freebsd-dev/sys/arm/ti/ti_adc.c
Oleksandr Tymoshenko 5b03aba6c8 Switch TI platform support code from using FreeBSD's custom-baked DTS
files to vendor-provided ones. It should make easier to adopt platform
code to new revisions of hardware and to use DTS overlays for various
Beaglebone extensions (shields/capes).

Original dts filenames were not changed, they're now wrappers over dts
files provided by TI. So make sure you update .dtb files on your
devices as part of kernel update

GPIO addressing was changed: instead of one global /dev/gpioc0 there
are per-bank instances of /dev/gpiocX. Each bank has 32 pins so for
instance pin 121 on /dev/gpioc0 in old addressing scheme is now pin 25
on /dev/gpioc3

On Pandaboard serial console devices was changed from /dev/ttyu0 to
/dev/ttyu2 so you'll have to update /etc/ttys to get login prompt
on serial port in multiuser mode. Single user mode serial console
should work as-is

Differential Revision:	https://reviews.freebsd.org/D2146
Reviewed by:	rpaulo, ian, Michal Meloun, Svatopluk Kraus
2015-05-22 03:16:18 +00:00

595 lines
14 KiB
C

/*-
* Copyright 2014 Luiz Otavio O Souza <loos@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_adcreg.h>
#include <arm/ti/ti_adcvar.h>
/* Define our 8 steps, one for each input channel. */
static struct ti_adc_input ti_adc_inputs[TI_ADC_NPINS] = {
{ .stepconfig = ADC_STEPCFG1, .stepdelay = ADC_STEPDLY1 },
{ .stepconfig = ADC_STEPCFG2, .stepdelay = ADC_STEPDLY2 },
{ .stepconfig = ADC_STEPCFG3, .stepdelay = ADC_STEPDLY3 },
{ .stepconfig = ADC_STEPCFG4, .stepdelay = ADC_STEPDLY4 },
{ .stepconfig = ADC_STEPCFG5, .stepdelay = ADC_STEPDLY5 },
{ .stepconfig = ADC_STEPCFG6, .stepdelay = ADC_STEPDLY6 },
{ .stepconfig = ADC_STEPCFG7, .stepdelay = ADC_STEPDLY7 },
{ .stepconfig = ADC_STEPCFG8, .stepdelay = ADC_STEPDLY8 },
};
static int ti_adc_samples[5] = { 0, 2, 4, 8, 16 };
static void
ti_adc_enable(struct ti_adc_softc *sc)
{
TI_ADC_LOCK_ASSERT(sc);
if (sc->sc_last_state == 1)
return;
/* Enable the FIFO0 threshold and the end of sequence interrupt. */
ADC_WRITE4(sc, ADC_IRQENABLE_SET,
ADC_IRQ_FIFO0_THRES | ADC_IRQ_END_OF_SEQ);
/* Enable the ADC. Run thru enabled steps, start the conversions. */
ADC_WRITE4(sc, ADC_CTRL, ADC_READ4(sc, ADC_CTRL) | ADC_CTRL_ENABLE);
sc->sc_last_state = 1;
}
static void
ti_adc_disable(struct ti_adc_softc *sc)
{
int count;
uint32_t data;
TI_ADC_LOCK_ASSERT(sc);
if (sc->sc_last_state == 0)
return;
/* Disable all the enabled steps. */
ADC_WRITE4(sc, ADC_STEPENABLE, 0);
/* Disable the ADC. */
ADC_WRITE4(sc, ADC_CTRL, ADC_READ4(sc, ADC_CTRL) & ~ADC_CTRL_ENABLE);
/* Disable the FIFO0 threshold and the end of sequence interrupt. */
ADC_WRITE4(sc, ADC_IRQENABLE_CLR,
ADC_IRQ_FIFO0_THRES | ADC_IRQ_END_OF_SEQ);
/* ACK any pending interrupt. */
ADC_WRITE4(sc, ADC_IRQSTATUS, ADC_READ4(sc, ADC_IRQSTATUS));
/* Drain the FIFO data. */
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO0DATA);
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
}
sc->sc_last_state = 0;
}
static int
ti_adc_setup(struct ti_adc_softc *sc)
{
int ain;
uint32_t enabled;
TI_ADC_LOCK_ASSERT(sc);
/* Check for enabled inputs. */
enabled = 0;
for (ain = 0; ain < TI_ADC_NPINS; ain++) {
if (ti_adc_inputs[ain].enable)
enabled |= (1U << (ain + 1));
}
/* Set the ADC global status. */
if (enabled != 0) {
ti_adc_enable(sc);
/* Update the enabled steps. */
if (enabled != ADC_READ4(sc, ADC_STEPENABLE))
ADC_WRITE4(sc, ADC_STEPENABLE, enabled);
} else
ti_adc_disable(sc);
return (0);
}
static void
ti_adc_input_setup(struct ti_adc_softc *sc, int32_t ain)
{
struct ti_adc_input *input;
uint32_t reg, val;
TI_ADC_LOCK_ASSERT(sc);
input = &ti_adc_inputs[ain];
reg = input->stepconfig;
val = ADC_READ4(sc, reg);
/* Set single ended operation. */
val &= ~ADC_STEP_DIFF_CNTRL;
/* Set the negative voltage reference. */
val &= ~ADC_STEP_RFM_MSK;
val |= ADC_STEP_RFM_VREFN << ADC_STEP_RFM_SHIFT;
/* Set the positive voltage reference. */
val &= ~ADC_STEP_RFP_MSK;
val |= ADC_STEP_RFP_VREFP << ADC_STEP_RFP_SHIFT;
/* Set the samples average. */
val &= ~ADC_STEP_AVG_MSK;
val |= input->samples << ADC_STEP_AVG_SHIFT;
/* Select the desired input. */
val &= ~ADC_STEP_INP_MSK;
val |= ain << ADC_STEP_INP_SHIFT;
/* Set the ADC to one-shot mode. */
val &= ~ADC_STEP_MODE_MSK;
ADC_WRITE4(sc, reg, val);
}
static void
ti_adc_reset(struct ti_adc_softc *sc)
{
int ain;
TI_ADC_LOCK_ASSERT(sc);
/* Disable all the inputs. */
for (ain = 0; ain < TI_ADC_NPINS; ain++)
ti_adc_inputs[ain].enable = 0;
}
static int
ti_adc_clockdiv_proc(SYSCTL_HANDLER_ARGS)
{
int error, reg;
struct ti_adc_softc *sc;
sc = (struct ti_adc_softc *)arg1;
TI_ADC_LOCK(sc);
reg = (int)ADC_READ4(sc, ADC_CLKDIV) + 1;
TI_ADC_UNLOCK(sc);
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
if (error != 0 || req->newptr == NULL)
return (error);
/*
* The actual written value is the prescaler setting - 1.
* Enforce a minimum value of 10 (i.e. 9) which limits the maximum
* ADC clock to ~2.4Mhz (CLK_M_OSC / 10).
*/
reg--;
if (reg < 9)
reg = 9;
if (reg > USHRT_MAX)
reg = USHRT_MAX;
TI_ADC_LOCK(sc);
/* Disable the ADC. */
ti_adc_disable(sc);
/* Update the ADC prescaler setting. */
ADC_WRITE4(sc, ADC_CLKDIV, reg);
/* Enable the ADC again. */
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_enable_proc(SYSCTL_HANDLER_ARGS)
{
int error;
int32_t enable;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
enable = input->enable;
error = sysctl_handle_int(oidp, &enable, sizeof(enable),
req);
if (error != 0 || req->newptr == NULL)
return (error);
if (enable)
enable = 1;
TI_ADC_LOCK(sc);
/* Setup the ADC as needed. */
if (input->enable != enable) {
input->enable = enable;
ti_adc_setup(sc);
if (input->enable == 0)
input->value = 0;
}
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_open_delay_proc(SYSCTL_HANDLER_ARGS)
{
int error, reg;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
TI_ADC_LOCK(sc);
reg = (int)ADC_READ4(sc, input->stepdelay) & ADC_STEP_OPEN_DELAY;
TI_ADC_UNLOCK(sc);
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
if (error != 0 || req->newptr == NULL)
return (error);
if (reg < 0)
reg = 0;
TI_ADC_LOCK(sc);
ADC_WRITE4(sc, input->stepdelay, reg & ADC_STEP_OPEN_DELAY);
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_samples_avg_proc(SYSCTL_HANDLER_ARGS)
{
int error, samples, i;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
if (input->samples > nitems(ti_adc_samples))
input->samples = nitems(ti_adc_samples);
samples = ti_adc_samples[input->samples];
error = sysctl_handle_int(oidp, &samples, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
TI_ADC_LOCK(sc);
if (samples != ti_adc_samples[input->samples]) {
input->samples = 0;
for (i = 0; i < nitems(ti_adc_samples); i++)
if (samples >= ti_adc_samples[i])
input->samples = i;
ti_adc_input_setup(sc, input->input);
}
TI_ADC_UNLOCK(sc);
return (error);
}
static void
ti_adc_read_data(struct ti_adc_softc *sc)
{
int count, ain;
struct ti_adc_input *input;
uint32_t data;
TI_ADC_LOCK_ASSERT(sc);
/* Read the available data. */
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO0DATA);
ain = (data & ADC_FIFO_STEP_ID_MSK) >> ADC_FIFO_STEP_ID_SHIFT;
input = &ti_adc_inputs[ain];
if (input->enable == 0)
input->value = 0;
else
input->value = (int32_t)(data & ADC_FIFO_DATA_MSK);
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
}
}
static void
ti_adc_intr(void *arg)
{
struct ti_adc_softc *sc;
uint32_t status;
sc = (struct ti_adc_softc *)arg;
status = ADC_READ4(sc, ADC_IRQSTATUS);
if (status == 0)
return;
if (status & ~(ADC_IRQ_FIFO0_THRES | ADC_IRQ_END_OF_SEQ))
device_printf(sc->sc_dev, "stray interrupt: %#x\n", status);
TI_ADC_LOCK(sc);
/* ACK the interrupt. */
ADC_WRITE4(sc, ADC_IRQSTATUS, status);
/* Read the available data. */
if (status & ADC_IRQ_FIFO0_THRES)
ti_adc_read_data(sc);
/* Start the next conversion ? */
if (status & ADC_IRQ_END_OF_SEQ)
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_sysctl_init(struct ti_adc_softc *sc)
{
char pinbuf[3];
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree_node, *inp_node, *inpN_node;
struct sysctl_oid_list *tree, *inp_tree, *inpN_tree;
int ain;
/*
* Add per-pin sysctl tree/handlers.
*/
ctx = device_get_sysctl_ctx(sc->sc_dev);
tree_node = device_get_sysctl_tree(sc->sc_dev);
tree = SYSCTL_CHILDREN(tree_node);
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clockdiv",
CTLFLAG_RW | CTLTYPE_UINT, sc, 0,
ti_adc_clockdiv_proc, "IU", "ADC clock prescaler");
inp_node = SYSCTL_ADD_NODE(ctx, tree, OID_AUTO, "ain",
CTLFLAG_RD, NULL, "ADC inputs");
inp_tree = SYSCTL_CHILDREN(inp_node);
for (ain = 0; ain < TI_ADC_NPINS; ain++) {
snprintf(pinbuf, sizeof(pinbuf), "%d", ain);
inpN_node = SYSCTL_ADD_NODE(ctx, inp_tree, OID_AUTO, pinbuf,
CTLFLAG_RD, NULL, "ADC input");
inpN_tree = SYSCTL_CHILDREN(inpN_node);
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "enable",
CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0,
ti_adc_enable_proc, "IU", "Enable ADC input");
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "open_delay",
CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0,
ti_adc_open_delay_proc, "IU", "ADC open delay");
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "samples_avg",
CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0,
ti_adc_samples_avg_proc, "IU", "ADC samples average");
SYSCTL_ADD_INT(ctx, inpN_tree, OID_AUTO, "input",
CTLFLAG_RD, &ti_adc_inputs[ain].value, 0,
"Converted raw value for the ADC input");
}
}
static void
ti_adc_inputs_init(struct ti_adc_softc *sc)
{
int ain;
struct ti_adc_input *input;
TI_ADC_LOCK(sc);
for (ain = 0; ain < TI_ADC_NPINS; ain++) {
input = &ti_adc_inputs[ain];
input->sc = sc;
input->input = ain;
input->value = 0;
input->enable = 0;
input->samples = 0;
ti_adc_input_setup(sc, ain);
}
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_idlestep_init(struct ti_adc_softc *sc)
{
uint32_t val;
val = ADC_READ4(sc, ADC_IDLECONFIG);
/* Set single ended operation. */
val &= ~ADC_STEP_DIFF_CNTRL;
/* Set the negative voltage reference. */
val &= ~ADC_STEP_RFM_MSK;
val |= ADC_STEP_RFM_VREFN << ADC_STEP_RFM_SHIFT;
/* Set the positive voltage reference. */
val &= ~ADC_STEP_RFP_MSK;
val |= ADC_STEP_RFP_VREFP << ADC_STEP_RFP_SHIFT;
/* Connect the input to VREFN. */
val &= ~ADC_STEP_INP_MSK;
val |= ADC_STEP_IN_VREFN << ADC_STEP_INP_SHIFT;
ADC_WRITE4(sc, ADC_IDLECONFIG, val);
}
static int
ti_adc_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "ti,am3359-tscadc"))
return (ENXIO);
device_set_desc(dev, "TI ADC controller");
return (BUS_PROBE_DEFAULT);
}
static int
ti_adc_attach(device_t dev)
{
int err, rid;
struct ti_adc_softc *sc;
uint32_t reg, rev;
sc = device_get_softc(dev);
sc->sc_dev = dev;
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->sc_mem_res) {
device_printf(dev, "cannot allocate memory window\n");
return (ENXIO);
}
rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->sc_irq_res) {
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "cannot allocate interrupt\n");
return (ENXIO);
}
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, ti_adc_intr, sc, &sc->sc_intrhand) != 0) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "Unable to setup the irq handler.\n");
return (ENXIO);
}
/* Activate the ADC_TSC module. */
err = ti_prcm_clk_enable(TSC_ADC_CLK);
if (err)
return (err);
/* Check the ADC revision. */
rev = ADC_READ4(sc, ADC_REVISION);
device_printf(dev,
"scheme: %#x func: %#x rtl: %d rev: %d.%d custom rev: %d\n",
(rev & ADC_REV_SCHEME_MSK) >> ADC_REV_SCHEME_SHIFT,
(rev & ADC_REV_FUNC_MSK) >> ADC_REV_FUNC_SHIFT,
(rev & ADC_REV_RTL_MSK) >> ADC_REV_RTL_SHIFT,
(rev & ADC_REV_MAJOR_MSK) >> ADC_REV_MAJOR_SHIFT,
rev & ADC_REV_MINOR_MSK,
(rev & ADC_REV_CUSTOM_MSK) >> ADC_REV_CUSTOM_SHIFT);
/*
* Disable the step write protect and make it store the step ID for
* the captured data on FIFO.
*/
reg = ADC_READ4(sc, ADC_CTRL);
ADC_WRITE4(sc, ADC_CTRL, reg | ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID);
/*
* Set the ADC prescaler to 2400 (yes, the actual value written here
* is 2400 - 1).
* This sets the ADC clock to ~10Khz (CLK_M_OSC / 2400).
*/
ADC_WRITE4(sc, ADC_CLKDIV, 2399);
TI_ADC_LOCK_INIT(sc);
ti_adc_idlestep_init(sc);
ti_adc_inputs_init(sc);
ti_adc_sysctl_init(sc);
return (0);
}
static int
ti_adc_detach(device_t dev)
{
struct ti_adc_softc *sc;
sc = device_get_softc(dev);
/* Turn off the ADC. */
TI_ADC_LOCK(sc);
ti_adc_reset(sc);
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
TI_ADC_LOCK_DESTROY(sc);
if (sc->sc_intrhand)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
if (sc->sc_irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
return (bus_generic_detach(dev));
}
static device_method_t ti_adc_methods[] = {
DEVMETHOD(device_probe, ti_adc_probe),
DEVMETHOD(device_attach, ti_adc_attach),
DEVMETHOD(device_detach, ti_adc_detach),
DEVMETHOD_END
};
static driver_t ti_adc_driver = {
"ti_adc",
ti_adc_methods,
sizeof(struct ti_adc_softc),
};
static devclass_t ti_adc_devclass;
DRIVER_MODULE(ti_adc, simplebus, ti_adc_driver, ti_adc_devclass, 0, 0);
MODULE_VERSION(ti_adc, 1);
MODULE_DEPEND(ti_adc, simplebus, 1, 1, 1);