freebsd-dev/sys/ufs/ffs
mckusick b2806c8ec0 This checkin reimplements the io-request priority hack in a way
that works in the new threaded kernel. It was commented out of
the disksort routine earlier this year for the reasons given in
kern/subr_disklabel.c (which is where this code used to reside
before it moved to kern/subr_disk.c):

----------------------------
revision 1.65
date: 2002/04/22 06:53:20;  author: phk;  state: Exp;  lines: +5 -0
Comment out Kirks io-request priority hack until we can do this in a
civilized way which doesn't cause grief.

The problem is that it is not generally safe to cast a "struct bio
*" to a "struct buf *".  Things like ccd, vinum, ata-raid and GEOM
constructs bio's which are not entrails of a struct buf.

Also, curthread may or may not have anything to do with the I/O request
at hand.

The correct solution can either be to tag struct bio's with a
priority derived from the requesting threads nice and have disksort
act on this field, this wouldn't address the "silly-seek syndrome"
where two equal processes bang the diskheads from one edge to the
other of the disk repeatedly.

Alternatively, and probably better: a sleep should be introduced
either at the time the I/O is requested or at the time it is completed
where we can be sure to sleep in the right thread.

The sleep also needs to be in constant timeunits, 1/hz can be practicaly
any sub-second size, at high HZ the current code practically doesn't
do anything.
----------------------------

As suggested in this comment, it is no longer located in the disk sort
routine, but rather now resides in spec_strategy where the disk operations
are being queued by the thread that is associated with the process that
is really requesting the I/O. At that point, the disk queues are not
visible, so the I/O for positively niced processes is always slowed
down whether or not there is other activity on the disk.

On the issue of scaling HZ, I believe that the current scheme is
better than using a fixed quantum of time. As machines and I/O
subsystems get faster, the resolution on the clock also rises.
So, ten years from now we will be slowing things down for shorter
periods of time, but the proportional effect on the system will
be about the same as it is today. So, I view this as a feature
rather than a drawback. Hence this patch sticks with using HZ.

Sponsored by:	DARPA & NAI Labs.
Reviewed by:	Poul-Henning Kamp <phk@critter.freebsd.dk>
2002-10-22 00:59:49 +00:00
..
ffs_alloc.c intmax_t is printed with %jd, not %lld. 2002-09-19 03:55:30 +00:00
ffs_balloc.c Fix a file-rewrite performance case for UFS[2]. When rewriting portions 2002-10-18 22:52:41 +00:00
ffs_extern.h Introduce typedefs for the member functions of struct vfsops and employ 2002-08-13 10:05:50 +00:00
ffs_inode.c - Convert locks to use standard macros. 2002-09-25 02:49:48 +00:00
ffs_snapshot.c This checkin reimplements the io-request priority hack in a way 2002-10-22 00:59:49 +00:00
ffs_softdep_stub.c Add a missing argument to the stub for softdep_setup_freeblocks. 2002-07-20 04:07:15 +00:00
ffs_softdep.c When spamming me with a printf(9), under DIAGNOSTIC, at least be nice enough 2002-09-28 19:04:49 +00:00
ffs_subr.c I forgot this bit of uglyness in the fsck_ffs cleanup. 2002-07-31 07:01:18 +00:00
ffs_tables.c This commit adds basic support for the UFS2 filesystem. The UFS2 2002-06-21 06:18:05 +00:00
ffs_vfsops.c If the FS_MULTILABEL flag is set in a UFS or UFS2 superblock, 2002-10-15 20:00:06 +00:00
ffs_vnops.c Fix a file-rewrite performance case for UFS[2]. When rewriting portions 2002-10-18 22:52:41 +00:00
fs.h Define two new superblock file system flags: 2002-10-14 17:07:11 +00:00
README.snapshot Fix a type: s/your are/you are/ 2002-07-12 19:56:31 +00:00
README.softupdates Update to reflect current status. 2000-07-08 02:31:21 +00:00
softdep.h Add support to UFS2 to provide storage for extended attributes. 2002-07-19 07:29:39 +00:00

$FreeBSD$

Using Soft Updates

To enable the soft updates feature in your kernel, add option
SOFTUPDATES to your kernel configuration.

Once you are running a kernel with soft update support, you need to enable
it for whichever filesystems you wish to run with the soft update policy.
This is done with the -n option to tunefs(8) on the UNMOUNTED filesystems,
e.g. from single-user mode you'd do something like:

	tunefs -n enable /usr

To permanently enable soft updates on the /usr filesystem (or at least
until a corresponding ``tunefs -n disable'' is done).


Soft Updates Copyright Restrictions

As of June 2000 the restrictive copyright has been removed and 
replaced with a `Berkeley-style' copyright. The files implementing
soft updates now reside in the sys/ufs/ffs directory and are
compiled into the generic kernel by default.


Soft Updates Status

The soft updates code has been running in production on many
systems for the past two years generally quite successfully.
The two current sets of shortcomings are:

1) On filesystems that are chronically full, the two minute lag
   from the time a file is deleted until its free space shows up
   will result in premature filesystem full failures. This
   failure mode is most evident in small filesystems such as
   the root. For this reason, use of soft updates is not
   recommended on the root filesystem.

2) If your system routines runs parallel processes each of which
   remove many files, the kernel memory rate limiting code may
   not be able to slow removal operations to a level sustainable
   by the disk subsystem. The result is that the kernel runs out
   of memory and hangs.

Both of these problems are being addressed, but have not yet
been resolved. There are no other known problems at this time.


How Soft Updates Work

For more general information on soft updates, please see:
	http://www.mckusick.com/softdep/
	http://www.ece.cmu.edu/~ganger/papers/CSE-TR-254-95/

--
Marshall Kirk McKusick <mckusick@mckusick.com>
July 2000