freebsd-dev/contrib/gcc/config/i386/i386.c
David E. O'Brien c92f6a5f61 Fix our -mprofiler-epilogue code.
"The problem is that egcs/gcc-2.95's reorganisation of the prologue and
epilogue code to use rtl instead of output_asm_insn() completely broke our
hooks.  rtl is emitted in a different order, only after optimisation, while
output_asm_insn() is emitted immediately.  rtl is presumably used so that
the prologue and epilogue can be optimised.

I couldn't find any good examples to copy.  gcc's own
FUNCTION_BLOCK_PROFILER still uses output_asm_insn() and seems to be
completely broken.  One of the XXX comments points to this.

IIRC, the hacks here basically arrange to emit magic label names; then when
the magic names are output, they are transformed into prologue and epilogue
code."

Submitted by:	bde
2000-01-29 13:06:33 +00:00

5755 lines
146 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Subroutines for insn-output.c for Intel X86.
Copyright (C) 1988, 92, 94-98, 1999 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* $FreeBSD$ */
#include <setjmp.h>
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "recog.h"
#include "expr.h"
#include "toplev.h"
#ifdef EXTRA_CONSTRAINT
/* If EXTRA_CONSTRAINT is defined, then the 'S'
constraint in REG_CLASS_FROM_LETTER will no longer work, and various
asm statements that need 'S' for class SIREG will break. */
error EXTRA_CONSTRAINT conflicts with S constraint letter
/* The previous line used to be #error, but some compilers barf
even if the conditional was untrue. */
#endif
#ifndef CHECK_STACK_LIMIT
#define CHECK_STACK_LIMIT -1
#endif
#define PIC_REG_USED \
(flag_pic && (current_function_uses_pic_offset_table \
|| current_function_uses_const_pool \
|| profile_flag || profile_block_flag))
/* Type of an operand for ix86_{binary,unary}_operator_ok */
enum reg_mem
{
reg_p,
mem_p,
imm_p
};
/* Processor costs (relative to an add) */
struct processor_costs i386_cost = { /* 386 specific costs */
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
3, /* variable shift costs */
2, /* constant shift costs */
6, /* cost of starting a multiply */
1, /* cost of multiply per each bit set */
23 /* cost of a divide/mod */
};
struct processor_costs i486_cost = { /* 486 specific costs */
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
3, /* variable shift costs */
2, /* constant shift costs */
12, /* cost of starting a multiply */
1, /* cost of multiply per each bit set */
40 /* cost of a divide/mod */
};
struct processor_costs pentium_cost = {
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
4, /* variable shift costs */
1, /* constant shift costs */
11, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
25 /* cost of a divide/mod */
};
struct processor_costs pentiumpro_cost = {
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
3, /* variable shift costs */
1, /* constant shift costs */
4, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
17 /* cost of a divide/mod */
};
/* We use decoding time together with execution time.
To get correct vale add 1 for short decodable, 2 for long decodable
and 4 for vector decodable instruction to execution time and divide
by two (because CPU is able to do two insns at a time). */
struct processor_costs k6_cost = {
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
1, /* variable shift costs */
1, /* constant shift costs */
3, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
20 /* cost of a divide/mod */
};
struct processor_costs *ix86_cost = &pentium_cost;
/* Processor feature/optimization bitmasks. */
#define m_386 (1<<PROCESSOR_I386)
#define m_486 (1<<PROCESSOR_I486)
#define m_PENT (1<<PROCESSOR_PENTIUM)
#define m_PPRO (1<<PROCESSOR_PENTIUMPRO)
#define m_K6 (1<<PROCESSOR_K6)
const int x86_use_leave = m_386 | m_K6;
const int x86_push_memory = m_386 | m_K6;
const int x86_zero_extend_with_and = m_486 | m_PENT;
const int x86_movx = m_386 | m_PPRO | m_K6;
const int x86_double_with_add = ~(m_386 | m_PENT | m_PPRO);
const int x86_use_bit_test = m_386;
const int x86_unroll_strlen = m_486 | m_PENT | m_PPRO;
const int x86_use_q_reg = m_PENT | m_PPRO | m_K6;
const int x86_use_any_reg = m_486;
const int x86_cmove = m_PPRO;
const int x86_deep_branch = m_PPRO| m_K6;
#define AT_BP(mode) (gen_rtx_MEM ((mode), frame_pointer_rtx))
extern FILE *asm_out_file;
extern char *strcat ();
static void ix86_epilogue PROTO((int));
static void ix86_prologue PROTO((int));
char *singlemove_string ();
char *output_move_const_single ();
char *output_fp_cc0_set ();
char *hi_reg_name[] = HI_REGISTER_NAMES;
char *qi_reg_name[] = QI_REGISTER_NAMES;
char *qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES;
/* Array of the smallest class containing reg number REGNO, indexed by
REGNO. Used by REGNO_REG_CLASS in i386.h. */
enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
{
/* ax, dx, cx, bx */
AREG, DREG, CREG, BREG,
/* si, di, bp, sp */
SIREG, DIREG, INDEX_REGS, GENERAL_REGS,
/* FP registers */
FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS,
FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS,
/* arg pointer */
INDEX_REGS
};
/* Test and compare insns in i386.md store the information needed to
generate branch and scc insns here. */
struct rtx_def *i386_compare_op0 = NULL_RTX;
struct rtx_def *i386_compare_op1 = NULL_RTX;
struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
/* which cpu are we scheduling for */
enum processor_type ix86_cpu;
/* which instruction set architecture to use. */
int ix86_arch;
/* Strings to hold which cpu and instruction set architecture to use. */
char *ix86_cpu_string; /* for -mcpu=<xxx> */
char *ix86_arch_string; /* for -march=<xxx> */
/* Register allocation order */
char *i386_reg_alloc_order;
static char regs_allocated[FIRST_PSEUDO_REGISTER];
/* # of registers to use to pass arguments. */
char *i386_regparm_string;
/* i386_regparm_string as a number */
int i386_regparm;
/* Alignment to use for loops and jumps: */
/* Power of two alignment for loops. */
char *i386_align_loops_string;
/* Power of two alignment for non-loop jumps. */
char *i386_align_jumps_string;
/* Power of two alignment for stack boundary in bytes. */
char *i386_preferred_stack_boundary_string;
/* Preferred alignment for stack boundary in bits. */
int i386_preferred_stack_boundary;
/* Values 1-5: see jump.c */
int i386_branch_cost;
char *i386_branch_cost_string;
/* Power of two alignment for functions. */
int i386_align_funcs;
char *i386_align_funcs_string;
/* Power of two alignment for loops. */
int i386_align_loops;
/* Power of two alignment for non-loop jumps. */
int i386_align_jumps;
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
void
override_options ()
{
int ch, i, j;
int def_align;
static struct ptt
{
char *name; /* Canonical processor name. */
enum processor_type processor; /* Processor type enum value. */
struct processor_costs *cost; /* Processor costs */
int target_enable; /* Target flags to enable. */
int target_disable; /* Target flags to disable. */
} processor_target_table[] = {
{PROCESSOR_I386_STRING, PROCESSOR_I386, &i386_cost, 0, 0},
{PROCESSOR_I486_STRING, PROCESSOR_I486, &i486_cost, 0, 0},
{PROCESSOR_I586_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
{PROCESSOR_PENTIUM_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
{PROCESSOR_I686_STRING, PROCESSOR_PENTIUMPRO, &pentiumpro_cost, 0, 0},
{PROCESSOR_PENTIUMPRO_STRING, PROCESSOR_PENTIUMPRO,
&pentiumpro_cost, 0, 0},
{PROCESSOR_K6_STRING, PROCESSOR_K6, &k6_cost, 0, 0}
};
int ptt_size = sizeof (processor_target_table) / sizeof (struct ptt);
#ifdef SUBTARGET_OVERRIDE_OPTIONS
SUBTARGET_OVERRIDE_OPTIONS;
#endif
/* Validate registers in register allocation order. */
if (i386_reg_alloc_order)
{
for (i = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
{
int regno = 0;
switch (ch)
{
case 'a': regno = 0; break;
case 'd': regno = 1; break;
case 'c': regno = 2; break;
case 'b': regno = 3; break;
case 'S': regno = 4; break;
case 'D': regno = 5; break;
case 'B': regno = 6; break;
default: fatal ("Register '%c' is unknown", ch);
}
if (regs_allocated[regno])
fatal ("Register '%c' already specified in allocation order", ch);
regs_allocated[regno] = 1;
}
}
if (ix86_arch_string == 0)
{
ix86_arch_string = PROCESSOR_PENTIUM_STRING;
if (ix86_cpu_string == 0)
ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
}
for (i = 0; i < ptt_size; i++)
if (! strcmp (ix86_arch_string, processor_target_table[i].name))
{
ix86_arch = processor_target_table[i].processor;
if (ix86_cpu_string == 0)
ix86_cpu_string = processor_target_table[i].name;
break;
}
if (i == ptt_size)
{
error ("bad value (%s) for -march= switch", ix86_arch_string);
ix86_arch_string = PROCESSOR_PENTIUM_STRING;
ix86_arch = PROCESSOR_DEFAULT;
}
if (ix86_cpu_string == 0)
ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
for (j = 0; j < ptt_size; j++)
if (! strcmp (ix86_cpu_string, processor_target_table[j].name))
{
ix86_cpu = processor_target_table[j].processor;
ix86_cost = processor_target_table[j].cost;
if (i > j && (int) ix86_arch >= (int) PROCESSOR_K6)
error ("-mcpu=%s does not support -march=%s",
ix86_cpu_string, ix86_arch_string);
target_flags |= processor_target_table[j].target_enable;
target_flags &= ~processor_target_table[j].target_disable;
break;
}
if (j == ptt_size)
{
error ("bad value (%s) for -mcpu= switch", ix86_cpu_string);
ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
ix86_cpu = PROCESSOR_DEFAULT;
}
/* Validate -mregparm= value. */
if (i386_regparm_string)
{
i386_regparm = atoi (i386_regparm_string);
if (i386_regparm < 0 || i386_regparm > REGPARM_MAX)
fatal ("-mregparm=%d is not between 0 and %d",
i386_regparm, REGPARM_MAX);
}
/* The 486 suffers more from non-aligned cache line fills, and the
larger code size results in a larger cache foot-print and more misses.
The 486 has a 16 byte cache line, pentium and pentiumpro have a 32 byte
cache line. */
def_align = (TARGET_486) ? 4 : 2;
/* Validate -malign-loops= value, or provide default. */
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
i386_align_loops = 4;
#else
i386_align_loops = 2;
#endif
if (i386_align_loops_string)
{
i386_align_loops = atoi (i386_align_loops_string);
if (i386_align_loops < 0 || i386_align_loops > MAX_CODE_ALIGN)
fatal ("-malign-loops=%d is not between 0 and %d",
i386_align_loops, MAX_CODE_ALIGN);
}
/* Validate -malign-jumps= value, or provide default. */
#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
i386_align_jumps = 4;
#else
i386_align_jumps = def_align;
#endif
if (i386_align_jumps_string)
{
i386_align_jumps = atoi (i386_align_jumps_string);
if (i386_align_jumps < 0 || i386_align_jumps > MAX_CODE_ALIGN)
fatal ("-malign-jumps=%d is not between 0 and %d",
i386_align_jumps, MAX_CODE_ALIGN);
}
/* Validate -malign-functions= value, or provide default. */
i386_align_funcs = def_align;
if (i386_align_funcs_string)
{
i386_align_funcs = atoi (i386_align_funcs_string);
if (i386_align_funcs < 0 || i386_align_funcs > MAX_CODE_ALIGN)
fatal ("-malign-functions=%d is not between 0 and %d",
i386_align_funcs, MAX_CODE_ALIGN);
}
/* Validate -mpreferred_stack_boundary= value, or provide default.
The default of 128 bits is for Pentium III's SSE __m128. */
i386_preferred_stack_boundary = 128;
if (i386_preferred_stack_boundary_string)
{
i = atoi (i386_preferred_stack_boundary_string);
if (i < 2 || i > 31)
fatal ("-mpreferred_stack_boundary=%d is not between 2 and 31", i);
i386_preferred_stack_boundary = (1 << i) * BITS_PER_UNIT;
}
/* Validate -mbranch-cost= value, or provide default. */
i386_branch_cost = 1;
if (i386_branch_cost_string)
{
i386_branch_cost = atoi (i386_branch_cost_string);
if (i386_branch_cost < 0 || i386_branch_cost > 5)
fatal ("-mbranch-cost=%d is not between 0 and 5", i386_branch_cost);
}
/* Keep nonleaf frame pointers. */
if (TARGET_OMIT_LEAF_FRAME_POINTER)
flag_omit_frame_pointer = 1;
}
/* A C statement (sans semicolon) to choose the order in which to
allocate hard registers for pseudo-registers local to a basic
block.
Store the desired register order in the array `reg_alloc_order'.
Element 0 should be the register to allocate first; element 1, the
next register; and so on.
The macro body should not assume anything about the contents of
`reg_alloc_order' before execution of the macro.
On most machines, it is not necessary to define this macro. */
void
order_regs_for_local_alloc ()
{
int i, ch, order;
/* User specified the register allocation order. */
if (i386_reg_alloc_order)
{
for (i = order = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
{
int regno = 0;
switch (ch)
{
case 'a': regno = 0; break;
case 'd': regno = 1; break;
case 'c': regno = 2; break;
case 'b': regno = 3; break;
case 'S': regno = 4; break;
case 'D': regno = 5; break;
case 'B': regno = 6; break;
}
reg_alloc_order[order++] = regno;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (! regs_allocated[i])
reg_alloc_order[order++] = i;
}
}
/* If user did not specify a register allocation order, use natural order. */
else
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_alloc_order[i] = i;
}
}
void
optimization_options (level, size)
int level;
int size ATTRIBUTE_UNUSED;
{
/* For -O2 and beyond, turn off -fschedule-insns by default. It tends to
make the problem with not enough registers even worse. */
#ifdef INSN_SCHEDULING
if (level > 1)
flag_schedule_insns = 0;
#endif
}
/* Sign-extend a 16-bit constant */
struct rtx_def *
i386_sext16_if_const (op)
struct rtx_def *op;
{
if (GET_CODE (op) == CONST_INT)
{
HOST_WIDE_INT val = INTVAL (op);
HOST_WIDE_INT sext_val;
if (val & 0x8000)
sext_val = val | ~0xffff;
else
sext_val = val & 0xffff;
if (sext_val != val)
op = GEN_INT (sext_val);
}
return op;
}
/* Return nonzero if the rtx is aligned */
static int
i386_aligned_reg_p (regno)
int regno;
{
return (regno == STACK_POINTER_REGNUM
|| (! flag_omit_frame_pointer && regno == FRAME_POINTER_REGNUM));
}
int
i386_aligned_p (op)
rtx op;
{
/* Registers and immediate operands are always "aligned". */
if (GET_CODE (op) != MEM)
return 1;
/* Don't even try to do any aligned optimizations with volatiles. */
if (MEM_VOLATILE_P (op))
return 0;
/* Get address of memory operand. */
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case CONST_INT:
if (INTVAL (op) & 3)
break;
return 1;
/* Match "reg + offset" */
case PLUS:
if (GET_CODE (XEXP (op, 1)) != CONST_INT)
break;
if (INTVAL (XEXP (op, 1)) & 3)
break;
op = XEXP (op, 0);
if (GET_CODE (op) != REG)
break;
/* ... fall through ... */
case REG:
return i386_aligned_reg_p (REGNO (op));
default:
break;
}
return 0;
}
/* Return nonzero if INSN looks like it won't compute useful cc bits
as a side effect. This information is only a hint. */
int
i386_cc_probably_useless_p (insn)
rtx insn;
{
return ! next_cc0_user (insn);
}
/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
attribute for DECL. The attributes in ATTRIBUTES have previously been
assigned to DECL. */
int
i386_valid_decl_attribute_p (decl, attributes, identifier, args)
tree decl ATTRIBUTE_UNUSED;
tree attributes ATTRIBUTE_UNUSED;
tree identifier ATTRIBUTE_UNUSED;
tree args ATTRIBUTE_UNUSED;
{
return 0;
}
/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
attribute for TYPE. The attributes in ATTRIBUTES have previously been
assigned to TYPE. */
int
i386_valid_type_attribute_p (type, attributes, identifier, args)
tree type;
tree attributes ATTRIBUTE_UNUSED;
tree identifier;
tree args;
{
if (TREE_CODE (type) != FUNCTION_TYPE
&& TREE_CODE (type) != METHOD_TYPE
&& TREE_CODE (type) != FIELD_DECL
&& TREE_CODE (type) != TYPE_DECL)
return 0;
/* Stdcall attribute says callee is responsible for popping arguments
if they are not variable. */
if (is_attribute_p ("stdcall", identifier))
return (args == NULL_TREE);
/* Cdecl attribute says the callee is a normal C declaration. */
if (is_attribute_p ("cdecl", identifier))
return (args == NULL_TREE);
/* Regparm attribute specifies how many integer arguments are to be
passed in registers. */
if (is_attribute_p ("regparm", identifier))
{
tree cst;
if (! args || TREE_CODE (args) != TREE_LIST
|| TREE_CHAIN (args) != NULL_TREE
|| TREE_VALUE (args) == NULL_TREE)
return 0;
cst = TREE_VALUE (args);
if (TREE_CODE (cst) != INTEGER_CST)
return 0;
if (TREE_INT_CST_HIGH (cst) != 0
|| TREE_INT_CST_LOW (cst) < 0
|| TREE_INT_CST_LOW (cst) > REGPARM_MAX)
return 0;
return 1;
}
return 0;
}
/* Return 0 if the attributes for two types are incompatible, 1 if they
are compatible, and 2 if they are nearly compatible (which causes a
warning to be generated). */
int
i386_comp_type_attributes (type1, type2)
tree type1;
tree type2;
{
/* Check for mismatch of non-default calling convention. */
char *rtdstr = TARGET_RTD ? "cdecl" : "stdcall";
if (TREE_CODE (type1) != FUNCTION_TYPE)
return 1;
/* Check for mismatched return types (cdecl vs stdcall). */
if (!lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type1))
!= !lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type2)))
return 0;
return 1;
}
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the 80386, the RTD insn may be used to pop them if the number
of args is fixed, but if the number is variable then the caller
must pop them all. RTD can't be used for library calls now
because the library is compiled with the Unix compiler.
Use of RTD is a selectable option, since it is incompatible with
standard Unix calling sequences. If the option is not selected,
the caller must always pop the args.
The attribute stdcall is equivalent to RTD on a per module basis. */
int
i386_return_pops_args (fundecl, funtype, size)
tree fundecl;
tree funtype;
int size;
{
int rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE);
/* Cdecl functions override -mrtd, and never pop the stack. */
if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) {
/* Stdcall functions will pop the stack if not variable args. */
if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)))
rtd = 1;
if (rtd
&& (TYPE_ARG_TYPES (funtype) == NULL_TREE
|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype)))
== void_type_node)))
return size;
}
/* Lose any fake structure return argument. */
if (aggregate_value_p (TREE_TYPE (funtype)))
return GET_MODE_SIZE (Pmode);
return 0;
}
/* Argument support functions. */
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
init_cumulative_args (cum, fntype, libname)
CUMULATIVE_ARGS *cum; /* Argument info to initialize */
tree fntype; /* tree ptr for function decl */
rtx libname; /* SYMBOL_REF of library name or 0 */
{
static CUMULATIVE_ARGS zero_cum;
tree param, next_param;
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "\ninit_cumulative_args (");
if (fntype)
fprintf (stderr, "fntype code = %s, ret code = %s",
tree_code_name[(int) TREE_CODE (fntype)],
tree_code_name[(int) TREE_CODE (TREE_TYPE (fntype))]);
else
fprintf (stderr, "no fntype");
if (libname)
fprintf (stderr, ", libname = %s", XSTR (libname, 0));
}
*cum = zero_cum;
/* Set up the number of registers to use for passing arguments. */
cum->nregs = i386_regparm;
if (fntype)
{
tree attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (fntype));
if (attr)
cum->nregs = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
}
/* Determine if this function has variable arguments. This is
indicated by the last argument being 'void_type_mode' if there
are no variable arguments. If there are variable arguments, then
we won't pass anything in registers */
if (cum->nregs)
{
for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
param != 0; param = next_param)
{
next_param = TREE_CHAIN (param);
if (next_param == 0 && TREE_VALUE (param) != void_type_node)
cum->nregs = 0;
}
}
if (TARGET_DEBUG_ARG)
fprintf (stderr, ", nregs=%d )\n", cum->nregs);
return;
}
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
void
function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* whether or not the argument was named */
{
int bytes
= (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_adv (sz=%d, wds=%2d, nregs=%d, mode=%s, named=%d)\n\n",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
cum->words += words;
cum->nregs -= words;
cum->regno += words;
if (cum->nregs <= 0)
{
cum->nregs = 0;
cum->regno = 0;
}
return;
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
struct rtx_def *
function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
rtx ret = NULL_RTX;
int bytes
= (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
switch (mode)
{
/* For now, pass fp/complex values on the stack. */
default:
break;
case BLKmode:
case DImode:
case SImode:
case HImode:
case QImode:
if (words <= cum->nregs)
ret = gen_rtx_REG (mode, cum->regno);
break;
}
if (TARGET_DEBUG_ARG)
{
fprintf (stderr,
"function_arg (size=%d, wds=%2d, nregs=%d, mode=%4s, named=%d",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
if (ret)
fprintf (stderr, ", reg=%%e%s", reg_names[ REGNO(ret) ]);
else
fprintf (stderr, ", stack");
fprintf (stderr, " )\n");
}
return ret;
}
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
int
function_arg_partial_nregs (cum, mode, type, named)
CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED; /* current arg information */
enum machine_mode mode ATTRIBUTE_UNUSED; /* current arg mode */
tree type ATTRIBUTE_UNUSED; /* type of the argument or 0 if lib support */
int named ATTRIBUTE_UNUSED; /* != 0 for normal args, == 0 for ... args */
{
return 0;
}
char *
singlemove_string (operands)
rtx *operands;
{
rtx x;
if (GET_CODE (operands[0]) == MEM
&& GET_CODE (x = XEXP (operands[0], 0)) == PRE_DEC)
{
if (XEXP (x, 0) != stack_pointer_rtx)
abort ();
return "push%L1 %1";
}
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
return output_move_const_single (operands);
else if (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG)
return AS2 (mov%L0,%1,%0);
else if (CONSTANT_P (operands[1]))
return AS2 (mov%L0,%1,%0);
else
{
output_asm_insn ("push%L1 %1", operands);
return "pop%L0 %0";
}
}
/* Output an insn to add the constant N to the register X. */
static void
asm_add (n, x)
int n;
rtx x;
{
rtx xops[2];
xops[0] = x;
if (n == -1)
output_asm_insn (AS1 (dec%L0,%0), xops);
else if (n == 1)
output_asm_insn (AS1 (inc%L0,%0), xops);
else if (n < 0 || n == 128)
{
xops[1] = GEN_INT (-n);
output_asm_insn (AS2 (sub%L0,%1,%0), xops);
}
else if (n > 0)
{
xops[1] = GEN_INT (n);
output_asm_insn (AS2 (add%L0,%1,%0), xops);
}
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
char *
output_move_double (operands)
rtx *operands;
{
enum {REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
rtx middlehalf[2];
rtx xops[2];
int dest_overlapped_low = 0;
int size = GET_MODE_SIZE (GET_MODE (operands[0]));
middlehalf[0] = 0;
middlehalf[1] = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that are not supposed to happen
either due to the operand constraints or the fact
that all memory operands on the x86 are offsettable.
Abort if we get one, because generating code for these
cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP
|| optype0 == MEMOP || optype1 == MEMOP)
abort ();
/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */
if (optype0 == PUSHOP && optype1 == POPOP)
{
/* ??? Can this ever happen on i386? */
operands[0] = XEXP (XEXP (operands[0], 0), 0);
asm_add (-size, operands[0]);
if (GET_MODE (operands[1]) == XFmode)
operands[0] = gen_rtx_MEM (XFmode, operands[0]);
else if (GET_MODE (operands[0]) == DFmode)
operands[0] = gen_rtx_MEM (DFmode, operands[0]);
else
operands[0] = gen_rtx_MEM (DImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
/* ??? Can this ever happen on i386? */
operands[1] = XEXP (XEXP (operands[1], 0), 0);
asm_add (-size, operands[1]);
if (GET_MODE (operands[1]) == XFmode)
operands[1] = gen_rtx_MEM (XFmode, operands[1]);
else if (GET_MODE (operands[1]) == DFmode)
operands[1] = gen_rtx_MEM (DFmode, operands[1]);
else
operands[1] = gen_rtx_MEM (DImode, operands[1]);
optype1 = OFFSOP;
}
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (size == 12)
{
if (optype0 == REGOP)
{
middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
}
else if (optype0 == OFFSOP)
{
middlehalf[0] = adj_offsettable_operand (operands[0], 4);
latehalf[0] = adj_offsettable_operand (operands[0], 8);
}
else
{
middlehalf[0] = operands[0];
latehalf[0] = operands[0];
}
if (optype1 == REGOP)
{
middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
}
else if (optype1 == OFFSOP)
{
middlehalf[1] = adj_offsettable_operand (operands[1], 4);
latehalf[1] = adj_offsettable_operand (operands[1], 8);
}
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r; long l[3];
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
operands[1] = GEN_INT (l[0]);
middlehalf[1] = GEN_INT (l[1]);
latehalf[1] = GEN_INT (l[2]);
}
else if (CONSTANT_P (operands[1]))
/* No non-CONST_DOUBLE constant should ever appear here. */
abort ();
}
else
{
middlehalf[1] = operands[1];
latehalf[1] = operands[1];
}
}
else
{
/* Size is not 12. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
split_double (operands[1], &operands[1], &latehalf[1]);
else
latehalf[1] = operands[1];
}
/* If insn is effectively movd N (sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1
(which is N+4 (sp) or N+8 (sp))
for the low word and middle word as well,
to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
middlehalf[1] = operands[1] = latehalf[1];
/* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
if the upper part of reg N does not appear in the MEM, arrange to
emit the move late-half first. Otherwise, compute the MEM address
into the upper part of N and use that as a pointer to the memory
operand. */
if (optype0 == REGOP && optype1 == OFFSOP)
{
if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
&& reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
{
/* If both halves of dest are used in the src memory address,
compute the address into latehalf of dest. */
compadr:
xops[0] = latehalf[0];
xops[1] = XEXP (operands[1], 0);
output_asm_insn (AS2 (lea%L0,%a1,%0), xops);
if (GET_MODE (operands[1]) == XFmode)
{
operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
middlehalf[1] = adj_offsettable_operand (operands[1], size-8);
latehalf[1] = adj_offsettable_operand (operands[1], size-4);
}
else
{
operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
latehalf[1] = adj_offsettable_operand (operands[1], size-4);
}
}
else if (size == 12
&& reg_mentioned_p (middlehalf[0], XEXP (operands[1], 0)))
{
/* Check for two regs used by both source and dest. */
if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
|| reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
goto compadr;
/* Only the middle reg conflicts; simply put it last. */
output_asm_insn (singlemove_string (operands), operands);
output_asm_insn (singlemove_string (latehalf), latehalf);
output_asm_insn (singlemove_string (middlehalf), middlehalf);
return "";
}
else if (reg_mentioned_p (operands[0], XEXP (operands[1], 0)))
/* If the low half of dest is mentioned in the source memory
address, the arrange to emit the move late half first. */
dest_overlapped_low = 1;
}
/* If one or both operands autodecrementing,
do the two words, high-numbered first. */
/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
#if 0
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1]))
|| dest_overlapped_low)
#endif
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
|| REGNO (operands[0]) == REGNO (latehalf[1])))
|| dest_overlapped_low)
{
/* Do the high-numbered word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
if (size == 12)
output_asm_insn (singlemove_string (middlehalf), middlehalf);
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Do the middle one of the three words for long double */
if (size == 12)
output_asm_insn (singlemove_string (middlehalf), middlehalf);
/* Do the high-numbered word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
return "";
}
#define MAX_TMPS 2 /* max temporary registers used */
/* Output the appropriate code to move push memory on the stack */
char *
output_move_pushmem (operands, insn, length, tmp_start, n_operands)
rtx operands[];
rtx insn;
int length;
int tmp_start;
int n_operands;
{
struct
{
char *load;
char *push;
rtx xops[2];
} tmp_info[MAX_TMPS];
rtx src = operands[1];
int max_tmps = 0;
int offset = 0;
int stack_p = reg_overlap_mentioned_p (stack_pointer_rtx, src);
int stack_offset = 0;
int i, num_tmps;
rtx xops[1];
if (! offsettable_memref_p (src))
fatal_insn ("Source is not offsettable", insn);
if ((length & 3) != 0)
fatal_insn ("Pushing non-word aligned size", insn);
/* Figure out which temporary registers we have available */
for (i = tmp_start; i < n_operands; i++)
{
if (GET_CODE (operands[i]) == REG)
{
if (reg_overlap_mentioned_p (operands[i], src))
continue;
tmp_info[ max_tmps++ ].xops[1] = operands[i];
if (max_tmps == MAX_TMPS)
break;
}
}
if (max_tmps == 0)
for (offset = length - 4; offset >= 0; offset -= 4)
{
xops[0] = adj_offsettable_operand (src, offset + stack_offset);
output_asm_insn (AS1(push%L0,%0), xops);
if (stack_p)
stack_offset += 4;
}
else
for (offset = length - 4; offset >= 0; )
{
for (num_tmps = 0; num_tmps < max_tmps && offset >= 0; num_tmps++)
{
tmp_info[num_tmps].load = AS2(mov%L0,%0,%1);
tmp_info[num_tmps].push = AS1(push%L0,%1);
tmp_info[num_tmps].xops[0]
= adj_offsettable_operand (src, offset + stack_offset);
offset -= 4;
}
for (i = 0; i < num_tmps; i++)
output_asm_insn (tmp_info[i].load, tmp_info[i].xops);
for (i = 0; i < num_tmps; i++)
output_asm_insn (tmp_info[i].push, tmp_info[i].xops);
if (stack_p)
stack_offset += 4*num_tmps;
}
return "";
}
int
standard_80387_constant_p (x)
rtx x;
{
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
REAL_VALUE_TYPE d;
jmp_buf handler;
int is0, is1;
if (setjmp (handler))
return 0;
set_float_handler (handler);
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
is0 = REAL_VALUES_EQUAL (d, dconst0) && !REAL_VALUE_MINUS_ZERO (d);
is1 = REAL_VALUES_EQUAL (d, dconst1);
set_float_handler (NULL_PTR);
if (is0)
return 1;
if (is1)
return 2;
/* Note that on the 80387, other constants, such as pi,
are much slower to load as standard constants
than to load from doubles in memory! */
/* ??? Not true on K6: all constants are equal cost. */
#endif
return 0;
}
char *
output_move_const_single (operands)
rtx *operands;
{
if (FP_REG_P (operands[0]))
{
int conval = standard_80387_constant_p (operands[1]);
if (conval == 1)
return "fldz";
if (conval == 2)
return "fld1";
}
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r; long l;
if (GET_MODE (operands[1]) == XFmode)
abort ();
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
operands[1] = GEN_INT (l);
}
return singlemove_string (operands);
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
default:
return 0;
}
}
/* Return nonzero if OP is a constant shift count small enough to
encode into an lea instruction. */
int
small_shift_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT && INTVAL (op) > 0 && INTVAL (op) < 4);
}
/* Test for a valid operand for a call instruction.
Don't allow the arg pointer register or virtual regs
since they may change into reg + const, which the patterns
can't handle yet. */
int
call_insn_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == MEM
&& ((CONSTANT_ADDRESS_P (XEXP (op, 0))
/* This makes a difference for PIC. */
&& general_operand (XEXP (op, 0), Pmode))
|| (GET_CODE (XEXP (op, 0)) == REG
&& XEXP (op, 0) != arg_pointer_rtx
&& ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
&& REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
return 1;
return 0;
}
/* Like call_insn_operand but allow (mem (symbol_ref ...))
even if pic. */
int
expander_call_insn_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == MEM
&& (CONSTANT_ADDRESS_P (XEXP (op, 0))
|| (GET_CODE (XEXP (op, 0)) == REG
&& XEXP (op, 0) != arg_pointer_rtx
&& ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
&& REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
return 1;
return 0;
}
/* Return 1 if OP is a comparison operator that can use the condition code
generated by an arithmetic operation. */
int
arithmetic_comparison_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
enum rtx_code code;
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
return (code != GT && code != LE);
}
int
ix86_logical_operator (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return GET_CODE (op) == AND || GET_CODE (op) == IOR || GET_CODE (op) == XOR;
}
/* Returns 1 if OP contains a symbol reference */
int
symbolic_reference_mentioned_p (op)
rtx op;
{
register char *fmt;
register int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return 1;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return 1;
}
return 0;
}
/* Attempt to expand a binary operator. Make the expansion closer to the
actual machine, then just general_operand, which will allow 3 separate
memory references (one output, two input) in a single insn. Return
whether the insn fails, or succeeds. */
int
ix86_expand_binary_operator (code, mode, operands)
enum rtx_code code;
enum machine_mode mode;
rtx operands[];
{
int modified;
/* Recognize <var1> = <value> <op> <var1> for commutative operators */
if (GET_RTX_CLASS (code) == 'c'
&& (rtx_equal_p (operands[0], operands[2])
|| immediate_operand (operands[1], mode)))
{
rtx temp = operands[1];
operands[1] = operands[2];
operands[2] = temp;
}
/* If optimizing, copy to regs to improve CSE */
if (TARGET_PSEUDO && optimize
&& ((reload_in_progress | reload_completed) == 0))
{
if (GET_CODE (operands[1]) == MEM
&& ! rtx_equal_p (operands[0], operands[1]))
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
if (GET_CODE (operands[2]) == MEM)
operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
{
rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
emit_move_insn (temp, operands[1]);
operands[1] = temp;
return TRUE;
}
}
if (!ix86_binary_operator_ok (code, mode, operands))
{
/* If not optimizing, try to make a valid insn (optimize code
previously did this above to improve chances of CSE) */
if ((! TARGET_PSEUDO || !optimize)
&& ((reload_in_progress | reload_completed) == 0)
&& (GET_CODE (operands[1]) == MEM || GET_CODE (operands[2]) == MEM))
{
modified = FALSE;
if (GET_CODE (operands[1]) == MEM
&& ! rtx_equal_p (operands[0], operands[1]))
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
modified = TRUE;
}
if (GET_CODE (operands[2]) == MEM)
{
operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
modified = TRUE;
}
if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
{
rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
emit_move_insn (temp, operands[1]);
operands[1] = temp;
return TRUE;
}
if (modified && ! ix86_binary_operator_ok (code, mode, operands))
return FALSE;
}
else
return FALSE;
}
return TRUE;
}
/* Return TRUE or FALSE depending on whether the binary operator meets the
appropriate constraints. */
int
ix86_binary_operator_ok (code, mode, operands)
enum rtx_code code;
enum machine_mode mode ATTRIBUTE_UNUSED;
rtx operands[3];
{
return (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != MEM)
&& (GET_CODE (operands[1]) != CONST_INT || GET_RTX_CLASS (code) == 'c');
}
/* Attempt to expand a unary operator. Make the expansion closer to the
actual machine, then just general_operand, which will allow 2 separate
memory references (one output, one input) in a single insn. Return
whether the insn fails, or succeeds. */
int
ix86_expand_unary_operator (code, mode, operands)
enum rtx_code code;
enum machine_mode mode;
rtx operands[];
{
/* If optimizing, copy to regs to improve CSE */
if (TARGET_PSEUDO
&& optimize
&& ((reload_in_progress | reload_completed) == 0)
&& GET_CODE (operands[1]) == MEM)
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
if (! ix86_unary_operator_ok (code, mode, operands))
{
if ((! TARGET_PSEUDO || optimize == 0)
&& ((reload_in_progress | reload_completed) == 0)
&& GET_CODE (operands[1]) == MEM)
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
if (! ix86_unary_operator_ok (code, mode, operands))
return FALSE;
}
else
return FALSE;
}
return TRUE;
}
/* Return TRUE or FALSE depending on whether the unary operator meets the
appropriate constraints. */
int
ix86_unary_operator_ok (code, mode, operands)
enum rtx_code code ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
rtx operands[2] ATTRIBUTE_UNUSED;
{
return TRUE;
}
static rtx pic_label_rtx;
static char pic_label_name [256];
static int pic_label_no = 0;
/* This function generates code for -fpic that loads %ebx with
the return address of the caller and then returns. */
void
asm_output_function_prefix (file, name)
FILE *file;
char *name ATTRIBUTE_UNUSED;
{
rtx xops[2];
xops[0] = pic_offset_table_rtx;
xops[1] = stack_pointer_rtx;
/* Deep branch prediction favors having a return for every call. */
if (PIC_REG_USED && TARGET_DEEP_BRANCH_PREDICTION)
{
tree prologue_node;
if (pic_label_rtx == 0)
{
pic_label_rtx = gen_label_rtx ();
ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", pic_label_no++);
LABEL_NAME (pic_label_rtx) = pic_label_name;
}
prologue_node = make_node (FUNCTION_DECL);
DECL_RESULT (prologue_node) = 0;
/* This used to call ASM_DECLARE_FUNCTION_NAME() but since it's an
internal (non-global) label that's being emitted, it didn't make
sense to have .type information for local labels. This caused
the SCO OpenServer 5.0.4 ELF assembler grief (why are you giving
me debug info for a label that you're declaring non-global?) this
was changed to call ASM_OUTPUT_LABEL() instead. */
ASM_OUTPUT_LABEL (file, pic_label_name);
output_asm_insn ("movl (%1),%0", xops);
output_asm_insn ("ret", xops);
}
}
/* Generate the assembly code for function entry.
FILE is an stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate. */
void
function_prologue (file, size)
FILE *file ATTRIBUTE_UNUSED;
int size ATTRIBUTE_UNUSED;
{
if (TARGET_SCHEDULE_PROLOGUE)
{
pic_label_rtx = 0;
return;
}
ix86_prologue (0);
}
/* Expand the prologue into a bunch of separate insns. */
void
ix86_expand_prologue ()
{
if (! TARGET_SCHEDULE_PROLOGUE)
return;
ix86_prologue (1);
}
void
load_pic_register (do_rtl)
int do_rtl;
{
rtx xops[4];
if (TARGET_DEEP_BRANCH_PREDICTION)
{
xops[0] = pic_offset_table_rtx;
if (pic_label_rtx == 0)
{
pic_label_rtx = gen_label_rtx ();
ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", pic_label_no++);
LABEL_NAME (pic_label_rtx) = pic_label_name;
}
xops[1] = gen_rtx_MEM (QImode,
gen_rtx (SYMBOL_REF, Pmode,
LABEL_NAME (pic_label_rtx)));
if (do_rtl)
{
emit_insn (gen_prologue_get_pc (xops[0], xops[1]));
emit_insn (gen_prologue_set_got (xops[0],
#ifdef YES_UNDERSCORES
gen_rtx_SYMBOL_REF (Pmode,
"$__GLOBAL_OFFSET_TABLE_"),
#else
gen_rtx_SYMBOL_REF (Pmode,
"$_GLOBAL_OFFSET_TABLE_"),
#endif
xops[1]));
}
else
{
output_asm_insn (AS1 (call,%X1), xops);
output_asm_insn ("addl $%__GLOBAL_OFFSET_TABLE_,%0", xops);
pic_label_rtx = 0;
}
}
else
{
xops[0] = pic_offset_table_rtx;
xops[1] = gen_label_rtx ();
if (do_rtl)
{
/* We can't put a raw CODE_LABEL into the RTL, and we can't emit
a new CODE_LABEL after reload, so we need a single pattern to
emit the 3 necessary instructions. */
emit_insn (gen_prologue_get_pc_and_set_got (xops[0]));
}
else
{
output_asm_insn (AS1 (call,%P1), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
CODE_LABEL_NUMBER (xops[1]));
output_asm_insn (AS1 (pop%L0,%0), xops);
output_asm_insn ("addl $%__GLOBAL_OFFSET_TABLE_+[.-%P1],%0", xops);
}
}
/* When -fpic, we must emit a scheduling barrier, so that the instruction
that restores %ebx (which is PIC_OFFSET_TABLE_REGNUM), does not get
moved before any instruction which implicitly uses the got. */
if (do_rtl)
emit_insn (gen_blockage ());
}
/* Compute the size of local storage taking into consideration the
desired stack alignment which is to be maintained. Also determine
the number of registers saved below the local storage. */
HOST_WIDE_INT
ix86_compute_frame_size (size, nregs_on_stack)
HOST_WIDE_INT size;
int *nregs_on_stack;
{
int limit;
int nregs;
int regno;
int padding;
int pic_reg_used = PIC_REG_USED;
HOST_WIDE_INT total_size;
limit = frame_pointer_needed
? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM;
nregs = 0;
for (regno = limit - 1; regno >= 0; regno--)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
nregs++;
padding = 0;
total_size = size + (nregs * UNITS_PER_WORD);
#ifdef PREFERRED_STACK_BOUNDARY
{
int offset;
int preferred_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
offset = 4;
if (frame_pointer_needed)
offset += UNITS_PER_WORD;
total_size += offset;
padding = ((total_size + preferred_alignment - 1)
& -preferred_alignment) - total_size;
if (padding < (((offset + preferred_alignment - 1)
& -preferred_alignment) - offset))
padding += preferred_alignment;
/* Don't bother aligning the stack of a leaf function
which doesn't allocate any stack slots. */
if (size == 0 && current_function_is_leaf)
padding = 0;
}
#endif
if (nregs_on_stack)
*nregs_on_stack = nregs;
return size + padding;
}
static void
ix86_prologue (do_rtl)
int do_rtl;
{
register int regno;
int limit;
rtx xops[4];
int pic_reg_used = PIC_REG_USED;
HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), (int *)0);
rtx insn;
int cfa_offset = INCOMING_FRAME_SP_OFFSET, cfa_store_offset = cfa_offset;
xops[0] = stack_pointer_rtx;
xops[1] = frame_pointer_rtx;
xops[2] = GEN_INT (tsize);
if (frame_pointer_needed)
{
if (do_rtl)
{
insn = emit_insn (gen_rtx (SET, VOIDmode,
gen_rtx_MEM (SImode,
gen_rtx (PRE_DEC, SImode,
stack_pointer_rtx)),
frame_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_move_insn (xops[1], xops[0]);
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
output_asm_insn ("push%L1 %1", xops);
#ifdef INCOMING_RETURN_ADDR_RTX
if (dwarf2out_do_frame ())
{
char *l = dwarf2out_cfi_label ();
cfa_store_offset += 4;
cfa_offset = cfa_store_offset;
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, - cfa_store_offset);
}
#endif
output_asm_insn (AS2 (mov%L0,%0,%1), xops);
#ifdef INCOMING_RETURN_ADDR_RTX
if (dwarf2out_do_frame ())
dwarf2out_def_cfa ("", FRAME_POINTER_REGNUM, cfa_offset);
#endif
}
}
if (tsize == 0)
;
else if (! TARGET_STACK_PROBE || tsize < CHECK_STACK_LIMIT)
{
if (do_rtl)
{
insn = emit_insn (gen_prologue_set_stack_ptr (xops[2]));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
output_asm_insn (AS2 (sub%L0,%2,%0), xops);
#ifdef INCOMING_RETURN_ADDR_RTX
if (dwarf2out_do_frame ())
{
cfa_store_offset += tsize;
if (! frame_pointer_needed)
{
cfa_offset = cfa_store_offset;
dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
}
}
#endif
}
}
else
{
xops[3] = gen_rtx_REG (SImode, 0);
if (do_rtl)
emit_move_insn (xops[3], xops[2]);
else
output_asm_insn (AS2 (mov%L0,%2,%3), xops);
xops[3] = gen_rtx_MEM (FUNCTION_MODE,
gen_rtx (SYMBOL_REF, Pmode, "_alloca"));
if (do_rtl)
emit_call_insn (gen_rtx (CALL, VOIDmode, xops[3], const0_rtx));
else
output_asm_insn (AS1 (call,%P3), xops);
}
/* Note If use enter it is NOT reversed args.
This one is not reversed from intel!!
I think enter is slower. Also sdb doesn't like it.
But if you want it the code is:
{
xops[3] = const0_rtx;
output_asm_insn ("enter %2,%3", xops);
}
*/
limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
for (regno = limit - 1; regno >= 0; regno--)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx_REG (SImode, regno);
if (do_rtl)
{
insn = emit_insn (gen_rtx (SET, VOIDmode,
gen_rtx_MEM (SImode,
gen_rtx (PRE_DEC, SImode,
stack_pointer_rtx)),
xops[0]));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
output_asm_insn ("push%L0 %0", xops);
#ifdef INCOMING_RETURN_ADDR_RTX
if (dwarf2out_do_frame ())
{
char *l = dwarf2out_cfi_label ();
cfa_store_offset += 4;
if (! frame_pointer_needed)
{
cfa_offset = cfa_store_offset;
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
}
dwarf2out_reg_save (l, regno, - cfa_store_offset);
}
#endif
}
}
#ifdef SUBTARGET_PROLOGUE
SUBTARGET_PROLOGUE;
#endif
if (pic_reg_used)
load_pic_register (do_rtl);
/* If we are profiling, make sure no instructions are scheduled before
the call to mcount. However, if -fpic, the above call will have
done that. */
if ((profile_flag || profile_block_flag)
&& ! pic_reg_used && do_rtl)
emit_insn (gen_blockage ());
}
/* Return 1 if it is appropriate to emit `ret' instructions in the
body of a function. Do this only if the epilogue is simple, needing a
couple of insns. Prior to reloading, we can't tell how many registers
must be saved, so return 0 then. Return 0 if there is no frame
marker to de-allocate.
If NON_SAVING_SETJMP is defined and true, then it is not possible
for the epilogue to be simple, so return 0. This is a special case
since NON_SAVING_SETJMP will not cause regs_ever_live to change
until final, but jump_optimize may need to know sooner if a
`return' is OK. */
int
ix86_can_use_return_insn_p ()
{
int regno;
int nregs = 0;
int reglimit = (frame_pointer_needed
? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
#ifdef TARGET_PROFILER_EPILOGUE
if (TARGET_PROFILER_EPILOGUE)
return 0;
#endif
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP && current_function_calls_setjmp)
return 0;
#endif
if (! reload_completed)
return 0;
for (regno = reglimit - 1; regno >= 0; regno--)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && PIC_REG_USED))
nregs++;
return nregs == 0 || ! frame_pointer_needed;
}
/* This function generates the assembly code for function exit.
FILE is an stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to deallocate. */
void
function_epilogue (file, size)
FILE *file ATTRIBUTE_UNUSED;
int size ATTRIBUTE_UNUSED;
{
return;
}
/* Restore function stack, frame, and registers. */
void
ix86_expand_epilogue ()
{
ix86_epilogue (1);
}
static void
ix86_epilogue (do_rtl)
int do_rtl;
{
register int regno;
register int limit;
int nregs;
rtx xops[3];
int pic_reg_used = PIC_REG_USED;
int sp_valid = !frame_pointer_needed || current_function_sp_is_unchanging;
HOST_WIDE_INT offset;
HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), &nregs);
/* sp is often unreliable so we may have to go off the frame pointer. */
offset = -(tsize + nregs * UNITS_PER_WORD);
xops[2] = stack_pointer_rtx;
/* When -fpic, we must emit a scheduling barrier, so that the instruction
that restores %ebx (which is PIC_OFFSET_TABLE_REGNUM), does not get
moved before any instruction which implicitly uses the got. This
includes any instruction which uses a SYMBOL_REF or a LABEL_REF.
Alternatively, this could be fixed by making the dependence on the
PIC_OFFSET_TABLE_REGNUM explicit in the RTL. */
if (flag_pic || profile_flag || profile_block_flag)
emit_insn (gen_blockage ());
#ifdef FUNCTION_PROFILER_EPILOGUE
FUNCTION_PROFILER_EPILOGUE (asm_out_file, do_rtl);
#endif
/* If we're only restoring one register and sp is not valid then
using a move instruction to restore the register since it's
less work than reloading sp and popping the register. Otherwise,
restore sp (if necessary) and pop the registers. */
limit = frame_pointer_needed
? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM;
if (nregs > 1 || sp_valid)
{
if ( !sp_valid )
{
xops[0] = adj_offsettable_operand (AT_BP (QImode), offset);
if (do_rtl)
emit_insn (gen_movsi_lea (xops[2], XEXP (xops[0], 0)));
else
output_asm_insn (AS2 (lea%L2,%0,%2), xops);
}
for (regno = 0; regno < limit; regno++)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx_REG (SImode, regno);
if (do_rtl)
emit_insn (gen_pop (xops[0]));
else
output_asm_insn ("pop%L0 %0", xops);
}
}
else
for (regno = 0; regno < limit; regno++)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx_REG (SImode, regno);
xops[1] = adj_offsettable_operand (AT_BP (Pmode), offset);
if (do_rtl)
emit_move_insn (xops[0], xops[1]);
else
output_asm_insn (AS2 (mov%L0,%1,%0), xops);
offset += 4;
}
if (frame_pointer_needed)
{
/* If not an i386, mov & pop is faster than "leave". */
if (TARGET_USE_LEAVE)
{
if (do_rtl)
emit_insn (gen_leave());
else
output_asm_insn ("leave", xops);
}
else
{
xops[0] = frame_pointer_rtx;
xops[1] = stack_pointer_rtx;
if (do_rtl)
{
emit_insn (gen_epilogue_set_stack_ptr());
emit_insn (gen_pop (xops[0]));
}
else
{
output_asm_insn (AS2 (mov%L2,%0,%2), xops);
output_asm_insn ("pop%L0 %0", xops);
}
}
}
else if (tsize)
{
/* Intel's docs say that for 4 or 8 bytes of stack frame one should
use `pop' and not `add'. */
int use_pop = tsize == 4;
/* Use two pops only for the Pentium processors. */
if (tsize == 8 && !TARGET_386 && !TARGET_486)
{
rtx retval = current_function_return_rtx;
xops[1] = gen_rtx_REG (SImode, 1); /* %edx */
/* This case is a bit more complex. Since we cannot pop into
%ecx twice we need a second register. But this is only
available if the return value is not of DImode in which
case the %edx register is not available. */
use_pop = (retval == NULL
|| ! reg_overlap_mentioned_p (xops[1], retval));
}
if (use_pop)
{
xops[0] = gen_rtx_REG (SImode, 2); /* %ecx */
if (do_rtl)
{
/* We have to prevent the two pops here from being scheduled.
GCC otherwise would try in some situation to put other
instructions in between them which has a bad effect. */
emit_insn (gen_blockage ());
emit_insn (gen_pop (xops[0]));
if (tsize == 8)
emit_insn (gen_pop (xops[1]));
}
else
{
output_asm_insn ("pop%L0 %0", xops);
if (tsize == 8)
output_asm_insn ("pop%L1 %1", xops);
}
}
else
{
/* If there is no frame pointer, we must still release the frame. */
xops[0] = GEN_INT (tsize);
if (do_rtl)
emit_insn (gen_rtx (SET, VOIDmode, xops[2],
gen_rtx (PLUS, SImode, xops[2], xops[0])));
else
output_asm_insn (AS2 (add%L2,%0,%2), xops);
}
}
#ifdef FUNCTION_BLOCK_PROFILER_EXIT
if (profile_block_flag == 2)
{
/* XXX this is hosed like FUNCTION_PROFILER_EPILOGUE () was. */
FUNCTION_BLOCK_PROFILER_EXIT(file);
}
#endif
if (current_function_pops_args && current_function_args_size)
{
xops[1] = GEN_INT (current_function_pops_args);
/* i386 can only pop 32K bytes (maybe 64K? Is it signed?). If
asked to pop more, pop return address, do explicit add, and jump
indirectly to the caller. */
if (current_function_pops_args >= 32768)
{
/* ??? Which register to use here? */
xops[0] = gen_rtx_REG (SImode, 2);
if (do_rtl)
{
emit_insn (gen_pop (xops[0]));
emit_insn (gen_rtx (SET, VOIDmode, xops[2],
gen_rtx (PLUS, SImode, xops[1], xops[2])));
emit_jump_insn (xops[0]);
}
else
{
output_asm_insn ("pop%L0 %0", xops);
output_asm_insn (AS2 (add%L2,%1,%2), xops);
output_asm_insn ("jmp %*%0", xops);
}
}
else
{
if (do_rtl)
emit_jump_insn (gen_return_pop_internal (xops[1]));
else
output_asm_insn ("ret %1", xops);
}
}
else
{
if (do_rtl)
emit_jump_insn (gen_return_internal ());
else
output_asm_insn ("ret", xops);
}
}
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On x86, legitimate addresses are:
base movl (base),reg
displacement movl disp,reg
base + displacement movl disp(base),reg
index + base movl (base,index),reg
(index + base) + displacement movl disp(base,index),reg
index*scale movl (,index,scale),reg
index*scale + disp movl disp(,index,scale),reg
index*scale + base movl (base,index,scale),reg
(index*scale + base) + disp movl disp(base,index,scale),reg
In each case, scale can be 1, 2, 4, 8. */
/* This is exactly the same as print_operand_addr, except that
it recognizes addresses instead of printing them.
It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
convert common non-canonical forms to canonical form so that they will
be recognized. */
#define ADDR_INVALID(msg,insn) \
do { \
if (TARGET_DEBUG_ADDR) \
{ \
fprintf (stderr, msg); \
debug_rtx (insn); \
} \
} while (0)
int
legitimate_pic_address_disp_p (disp)
register rtx disp;
{
if (GET_CODE (disp) != CONST)
return 0;
disp = XEXP (disp, 0);
if (GET_CODE (disp) == PLUS)
{
if (GET_CODE (XEXP (disp, 1)) != CONST_INT)
return 0;
disp = XEXP (disp, 0);
}
if (GET_CODE (disp) != UNSPEC
|| XVECLEN (disp, 0) != 1)
return 0;
/* Must be @GOT or @GOTOFF. */
if (XINT (disp, 1) != 6
&& XINT (disp, 1) != 7)
return 0;
if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
&& GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF)
return 0;
return 1;
}
int
legitimate_address_p (mode, addr, strict)
enum machine_mode mode;
register rtx addr;
int strict;
{
rtx base = NULL_RTX;
rtx indx = NULL_RTX;
rtx scale = NULL_RTX;
rtx disp = NULL_RTX;
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr,
"\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
GET_MODE_NAME (mode), strict);
debug_rtx (addr);
}
if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG)
base = addr;
else if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
enum rtx_code code0 = GET_CODE (op0);
enum rtx_code code1 = GET_CODE (op1);
if (code0 == REG || code0 == SUBREG)
{
if (code1 == REG || code1 == SUBREG)
{
indx = op0; /* index + base */
base = op1;
}
else
{
base = op0; /* base + displacement */
disp = op1;
}
}
else if (code0 == MULT)
{
indx = XEXP (op0, 0);
scale = XEXP (op0, 1);
if (code1 == REG || code1 == SUBREG)
base = op1; /* index*scale + base */
else
disp = op1; /* index*scale + disp */
}
else if (code0 == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
{
indx = XEXP (XEXP (op0, 0), 0); /* index*scale + base + disp */
scale = XEXP (XEXP (op0, 0), 1);
base = XEXP (op0, 1);
disp = op1;
}
else if (code0 == PLUS)
{
indx = XEXP (op0, 0); /* index + base + disp */
base = XEXP (op0, 1);
disp = op1;
}
else
{
ADDR_INVALID ("PLUS subcode is not valid.\n", op0);
return FALSE;
}
}
else if (GET_CODE (addr) == MULT)
{
indx = XEXP (addr, 0); /* index*scale */
scale = XEXP (addr, 1);
}
else
disp = addr; /* displacement */
/* Allow arg pointer and stack pointer as index if there is not scaling */
if (base && indx && !scale
&& (indx == arg_pointer_rtx || indx == stack_pointer_rtx))
{
rtx tmp = base;
base = indx;
indx = tmp;
}
/* Validate base register:
Don't allow SUBREG's here, it can lead to spill failures when the base
is one word out of a two word structure, which is represented internally
as a DImode int. */
if (base)
{
if (GET_CODE (base) != REG)
{
ADDR_INVALID ("Base is not a register.\n", base);
return FALSE;
}
if (GET_MODE (base) != Pmode)
{
ADDR_INVALID ("Base is not in Pmode.\n", base);
return FALSE;
}
if ((strict && ! REG_OK_FOR_BASE_STRICT_P (base))
|| (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (base)))
{
ADDR_INVALID ("Base is not valid.\n", base);
return FALSE;
}
}
/* Validate index register:
Don't allow SUBREG's here, it can lead to spill failures when the index
is one word out of a two word structure, which is represented internally
as a DImode int. */
if (indx)
{
if (GET_CODE (indx) != REG)
{
ADDR_INVALID ("Index is not a register.\n", indx);
return FALSE;
}
if (GET_MODE (indx) != Pmode)
{
ADDR_INVALID ("Index is not in Pmode.\n", indx);
return FALSE;
}
if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (indx))
|| (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (indx)))
{
ADDR_INVALID ("Index is not valid.\n", indx);
return FALSE;
}
}
else if (scale)
abort (); /* scale w/o index invalid */
/* Validate scale factor: */
if (scale)
{
HOST_WIDE_INT value;
if (GET_CODE (scale) != CONST_INT)
{
ADDR_INVALID ("Scale is not valid.\n", scale);
return FALSE;
}
value = INTVAL (scale);
if (value != 1 && value != 2 && value != 4 && value != 8)
{
ADDR_INVALID ("Scale is not a good multiplier.\n", scale);
return FALSE;
}
}
/* Validate displacement. */
if (disp)
{
if (!CONSTANT_ADDRESS_P (disp))
{
ADDR_INVALID ("Displacement is not valid.\n", disp);
return FALSE;
}
else if (GET_CODE (disp) == CONST_DOUBLE)
{
ADDR_INVALID ("Displacement is a const_double.\n", disp);
return FALSE;
}
if (flag_pic && SYMBOLIC_CONST (disp))
{
if (! legitimate_pic_address_disp_p (disp))
{
ADDR_INVALID ("Displacement is an invalid PIC construct.\n",
disp);
return FALSE;
}
if (base != pic_offset_table_rtx
&& (indx != pic_offset_table_rtx || scale != NULL_RTX))
{
ADDR_INVALID ("PIC displacement against invalid base.\n", disp);
return FALSE;
}
}
else if (HALF_PIC_P ())
{
if (! HALF_PIC_ADDRESS_P (disp)
|| (base != NULL_RTX || indx != NULL_RTX))
{
ADDR_INVALID ("Displacement is an invalid half-pic reference.\n",
disp);
return FALSE;
}
}
}
if (TARGET_DEBUG_ADDR)
fprintf (stderr, "Address is valid.\n");
/* Everything looks valid, return true */
return TRUE;
}
/* Return a legitimate reference for ORIG (an address) using the
register REG. If REG is 0, a new pseudo is generated.
There are two types of references that must be handled:
1. Global data references must load the address from the GOT, via
the PIC reg. An insn is emitted to do this load, and the reg is
returned.
2. Static data references, constant pool addresses, and code labels
compute the address as an offset from the GOT, whose base is in
the PIC reg. Static data objects have SYMBOL_REF_FLAG set to
differentiate them from global data objects. The returned
address is the PIC reg + an unspec constant.
GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC
reg also appears in the address. */
rtx
legitimize_pic_address (orig, reg)
rtx orig;
rtx reg;
{
rtx addr = orig;
rtx new = orig;
rtx base;
if (GET_CODE (addr) == LABEL_REF
|| (GET_CODE (addr) == SYMBOL_REF
&& (CONSTANT_POOL_ADDRESS_P (addr)
|| SYMBOL_REF_FLAG (addr))))
{
/* This symbol may be referenced via a displacement from the PIC
base address (@GOTOFF). */
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, addr), 7);
new = gen_rtx_CONST (VOIDmode, new);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
else if (GET_CODE (addr) == SYMBOL_REF)
{
/* This symbol must be referenced via a load from the
Global Offset Table (@GOT). */
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, addr), 6);
new = gen_rtx_CONST (VOIDmode, new);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
new = gen_rtx_MEM (Pmode, new);
RTX_UNCHANGING_P (new) = 1;
if (reg == 0)
reg = gen_reg_rtx (Pmode);
emit_move_insn (reg, new);
new = reg;
}
else
{
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
if (GET_CODE (addr) == UNSPEC)
{
/* Check that the unspec is one of the ones we generate? */
}
else if (GET_CODE (addr) != PLUS)
abort();
}
if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
/* Check first to see if this is a constant offset from a @GOTOFF
symbol reference. */
if ((GET_CODE (op0) == LABEL_REF
|| (GET_CODE (op0) == SYMBOL_REF
&& (CONSTANT_POOL_ADDRESS_P (op0)
|| SYMBOL_REF_FLAG (op0))))
&& GET_CODE (op1) == CONST_INT)
{
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, op0), 7);
new = gen_rtx_PLUS (VOIDmode, new, op1);
new = gen_rtx_CONST (VOIDmode, new);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
else
{
base = legitimize_pic_address (XEXP (addr, 0), reg);
new = legitimize_pic_address (XEXP (addr, 1),
base == reg ? NULL_RTX : reg);
if (GET_CODE (new) == CONST_INT)
new = plus_constant (base, INTVAL (new));
else
{
if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1)))
{
base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0));
new = XEXP (new, 1);
}
new = gen_rtx_PLUS (Pmode, base, new);
}
}
}
}
return new;
}
/* Emit insns to move operands[1] into operands[0]. */
void
emit_pic_move (operands, mode)
rtx *operands;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);
if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
operands[1] = force_reg (Pmode, operands[1]);
else
operands[1] = legitimize_pic_address (operands[1], temp);
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 80386, we handle X+REG by loading X into a register R and
using R+REG. R will go in a general reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in a general reg.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address in i386.c for details. */
rtx
legitimize_address (x, oldx, mode)
register rtx x;
register rtx oldx ATTRIBUTE_UNUSED;
enum machine_mode mode;
{
int changed = 0;
unsigned log;
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n",
GET_MODE_NAME (mode));
debug_rtx (x);
}
if (flag_pic && SYMBOLIC_CONST (x))
return legitimize_pic_address (x, 0);
/* Canonicalize shifts by 0, 1, 2, 3 into multiply */
if (GET_CODE (x) == ASHIFT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (x, 1)))) < 4)
{
changed = 1;
x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)),
GEN_INT (1 << log));
}
if (GET_CODE (x) == PLUS)
{
/* Canonicalize shifts by 0, 1, 2, 3 into multiply. */
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) < 4)
{
changed = 1;
XEXP (x, 0) = gen_rtx (MULT, Pmode,
force_reg (Pmode, XEXP (XEXP (x, 0), 0)),
GEN_INT (1 << log));
}
if (GET_CODE (XEXP (x, 1)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1)))) < 4)
{
changed = 1;
XEXP (x, 1) = gen_rtx (MULT, Pmode,
force_reg (Pmode, XEXP (XEXP (x, 1), 0)),
GEN_INT (1 << log));
}
/* Put multiply first if it isn't already. */
if (GET_CODE (XEXP (x, 1)) == MULT)
{
rtx tmp = XEXP (x, 0);
XEXP (x, 0) = XEXP (x, 1);
XEXP (x, 1) = tmp;
changed = 1;
}
/* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
created by virtual register instantiation, register elimination, and
similar optimizations. */
if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS)
{
changed = 1;
x = gen_rtx (PLUS, Pmode,
gen_rtx (PLUS, Pmode, XEXP (x, 0),
XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
}
/* Canonicalize
(plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
into (plus (plus (mult (reg) (const)) (reg)) (const)). */
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
&& CONSTANT_P (XEXP (x, 1)))
{
rtx constant;
rtx other = NULL_RTX;
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
constant = XEXP (x, 1);
other = XEXP (XEXP (XEXP (x, 0), 1), 1);
}
else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT)
{
constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
other = XEXP (x, 1);
}
else
constant = 0;
if (constant)
{
changed = 1;
x = gen_rtx (PLUS, Pmode,
gen_rtx (PLUS, Pmode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (XEXP (x, 0), 1), 0)),
plus_constant (other, INTVAL (constant)));
}
}
if (changed && legitimate_address_p (mode, x, FALSE))
return x;
if (GET_CODE (XEXP (x, 0)) == MULT)
{
changed = 1;
XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
}
if (GET_CODE (XEXP (x, 1)) == MULT)
{
changed = 1;
XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
}
if (changed
&& GET_CODE (XEXP (x, 1)) == REG
&& GET_CODE (XEXP (x, 0)) == REG)
return x;
if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1)))
{
changed = 1;
x = legitimize_pic_address (x, 0);
}
if (changed && legitimate_address_p (mode, x, FALSE))
return x;
if (GET_CODE (XEXP (x, 0)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 1), temp);
if (val != temp)
emit_move_insn (temp, val);
XEXP (x, 1) = temp;
return x;
}
else if (GET_CODE (XEXP (x, 1)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 0), temp);
if (val != temp)
emit_move_insn (temp, val);
XEXP (x, 0) = temp;
return x;
}
}
return x;
}
/* Print an integer constant expression in assembler syntax. Addition
and subtraction are the only arithmetic that may appear in these
expressions. FILE is the stdio stream to write to, X is the rtx, and
CODE is the operand print code from the output string. */
static void
output_pic_addr_const (file, x, code)
FILE *file;
rtx x;
int code;
{
char buf[256];
switch (GET_CODE (x))
{
case PC:
if (flag_pic)
putc ('.', file);
else
abort ();
break;
case SYMBOL_REF:
assemble_name (file, XSTR (x, 0));
#ifdef ASM_HACK_SYMBOLREF_CODE
ASM_HACK_SYMBOLREF_CODE (XSTR (x, 0), code);
#endif
if (code == 'P' && ! SYMBOL_REF_FLAG (x))
fputs ("@PLT", file);
break;
case LABEL_REF:
x = XEXP (x, 0);
/* FALLTHRU */
case CODE_LABEL:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
assemble_name (asm_out_file, buf);
break;
case CONST_INT:
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
break;
case CONST:
/* This used to output parentheses around the expression,
but that does not work on the 386 (either ATT or BSD assembler). */
output_pic_addr_const (file, XEXP (x, 0), code);
break;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
{
/* We can use %d if the number is <32 bits and positive. */
if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0)
fprintf (file, "0x%lx%08lx",
(unsigned long) CONST_DOUBLE_HIGH (x),
(unsigned long) CONST_DOUBLE_LOW (x));
else
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
}
else
/* We can't handle floating point constants;
PRINT_OPERAND must handle them. */
output_operand_lossage ("floating constant misused");
break;
case PLUS:
/* Some assemblers need integer constants to appear first. */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
output_pic_addr_const (file, XEXP (x, 0), code);
fprintf (file, "+");
output_pic_addr_const (file, XEXP (x, 1), code);
}
else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
output_pic_addr_const (file, XEXP (x, 1), code);
fprintf (file, "+");
output_pic_addr_const (file, XEXP (x, 0), code);
}
else
abort ();
break;
case MINUS:
output_pic_addr_const (file, XEXP (x, 0), code);
fprintf (file, "-");
output_pic_addr_const (file, XEXP (x, 1), code);
break;
case UNSPEC:
if (XVECLEN (x, 0) != 1)
abort ();
output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
switch (XINT (x, 1))
{
case 6:
fputs ("@GOT", file);
break;
case 7:
fputs ("@GOTOFF", file);
break;
case 8:
fputs ("@PLT", file);
break;
default:
output_operand_lossage ("invalid UNSPEC as operand");
break;
}
break;
default:
output_operand_lossage ("invalid expression as operand");
}
}
static void
put_jump_code (code, reverse, file)
enum rtx_code code;
int reverse;
FILE *file;
{
int flags = cc_prev_status.flags;
int ieee = (TARGET_IEEE_FP && (flags & CC_IN_80387)
&& !(cc_prev_status.flags & CC_FCOMI));
const char *suffix;
if (flags & CC_Z_IN_NOT_C)
switch (code)
{
case EQ:
fputs (reverse ? "c" : "nc", file);
return;
case NE:
fputs (reverse ? "nc" : "c", file);
return;
default:
abort ();
}
if (ieee)
{
switch (code)
{
case LE:
suffix = reverse ? "ae" : "b";
break;
case GT:
case LT:
case GE:
suffix = reverse ? "ne" : "e";
break;
case EQ:
suffix = reverse ? "ne" : "e";
break;
case NE:
suffix = reverse ? "e" : "ne";
break;
default:
abort ();
}
fputs (suffix, file);
return;
}
if (flags & CC_TEST_AX)
abort();
if ((flags & CC_NO_OVERFLOW) && (code == LE || code == GT))
abort ();
if (reverse)
code = reverse_condition (code);
switch (code)
{
case EQ:
suffix = "e";
break;
case NE:
suffix = "ne";
break;
case GT:
suffix = flags & CC_IN_80387 ? "a" : "g";
break;
case GTU:
suffix = "a";
break;
case LT:
if (flags & CC_NO_OVERFLOW)
suffix = "s";
else
suffix = flags & CC_IN_80387 ? "b" : "l";
break;
case LTU:
suffix = "b";
break;
case GE:
if (flags & CC_NO_OVERFLOW)
suffix = "ns";
else
suffix = flags & CC_IN_80387 ? "ae" : "ge";
break;
case GEU:
suffix = "ae";
break;
case LE:
suffix = flags & CC_IN_80387 ? "be" : "le";
break;
case LEU:
suffix = "be";
break;
default:
abort ();
}
fputs (suffix, file);
}
/* Append the correct conditional move suffix which corresponds to CODE. */
static void
put_condition_code (code, reverse_cc, mode, file)
enum rtx_code code;
int reverse_cc;
enum mode_class mode;
FILE * file;
{
int ieee = (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)
&& ! (cc_prev_status.flags & CC_FCOMI));
if (reverse_cc && ! ieee)
code = reverse_condition (code);
if (mode == MODE_INT)
switch (code)
{
case NE:
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
fputs ("b", file);
else
fputs ("ne", file);
return;
case EQ:
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
fputs ("ae", file);
else
fputs ("e", file);
return;
case GE:
if (cc_prev_status.flags & CC_NO_OVERFLOW)
fputs ("ns", file);
else
fputs ("ge", file);
return;
case GT:
fputs ("g", file);
return;
case LE:
fputs ("le", file);
return;
case LT:
if (cc_prev_status.flags & CC_NO_OVERFLOW)
fputs ("s", file);
else
fputs ("l", file);
return;
case GEU:
fputs ("ae", file);
return;
case GTU:
fputs ("a", file);
return;
case LEU:
fputs ("be", file);
return;
case LTU:
fputs ("b", file);
return;
default:
output_operand_lossage ("Invalid %%C operand");
}
else if (mode == MODE_FLOAT)
switch (code)
{
case NE:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "ne", file);
return;
case EQ:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "e", file);
return;
case GE:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
return;
case GT:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
return;
case LE:
fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
return;
case LT:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
return;
case GEU:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
return;
case GTU:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
return;
case LEU:
fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
return;
case LTU:
fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
return;
default:
output_operand_lossage ("Invalid %%C operand");
}
}
/* Meaning of CODE:
L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
C -- print opcode suffix for set/cmov insn.
c -- like C, but print reversed condition
F -- print opcode suffix for fcmov insn.
f -- like F, but print reversed condition
D -- print the opcode suffix for a jump
d -- like D, but print reversed condition
R -- print the prefix for register names.
z -- print the opcode suffix for the size of the current operand.
* -- print a star (in certain assembler syntax)
w -- print the operand as if it's a "word" (HImode) even if it isn't.
J -- print the appropriate jump operand.
s -- print a shift double count, followed by the assemblers argument
delimiter.
b -- print the QImode name of the register for the indicated operand.
%b0 would print %al if operands[0] is reg 0.
w -- likewise, print the HImode name of the register.
k -- likewise, print the SImode name of the register.
h -- print the QImode name for a "high" register, either ah, bh, ch or dh.
y -- print "st(0)" instead of "st" as a register.
P -- print as a PIC constant
_ -- output "_" if YES_UNDERSCORES */
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
if (code)
{
switch (code)
{
case '*':
if (USE_STAR)
putc ('*', file);
return;
case '_':
#ifdef YES_UNDERSCORES
putc ('_', file);
#endif
return;
case 'L':
PUT_OP_SIZE (code, 'l', file);
return;
case 'W':
PUT_OP_SIZE (code, 'w', file);
return;
case 'B':
PUT_OP_SIZE (code, 'b', file);
return;
case 'Q':
PUT_OP_SIZE (code, 'l', file);
return;
case 'S':
PUT_OP_SIZE (code, 's', file);
return;
case 'T':
PUT_OP_SIZE (code, 't', file);
return;
case 'z':
/* 387 opcodes don't get size suffixes if the operands are
registers. */
if (STACK_REG_P (x))
return;
/* this is the size of op from size of operand */
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 2:
#ifdef HAVE_GAS_FILDS_FISTS
PUT_OP_SIZE ('W', 's', file);
#endif
return;
case 4:
if (GET_MODE (x) == SFmode)
{
PUT_OP_SIZE ('S', 's', file);
return;
}
else
PUT_OP_SIZE ('L', 'l', file);
return;
case 12:
PUT_OP_SIZE ('T', 't', file);
return;
case 8:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
{
#ifdef GAS_MNEMONICS
PUT_OP_SIZE ('Q', 'q', file);
return;
#else
PUT_OP_SIZE ('Q', 'l', file); /* Fall through */
#endif
}
PUT_OP_SIZE ('Q', 'l', file);
return;
default:
abort ();
}
case 'b':
case 'w':
case 'k':
case 'h':
case 'y':
case 'P':
case 'X':
break;
case 'J':
switch (GET_CODE (x))
{
/* These conditions are appropriate for testing the result
of an arithmetic operation, not for a compare operation.
Cases GE, LT assume CC_NO_OVERFLOW true. All cases assume
CC_Z_IN_NOT_C false and not floating point. */
case NE: fputs ("jne", file); return;
case EQ: fputs ("je", file); return;
case GE: fputs ("jns", file); return;
case LT: fputs ("js", file); return;
case GEU: fputs ("jmp", file); return;
case GTU: fputs ("jne", file); return;
case LEU: fputs ("je", file); return;
case LTU: fputs ("#branch never", file); return;
/* no matching branches for GT nor LE */
default:
abort ();
}
case 's':
if (GET_CODE (x) == CONST_INT || ! SHIFT_DOUBLE_OMITS_COUNT)
{
PRINT_OPERAND (file, x, 0);
fputs (AS2C (,) + 1, file);
}
return;
case 'D':
put_jump_code (GET_CODE (x), 0, file);
return;
case 'd':
put_jump_code (GET_CODE (x), 1, file);
return;
/* This is used by the conditional move instructions. */
case 'C':
put_condition_code (GET_CODE (x), 0, MODE_INT, file);
return;
/* Like above, but reverse condition */
case 'c':
put_condition_code (GET_CODE (x), 1, MODE_INT, file); return;
case 'F':
put_condition_code (GET_CODE (x), 0, MODE_FLOAT, file);
return;
/* Like above, but reverse condition */
case 'f':
put_condition_code (GET_CODE (x), 1, MODE_FLOAT, file);
return;
default:
{
char str[50];
sprintf (str, "invalid operand code `%c'", code);
output_operand_lossage (str);
}
}
}
if (GET_CODE (x) == REG)
{
PRINT_REG (x, code, file);
}
else if (GET_CODE (x) == MEM)
{
PRINT_PTR (x, file);
if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
{
if (flag_pic)
output_pic_addr_const (file, XEXP (x, 0), code);
else
output_addr_const (file, XEXP (x, 0));
}
else
output_address (XEXP (x, 0));
}
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
{
REAL_VALUE_TYPE r;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
PRINT_IMMED_PREFIX (file);
fprintf (file, "0x%lx", l);
}
/* These float cases don't actually occur as immediate operands. */
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
{
REAL_VALUE_TYPE r;
char dstr[30];
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
}
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode)
{
REAL_VALUE_TYPE r;
char dstr[30];
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
}
else
{
if (code != 'P')
{
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
PRINT_IMMED_PREFIX (file);
else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == LABEL_REF)
PRINT_OFFSET_PREFIX (file);
}
if (flag_pic)
output_pic_addr_const (file, x, code);
else
output_addr_const (file, x);
}
}
/* Print a memory operand whose address is ADDR. */
void
print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
register rtx reg1, reg2, breg, ireg;
rtx offset;
switch (GET_CODE (addr))
{
case REG:
/* ESI addressing makes instruction vector decoded on the K6. We can
avoid this by ESI+0 addressing. */
if (REGNO_REG_CLASS (REGNO (addr)) == SIREG
&& ix86_cpu == PROCESSOR_K6 && !optimize_size)
output_addr_const (file, const0_rtx);
ADDR_BEG (file);
fprintf (file, "%se", RP);
fputs (hi_reg_name[REGNO (addr)], file);
ADDR_END (file);
break;
case PLUS:
reg1 = 0;
reg2 = 0;
ireg = 0;
breg = 0;
offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != PLUS)
;
else if (GET_CODE (XEXP (addr, 0)) == MULT)
reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
else if (GET_CODE (XEXP (addr, 1)) == MULT)
reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 0)) == REG)
reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
else if (GET_CODE (XEXP (addr, 1)) == REG)
reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
{
if (reg1 == 0)
reg1 = addr;
else
reg2 = addr;
addr = 0;
}
if (offset != 0)
{
if (addr != 0)
abort ();
addr = offset;
}
if ((reg1 && GET_CODE (reg1) == MULT)
|| (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
{
breg = reg2;
ireg = reg1;
}
else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
{
breg = reg1;
ireg = reg2;
}
if (ireg != 0 || breg != 0)
{
int scale = 1;
if (addr != 0)
{
if (flag_pic)
output_pic_addr_const (file, addr, 0);
else if (GET_CODE (addr) == LABEL_REF)
output_asm_label (addr);
else
output_addr_const (file, addr);
}
if (ireg != 0 && GET_CODE (ireg) == MULT)
{
scale = INTVAL (XEXP (ireg, 1));
ireg = XEXP (ireg, 0);
}
/* The stack pointer can only appear as a base register,
never an index register, so exchange the regs if it is wrong. */
if (scale == 1 && ireg && REGNO (ireg) == STACK_POINTER_REGNUM)
{
rtx tmp;
tmp = breg;
breg = ireg;
ireg = tmp;
}
/* output breg+ireg*scale */
PRINT_B_I_S (breg, ireg, scale, file);
break;
}
case MULT:
{
int scale;
if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
{
scale = INTVAL (XEXP (addr, 0));
ireg = XEXP (addr, 1);
}
else
{
scale = INTVAL (XEXP (addr, 1));
ireg = XEXP (addr, 0);
}
/* (reg,reg,) is shorter than (,reg,2). */
if (scale == 2)
{
PRINT_B_I_S (ireg, ireg, 1, file);
}
else
{
output_addr_const (file, const0_rtx);
PRINT_B_I_S (NULL_RTX, ireg, scale, file);
}
}
break;
default:
if (GET_CODE (addr) == CONST_INT
&& INTVAL (addr) < 0x8000
&& INTVAL (addr) >= -0x8000)
fprintf (file, "%d", (int) INTVAL (addr));
else
{
if (flag_pic)
output_pic_addr_const (file, addr, 0);
else
output_addr_const (file, addr);
}
}
}
/* Set the cc_status for the results of an insn whose pattern is EXP.
On the 80386, we assume that only test and compare insns, as well
as SI, HI, & DI mode ADD, SUB, NEG, AND, IOR, XOR, BSF, ASHIFT,
ASHIFTRT, and LSHIFTRT instructions set the condition codes usefully.
Also, we assume that jumps, moves and sCOND don't affect the condition
codes. All else clobbers the condition codes, by assumption.
We assume that ALL integer add, minus, etc. instructions effect the
condition codes. This MUST be consistent with i386.md.
We don't record any float test or compare - the redundant test &
compare check in final.c does not handle stack-like regs correctly. */
void
notice_update_cc (exp)
rtx exp;
{
if (GET_CODE (exp) == SET)
{
/* Jumps do not alter the cc's. */
if (SET_DEST (exp) == pc_rtx)
return;
/* Moving register or memory into a register:
it doesn't alter the cc's, but it might invalidate
the RTX's which we remember the cc's came from.
(Note that moving a constant 0 or 1 MAY set the cc's). */
if (REG_P (SET_DEST (exp))
&& (REG_P (SET_SRC (exp)) || GET_CODE (SET_SRC (exp)) == MEM
|| GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'
|| GET_CODE (SET_SRC (exp)) == IF_THEN_ELSE))
{
if (cc_status.value1
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
cc_status.value1 = 0;
if (cc_status.value2
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
cc_status.value2 = 0;
return;
}
/* Moving register into memory doesn't alter the cc's.
It may invalidate the RTX's which we remember the cc's came from. */
if (GET_CODE (SET_DEST (exp)) == MEM
&& (REG_P (SET_SRC (exp))
|| GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'))
{
if (cc_status.value1
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
cc_status.value1 = 0;
if (cc_status.value2
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
cc_status.value2 = 0;
return;
}
/* Function calls clobber the cc's. */
else if (GET_CODE (SET_SRC (exp)) == CALL)
{
CC_STATUS_INIT;
return;
}
/* Tests and compares set the cc's in predictable ways. */
else if (SET_DEST (exp) == cc0_rtx)
{
CC_STATUS_INIT;
cc_status.value1 = SET_SRC (exp);
return;
}
/* Certain instructions effect the condition codes. */
else if (GET_MODE (SET_SRC (exp)) == SImode
|| GET_MODE (SET_SRC (exp)) == HImode
|| GET_MODE (SET_SRC (exp)) == QImode)
switch (GET_CODE (SET_SRC (exp)))
{
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
/* Shifts on the 386 don't set the condition codes if the
shift count is zero. */
if (GET_CODE (XEXP (SET_SRC (exp), 1)) != CONST_INT)
{
CC_STATUS_INIT;
break;
}
/* We assume that the CONST_INT is non-zero (this rtx would
have been deleted if it were zero. */
case PLUS: case MINUS: case NEG:
case AND: case IOR: case XOR:
cc_status.flags = CC_NO_OVERFLOW;
cc_status.value1 = SET_SRC (exp);
cc_status.value2 = SET_DEST (exp);
break;
/* This is the bsf pattern used by ffs. */
case UNSPEC:
if (XINT (SET_SRC (exp), 1) == 5)
{
/* Only the Z flag is defined after bsf. */
cc_status.flags
= CC_NOT_POSITIVE | CC_NOT_NEGATIVE | CC_NO_OVERFLOW;
cc_status.value1 = XVECEXP (SET_SRC (exp), 0, 0);
cc_status.value2 = 0;
break;
}
/* FALLTHRU */
default:
CC_STATUS_INIT;
}
else
{
CC_STATUS_INIT;
}
}
else if (GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET)
{
if (SET_DEST (XVECEXP (exp, 0, 0)) == pc_rtx)
return;
if (SET_DEST (XVECEXP (exp, 0, 0)) == cc0_rtx)
{
CC_STATUS_INIT;
if (stack_regs_mentioned_p (SET_SRC (XVECEXP (exp, 0, 0))))
{
cc_status.flags |= CC_IN_80387;
if (TARGET_CMOVE && stack_regs_mentioned_p
(XEXP (SET_SRC (XVECEXP (exp, 0, 0)), 1)))
cc_status.flags |= CC_FCOMI;
}
else
cc_status.value1 = SET_SRC (XVECEXP (exp, 0, 0));
return;
}
CC_STATUS_INIT;
}
else
{
CC_STATUS_INIT;
}
}
/* Split one or more DImode RTL references into pairs of SImode
references. The RTL can be REG, offsettable MEM, integer constant, or
CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
split and "num" is its length. lo_half and hi_half are output arrays
that parallel "operands". */
void
split_di (operands, num, lo_half, hi_half)
rtx operands[];
int num;
rtx lo_half[], hi_half[];
{
while (num--)
{
rtx op = operands[num];
if (! reload_completed)
{
lo_half[num] = gen_lowpart (SImode, op);
hi_half[num] = gen_highpart (SImode, op);
}
else if (GET_CODE (op) == REG)
{
lo_half[num] = gen_rtx_REG (SImode, REGNO (op));
hi_half[num] = gen_rtx_REG (SImode, REGNO (op) + 1);
}
else if (CONSTANT_P (op))
split_double (op, &lo_half[num], &hi_half[num]);
else if (offsettable_memref_p (op))
{
rtx lo_addr = XEXP (op, 0);
rtx hi_addr = XEXP (adj_offsettable_operand (op, 4), 0);
lo_half[num] = change_address (op, SImode, lo_addr);
hi_half[num] = change_address (op, SImode, hi_addr);
}
else
abort();
}
}
/* Return 1 if this is a valid binary operation on a 387.
OP is the expression matched, and MODE is its mode. */
int
binary_387_op (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
switch (GET_CODE (op))
{
case PLUS:
case MINUS:
case MULT:
case DIV:
return GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT;
default:
return 0;
}
}
/* Return 1 if this is a valid shift or rotate operation on a 386.
OP is the expression matched, and MODE is its mode. */
int
shift_op (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx operand = XEXP (op, 0);
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_MODE (operand) != GET_MODE (op)
|| GET_MODE_CLASS (GET_MODE (op)) != MODE_INT)
return 0;
return (GET_CODE (op) == ASHIFT
|| GET_CODE (op) == ASHIFTRT
|| GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ROTATE
|| GET_CODE (op) == ROTATERT);
}
/* Return 1 if OP is COMPARE rtx with mode VOIDmode.
MODE is not used. */
int
VOIDmode_compare_op (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return GET_CODE (op) == COMPARE && GET_MODE (op) == VOIDmode;
}
/* Output code to perform a 387 binary operation in INSN, one of PLUS,
MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3]
is the expression of the binary operation. The output may either be
emitted here, or returned to the caller, like all output_* functions.
There is no guarantee that the operands are the same mode, as they
might be within FLOAT or FLOAT_EXTEND expressions. */
char *
output_387_binary_op (insn, operands)
rtx insn;
rtx *operands;
{
rtx temp;
char *base_op;
static char buf[100];
switch (GET_CODE (operands[3]))
{
case PLUS:
base_op = "fadd";
break;
case MINUS:
base_op = "fsub";
break;
case MULT:
base_op = "fmul";
break;
case DIV:
base_op = "fdiv";
break;
default:
abort ();
}
strcpy (buf, base_op);
switch (GET_CODE (operands[3]))
{
case MULT:
case PLUS:
if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
{
temp = operands[2];
operands[2] = operands[1];
operands[1] = temp;
}
if (GET_CODE (operands[2]) == MEM)
return strcat (buf, AS1 (%z2,%2));
if (! STACK_REG_P (operands[1]) || ! STACK_REG_P (operands[2]))
abort ();
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
{
if (STACK_TOP_P (operands[0]))
return strcat (buf, AS2 (p,%0,%2));
else
return strcat (buf, AS2 (p,%2,%0));
}
if (STACK_TOP_P (operands[0]))
return strcat (buf, AS2C (%y2,%0));
else
return strcat (buf, AS2C (%2,%0));
case MINUS:
case DIV:
if (GET_CODE (operands[1]) == MEM)
return strcat (buf, AS1 (r%z1,%1));
if (GET_CODE (operands[2]) == MEM)
return strcat (buf, AS1 (%z2,%2));
if (! STACK_REG_P (operands[1]) || ! STACK_REG_P (operands[2]))
abort ();
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
{
if (STACK_TOP_P (operands[0]))
return strcat (buf, AS2 (p,%0,%2));
else
return strcat (buf, AS2 (rp,%2,%0));
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
{
if (STACK_TOP_P (operands[0]))
return strcat (buf, AS2 (rp,%0,%1));
else
return strcat (buf, AS2 (p,%1,%0));
}
if (STACK_TOP_P (operands[0]))
{
if (STACK_TOP_P (operands[1]))
return strcat (buf, AS2C (%y2,%0));
else
return strcat (buf, AS2 (r,%y1,%0));
}
else if (STACK_TOP_P (operands[1]))
return strcat (buf, AS2C (%1,%0));
else
return strcat (buf, AS2 (r,%2,%0));
default:
abort ();
}
}
/* Output code for INSN to convert a float to a signed int. OPERANDS
are the insn operands. The input may be SFmode, DFmode, or XFmode
and the output operand may be SImode or DImode. As a special case,
make sure that the 387 stack top dies if the output mode is DImode,
because the hardware requires this. */
char *
output_fix_trunc (insn, operands)
rtx insn;
rtx *operands;
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
rtx xops[2];
if (! STACK_TOP_P (operands[1]))
abort ();
if (GET_MODE (operands[0]) == DImode && ! stack_top_dies)
abort ();
xops[0] = GEN_INT (0x0c00);
xops[1] = operands[5];
output_asm_insn (AS1 (fnstc%W2,%2), operands);
output_asm_insn (AS2 (mov%W5,%2,%w5), operands);
output_asm_insn (AS2 (or%W1,%0,%w1), xops);
output_asm_insn (AS2 (mov%W3,%w5,%3), operands);
output_asm_insn (AS1 (fldc%W3,%3), operands);
xops[0] = NON_STACK_REG_P (operands[0]) ? operands[4] : operands[0];
if (stack_top_dies)
output_asm_insn (AS1 (fistp%z0,%y0), xops);
else
output_asm_insn (AS1 (fist%z0,%y0), xops);
if (NON_STACK_REG_P (operands[0]))
{
if (GET_MODE (operands[0]) == SImode)
output_asm_insn (AS2 (mov%L0,%4,%0), operands);
else
{
xops[0] = operands[0];
xops[1] = operands[4];
output_asm_insn (output_move_double (xops), xops);
}
}
return AS1 (fldc%W2,%2);
}
/* Output code for INSN to extend a float. OPERANDS are the insn
operands. The output may be DFmode or XFmode and the input operand
may be SFmode or DFmode. Operands 2 and 3 are scratch memory and
are only necessary if operands 0 or 1 are non-stack registers. */
void
output_float_extend (insn, operands)
rtx insn;
rtx *operands;
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
rtx xops[2];
if (! STACK_TOP_P (operands[0]) && ! STACK_TOP_P (operands[1]))
abort ();
if (STACK_TOP_P (operands[0]) && STACK_TOP_P (operands[1]) && stack_top_dies)
return;
if (STACK_TOP_P (operands[0]) )
{
if (NON_STACK_REG_P (operands[1]))
{
if (GET_MODE (operands[1]) == SFmode)
output_asm_insn (AS2 (mov%L0,%1,%2), operands);
else
{
xops[0] = operands[2];
xops[1] = operands[1];
output_asm_insn (output_move_double (xops), xops);
}
}
xops[0] = NON_STACK_REG_P (operands[1]) ? operands[2] : operands[1];
output_asm_insn (AS1 (fld%z0,%y0), xops);
}
else
{
xops[0] = NON_STACK_REG_P (operands[0]) ? operands[3] : operands[0];
if (stack_top_dies
|| (GET_CODE (xops[0]) == MEM && GET_MODE (xops[0]) == XFmode))
{
output_asm_insn (AS1 (fstp%z0,%y0), xops);
if (! stack_top_dies)
output_asm_insn (AS1 (fld%z0,%y0), xops);
}
else
output_asm_insn (AS1 (fst%z0,%y0), xops);
if (NON_STACK_REG_P (operands[0]))
{
xops[0] = operands[0];
xops[1] = operands[3];
output_asm_insn (output_move_double (xops), xops);
}
}
}
/* Output code for INSN to compare OPERANDS. The two operands might
not have the same mode: one might be within a FLOAT or FLOAT_EXTEND
expression. If the compare is in mode CCFPEQmode, use an opcode that
will not fault if a qNaN is present. */
char *
output_float_compare (insn, operands)
rtx insn;
rtx *operands;
{
int stack_top_dies;
rtx body = XVECEXP (PATTERN (insn), 0, 0);
int unordered_compare = GET_MODE (SET_SRC (body)) == CCFPEQmode;
rtx tmp;
int cc0_set = 1;
int i;
if (TARGET_CMOVE && STACK_REG_P (operands[1])
&& STACK_REG_P (operands[0]))
{
cc_status.flags |= CC_FCOMI;
cc_prev_status.flags &= ~CC_TEST_AX;
}
if (! STACK_TOP_P (operands[0]))
{
tmp = operands[0];
operands[0] = operands[1];
operands[1] = tmp;
cc_status.flags |= CC_REVERSED;
}
if (! STACK_TOP_P (operands[0]))
abort ();
stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
if (STACK_REG_P (operands[1])
&& stack_top_dies
&& find_regno_note (insn, REG_DEAD, REGNO (operands[1]))
&& REGNO (operands[1]) == FIRST_STACK_REG + 1)
{
/* If both the top of the 387 stack dies, and the other operand
is also a stack register that dies, then this must be a
`fcompp' float compare */
if (unordered_compare)
{
if (cc_status.flags & CC_FCOMI)
{
output_asm_insn (AS2 (fucomip,%y1,%0), operands);
output_asm_insn (AS1 (fstp, %y0), operands);
if (!TARGET_IEEE_FP)
cc0_set = 0;
}
else
output_asm_insn ("fucompp", operands);
}
else
{
if (cc_status.flags & CC_FCOMI)
{
output_asm_insn (AS2 (fcomip, %y1,%0), operands);
output_asm_insn (AS1 (fstp, %y0), operands);
if (!TARGET_IEEE_FP)
cc0_set = 0;
}
else
output_asm_insn ("fcompp", operands);
}
}
else
{
static char buf[100];
/* Decide if this is a float compare or an unordered float compare. */
if (unordered_compare)
strcpy (buf, (cc_status.flags & CC_FCOMI) ? "fucomi" : "fucom");
else
strcpy (buf, (cc_status.flags & CC_FCOMI) ? "fcomi" : "fcom");
/* Modify the opcode if the 387 stack is to be popped. */
if (stack_top_dies)
strcat (buf, "p");
if (cc_status.flags & CC_FCOMI)
{
output_asm_insn (strcat (buf, AS2 (%z1,%y1,%0)), operands);
if (!TARGET_IEEE_FP)
cc0_set = 0;
}
else
output_asm_insn (strcat (buf, AS1 (%z1,%y1)), operands);
}
/* Now retrieve the condition code. */
if (cc0_set)
{
char *r = output_fp_cc0_set (insn);
if (r[0]) output_asm_insn (r, operands);
}
/* We emit fstp instruction after integer comparsions to improve
scheduling. */
for (i = 0; i < 2 ; i++)
{
if (STACK_REG_P (operands[i])
&& find_regno_note (insn, REG_DEAD, REGNO (operands[i]))
&& REGNO (operands[i]) != FIRST_STACK_REG
&& (!stack_top_dies || REGNO (operands[i]) != FIRST_STACK_REG + 1))
{
rtx xexp[2];
xexp[0] = gen_rtx_REG (DFmode,
REGNO (operands[i]) - (stack_top_dies != 0));
output_asm_insn (AS1 (fstp, %y0), xexp);
}
}
return "";
}
/* Output opcodes to transfer the results of FP compare or test INSN
from the FPU to the CPU flags. If TARGET_IEEE_FP, ensure that if the
result of the compare or test is unordered, no comparison operator
succeeds except NE. Return an output template, if any. */
char *
output_fp_cc0_set (insn)
rtx insn;
{
rtx xops[3];
rtx next;
enum rtx_code code;
if (!(cc_status.flags & CC_FCOMI))
{
xops[0] = gen_rtx_REG (HImode, 0);
output_asm_insn (AS1 (fnsts%W0,%0), xops);
}
if (! TARGET_IEEE_FP)
{
if (!(cc_status.flags & CC_REVERSED))
{
next = next_cc0_user (insn);
if (GET_CODE (PATTERN (next)) == SET
&& SET_DEST (PATTERN (next)) == pc_rtx
&& GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
else if (GET_CODE (PATTERN (next)) == SET)
code = GET_CODE (SET_SRC (PATTERN (next)));
else
return "sahf";
if (code == GT || code == LT || code == EQ || code == NE
|| code == LE || code == GE)
{
/* We will test eax directly. */
cc_status.flags |= CC_TEST_AX;
return "";
}
}
return "sahf";
}
next = next_cc0_user (insn);
if (next == NULL_RTX)
abort ();
if (GET_CODE (PATTERN (next)) == SET
&& SET_DEST (PATTERN (next)) == pc_rtx
&& GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
else if (GET_CODE (PATTERN (next)) == SET)
{
if (GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
else
code = GET_CODE (SET_SRC (PATTERN (next)));
}
else if (GET_CODE (PATTERN (next)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (next), 0, 0)) == SET)
{
if (GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0))) == IF_THEN_ELSE)
code = GET_CODE (XEXP (SET_SRC (XVECEXP (PATTERN (next), 0, 0)), 0));
else
code = GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0)));
}
else
abort ();
if (cc_status.flags & CC_FCOMI)
{
/* It is very tricky. We have to do it right. */
xops [0] = gen_rtx_REG (QImode, 0);
switch (code)
{
case GT:
case GE:
break;
case LT:
output_asm_insn (AS1 (setb,%b0), xops);
output_asm_insn (AS1 (setp,%h0), xops);
output_asm_insn (AS2 (cmp%B0,%b0,%h0), xops);
break;
case LE:
output_asm_insn (AS1 (setbe,%b0), xops);
output_asm_insn (AS1 (setnp,%h0), xops);
output_asm_insn (AS2 (xor%B0,%b0,%h0), xops);
break;
case EQ:
case NE:
output_asm_insn (AS1 (setne,%b0), xops);
output_asm_insn (AS1 (setp,%h0), xops);
output_asm_insn (AS2 (or%B0,%b0,%h0), xops);
break;
case GTU:
case LTU:
case GEU:
case LEU:
default:
abort ();
}
}
else
{
xops[0] = gen_rtx_REG (QImode, 0);
switch (code)
{
case GT:
xops[1] = GEN_INT (0x45);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
/* je label */
break;
case LT:
xops[1] = GEN_INT (0x45);
xops[2] = GEN_INT (0x01);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
/* je label */
break;
case GE:
xops[1] = GEN_INT (0x05);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
/* je label */
break;
case LE:
xops[1] = GEN_INT (0x45);
xops[2] = GEN_INT (0x40);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS1 (dec%B0,%h0), xops);
output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
/* jb label */
break;
case EQ:
xops[1] = GEN_INT (0x45);
xops[2] = GEN_INT (0x40);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS2 (cmp%B0,%2,%h0), xops);
/* je label */
break;
case NE:
xops[1] = GEN_INT (0x44);
xops[2] = GEN_INT (0x40);
output_asm_insn (AS2 (and%B0,%1,%h0), xops);
output_asm_insn (AS2 (xor%B0,%2,%h0), xops);
/* jne label */
break;
case GTU:
case LTU:
case GEU:
case LEU:
default:
abort ();
}
}
return "";
}
#define MAX_386_STACK_LOCALS 2
static rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
/* Define the structure for the machine field in struct function. */
struct machine_function
{
rtx i386_stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
rtx pic_label_rtx;
char pic_label_name[256];
};
/* Functions to save and restore i386_stack_locals.
These will be called, via pointer variables,
from push_function_context and pop_function_context. */
void
save_386_machine_status (p)
struct function *p;
{
p->machine
= (struct machine_function *) xmalloc (sizeof (struct machine_function));
bcopy ((char *) i386_stack_locals, (char *) p->machine->i386_stack_locals,
sizeof i386_stack_locals);
p->machine->pic_label_rtx = pic_label_rtx;
bcopy (pic_label_name, p->machine->pic_label_name, 256);
}
void
restore_386_machine_status (p)
struct function *p;
{
bcopy ((char *) p->machine->i386_stack_locals, (char *) i386_stack_locals,
sizeof i386_stack_locals);
pic_label_rtx = p->machine->pic_label_rtx;
bcopy (p->machine->pic_label_name, pic_label_name, 256);
free (p->machine);
p->machine = NULL;
}
/* Clear stack slot assignments remembered from previous functions.
This is called from INIT_EXPANDERS once before RTL is emitted for each
function. */
void
clear_386_stack_locals ()
{
enum machine_mode mode;
int n;
for (mode = VOIDmode; (int) mode < (int) MAX_MACHINE_MODE;
mode = (enum machine_mode) ((int) mode + 1))
for (n = 0; n < MAX_386_STACK_LOCALS; n++)
i386_stack_locals[(int) mode][n] = NULL_RTX;
pic_label_rtx = NULL_RTX;
bzero (pic_label_name, 256);
/* Arrange to save and restore i386_stack_locals around nested functions. */
save_machine_status = save_386_machine_status;
restore_machine_status = restore_386_machine_status;
}
/* Return a MEM corresponding to a stack slot with mode MODE.
Allocate a new slot if necessary.
The RTL for a function can have several slots available: N is
which slot to use. */
rtx
assign_386_stack_local (mode, n)
enum machine_mode mode;
int n;
{
if (n < 0 || n >= MAX_386_STACK_LOCALS)
abort ();
if (i386_stack_locals[(int) mode][n] == NULL_RTX)
i386_stack_locals[(int) mode][n]
= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
return i386_stack_locals[(int) mode][n];
}
int is_mul(op,mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == MULT);
}
int is_div(op,mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == DIV);
}
#ifdef NOTYET
/* Create a new copy of an rtx.
Recursively copies the operands of the rtx,
except for those few rtx codes that are sharable.
Doesn't share CONST */
rtx
copy_all_rtx (orig)
register rtx orig;
{
register rtx copy;
register int i, j;
register RTX_CODE code;
register char *format_ptr;
code = GET_CODE (orig);
switch (code)
{
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
case SCRATCH:
/* SCRATCH must be shared because they represent distinct values. */
return orig;
#if 0
case CONST:
/* CONST can be shared if it contains a SYMBOL_REF. If it contains
a LABEL_REF, it isn't sharable. */
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
return orig;
break;
#endif
/* A MEM with a constant address is not sharable. The problem is that
the constant address may need to be reloaded. If the mem is shared,
then reloading one copy of this mem will cause all copies to appear
to have been reloaded. */
}
copy = rtx_alloc (code);
PUT_MODE (copy, GET_MODE (orig));
copy->in_struct = orig->in_struct;
copy->volatil = orig->volatil;
copy->unchanging = orig->unchanging;
copy->integrated = orig->integrated;
/* intel1 */
copy->is_spill_rtx = orig->is_spill_rtx;
format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
{
switch (*format_ptr++)
{
case 'e':
XEXP (copy, i) = XEXP (orig, i);
if (XEXP (orig, i) != NULL)
XEXP (copy, i) = copy_rtx (XEXP (orig, i));
break;
case '0':
case 'u':
XEXP (copy, i) = XEXP (orig, i);
break;
case 'E':
case 'V':
XVEC (copy, i) = XVEC (orig, i);
if (XVEC (orig, i) != NULL)
{
XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
for (j = 0; j < XVECLEN (copy, i); j++)
XVECEXP (copy, i, j) = copy_rtx (XVECEXP (orig, i, j));
}
break;
case 'w':
XWINT (copy, i) = XWINT (orig, i);
break;
case 'i':
XINT (copy, i) = XINT (orig, i);
break;
case 's':
case 'S':
XSTR (copy, i) = XSTR (orig, i);
break;
default:
abort ();
}
}
return copy;
}
/* Try to rewrite a memory address to make it valid */
void
rewrite_address (mem_rtx)
rtx mem_rtx;
{
rtx index_rtx, base_rtx, offset_rtx, scale_rtx, ret_rtx;
int scale = 1;
int offset_adjust = 0;
int was_only_offset = 0;
rtx mem_addr = XEXP (mem_rtx, 0);
char *storage = oballoc (0);
int in_struct = 0;
int is_spill_rtx = 0;
in_struct = MEM_IN_STRUCT_P (mem_rtx);
is_spill_rtx = RTX_IS_SPILL_P (mem_rtx);
if (GET_CODE (mem_addr) == PLUS
&& GET_CODE (XEXP (mem_addr, 1)) == PLUS
&& GET_CODE (XEXP (XEXP (mem_addr, 1), 0)) == REG)
{
/* This part is utilized by the combiner. */
ret_rtx
= gen_rtx (PLUS, GET_MODE (mem_addr),
gen_rtx (PLUS, GET_MODE (XEXP (mem_addr, 1)),
XEXP (mem_addr, 0), XEXP (XEXP (mem_addr, 1), 0)),
XEXP (XEXP (mem_addr, 1), 1));
if (memory_address_p (GET_MODE (mem_rtx), ret_rtx))
{
XEXP (mem_rtx, 0) = ret_rtx;
RTX_IS_SPILL_P (ret_rtx) = is_spill_rtx;
return;
}
obfree (storage);
}
/* This part is utilized by loop.c.
If the address contains PLUS (reg,const) and this pattern is invalid
in this case - try to rewrite the address to make it valid. */
storage = oballoc (0);
index_rtx = base_rtx = offset_rtx = NULL;
/* Find the base index and offset elements of the memory address. */
if (GET_CODE (mem_addr) == PLUS)
{
if (GET_CODE (XEXP (mem_addr, 0)) == REG)
{
if (GET_CODE (XEXP (mem_addr, 1)) == REG)
base_rtx = XEXP (mem_addr, 1), index_rtx = XEXP (mem_addr, 0);
else
base_rtx = XEXP (mem_addr, 0), offset_rtx = XEXP (mem_addr, 1);
}
else if (GET_CODE (XEXP (mem_addr, 0)) == MULT)
{
index_rtx = XEXP (mem_addr, 0);
if (GET_CODE (XEXP (mem_addr, 1)) == REG)
base_rtx = XEXP (mem_addr, 1);
else
offset_rtx = XEXP (mem_addr, 1);
}
else if (GET_CODE (XEXP (mem_addr, 0)) == PLUS)
{
if (GET_CODE (XEXP (XEXP (mem_addr, 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0)) == MULT
&& (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 0))
== REG)
&& (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 1))
== CONST_INT)
&& (GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1))
== CONST_INT)
&& GET_CODE (XEXP (XEXP (mem_addr, 0), 1)) == REG
&& GET_CODE (XEXP (mem_addr, 1)) == SYMBOL_REF)
{
index_rtx = XEXP (XEXP (XEXP (mem_addr, 0), 0), 0);
offset_rtx = XEXP (mem_addr, 1);
base_rtx = XEXP (XEXP (mem_addr, 0), 1);
offset_adjust = INTVAL (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1));
}
else
{
offset_rtx = XEXP (mem_addr, 1);
index_rtx = XEXP (XEXP (mem_addr, 0), 0);
base_rtx = XEXP (XEXP (mem_addr, 0), 1);
}
}
else if (GET_CODE (XEXP (mem_addr, 0)) == CONST_INT)
{
was_only_offset = 1;
index_rtx = NULL;
base_rtx = NULL;
offset_rtx = XEXP (mem_addr, 1);
offset_adjust = INTVAL (XEXP (mem_addr, 0));
if (offset_adjust == 0)
{
XEXP (mem_rtx, 0) = offset_rtx;
RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
return;
}
}
else
{
obfree (storage);
return;
}
}
else if (GET_CODE (mem_addr) == MULT)
index_rtx = mem_addr;
else
{
obfree (storage);
return;
}
if (index_rtx != 0 && GET_CODE (index_rtx) == MULT)
{
if (GET_CODE (XEXP (index_rtx, 1)) != CONST_INT)
{
obfree (storage);
return;
}
scale_rtx = XEXP (index_rtx, 1);
scale = INTVAL (scale_rtx);
index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
}
/* Now find which of the elements are invalid and try to fix them. */
if (index_rtx && GET_CODE (index_rtx) == CONST_INT && base_rtx == NULL)
{
offset_adjust = INTVAL (index_rtx) * scale;
if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
offset_rtx = plus_constant (offset_rtx, offset_adjust);
else if (offset_rtx == 0)
offset_rtx = const0_rtx;
RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
XEXP (mem_rtx, 0) = offset_rtx;
return;
}
if (base_rtx && GET_CODE (base_rtx) == PLUS
&& GET_CODE (XEXP (base_rtx, 0)) == REG
&& GET_CODE (XEXP (base_rtx, 1)) == CONST_INT)
{
offset_adjust += INTVAL (XEXP (base_rtx, 1));
base_rtx = copy_all_rtx (XEXP (base_rtx, 0));
}
else if (base_rtx && GET_CODE (base_rtx) == CONST_INT)
{
offset_adjust += INTVAL (base_rtx);
base_rtx = NULL;
}
if (index_rtx && GET_CODE (index_rtx) == PLUS
&& GET_CODE (XEXP (index_rtx, 0)) == REG
&& GET_CODE (XEXP (index_rtx, 1)) == CONST_INT)
{
offset_adjust += INTVAL (XEXP (index_rtx, 1)) * scale;
index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
}
if (index_rtx)
{
if (! LEGITIMATE_INDEX_P (index_rtx)
&& ! (index_rtx == stack_pointer_rtx && scale == 1
&& base_rtx == NULL))
{
obfree (storage);
return;
}
}
if (base_rtx)
{
if (! LEGITIMATE_INDEX_P (base_rtx) && GET_CODE (base_rtx) != REG)
{
obfree (storage);
return;
}
}
if (offset_adjust != 0)
{
if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
offset_rtx = plus_constant (offset_rtx, offset_adjust);
else
offset_rtx = const0_rtx;
if (index_rtx)
{
if (base_rtx)
{
if (scale != 1)
{
ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx),
gen_rtx (MULT, GET_MODE (index_rtx),
index_rtx, scale_rtx),
base_rtx);
if (GET_CODE (offset_rtx) != CONST_INT
|| INTVAL (offset_rtx) != 0)
ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
ret_rtx, offset_rtx);
}
else
{
ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
index_rtx, base_rtx);
if (GET_CODE (offset_rtx) != CONST_INT
|| INTVAL (offset_rtx) != 0)
ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
ret_rtx, offset_rtx);
}
}
else
{
if (scale != 1)
{
ret_rtx = gen_rtx (MULT, GET_MODE (index_rtx),
index_rtx, scale_rtx);
if (GET_CODE (offset_rtx) != CONST_INT
|| INTVAL (offset_rtx) != 0)
ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
ret_rtx, offset_rtx);
}
else
{
if (GET_CODE (offset_rtx) == CONST_INT
&& INTVAL (offset_rtx) == 0)
ret_rtx = index_rtx;
else
ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
index_rtx, offset_rtx);
}
}
}
else
{
if (base_rtx)
{
if (GET_CODE (offset_rtx) == CONST_INT
&& INTVAL (offset_rtx) == 0)
ret_rtx = base_rtx;
else
ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx), base_rtx,
offset_rtx);
}
else if (was_only_offset)
ret_rtx = offset_rtx;
else
{
obfree (storage);
return;
}
}
XEXP (mem_rtx, 0) = ret_rtx;
RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
return;
}
else
{
obfree (storage);
return;
}
}
#endif /* NOTYET */
/* Return 1 if the first insn to set cc before INSN also sets the register
REG_RTX; otherwise return 0. */
int
last_to_set_cc (reg_rtx, insn)
rtx reg_rtx, insn;
{
rtx prev_insn = PREV_INSN (insn);
while (prev_insn)
{
if (GET_CODE (prev_insn) == NOTE)
;
else if (GET_CODE (prev_insn) == INSN)
{
if (GET_CODE (PATTERN (prev_insn)) != SET)
return (0);
if (rtx_equal_p (SET_DEST (PATTERN (prev_insn)), reg_rtx))
{
if (sets_condition_code (SET_SRC (PATTERN (prev_insn))))
return (1);
return (0);
}
else if (! doesnt_set_condition_code (SET_SRC (PATTERN (prev_insn))))
return (0);
}
else
return (0);
prev_insn = PREV_INSN (prev_insn);
}
return (0);
}
int
doesnt_set_condition_code (pat)
rtx pat;
{
switch (GET_CODE (pat))
{
case MEM:
case REG:
return 1;
default:
return 0;
}
}
int
sets_condition_code (pat)
rtx pat;
{
switch (GET_CODE (pat))
{
case PLUS:
case MINUS:
case AND:
case IOR:
case XOR:
case NOT:
case NEG:
case MULT:
case DIV:
case MOD:
case UDIV:
case UMOD:
return 1;
default:
return (0);
}
}
int
str_immediate_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == CONST_INT && INTVAL (op) <= 32 && INTVAL (op) >= 0)
return 1;
return 0;
}
int
is_fp_insn (insn)
rtx insn;
{
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
&& (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == XFmode))
return 1;
return 0;
}
/* Return 1 if the mode of the SET_DEST of insn is floating point
and it is not an fld or a move from memory to memory.
Otherwise return 0 */
int
is_fp_dest (insn)
rtx insn;
{
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
&& (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == XFmode)
&& GET_CODE (SET_DEST (PATTERN (insn))) == REG
&& REGNO (SET_DEST (PATTERN (insn))) >= FIRST_FLOAT_REG
&& GET_CODE (SET_SRC (PATTERN (insn))) != MEM)
return 1;
return 0;
}
/* Return 1 if the mode of the SET_DEST of INSN is floating point and is
memory and the source is a register. */
int
is_fp_store (insn)
rtx insn;
{
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
&& (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == XFmode)
&& GET_CODE (SET_DEST (PATTERN (insn))) == MEM
&& GET_CODE (SET_SRC (PATTERN (insn))) == REG)
return 1;
return 0;
}
/* Return 1 if DEP_INSN sets a register which INSN uses as a base
or index to reference memory.
otherwise return 0 */
int
agi_dependent (insn, dep_insn)
rtx insn, dep_insn;
{
int push = 0, push_dep = 0;
if (GET_CODE (dep_insn) == INSN
&& GET_CODE (PATTERN (dep_insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG
&& reg_mentioned_in_mem (SET_DEST (PATTERN (dep_insn)), insn))
return 1;
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (insn))) == MEM
&& push_operand (SET_DEST (PATTERN (insn)),
GET_MODE (SET_DEST (PATTERN (insn)))))
push = 1;
if (GET_CODE (dep_insn) == INSN && GET_CODE (PATTERN (dep_insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (dep_insn))) == MEM
&& push_operand (SET_DEST (PATTERN (dep_insn)),
GET_MODE (SET_DEST (PATTERN (dep_insn)))))
push_dep = 1;
/* CPUs contain special hardware to allow two pushes. */
if (push && push_dep)
return 0;
/* Push operation implicitly change stack pointer causing AGI stalls. */
if (push_dep && reg_mentioned_in_mem (stack_pointer_rtx, insn))
return 1;
/* Push also implicitly read stack pointer. */
if (push && modified_in_p (stack_pointer_rtx, dep_insn))
return 1;
return 0;
}
/* Return 1 if reg is used in rtl as a base or index for a memory ref
otherwise return 0. */
int
reg_mentioned_in_mem (reg, rtl)
rtx reg, rtl;
{
register char *fmt;
register int i, j;
register enum rtx_code code;
if (rtl == NULL)
return 0;
code = GET_CODE (rtl);
switch (code)
{
case HIGH:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case SYMBOL_REF:
case LABEL_REF:
case PC:
case CC0:
case SUBREG:
return 0;
default:
break;
}
if (code == MEM && reg_mentioned_p (reg, rtl))
return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
for (j = XVECLEN (rtl, i) - 1; j >= 0; j--)
if (reg_mentioned_in_mem (reg, XVECEXP (rtl, i, j)))
return 1;
}
else if (fmt[i] == 'e' && reg_mentioned_in_mem (reg, XEXP (rtl, i)))
return 1;
}
return 0;
}
/* Output the appropriate insns for doing strlen if not just doing repnz; scasb
operands[0] = result, initialized with the startaddress
operands[1] = alignment of the address.
operands[2] = scratch register, initialized with the startaddress when
not aligned, otherwise undefined
This is just the body. It needs the initialisations mentioned above and
some address computing at the end. These things are done in i386.md. */
char *
output_strlen_unroll (operands)
rtx operands[];
{
rtx xops[18];
xops[0] = operands[0]; /* Result */
/* operands[1]; * Alignment */
xops[1] = operands[2]; /* Scratch */
xops[2] = GEN_INT (0);
xops[3] = GEN_INT (2);
xops[4] = GEN_INT (3);
xops[5] = GEN_INT (4);
/* xops[6] = gen_label_rtx (); * label when aligned to 3-byte */
/* xops[7] = gen_label_rtx (); * label when aligned to 2-byte */
xops[8] = gen_label_rtx (); /* label of main loop */
if (TARGET_USE_Q_REG && QI_REG_P (xops[1]))
xops[9] = gen_label_rtx (); /* pentium optimisation */
xops[10] = gen_label_rtx (); /* end label 2 */
xops[11] = gen_label_rtx (); /* end label 1 */
xops[12] = gen_label_rtx (); /* end label */
/* xops[13] * Temporary used */
xops[14] = GEN_INT (0xff);
xops[15] = GEN_INT (0xff00);
xops[16] = GEN_INT (0xff0000);
xops[17] = GEN_INT (0xff000000);
/* Loop to check 1..3 bytes for null to get an aligned pointer. */
/* Is there a known alignment and is it less than 4? */
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) < 4)
{
/* Is there a known alignment and is it not 2? */
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
{
xops[6] = gen_label_rtx (); /* Label when aligned to 3-byte */
xops[7] = gen_label_rtx (); /* Label when aligned to 2-byte */
/* Leave just the 3 lower bits.
If this is a q-register, then the high part is used later
therefore use andl rather than andb. */
output_asm_insn (AS2 (and%L1,%4,%1), xops);
/* Is aligned to 4-byte address when zero */
output_asm_insn (AS1 (je,%l8), xops);
/* Side-effect even Parity when %eax == 3 */
output_asm_insn (AS1 (jp,%6), xops);
/* Is it aligned to 2 bytes ? */
if (QI_REG_P (xops[1]))
output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
else
output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
output_asm_insn (AS1 (je,%7), xops);
}
else
{
/* Since the alignment is 2, we have to check 2 or 0 bytes;
check if is aligned to 4 - byte. */
output_asm_insn (AS2 (and%L1,%3,%1), xops);
/* Is aligned to 4-byte address when zero */
output_asm_insn (AS1 (je,%l8), xops);
}
xops[13] = gen_rtx_MEM (QImode, xops[0]);
/* Now compare the bytes; compare with the high part of a q-reg
gives shorter code. */
if (QI_REG_P (xops[1]))
{
/* Compare the first n unaligned byte on a byte per byte basis. */
output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
/* When zero we reached the end. */
output_asm_insn (AS1 (je,%l12), xops);
/* Increment the address. */
output_asm_insn (AS1 (inc%L0,%0), xops);
/* Not needed with an alignment of 2 */
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
{
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
CODE_LABEL_NUMBER (xops[7]));
output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
CODE_LABEL_NUMBER (xops[6]));
}
output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
}
else
{
output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
/* Not needed with an alignment of 2 */
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
{
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
CODE_LABEL_NUMBER (xops[7]));
output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
CODE_LABEL_NUMBER (xops[6]));
}
output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
}
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
}
/* Generate loop to check 4 bytes at a time. It is not a good idea to
align this loop. It gives only huge programs, but does not help to
speed up. */
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[8]));
xops[13] = gen_rtx_MEM (SImode, xops[0]);
output_asm_insn (AS2 (mov%L1,%13,%1), xops);
if (QI_REG_P (xops[1]))
{
/* On i586 it is faster to combine the hi- and lo- part as
a kind of lookahead. If anding both yields zero, then one
of both *could* be zero, otherwise none of both is zero;
this saves one instruction, on i486 this is slower
tested with P-90, i486DX2-66, AMD486DX2-66 */
if (TARGET_PENTIUM)
{
output_asm_insn (AS2 (test%B1,%h1,%b1), xops);
output_asm_insn (AS1 (jne,%l9), xops);
}
/* Check first byte. */
output_asm_insn (AS2 (test%B1,%b1,%b1), xops);
output_asm_insn (AS1 (je,%l12), xops);
/* Check second byte. */
output_asm_insn (AS2 (test%B1,%h1,%h1), xops);
output_asm_insn (AS1 (je,%l11), xops);
if (TARGET_PENTIUM)
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
CODE_LABEL_NUMBER (xops[9]));
}
else
{
/* Check first byte. */
output_asm_insn (AS2 (test%L1,%14,%1), xops);
output_asm_insn (AS1 (je,%l12), xops);
/* Check second byte. */
output_asm_insn (AS2 (test%L1,%15,%1), xops);
output_asm_insn (AS1 (je,%l11), xops);
}
/* Check third byte. */
output_asm_insn (AS2 (test%L1,%16,%1), xops);
output_asm_insn (AS1 (je,%l10), xops);
/* Check fourth byte and increment address. */
output_asm_insn (AS2 (add%L0,%5,%0), xops);
output_asm_insn (AS2 (test%L1,%17,%1), xops);
output_asm_insn (AS1 (jne,%l8), xops);
/* Now generate fixups when the compare stops within a 4-byte word. */
output_asm_insn (AS2 (sub%L0,%4,%0), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[10]));
output_asm_insn (AS1 (inc%L0,%0), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[11]));
output_asm_insn (AS1 (inc%L0,%0), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[12]));
return "";
}
char *
output_fp_conditional_move (which_alternative, operands)
int which_alternative;
rtx operands[];
{
enum rtx_code code = GET_CODE (operands[1]);
/* This should never happen. */
if (!(cc_prev_status.flags & CC_IN_80387)
&& (code == GT || code == LE || code == GE || code == LT))
abort ();
switch (which_alternative)
{
case 0:
/* r <- cond ? arg : r */
output_asm_insn (AS2 (fcmov%F1,%2,%0), operands);
break;
case 1:
/* r <- cond ? r : arg */
output_asm_insn (AS2 (fcmov%f1,%3,%0), operands);
break;
default:
abort ();
}
return "";
}
char *
output_int_conditional_move (which_alternative, operands)
int which_alternative;
rtx operands[];
{
enum rtx_code code = GET_CODE (operands[1]);
/* This is very tricky. We have to do it right. For a code segement
like:
int foo, bar;
....
foo = foo - x;
if (foo >= 0)
bar = y;
final_scan_insn () may delete the insn which sets CC. We have to
tell final_scan_insn () if it should be reinserted. When CODE is
GT or LE, we have to check the CC_NO_OVERFLOW bit and return
NULL_PTR to tell final to reinsert the test insn because the
conditional move cannot be handled properly without it. */
if ((code == GT || code == LE)
&& (cc_prev_status.flags & CC_NO_OVERFLOW))
return NULL_PTR;
switch (which_alternative)
{
case 0:
/* r <- cond ? arg : r */
output_asm_insn (AS2 (cmov%C1,%2,%0), operands);
break;
case 1:
/* r <- cond ? r : arg */
output_asm_insn (AS2 (cmov%c1,%3,%0), operands);
break;
default:
abort ();
}
return "";
}
int
x86_adjust_cost (insn, link, dep_insn, cost)
rtx insn, link, dep_insn;
int cost;
{
rtx next_inst;
if (GET_CODE (dep_insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
return 0;
if (GET_CODE (dep_insn) == INSN
&& GET_CODE (PATTERN (dep_insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG
&& GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SET
&& !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)),
SET_SRC (PATTERN (insn))))
return 0; /* ??? */
switch (ix86_cpu)
{
case PROCESSOR_PENTIUM:
if (cost != 0 && is_fp_insn (insn) && is_fp_insn (dep_insn)
&& !is_fp_dest (dep_insn))
return 0;
if (agi_dependent (insn, dep_insn))
return cost ? cost + 1 : 2;
if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SET
&& SET_DEST (PATTERN (insn)) == cc0_rtx
&& (next_inst = next_nonnote_insn (insn))
&& GET_CODE (next_inst) == JUMP_INSN)
/* compare probably paired with jump */
return 0;
/* Stores stalls one cycle longer than other insns. */
if (is_fp_insn (insn) && cost && is_fp_store (dep_insn))
cost++;
break;
case PROCESSOR_K6:
default:
if (!is_fp_dest (dep_insn))
{
if(!agi_dependent (insn, dep_insn))
return 0;
if (TARGET_486)
return 2;
}
else
if (is_fp_store (insn) && is_fp_insn (dep_insn)
&& NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn))
&& NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))
&& (GET_CODE (NEXT_INSN (insn)) == INSN)
&& (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN)
&& (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE)
&& (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))))
== NOTE_INSN_LOOP_END))
return 3;
break;
}
return cost;
}
/* Output assembly code for a left shift.
Always use "sal" when shifting a memory operand or for a non constant
shift count.
When optimizing for size, we know that src == dest, and we should always
use "sal". If src != dest, then copy src to dest and use "sal".
Pentium and PPro (speed):
When src == dest, use "add" for a shift counts of one, else use
"sal". If we modeled Pentium AGI stalls and U/V pipelining better we
would want to generate lea for some shifts on the Pentium.
When src != dest, use "lea" for small shift counts. Otherwise,
copy src to dest and use the normal shifting code. Exception for
TARGET_DOUBLE_WITH_ADD. */
char *
output_ashl (insn, operands)
rtx insn, *operands;
{
/* Handle case where srcreg != dstreg. */
if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1]))
{
if (TARGET_DOUBLE_WITH_ADD && INTVAL (operands[2]) == 1)
switch (GET_MODE (operands[0]))
{
case SImode:
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
return AS2 (add%L0,%1,%0);
case HImode:
output_asm_insn (AS2 (mov%L0,%k1,%k0), operands);
if (i386_cc_probably_useless_p (insn))
{
CC_STATUS_INIT;
return AS2 (add%L0,%k1,%k0);
}
return AS2 (add%W0,%k1,%k0);
case QImode:
output_asm_insn (AS2 (mov%B0,%1,%0), operands);
return AS2 (add%B0,%1,%0);
default:
abort ();
}
else
{
CC_STATUS_INIT;
/* This should be extremely rare (impossible?). We can not encode a
shift of the stack pointer using an lea instruction. So copy the
stack pointer into the destination register and use an lea. */
if (operands[1] == stack_pointer_rtx)
{
output_asm_insn (AS2 (mov%L0,%k1,%k0), operands);
operands[1] = operands[0];
}
/* For shifts up to and including 3 bits, use lea. */
operands[1] = gen_rtx_MULT (SImode,
gen_rtx_REG (SImode, REGNO (operands[1])),
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%k0);
}
}
/* Source and destination match. */
/* Handle variable shift. */
if (REG_P (operands[2]))
switch (GET_MODE (operands[0]))
{
case SImode:
return AS2 (sal%L0,%b2,%0);
case HImode:
if (REG_P (operands[0]) && i386_cc_probably_useless_p (insn))
{
CC_STATUS_INIT;
return AS2 (sal%L0,%b2,%k0);
}
else
return AS2 (sal%W0,%b2,%0);
case QImode:
return AS2 (sal%B0,%b2,%0);
default:
abort ();
}
/* Always perform shift by 1 using an add instruction. */
if (REG_P (operands[0]) && operands[2] == const1_rtx)
switch (GET_MODE (operands[0]))
{
case SImode:
return AS2 (add%L0,%0,%0);
case HImode:
if (REG_P (operands[0]) && i386_cc_probably_useless_p (insn))
{
CC_STATUS_INIT;
return AS2 (add%L0,%k0,%k0);
}
else
return AS2 (add%W0,%0,%0);
case QImode:
return AS2 (add%B0,%0,%0);
default:
abort ();
}
#if 0
/* ??? Currently disabled. Because our model of Pentium is far from being
exact, this change will need some benchmarking. */
/* Shift reg by 2 or 3 use an lea instruction for Pentium if this is
insn is expected to issue into the V pipe (the insn's mode will be
TImode for a U pipe, and !TImode for a V pipe instruction). */
if (! optimize_size
&& REG_P (operands[0])
&& GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) <= 3
&& (int)ix86_cpu == (int)PROCESSOR_PENTIUM
&& GET_MODE (insn) != TImode)
{
CC_STATUS_INIT;
operands[1] = gen_rtx_MULT (SImode, gen_rtx_REG (SImode, REGNO (operands[1])),
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%0);
}
#endif
/* Otherwise use a shift instruction. */
switch (GET_MODE (operands[0]))
{
case SImode:
return AS2 (sal%L0,%2,%0);
case HImode:
if (REG_P (operands[0]) && i386_cc_probably_useless_p (insn))
{
CC_STATUS_INIT;
return AS2 (sal%L0,%2,%k0);
}
else
return AS2 (sal%W0,%2,%0);
case QImode:
return AS2 (sal%B0,%2,%0);
default:
abort ();
}
}
/* Given the memory address ADDR, calculate the length of the address or
the length of just the displacement (controlled by DISP_LENGTH).
The length returned does not include the one-byte modrm, opcode,
or prefix. */
int
memory_address_info (addr, disp_length)
rtx addr;
int disp_length;
{
rtx base, index, disp, scale;
rtx op0, op1;
int len;
if (GET_CODE (addr) == PRE_DEC
|| GET_CODE (addr) == POST_INC)
return 0;
/* Register Indirect. */
if (register_operand (addr, Pmode))
{
/* Special cases: ebp and esp need the two-byte modrm form.
We change [ESI] to [ESI+0] on the K6 when not optimizing
for size. */
if (addr == stack_pointer_rtx
|| addr == arg_pointer_rtx
|| addr == frame_pointer_rtx
|| (REGNO_REG_CLASS (REGNO (addr)) == SIREG
&& ix86_cpu == PROCESSOR_K6 && !optimize_size))
return 1;
else
return 0;
}
/* Direct Addressing. */
if (CONSTANT_P (addr))
return 4;
index = base = disp = scale = NULL_RTX;
op0 = XEXP (addr, 0);
op1 = XEXP (addr, 1);
if (GET_CODE (addr) == PLUS)
{
if (register_operand (op0, Pmode))
{
if (register_operand (op1, Pmode))
index = op0, base = op1;
else
base = op0, disp = op1;
}
else if (GET_CODE (op0) == MULT)
{
index = XEXP (op0, 0);
scale = XEXP (op0, 1);
if (register_operand (op1, Pmode))
base = op1;
else
disp = op1;
}
else if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
{
index = XEXP (XEXP (op0, 0), 0);
scale = XEXP (XEXP (op0, 0), 1);
base = XEXP (op0, 1);
disp = op1;
}
else if (GET_CODE (op0) == PLUS)
{
index = XEXP (op0, 0);
base = XEXP (op0, 1);
disp = op1;
}
else
abort ();
}
else if (GET_CODE (addr) == MULT
/* We're called for lea too, which implements ashift on occasion. */
|| GET_CODE (addr) == ASHIFT)
{
index = XEXP (addr, 0);
scale = XEXP (addr, 1);
}
else
abort ();
/* Allow arg pointer and stack pointer as index if there is not scaling */
if (base && index && !scale
&& (index == stack_pointer_rtx
|| index == arg_pointer_rtx
|| index == frame_pointer_rtx))
{
rtx tmp = base;
base = index;
index = tmp;
}
/* Special case: ebp cannot be encoded as a base without a displacement. */
if (base == frame_pointer_rtx && !disp)
disp = const0_rtx;
/* Scaling can not be encoded without base or displacement.
Except for scale == 1 where we can encode reg + reg instead of reg * 2. */
if (!base && index
&& (!scale || GET_CODE (scale) != CONST_INT || (INTVAL (scale) != 1)))
disp = const0_rtx;
/* Find the length of the displacement constant. */
len = 0;
if (disp)
{
if (GET_CODE (disp) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (disp), 'K'))
len = 1;
else
len = 4;
}
/* An index requires the two-byte modrm form. Not important
if we are computing just length of the displacement. */
if (index && ! disp_length)
len += 1;
return len;
}