freebsd-dev/sys/contrib/octeon-sdk/cvmx-tim.c
Juli Mallett 219d14fe5f Import the Cavium Simple Executive from the Cavium Octeon SDK. The Simple
Executive is a library that can be used by standalone applications and kernels
to abstract access to Octeon SoC and board-specific hardware and facilities.
The FreeBSD port to Octeon will be updated to use this where possible.
2010-07-20 07:19:43 +00:00

271 lines
9.0 KiB
C

/***********************license start***************
* Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
* OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
* RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
* POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
* OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*
*
* For any questions regarding licensing please contact marketing@caviumnetworks.com
*
***********************license end**************************************/
/**
* @file
*
* Support library for the hardware work queue timers.
*
* <hr>$Revision: 42180 $<hr>
*/
#include "executive-config.h"
#include "cvmx-config.h"
#include "cvmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-tim.h"
#include "cvmx-bootmem.h"
/* CSR typedefs have been moved to cvmx-csr-*.h */
/**
* Global structure holding the state of all timers.
*/
CVMX_SHARED cvmx_tim_t cvmx_tim;
#ifdef CVMX_ENABLE_TIMER_FUNCTIONS
/**
* Setup a timer for use. Must be called before the timer
* can be used.
*
* @param tick Time between each bucket in microseconds. This must not be
* smaller than 1024/(clock frequency in MHz).
* @param max_ticks The maximum number of ticks the timer must be able
* to schedule in the future. There are guaranteed to be enough
* timer buckets such that:
* number of buckets >= max_ticks.
* @return Zero on success. Negative on error. Failures are possible
* if the number of buckets needed is too large or memory
* allocation fails for creating the buckets.
*/
int cvmx_tim_setup(uint64_t tick, uint64_t max_ticks)
{
cvmx_tim_mem_ring0_t config_ring0;
cvmx_tim_mem_ring1_t config_ring1;
uint64_t timer_id;
int error = -1;
#if !(defined(__KERNEL__) && defined(linux))
cvmx_sysinfo_t *sys_info_ptr = cvmx_sysinfo_get();
uint64_t cpu_clock_hz = sys_info_ptr->cpu_clock_hz;
#else
uint64_t cpu_clock_hz = octeon_get_clock_rate();
#endif
uint64_t hw_tick_ns;
uint64_t hw_tick_ns_allowed;
uint64_t tick_ns = 1000 * tick;
int i;
uint32_t temp;
/* for the simulator */
if (cpu_clock_hz == 0)
cpu_clock_hz = 333000000;
hw_tick_ns = 1024 * 1000000000ull / cpu_clock_hz;
/*
* Doulbe the minmal allowed tick to 2* HW tick. tick between
* (hw_tick_ns, 2*hw_tick_ns) will set config_ring1.s.interval
* to zero, or 1024 cycles. This is not enough time for the timer unit
* to fetch the bucket data, Resulting in timer ring error interrupt
* be always generated. Avoid such setting in software
*/
hw_tick_ns_allowed = hw_tick_ns *2;
/* Make sure the timers are stopped */
cvmx_tim_stop();
/* Reinitialize out timer state */
memset(&cvmx_tim, 0, sizeof(cvmx_tim));
if ((tick_ns < (hw_tick_ns_allowed)) || (tick_ns > 4194304 * hw_tick_ns))
{
cvmx_dprintf("init: tick wrong size. Requested tick %lu(ns) is smaller than"
" the minimal ticks allowed by hardware %lu(ns)\n",
tick_ns, hw_tick_ns_allowed);
return error;
}
for (i=2; i<20; i++)
{
if (tick_ns < (hw_tick_ns << i))
break;
}
cvmx_tim.max_ticks = (uint32_t)max_ticks;
cvmx_tim.bucket_shift = (uint32_t)(i - 1 + 10);
cvmx_tim.tick_cycles = tick * cpu_clock_hz / 1000000;
temp = (max_ticks * cvmx_tim.tick_cycles) >> cvmx_tim.bucket_shift;
/* round up to nearest power of 2 */
temp -= 1;
temp = temp | (temp >> 1);
temp = temp | (temp >> 2);
temp = temp | (temp >> 4);
temp = temp | (temp >> 8);
temp = temp | (temp >> 16);
cvmx_tim.num_buckets = temp + 1;
/* ensure input params fall into permitted ranges */
if ((cvmx_tim.num_buckets < 3) || cvmx_tim.num_buckets > 1048576)
{
cvmx_dprintf("init: num_buckets out of range\n");
return error;
}
/* Allocate the timer buckets from hardware addressable memory */
cvmx_tim.bucket = cvmx_bootmem_alloc(CVMX_TIM_NUM_TIMERS * cvmx_tim.num_buckets
* sizeof(cvmx_tim_bucket_entry_t), CVMX_CACHE_LINE_SIZE);
if (cvmx_tim.bucket == NULL)
{
cvmx_dprintf("init: allocation problem\n");
return error;
}
memset(cvmx_tim.bucket, 0, CVMX_TIM_NUM_TIMERS * cvmx_tim.num_buckets * sizeof(cvmx_tim_bucket_entry_t));
cvmx_tim.start_time = 0;
/* Loop through all timers */
for (timer_id = 0; timer_id<CVMX_TIM_NUM_TIMERS; timer_id++)
{
cvmx_tim_bucket_entry_t *bucket = cvmx_tim.bucket + timer_id * cvmx_tim.num_buckets;
/* Tell the hardware where about the bucket array */
config_ring0.u64 = 0;
config_ring0.s.first_bucket = cvmx_ptr_to_phys(bucket) >> 5;
config_ring0.s.num_buckets = cvmx_tim.num_buckets - 1;
config_ring0.s.ring = timer_id;
cvmx_write_csr(CVMX_TIM_MEM_RING0, config_ring0.u64);
/* Tell the hardware the size of each chunk block in pointers */
config_ring1.u64 = 0;
config_ring1.s.enable = 1;
config_ring1.s.pool = CVMX_FPA_TIMER_POOL;
config_ring1.s.words_per_chunk = CVMX_FPA_TIMER_POOL_SIZE / 8;
config_ring1.s.interval = (1 << (cvmx_tim.bucket_shift - 10)) - 1;
config_ring1.s.ring = timer_id;
cvmx_write_csr(CVMX_TIM_MEM_RING1, config_ring1.u64);
}
return 0;
}
#endif
/**
* Start the hardware timer processing
*/
void cvmx_tim_start(void)
{
cvmx_tim_control_t control;
control.u64 = 0;
control.s.enable_dwb = 1;
control.s.enable_timers = 1;
/* Remember when we started the timers */
cvmx_tim.start_time = cvmx_get_cycle();
cvmx_write_csr(CVMX_TIM_REG_FLAGS, control.u64);
}
/**
* Stop the hardware timer processing. Timers stay configured.
*/
void cvmx_tim_stop(void)
{
cvmx_tim_control_t control;
control.u64 = 0;
control.s.enable_dwb = 0;
control.s.enable_timers = 0;
cvmx_write_csr(CVMX_TIM_REG_FLAGS, control.u64);
}
/**
* Stop the timer. After this the timer must be setup again
* before use.
*/
#ifdef CVMX_ENABLE_TIMER_FUNCTIONS
void cvmx_tim_shutdown(void)
{
uint32_t bucket;
uint64_t timer_id;
uint64_t entries_per_chunk;
/* Make sure the timers are stopped */
cvmx_tim_stop();
entries_per_chunk = CVMX_FPA_TIMER_POOL_SIZE/8 - 1;
/* Now walk all buckets freeing the chunks */
for (timer_id = 0; timer_id<CVMX_TIM_NUM_TIMERS; timer_id++)
{
for (bucket=0; bucket<cvmx_tim.num_buckets; bucket++)
{
uint64_t chunk_addr;
uint64_t next_chunk_addr;
cvmx_tim_bucket_entry_t *bucket_ptr = cvmx_tim.bucket + timer_id * cvmx_tim.num_buckets + bucket;
CVMX_PREFETCH128(CAST64(bucket_ptr)); /* prefetch the next cacheline for future buckets */
/* Each bucket contains a list of chunks */
chunk_addr = bucket_ptr->first_chunk_addr;
while (bucket_ptr->num_entries)
{
#ifdef DEBUG
cvmx_dprintf("Freeing Timer Chunk 0x%llx\n", CAST64(chunk_addr));
#endif
/* Read next chunk pointer from end of the current chunk */
next_chunk_addr = cvmx_read_csr(CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, chunk_addr + CVMX_FPA_TIMER_POOL_SIZE - 8));
cvmx_fpa_free(cvmx_phys_to_ptr(chunk_addr), CVMX_FPA_TIMER_POOL, 0);
chunk_addr = next_chunk_addr;
if (bucket_ptr->num_entries > entries_per_chunk)
bucket_ptr->num_entries -= entries_per_chunk;
else
bucket_ptr->num_entries = 0;
}
}
}
}
#endif