC error." },
{ "aAlignmentErrors",
"The number of receive frames with alignment error." },
{ "aOctetsTransmittedOK",
"The lower 32 bits of the number of data and padding octets that "
"are successfully transmitted." },
{ "aOctetsReceivedOK",
"The lower 32 bits of the number of data and padding octets that "
" are successfully received." },
{ "aTxPAUSEMACCtrlFrames",
"The number of pause frames transmitted." },
{ "aRxPAUSEMACCtrlFrames",
"The number received pause frames received." },
{ "ifInErrors",
"The number of errored frames received." },
{ "ifOutErrors",
"The number of transmit frames with either a FIFO overflow error, "
"a FIFO underflow error, or a error defined by the user "
"application." },
{ "ifInUcastPkts",
"The number of valid unicast frames received." },
{ "ifInMulticastPkts",
"The number of valid multicast frames received. The count does "
"not include pause frames." },
{ "ifInBroadcastPkts",
"The number of valid broadcast frames received." },
{ "ifOutDiscards",
"This statistics counter is not in use. The MAC function does not "
"discard frames that are written to the FIFO buffer by the user "
"application." },
{ "ifOutUcastPkts",
"The number of valid unicast frames transmitted." },
{ "ifOutMulticastPkts",
"The number of valid multicast frames transmitted, excluding pause "
"frames." },
{ "ifOutBroadcastPkts",
"The number of valid broadcast frames transmitted." },
{ "etherStatsDropEvents",
"The number of frames that are dropped due to MAC internal errors "
"when FIFO buffer overflow persists." },
{ "etherStatsOctets",
"The lower 32 bits of the total number of octets received. This "
"count includes both good and errored frames." },
{ "etherStatsPkts",
"The total number of good and errored frames received." },
{ "etherStatsUndersizePkts",
"The number of frames received with length less than 64 bytes. "
"This count does not include errored frames." },
{ "etherStatsOversizePkts",
"The number of frames received that are longer than the value "
"configured in the frm_length register. This count does not "
"include errored frames." },
{ "etherStatsPkts64Octets",
"The number of 64-byte frames received. This count includes good "
"and errored frames." },
{ "etherStatsPkts65to127Octets",
"The number of received good and errored frames between the length "
"of 65 and 127 bytes." },
{ "etherStatsPkts128to255Octets",
"The number of received good and errored frames between the length "
"of 128 and 255 bytes." },
{ "etherStatsPkts256to511Octets",
"The number of received good and errored frames between the length "
"of 256 and 511 bytes." },
{ "etherStatsPkts512to1023Octets",
"The number of received good and errored frames between the length "
"of 512 and 1023 bytes." },
{ "etherStatsPkts1024to1518Octets",
"The number of received good and errored frames between the length "
"of 1024 and 1518 bytes." },
{ "etherStatsPkts1519toXOctets",
"The number of received good and errored frames between the length "
"of 1519 and the maximum frame length configured in the frm_length "
"register." },
{ "etherStatsJabbers",
"Too long frames with CRC error." },
{ "etherStatsFragments",
"Too short frames with CRC error." },
/* 0x39 unused, 0x3a/b non-stats. */
[0x3c] =
/* Extended Statistics Counters */
{ "msb_aOctetsTransmittedOK",
"Upper 32 bits of the number of data and padding octets that are "
"successfully transmitted." },
{ "msb_aOctetsReceivedOK",
"Upper 32 bits of the number of data and padding octets that are "
"successfully received." },
{ "msb_etherStatsOctets",
"Upper 32 bits of the total number of octets received. This count "
"includes both good and errored frames." }
};
static int
sysctl_atse_mac_stats_proc(SYSCTL_HANDLER_ARGS)
{
struct atse_softc *sc;
int error, offset, s;
sc = arg1;
offset = arg2;
s = CSR_READ_4(sc, offset);
error = sysctl_handle_int(oidp, &s, 0, req);
if (error || !req->newptr)
return (error);
return (0);
}
static struct atse_rx_err_stats_regs {
const char *name;
const char *descr;
} atse_rx_err_stats_regs[] = {
#define ATSE_RX_ERR_FIFO_THRES_EOP 0 /* FIFO threshold reached, on EOP. */
#define ATSE_RX_ERR_ELEN 1 /* Frame/payload length not valid. */
#define ATSE_RX_ERR_CRC32 2 /* CRC-32 error. */
#define ATSE_RX_ERR_FIFO_THRES_TRUNC 3 /* FIFO thresh., truncated frame. */
#define ATSE_RX_ERR_4 4 /* ? */
#define ATSE_RX_ERR_5 5 /* / */
{ "rx_err_fifo_thres_eop",
"FIFO threshold reached, reported on EOP." },
{ "rx_err_fifo_elen",
"Frame or payload length not valid." },
{ "rx_err_fifo_crc32",
"CRC-32 error." },
{ "rx_err_fifo_thres_trunc",
"FIFO threshold reached, truncated frame" },
{ "rx_err_4",
"?" },
{ "rx_err_5",
"?" },
};
static int
sysctl_atse_rx_err_stats_proc(SYSCTL_HANDLER_ARGS)
{
struct atse_softc *sc;
int error, offset, s;
sc = arg1;
offset = arg2;
s = sc->atse_rx_err[offset];
error = sysctl_handle_int(oidp, &s, 0, req);
if (error || !req->newptr)
return (error);
return (0);
}
static void
atse_sysctl_stats_attach(device_t dev)
{
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
struct atse_softc *sc;
int i;
sc = device_get_softc(dev);
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
/* MAC statistics. */
for (i = 0; i < sizeof(atse_mac_stats_regs) /
sizeof(*atse_mac_stats_regs); i++) {
if (atse_mac_stats_regs[i].name == NULL ||
atse_mac_stats_regs[i].descr == NULL)
continue;
SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
atse_mac_stats_regs[i].name, CTLTYPE_UINT|CTLFLAG_RD,
sc, i, sysctl_atse_mac_stats_proc, "IU",
atse_mac_stats_regs[i].descr);
}
/* rx_err[]. */
for (i = 0; i < ATSE_RX_ERR_MAX; i++) {
if (atse_rx_err_stats_regs[i].name == NULL ||
atse_rx_err_stats_regs[i].descr == NULL)
continue;
SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
atse_rx_err_stats_regs[i].name, CTLTYPE_UINT|CTLFLAG_RD,
sc, i, sysctl_atse_rx_err_stats_proc, "IU",
atse_rx_err_stats_regs[i].descr);
}
}
/*
* Generic device handling routines.
*/
int
atse_attach(device_t dev)
{
struct atse_softc *sc;
struct ifnet *ifp;
int error;
sc = device_get_softc(dev);
atse_ethernet_option_bits_read(dev);
mtx_init(&sc->atse_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->atse_tick, &sc->atse_mtx, 0);
sc->atse_tx_buf = malloc(ETHER_MAX_LEN_JUMBO, M_DEVBUF, M_WAITOK);
/*
* We are only doing single-PHY with this driver currently. The
* defaults would be right so that BASE_CFG_MDIO_ADDR0 points to the
* 1st PHY address (0) apart from the fact that BMCR0 is always
* the PCS mapping, so we always use BMCR1. See Table 5-1 0xA0-0xBF.
*/
#if 0 /* Always PCS. */
sc->atse_bmcr0 = MDIO_0_START;
CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR0, 0x00);
#endif
/* Always use matching PHY for atse[0..]. */
sc->atse_phy_addr = device_get_unit(dev);
sc->atse_bmcr1 = MDIO_1_START;
CSR_WRITE_4(sc, BASE_CFG_MDIO_ADDR1, sc->atse_phy_addr);
/* Reset the adapter. */
atse_reset(sc);
/* Setup interface. */
ifp = sc->atse_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "if_alloc() failed\n");
error = ENOSPC;
goto err;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = atse_ioctl;
ifp->if_start = atse_start;
ifp->if_init = atse_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ATSE_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = ATSE_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/* MII setup. */
error = mii_attach(dev, &sc->atse_miibus, ifp, atse_ifmedia_upd,
atse_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHY failed: %d\n", error);
goto err;
}
/* Call media-indepedent attach routine. */
ether_ifattach(ifp, sc->atse_eth_addr);
/* Tell the upper layer(s) about vlan mtu support. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
/* We will enable polling by default if no irqs available. See below. */
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Hook up interrupts. */
if (sc->atse_rx_irq_res != NULL) {
error = bus_setup_intr(dev, sc->atse_rx_irq_res, INTR_TYPE_NET |
INTR_MPSAFE, NULL, atse_intr, sc, &sc->atse_rx_intrhand);
if (error != 0) {
device_printf(dev, "enabling RX IRQ failed\n");
ether_ifdetach(ifp);
goto err;
}
}
if (sc->atse_tx_irq_res != NULL) {
error = bus_setup_intr(dev, sc->atse_tx_irq_res, INTR_TYPE_NET |
INTR_MPSAFE, NULL, atse_intr, sc, &sc->atse_tx_intrhand);
if (error != 0) {
bus_teardown_intr(dev, sc->atse_rx_irq_res,
sc->atse_rx_intrhand);
device_printf(dev, "enabling TX IRQ failed\n");
ether_ifdetach(ifp);
goto err;
}
}
if ((ifp->if_capenable & IFCAP_POLLING) != 0 ||
(sc->atse_rx_irq_res == NULL && sc->atse_tx_irq_res == NULL)) {
#ifdef DEVICE_POLLING
/* If not on and no IRQs force it on. */
if (sc->atse_rx_irq_res == NULL && sc->atse_tx_irq_res == NULL){
ifp->if_capenable |= IFCAP_POLLING;
device_printf(dev, "forcing to polling due to no "
"interrupts\n");
}
error = ether_poll_register(atse_poll, ifp);
if (error != 0)
goto err;
#else
device_printf(dev, "no DEVICE_POLLING in kernel and no IRQs\n");
error = ENXIO;
#endif
} else {
ATSE_RX_INTR_ENABLE(sc);
ATSE_TX_INTR_ENABLE(sc);
}
err:
if (error != 0)
atse_detach(dev);
if (error == 0)
atse_sysctl_stats_attach(dev);
return (error);
}
static int
atse_detach(device_t dev)
{
struct atse_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->atse_mtx), ("%s: mutex not initialized",
device_get_nameunit(dev)));
ifp = sc->atse_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* Only cleanup if attach succeeded. */
if (device_is_attached(dev)) {
ATSE_LOCK(sc);
atse_stop_locked(sc);
ATSE_UNLOCK(sc);
callout_drain(&sc->atse_tick);
ether_ifdetach(ifp);
}
if (sc->atse_miibus != NULL)
device_delete_child(dev, sc->atse_miibus);
if (sc->atse_tx_intrhand)
bus_teardown_intr(dev, sc->atse_tx_irq_res,
sc->atse_tx_intrhand);
if (sc->atse_rx_intrhand)
bus_teardown_intr(dev, sc->atse_rx_irq_res,
sc->atse_rx_intrhand);
if (ifp != NULL)
if_free(ifp);
if (sc->atse_tx_buf != NULL)
free(sc->atse_tx_buf, M_DEVBUF);
mtx_destroy(&sc->atse_mtx);
return (0);
}
/* Shared between nexus anf fdt implementation. */
void
atse_detach_resources(device_t dev)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
if (sc->atse_txc_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_txc_mem_rid,
sc->atse_txc_mem_res);
sc->atse_txc_mem_res = NULL;
}
if (sc->atse_tx_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_tx_mem_rid,
sc->atse_tx_mem_res);
sc->atse_tx_mem_res = NULL;
}
if (sc->atse_tx_irq_res != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->atse_tx_irq_rid,
sc->atse_tx_irq_res);
sc->atse_tx_irq_res = NULL;
}
if (sc->atse_rxc_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_rxc_mem_rid,
sc->atse_rxc_mem_res);
sc->atse_rxc_mem_res = NULL;
}
if (sc->atse_rx_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_rx_mem_rid,
sc->atse_rx_mem_res);
sc->atse_rx_mem_res = NULL;
}
if (sc->atse_rx_irq_res != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->atse_rx_irq_rid,
sc->atse_rx_irq_res);
sc->atse_rx_irq_res = NULL;
}
if (sc->atse_mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->atse_mem_rid,
sc->atse_mem_res);
sc->atse_mem_res = NULL;
}
}
int
atse_detach_dev(device_t dev)
{
int error;
error = atse_detach(dev);
if (error) {
/* We are basically in undefined state now. */
device_printf(dev, "atse_detach() failed: %d\n", error);
return (error);
}
atse_detach_resources(dev);
return (0);
}
int
atse_miibus_readreg(device_t dev, int phy, int reg)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
/*
* We currently do not support re-mapping of MDIO space on-the-fly
* but de-facto hard-code the phy#.
*/
if (phy != sc->atse_phy_addr)
return (0);
return (PHY_READ_2(sc, reg));
}
int
atse_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct atse_softc *sc;
sc = device_get_softc(dev);
/*
* We currently do not support re-mapping of MDIO space on-the-fly
* but de-facto hard-code the phy#.
*/
if (phy != sc->atse_phy_addr)
return (0);
PHY_WRITE_2(sc, reg, data);
return (0);
}
void
atse_miibus_statchg(device_t dev)
{
struct atse_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t val4;
sc = device_get_softc(dev);
ATSE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->atse_miibus);
ifp = sc->atse_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
val4 = CSR_READ_4(sc, BASE_CFG_COMMAND_CONFIG);
/* Assume no link. */
sc->atse_flags &= ~ATSE_FLAGS_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
val4 |= BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
case IFM_100_TX:
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 &= ~BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
case IFM_1000_T:
val4 &= ~BASE_CFG_COMMAND_CONFIG_ENA_10;
val4 |= BASE_CFG_COMMAND_CONFIG_ETH_SPEED;
sc->atse_flags |= ATSE_FLAGS_LINK;
break;
default:
break;
}
}
if ((sc->atse_flags & ATSE_FLAGS_LINK) == 0) {
/* XXX-BZ need to stop the MAC? */
return;
}
if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0)
val4 &= ~BASE_CFG_COMMAND_CONFIG_HD_ENA;
else
val4 |= BASE_CFG_COMMAND_CONFIG_HD_ENA;
/* XXX-BZ flow control? */
/* Make sure the MAC is activated. */
val4 |= BASE_CFG_COMMAND_CONFIG_TX_ENA;
val4 |= BASE_CFG_COMMAND_CONFIG_RX_ENA;
CSR_WRITE_4(sc, BASE_CFG_COMMAND_CONFIG, val4);
}
/* end */