freebsd-dev/sys/dev/bge/if_bge.c
Gleb Smirnoff d375e52490 - All bge(4) supported hardware is known to support RX/TX checksum offloading,
except for BGE_CHIPID_BCM5700_B0, which is buggy.
- All bge(4) supported hardware, has a bug that produces incorrect checksums
  on Ethernet runts. However, in case of a transmitted packet, the latter can
  be padded with zeroes, and the checksum would be correct. (Probably chip
  includes the pad data into checksum). In case of receive, we just don't
  trust checksum data in received runts.

Obtained from:	NetBSD (jonathan) via Mihail Balikov
2005-12-22 15:14:42 +00:00

3792 lines
100 KiB
C

/*-
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2001
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
*
* The Broadcom BCM5700 is based on technology originally developed by
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
* MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
* frames, highly configurable RX filtering, and 16 RX and TX queues
* (which, along with RX filter rules, can be used for QOS applications).
* Other features, such as TCP segmentation, may be available as part
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
* firmware images can be stored in hardware and need not be compiled
* into the driver.
*
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
* function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
*
* The BCM5701 is a single-chip solution incorporating both the BCM5700
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
* does not support external SSRAM.
*
* Broadcom also produces a variation of the BCM5700 under the "Altima"
* brand name, which is functionally similar but lacks PCI-X support.
*
* Without external SSRAM, you can only have at most 4 TX rings,
* and the use of the mini RX ring is disabled. This seems to imply
* that these features are simply not available on the BCM5701. As a
* result, this driver does not implement any support for the mini RX
* ring.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <machine/clock.h> /* for DELAY */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/bge/if_bgereg.h>
#include "opt_bge.h"
#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
MODULE_DEPEND(bge, pci, 1, 1, 1);
MODULE_DEPEND(bge, ether, 1, 1, 1);
MODULE_DEPEND(bge, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Various supported device vendors/types and their names. Note: the
* spec seems to indicate that the hardware still has Alteon's vendor
* ID burned into it, though it will always be overriden by the vendor
* ID in the EEPROM. Just to be safe, we cover all possibilities.
*/
#define BGE_DEVDESC_MAX 64 /* Maximum device description length */
static struct bge_type bge_devs[] = {
{ ALT_VENDORID, ALT_DEVICEID_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet" },
{ ALT_VENDORID, ALT_DEVICEID_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702,
"Broadcom BCM5702 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X,
"Broadcom BCM5702X Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703,
"Broadcom BCM5703 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X,
"Broadcom BCM5703X Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704C,
"Broadcom BCM5704C Dual Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S,
"Broadcom BCM5704S Dual Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705,
"Broadcom BCM5705 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705K,
"Broadcom BCM5705K Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M,
"Broadcom BCM5705M Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT,
"Broadcom BCM5705M Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5714C,
"Broadcom BCM5714C Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5721,
"Broadcom BCM5721 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750,
"Broadcom BCM5750 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750M,
"Broadcom BCM5750M Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751,
"Broadcom BCM5751 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751M,
"Broadcom BCM5751M Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5752,
"Broadcom BCM5752 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5782,
"Broadcom BCM5782 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5788,
"Broadcom BCM5788 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5789,
"Broadcom BCM5789 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901,
"Broadcom BCM5901 Fast Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2,
"Broadcom BCM5901A2 Fast Ethernet" },
{ SK_VENDORID, SK_DEVICEID_ALTIMA,
"SysKonnect Gigabit Ethernet" },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
"Altima AC1000 Gigabit Ethernet" },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002,
"Altima AC1002 Gigabit Ethernet" },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100,
"Altima AC9100 Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int bge_probe (device_t);
static int bge_attach (device_t);
static int bge_detach (device_t);
static int bge_suspend (device_t);
static int bge_resume (device_t);
static void bge_release_resources
(struct bge_softc *);
static void bge_dma_map_addr (void *, bus_dma_segment_t *, int, int);
static int bge_dma_alloc (device_t);
static void bge_dma_free (struct bge_softc *);
static void bge_txeof (struct bge_softc *);
static void bge_rxeof (struct bge_softc *);
static void bge_tick_locked (struct bge_softc *);
static void bge_tick (void *);
static void bge_stats_update (struct bge_softc *);
static void bge_stats_update_regs
(struct bge_softc *);
static int bge_encap (struct bge_softc *, struct mbuf *,
u_int32_t *);
static void bge_intr (void *);
static void bge_start_locked (struct ifnet *);
static void bge_start (struct ifnet *);
static int bge_ioctl (struct ifnet *, u_long, caddr_t);
static void bge_init_locked (struct bge_softc *);
static void bge_init (void *);
static void bge_stop (struct bge_softc *);
static void bge_watchdog (struct ifnet *);
static void bge_shutdown (device_t);
static int bge_ifmedia_upd (struct ifnet *);
static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *);
static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int);
static void bge_setmulti (struct bge_softc *);
static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *);
static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *);
static int bge_init_rx_ring_std (struct bge_softc *);
static void bge_free_rx_ring_std (struct bge_softc *);
static int bge_init_rx_ring_jumbo (struct bge_softc *);
static void bge_free_rx_ring_jumbo (struct bge_softc *);
static void bge_free_tx_ring (struct bge_softc *);
static int bge_init_tx_ring (struct bge_softc *);
static int bge_chipinit (struct bge_softc *);
static int bge_blockinit (struct bge_softc *);
#ifdef notdef
static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int);
static void bge_vpd_read (struct bge_softc *);
#endif
static u_int32_t bge_readmem_ind
(struct bge_softc *, int);
static void bge_writemem_ind (struct bge_softc *, int, int);
#ifdef notdef
static u_int32_t bge_readreg_ind
(struct bge_softc *, int);
#endif
static void bge_writereg_ind (struct bge_softc *, int, int);
static int bge_miibus_readreg (device_t, int, int);
static int bge_miibus_writereg (device_t, int, int, int);
static void bge_miibus_statchg (device_t);
#ifdef DEVICE_POLLING
static void bge_poll (struct ifnet *ifp, enum poll_cmd cmd,
int count);
static void bge_poll_locked (struct ifnet *ifp, enum poll_cmd cmd,
int count);
#endif
static void bge_reset (struct bge_softc *);
static void bge_link_upd (struct bge_softc *);
static device_method_t bge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bge_probe),
DEVMETHOD(device_attach, bge_attach),
DEVMETHOD(device_detach, bge_detach),
DEVMETHOD(device_shutdown, bge_shutdown),
DEVMETHOD(device_suspend, bge_suspend),
DEVMETHOD(device_resume, bge_resume),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, bge_miibus_readreg),
DEVMETHOD(miibus_writereg, bge_miibus_writereg),
DEVMETHOD(miibus_statchg, bge_miibus_statchg),
{ 0, 0 }
};
static driver_t bge_driver = {
"bge",
bge_methods,
sizeof(struct bge_softc)
};
static devclass_t bge_devclass;
DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
static u_int32_t
bge_readmem_ind(sc, off)
struct bge_softc *sc;
int off;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
}
static void
bge_writemem_ind(sc, off, val)
struct bge_softc *sc;
int off, val;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
return;
}
#ifdef notdef
static u_int32_t
bge_readreg_ind(sc, off)
struct bge_softc *sc;
int off;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
}
#endif
static void
bge_writereg_ind(sc, off, val)
struct bge_softc *sc;
int off, val;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
return;
}
/*
* Map a single buffer address.
*/
static void
bge_dma_map_addr(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
struct bge_dmamap_arg *ctx;
if (error)
return;
ctx = arg;
if (nseg > ctx->bge_maxsegs) {
ctx->bge_maxsegs = 0;
return;
}
ctx->bge_busaddr = segs->ds_addr;
return;
}
#ifdef notdef
static u_int8_t
bge_vpd_readbyte(sc, addr)
struct bge_softc *sc;
int addr;
{
int i;
device_t dev;
u_int32_t val;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
break;
}
if (i == BGE_TIMEOUT) {
printf("bge%d: VPD read timed out\n", sc->bge_unit);
return(0);
}
val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
return((val >> ((addr % 4) * 8)) & 0xFF);
}
static void
bge_vpd_read_res(sc, res, addr)
struct bge_softc *sc;
struct vpd_res *res;
int addr;
{
int i;
u_int8_t *ptr;
ptr = (u_int8_t *)res;
for (i = 0; i < sizeof(struct vpd_res); i++)
ptr[i] = bge_vpd_readbyte(sc, i + addr);
return;
}
static void
bge_vpd_read(sc)
struct bge_softc *sc;
{
int pos = 0, i;
struct vpd_res res;
if (sc->bge_vpd_prodname != NULL)
free(sc->bge_vpd_prodname, M_DEVBUF);
if (sc->bge_vpd_readonly != NULL)
free(sc->bge_vpd_readonly, M_DEVBUF);
sc->bge_vpd_prodname = NULL;
sc->bge_vpd_readonly = NULL;
bge_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_ID) {
printf("bge%d: bad VPD resource id: expected %x got %x\n",
sc->bge_unit, VPD_RES_ID, res.vr_id);
return;
}
pos += sizeof(res);
sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
for (i = 0; i < res.vr_len; i++)
sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
sc->bge_vpd_prodname[i] = '\0';
pos += i;
bge_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_READ) {
printf("bge%d: bad VPD resource id: expected %x got %x\n",
sc->bge_unit, VPD_RES_READ, res.vr_id);
return;
}
pos += sizeof(res);
sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
for (i = 0; i < res.vr_len + 1; i++)
sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
return;
}
#endif
/*
* Read a byte of data stored in the EEPROM at address 'addr.' The
* BCM570x supports both the traditional bitbang interface and an
* auto access interface for reading the EEPROM. We use the auto
* access method.
*/
static u_int8_t
bge_eeprom_getbyte(sc, addr, dest)
struct bge_softc *sc;
int addr;
u_int8_t *dest;
{
int i;
u_int32_t byte = 0;
/*
* Enable use of auto EEPROM access so we can avoid
* having to use the bitbang method.
*/
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
/* Reset the EEPROM, load the clock period. */
CSR_WRITE_4(sc, BGE_EE_ADDR,
BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
DELAY(20);
/* Issue the read EEPROM command. */
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
/* Wait for completion */
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
break;
}
if (i == BGE_TIMEOUT) {
printf("bge%d: eeprom read timed out\n", sc->bge_unit);
return(1);
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_EE_DATA);
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
return(0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int
bge_read_eeprom(sc, dest, off, cnt)
struct bge_softc *sc;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = bge_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
static int
bge_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct bge_softc *sc;
u_int32_t val, autopoll;
int i;
sc = device_get_softc(dev);
/*
* Broadcom's own driver always assumes the internal
* PHY is at GMII address 1. On some chips, the PHY responds
* to accesses at all addresses, which could cause us to
* bogusly attach the PHY 32 times at probe type. Always
* restricting the lookup to address 1 is simpler than
* trying to figure out which chips revisions should be
* special-cased.
*/
if (phy != 1)
return(0);
/* Reading with autopolling on may trigger PCI errors */
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(40);
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg));
for (i = 0; i < BGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, BGE_MI_COMM);
if (!(val & BGE_MICOMM_BUSY))
break;
}
if (i == BGE_TIMEOUT) {
printf("bge%d: PHY read timed out\n", sc->bge_unit);
val = 0;
goto done;
}
val = CSR_READ_4(sc, BGE_MI_COMM);
done:
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(40);
}
if (val & BGE_MICOMM_READFAIL)
return(0);
return(val & 0xFFFF);
}
static int
bge_miibus_writereg(dev, phy, reg, val)
device_t dev;
int phy, reg, val;
{
struct bge_softc *sc;
u_int32_t autopoll;
int i;
sc = device_get_softc(dev);
/* Reading with autopolling on may trigger PCI errors */
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(40);
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
for (i = 0; i < BGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
break;
}
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(40);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: PHY read timed out\n", sc->bge_unit);
return(0);
}
return(0);
}
static void
bge_miibus_statchg(dev)
device_t dev;
{
struct bge_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->bge_miibus);
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
}
return;
}
/*
* Intialize a standard receive ring descriptor.
*/
static int
bge_newbuf_std(sc, i, m)
struct bge_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct bge_rx_bd *r;
struct bge_dmamap_arg ctx;
int error;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
if (!sc->bge_rx_alignment_bug)
m_adj(m_new, ETHER_ALIGN);
sc->bge_cdata.bge_rx_std_chain[i] = m_new;
r = &sc->bge_ldata.bge_rx_std_ring[i];
ctx.bge_maxsegs = 1;
ctx.sc = sc;
error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
if (error || ctx.bge_maxsegs == 0) {
if (m == NULL) {
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
m_freem(m_new);
}
return(ENOMEM);
}
r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_busaddr);
r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_busaddr);
r->bge_flags = BGE_RXBDFLAG_END;
r->bge_len = m_new->m_len;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i],
BUS_DMASYNC_PREREAD);
return(0);
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
bge_newbuf_jumbo(sc, i, m)
struct bge_softc *sc;
int i;
struct mbuf *m;
{
bus_dma_segment_t segs[BGE_NSEG_JUMBO];
struct bge_extrx_bd *r;
struct mbuf *m_new = NULL;
int nsegs;
int error;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
m_cljget(m_new, M_DONTWAIT, MJUM9BYTES);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
if (!sc->bge_rx_alignment_bug)
m_adj(m_new, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i],
m_new, segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
if (m == NULL)
m_freem(m_new);
return(error);
}
KASSERT(nsegs == BGE_NSEG_JUMBO, ("%s: %d segments", __func__, nsegs));
sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
/*
* Fill in the extended RX buffer descriptor.
*/
r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
r->bge_len0 = segs[0].ds_len;
r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
r->bge_len1 = segs[1].ds_len;
r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
r->bge_len2 = segs[2].ds_len;
r->bge_len3 = 0;
r->bge_flags = BGE_RXBDFLAG_JUMBO_RING|BGE_RXBDFLAG_END;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_jumbo_dmamap[i],
BUS_DMASYNC_PREREAD);
return (0);
}
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int
bge_init_rx_ring_std(sc)
struct bge_softc *sc;
{
int i;
for (i = 0; i < BGE_SSLOTS; i++) {
if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->bge_std = i - 1;
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
return(0);
}
static void
bge_free_rx_ring_std(sc)
struct bge_softc *sc;
{
int i;
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i]);
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
}
bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
sizeof(struct bge_rx_bd));
}
return;
}
static int
bge_init_rx_ring_jumbo(sc)
struct bge_softc *sc;
{
struct bge_rcb *rcb;
int i;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->bge_jumbo = i - 1;
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
BGE_RCB_FLAG_USE_EXT_RX_BD);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
return(0);
}
static void
bge_free_rx_ring_jumbo(sc)
struct bge_softc *sc;
{
int i;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
}
bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
sizeof(struct bge_extrx_bd));
}
return;
}
static void
bge_free_tx_ring(sc)
struct bge_softc *sc;
{
int i;
if (sc->bge_ldata.bge_tx_ring == NULL)
return;
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_tx_dmamap[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_tx_dmamap[i]);
m_freem(sc->bge_cdata.bge_tx_chain[i]);
sc->bge_cdata.bge_tx_chain[i] = NULL;
}
bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
sizeof(struct bge_tx_bd));
}
return;
}
static int
bge_init_tx_ring(sc)
struct bge_softc *sc;
{
sc->bge_txcnt = 0;
sc->bge_tx_saved_considx = 0;
/* Initialize transmit producer index for host-memory send ring. */
sc->bge_tx_prodidx = 0;
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
/* 5700 b2 errata */
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
/* NIC-memory send ring not used; initialize to zero. */
CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
/* 5700 b2 errata */
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
return(0);
}
static void
bge_setmulti(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t hashes[4] = { 0, 0, 0, 0 };
int h, i;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
return;
}
/* First, zot all the existing filters. */
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
/* Now program new ones. */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
}
IF_ADDR_UNLOCK(ifp);
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
return;
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int
bge_chipinit(sc)
struct bge_softc *sc;
{
int i;
u_int32_t dma_rw_ctl;
/* Set endian type before we access any non-PCI registers. */
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
/*
* Check the 'ROM failed' bit on the RX CPU to see if
* self-tests passed.
*/
if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
printf("bge%d: RX CPU self-diagnostics failed!\n",
sc->bge_unit);
return(ENODEV);
}
/* Clear the MAC control register */
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
/*
* Clear the MAC statistics block in the NIC's
* internal memory.
*/
for (i = BGE_STATS_BLOCK;
i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(sc, i, 0);
for (i = BGE_STATUS_BLOCK;
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(sc, i, 0);
/* Set up the PCI DMA control register. */
if (sc->bge_pcie) {
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
(0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
(0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
} else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
BGE_PCISTATE_PCI_BUSMODE) {
/* Conventional PCI bus */
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
(0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
(0x0F);
} else {
/* PCI-X bus */
/*
* The 5704 uses a different encoding of read/write
* watermarks.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
else
dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
(0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
(0x0F);
/*
* 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
* for hardware bugs.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
sc->bge_asicrev == BGE_ASICREV_BCM5704) {
u_int32_t tmp;
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
if (tmp == 0x6 || tmp == 0x7)
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
}
}
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
sc->bge_asicrev == BGE_ASICREV_BCM5750)
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
/*
* Set up general mode register.
*/
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
/*
* Disable memory write invalidate. Apparently it is not supported
* properly by these devices.
*/
PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
#ifdef __brokenalpha__
/*
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
BGE_PCI_READ_BNDRY_1024BYTES, 4);
#endif
/* Set the timer prescaler (always 66Mhz) */
CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
return(0);
}
static int
bge_blockinit(sc)
struct bge_softc *sc;
{
struct bge_rcb *rcb;
bus_size_t vrcb;
bge_hostaddr taddr;
int i;
/*
* Initialize the memory window pointer register so that
* we can access the first 32K of internal NIC RAM. This will
* allow us to set up the TX send ring RCBs and the RX return
* ring RCBs, plus other things which live in NIC memory.
*/
CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
/* Note: the BCM5704 has a smaller mbuf space than other chips. */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
/* Configure mbuf memory pool */
if (sc->bge_extram) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
BGE_EXT_SSRAM);
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
else
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
BGE_BUFFPOOL_1);
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
else
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
}
/* Configure DMA resource pool */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
BGE_DMA_DESCRIPTORS);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
}
/* Configure mbuf pool watermarks */
if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
sc->bge_asicrev == BGE_ASICREV_BCM5750) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
}
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
/* Configure DMA resource watermarks */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
/* Enable buffer manager */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
CSR_WRITE_4(sc, BGE_BMAN_MODE,
BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
/* Poll for buffer manager start indication */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: buffer manager failed to start\n",
sc->bge_unit);
return(ENXIO);
}
}
/* Enable flow-through queues */
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
/* Wait until queue initialization is complete */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: flow-through queue init failed\n",
sc->bge_unit);
return(ENXIO);
}
/* Initialize the standard RX ring control block */
rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
rcb->bge_hostaddr.bge_addr_lo =
BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
rcb->bge_hostaddr.bge_addr_hi =
BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
sc->bge_asicrev == BGE_ASICREV_BCM5750)
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
else
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
if (sc->bge_extram)
rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
else
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
/*
* Initialize the jumbo RX ring control block
* We set the 'ring disabled' bit in the flags
* field until we're actually ready to start
* using this ring (i.e. once we set the MTU
* high enough to require it).
*/
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
rcb->bge_hostaddr.bge_addr_lo =
BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
rcb->bge_hostaddr.bge_addr_hi =
BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map,
BUS_DMASYNC_PREREAD);
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
BGE_RCB_FLAG_USE_EXT_RX_BD|BGE_RCB_FLAG_RING_DISABLED);
if (sc->bge_extram)
rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
else
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
/* Set up dummy disabled mini ring RCB */
rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
}
/*
* Set the BD ring replentish thresholds. The recommended
* values are 1/8th the number of descriptors allocated to
* each ring.
*/
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
/*
* Disable all unused send rings by setting the 'ring disabled'
* bit in the flags field of all the TX send ring control blocks.
* These are located in NIC memory.
*/
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
vrcb += sizeof(struct bge_rcb);
}
/* Configure TX RCB 0 (we use only the first ring) */
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
RCB_WRITE_4(sc, vrcb, bge_nicaddr,
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
/* Disable all unused RX return rings */
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
(i * (sizeof(u_int64_t))), 0);
vrcb += sizeof(struct bge_rcb);
}
/* Initialize RX ring indexes */
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
/*
* Set up RX return ring 0
* Note that the NIC address for RX return rings is 0x00000000.
* The return rings live entirely within the host, so the
* nicaddr field in the RCB isn't used.
*/
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
/* Set random backoff seed for TX */
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
BGE_TX_BACKOFF_SEED_MASK);
/* Set inter-packet gap */
CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
/*
* Specify which ring to use for packets that don't match
* any RX rules.
*/
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
/*
* Configure number of RX lists. One interrupt distribution
* list, sixteen active lists, one bad frames class.
*/
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
/* Inialize RX list placement stats mask. */
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
/* Disable host coalescing until we get it set up */
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
/* Poll to make sure it's shut down. */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: host coalescing engine failed to idle\n",
sc->bge_unit);
return(ENXIO);
}
/* Set up host coalescing defaults */
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
}
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
/* Set up address of statistics block */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
}
/* Set up address of status block */
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
/* Turn on host coalescing state machine */
CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
/* Turn on RX BD completion state machine and enable attentions */
CSR_WRITE_4(sc, BGE_RBDC_MODE,
BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
/* Turn on RX list placement state machine */
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
/* Turn on RX list selector state machine. */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
/* Turn on DMA, clear stats */
CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
(sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
/* Set misc. local control, enable interrupts on attentions */
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
#ifdef notdef
/* Assert GPIO pins for PHY reset */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
#endif
/* Turn on DMA completion state machine */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
/* Turn on write DMA state machine */
CSR_WRITE_4(sc, BGE_WDMA_MODE,
BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
/* Turn on read DMA state machine */
CSR_WRITE_4(sc, BGE_RDMA_MODE,
BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
/* Turn on RX data completion state machine */
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
/* Turn on RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
/* Turn on RX data and RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
/* Turn on Mbuf cluster free state machine */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
/* Turn on send BD completion state machine */
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/* Turn on send data completion state machine */
CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
/* Turn on send data initiator state machine */
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
/* Turn on send BD initiator state machine */
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
/* Turn on send BD selector state machine */
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
/* ack/clear link change events */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
BGE_MACSTAT_LINK_CHANGED);
CSR_WRITE_4(sc, BGE_MI_STS, 0);
/* Enable PHY auto polling (for MII/GMII only) */
if (sc->bge_tbi) {
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
} else {
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
}
/* Enable link state change attentions. */
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
return(0);
}
/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match. Note
* that since the Broadcom controller contains VPD support, we
* can get the device name string from the controller itself instead
* of the compiled-in string. This is a little slow, but it guarantees
* we'll always announce the right product name.
*/
static int
bge_probe(dev)
device_t dev;
{
struct bge_type *t;
struct bge_softc *sc;
char *descbuf;
t = bge_devs;
sc = device_get_softc(dev);
bzero(sc, sizeof(struct bge_softc));
sc->bge_unit = device_get_unit(dev);
sc->bge_dev = dev;
while(t->bge_name != NULL) {
if ((pci_get_vendor(dev) == t->bge_vid) &&
(pci_get_device(dev) == t->bge_did)) {
#ifdef notdef
bge_vpd_read(sc);
device_set_desc(dev, sc->bge_vpd_prodname);
#endif
descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
if (descbuf == NULL)
return(ENOMEM);
snprintf(descbuf, BGE_DEVDESC_MAX,
"%s, ASIC rev. %#04x", t->bge_name,
pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
device_set_desc_copy(dev, descbuf);
if (pci_get_subvendor(dev) == DELL_VENDORID)
sc->bge_no_3_led = 1;
free(descbuf, M_TEMP);
return(0);
}
t++;
}
return(ENXIO);
}
static void
bge_dma_free(sc)
struct bge_softc *sc;
{
int i;
/* Destroy DMA maps for RX buffers */
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_std_dmamap[i])
bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_std_dmamap[i]);
}
/* Destroy DMA maps for jumbo RX buffers */
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
}
/* Destroy DMA maps for TX buffers */
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_dmamap[i])
bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_tx_dmamap[i]);
}
if (sc->bge_cdata.bge_mtag)
bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
/* Destroy standard RX ring */
if (sc->bge_cdata.bge_rx_std_ring_map)
bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map);
if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_ldata.bge_rx_std_ring,
sc->bge_cdata.bge_rx_std_ring_map);
if (sc->bge_cdata.bge_rx_std_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
/* Destroy jumbo RX ring */
if (sc->bge_cdata.bge_rx_jumbo_ring_map)
bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map);
if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
sc->bge_ldata.bge_rx_jumbo_ring)
bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_ldata.bge_rx_jumbo_ring,
sc->bge_cdata.bge_rx_jumbo_ring_map);
if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
/* Destroy RX return ring */
if (sc->bge_cdata.bge_rx_return_ring_map)
bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_cdata.bge_rx_return_ring_map);
if (sc->bge_cdata.bge_rx_return_ring_map &&
sc->bge_ldata.bge_rx_return_ring)
bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_ldata.bge_rx_return_ring,
sc->bge_cdata.bge_rx_return_ring_map);
if (sc->bge_cdata.bge_rx_return_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
/* Destroy TX ring */
if (sc->bge_cdata.bge_tx_ring_map)
bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_cdata.bge_tx_ring_map);
if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_ldata.bge_tx_ring,
sc->bge_cdata.bge_tx_ring_map);
if (sc->bge_cdata.bge_tx_ring_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
/* Destroy status block */
if (sc->bge_cdata.bge_status_map)
bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map);
if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
bus_dmamem_free(sc->bge_cdata.bge_status_tag,
sc->bge_ldata.bge_status_block,
sc->bge_cdata.bge_status_map);
if (sc->bge_cdata.bge_status_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
/* Destroy statistics block */
if (sc->bge_cdata.bge_stats_map)
bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
sc->bge_cdata.bge_stats_map);
if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
sc->bge_ldata.bge_stats,
sc->bge_cdata.bge_stats_map);
if (sc->bge_cdata.bge_stats_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
/* Destroy the parent tag */
if (sc->bge_cdata.bge_parent_tag)
bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
return;
}
static int
bge_dma_alloc(dev)
device_t dev;
{
struct bge_softc *sc;
int i, error;
struct bge_dmamap_arg ctx;
sc = device_get_softc(dev);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
error = bus_dma_tag_create(NULL, /* parent */
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, BGE_NSEG_NEW, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->bge_cdata.bge_parent_tag);
if (error != 0) {
device_printf(dev, "could not allocate parent dma tag\n");
return (ENOMEM);
}
/*
* Create tag for RX mbufs.
*/
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES,
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Create DMA maps for RX buffers */
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
&sc->bge_cdata.bge_rx_std_dmamap[i]);
if (error) {
device_printf(dev, "can't create DMA map for RX\n");
return(ENOMEM);
}
}
/* Create DMA maps for TX buffers */
for (i = 0; i < BGE_TX_RING_CNT; i++) {
error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
&sc->bge_cdata.bge_tx_dmamap[i]);
if (error) {
device_printf(dev, "can't create DMA map for RX\n");
return(ENOMEM);
}
}
/* Create tag for standard RX ring */
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for standard RX ring */
error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
(void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
&sc->bge_cdata.bge_rx_std_ring_map);
if (error)
return (ENOMEM);
bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
/* Load the address of the standard RX ring */
ctx.bge_maxsegs = 1;
ctx.sc = sc;
error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
/*
* Create tag for jumbo mbufs.
* This is really a bit of a kludge. We allocate a special
* jumbo buffer pool which (thanks to the way our DMA
* memory allocation works) will consist of contiguous
* pages. This means that even though a jumbo buffer might
* be larger than a page size, we don't really need to
* map it into more than one DMA segment. However, the
* default mbuf tag will result in multi-segment mappings,
* so we have to create a special jumbo mbuf tag that
* lets us get away with mapping the jumbo buffers as
* a single segment. I think eventually the driver should
* be changed so that it uses ordinary mbufs and cluster
* buffers, i.e. jumbo frames can span multiple DMA
* descriptors. But that's a project for another day.
*/
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Create tag for jumbo RX ring */
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for jumbo RX ring */
error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
(void **)&sc->bge_ldata.bge_rx_jumbo_ring,
BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->bge_cdata.bge_rx_jumbo_ring_map);
if (error)
return (ENOMEM);
/* Load the address of the jumbo RX ring */
ctx.bge_maxsegs = 1;
ctx.sc = sc;
error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map,
sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
/* Create DMA maps for jumbo RX buffers */
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
if (error) {
device_printf(dev,
"can't create DMA map for RX\n");
return(ENOMEM);
}
}
}
/* Create tag for RX return ring */
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for RX return ring */
error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
(void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
&sc->bge_cdata.bge_rx_return_ring_map);
if (error)
return (ENOMEM);
bzero((char *)sc->bge_ldata.bge_rx_return_ring,
BGE_RX_RTN_RING_SZ(sc));
/* Load the address of the RX return ring */
ctx.bge_maxsegs = 1;
ctx.sc = sc;
error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_cdata.bge_rx_return_ring_map,
sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
/* Create tag for TX ring */
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
&sc->bge_cdata.bge_tx_ring_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for TX ring */
error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
(void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
&sc->bge_cdata.bge_tx_ring_map);
if (error)
return (ENOMEM);
bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
/* Load the address of the TX ring */
ctx.bge_maxsegs = 1;
ctx.sc = sc;
error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
/* Create tag for status block */
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
NULL, NULL, &sc->bge_cdata.bge_status_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for status block */
error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
(void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
&sc->bge_cdata.bge_status_map);
if (error)
return (ENOMEM);
bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
/* Load the address of the status block */
ctx.sc = sc;
ctx.bge_maxsegs = 1;
error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
/* Create tag for statistics block */
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
&sc->bge_cdata.bge_stats_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for statistics block */
error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
(void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
&sc->bge_cdata.bge_stats_map);
if (error)
return (ENOMEM);
bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
/* Load the address of the statstics block */
ctx.sc = sc;
ctx.bge_maxsegs = 1;
error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
if (error)
return (ENOMEM);
sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
return(0);
}
static int
bge_attach(dev)
device_t dev;
{
struct ifnet *ifp;
struct bge_softc *sc;
u_int32_t hwcfg = 0;
u_int32_t mac_tmp = 0;
u_char eaddr[6];
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->bge_dev = dev;
sc->bge_unit = unit;
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = BGE_PCI_BAR0;
sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE|PCI_RF_DENSE);
if (sc->bge_res == NULL) {
printf ("bge%d: couldn't map memory\n", unit);
error = ENXIO;
goto fail;
}
sc->bge_btag = rman_get_bustag(sc->bge_res);
sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
/* Allocate interrupt */
rid = 0;
sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->bge_irq == NULL) {
printf("bge%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
sc->bge_unit = unit;
BGE_LOCK_INIT(sc, device_get_nameunit(dev));
/* Save ASIC rev. */
sc->bge_chipid =
pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
BGE_PCIMISCCTL_ASICREV;
sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
/*
* Treat the 5714 and the 5752 like the 5750 until we have more info
* on this chip.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
sc->bge_asicrev == BGE_ASICREV_BCM5752)
sc->bge_asicrev = BGE_ASICREV_BCM5750;
/*
* XXX: Broadcom Linux driver. Not in specs or eratta.
* PCI-Express?
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
u_int32_t v;
v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
if (((v >> 8) & 0xff) == BGE_PCIE_CAPID_REG) {
v = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
if ((v & 0xff) == BGE_PCIE_CAPID)
sc->bge_pcie = 1;
}
}
/* Try to reset the chip. */
bge_reset(sc);
if (bge_chipinit(sc)) {
printf("bge%d: chip initialization failed\n", sc->bge_unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
/*
* Get station address from the EEPROM.
*/
mac_tmp = bge_readmem_ind(sc, 0x0c14);
if ((mac_tmp >> 16) == 0x484b) {
eaddr[0] = (u_char)(mac_tmp >> 8);
eaddr[1] = (u_char)mac_tmp;
mac_tmp = bge_readmem_ind(sc, 0x0c18);
eaddr[2] = (u_char)(mac_tmp >> 24);
eaddr[3] = (u_char)(mac_tmp >> 16);
eaddr[4] = (u_char)(mac_tmp >> 8);
eaddr[5] = (u_char)mac_tmp;
} else if (bge_read_eeprom(sc, eaddr,
BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
printf("bge%d: failed to read station address\n", unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
/* 5705 limits RX return ring to 512 entries. */
if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
sc->bge_asicrev == BGE_ASICREV_BCM5750)
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
else
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
if (bge_dma_alloc(dev)) {
printf ("bge%d: failed to allocate DMA resources\n",
sc->bge_unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
/* Set default tuneable values. */
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
sc->bge_rx_coal_ticks = 150;
sc->bge_tx_coal_ticks = 150;
sc->bge_rx_max_coal_bds = 64;
sc->bge_tx_max_coal_bds = 128;
/* Set up ifnet structure */
ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
printf("bge%d: failed to if_alloc()\n", sc->bge_unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bge_ioctl;
ifp->if_start = bge_start;
ifp->if_watchdog = bge_watchdog;
ifp->if_init = bge_init;
ifp->if_mtu = ETHERMTU;
ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_hwassist = BGE_CSUM_FEATURES;
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* 5700 B0 chips do not support checksumming correctly due
* to hardware bugs.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
ifp->if_capabilities &= ~IFCAP_HWCSUM;
ifp->if_capenable &= IFCAP_HWCSUM;
ifp->if_hwassist = 0;
}
/*
* Figure out what sort of media we have by checking the
* hardware config word in the first 32k of NIC internal memory,
* or fall back to examining the EEPROM if necessary.
* Note: on some BCM5700 cards, this value appears to be unset.
* If that's the case, we have to rely on identifying the NIC
* by its PCI subsystem ID, as we do below for the SysKonnect
* SK-9D41.
*/
if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
else {
if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
sizeof(hwcfg))) {
printf("bge%d: failed to read EEPROM\n", unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
hwcfg = ntohl(hwcfg);
}
if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
sc->bge_tbi = 1;
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
sc->bge_tbi = 1;
if (sc->bge_tbi) {
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
bge_ifmedia_upd, bge_ifmedia_sts);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia,
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
} else {
/*
* Do transceiver setup.
*/
if (mii_phy_probe(dev, &sc->bge_miibus,
bge_ifmedia_upd, bge_ifmedia_sts)) {
printf("bge%d: MII without any PHY!\n", sc->bge_unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
}
/*
* When using the BCM5701 in PCI-X mode, data corruption has
* been observed in the first few bytes of some received packets.
* Aligning the packet buffer in memory eliminates the corruption.
* Unfortunately, this misaligns the packet payloads. On platforms
* which do not support unaligned accesses, we will realign the
* payloads by copying the received packets.
*/
switch (sc->bge_chipid) {
case BGE_CHIPID_BCM5701_A0:
case BGE_CHIPID_BCM5701_B0:
case BGE_CHIPID_BCM5701_B2:
case BGE_CHIPID_BCM5701_B5:
/* If in PCI-X mode, work around the alignment bug. */
if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
(BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
BGE_PCISTATE_PCI_BUSSPEED)
sc->bge_rx_alignment_bug = 1;
break;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
callout_init(&sc->bge_stat_ch, CALLOUT_MPSAFE);
/*
* Hookup IRQ last.
*/
error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
bge_intr, sc, &sc->bge_intrhand);
if (error) {
bge_detach(dev);
printf("bge%d: couldn't set up irq\n", unit);
}
fail:
return(error);
}
static int
bge_detach(dev)
device_t dev;
{
struct bge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->bge_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
BGE_LOCK(sc);
bge_stop(sc);
bge_reset(sc);
BGE_UNLOCK(sc);
ether_ifdetach(ifp);
if (sc->bge_tbi) {
ifmedia_removeall(&sc->bge_ifmedia);
} else {
bus_generic_detach(dev);
device_delete_child(dev, sc->bge_miibus);
}
bge_release_resources(sc);
return(0);
}
static void
bge_release_resources(sc)
struct bge_softc *sc;
{
device_t dev;
dev = sc->bge_dev;
if (sc->bge_vpd_prodname != NULL)
free(sc->bge_vpd_prodname, M_DEVBUF);
if (sc->bge_vpd_readonly != NULL)
free(sc->bge_vpd_readonly, M_DEVBUF);
if (sc->bge_intrhand != NULL)
bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
if (sc->bge_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
if (sc->bge_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
BGE_PCI_BAR0, sc->bge_res);
if (sc->bge_ifp != NULL)
if_free(sc->bge_ifp);
bge_dma_free(sc);
if (mtx_initialized(&sc->bge_mtx)) /* XXX */
BGE_LOCK_DESTROY(sc);
return;
}
static void
bge_reset(sc)
struct bge_softc *sc;
{
device_t dev;
u_int32_t cachesize, command, pcistate, reset;
int i, val = 0;
dev = sc->bge_dev;
/* Save some important PCI state. */
cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
command = pci_read_config(dev, BGE_PCI_CMD, 4);
pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
pci_write_config(dev, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
/* XXX: Broadcom Linux driver. */
if (sc->bge_pcie) {
if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
CSR_WRITE_4(sc, 0x7e2c, 0x20);
if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
/* Prevent PCIE link training during global reset */
CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
reset |= (1<<29);
}
}
/* Issue global reset */
bge_writereg_ind(sc, BGE_MISC_CFG, reset);
DELAY(1000);
/* XXX: Broadcom Linux driver. */
if (sc->bge_pcie) {
if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
uint32_t v;
DELAY(500000); /* wait for link training to complete */
v = pci_read_config(dev, 0xc4, 4);
pci_write_config(dev, 0xc4, v | (1<<15), 4);
}
/* Set PCIE max payload size and clear error status. */
pci_write_config(dev, 0xd8, 0xf5000, 4);
}
/* Reset some of the PCI state that got zapped by reset */
pci_write_config(dev, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
pci_write_config(dev, BGE_PCI_CMD, command, 4);
bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
/* Enable memory arbiter. */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
/*
* Prevent PXE restart: write a magic number to the
* general communications memory at 0xB50.
*/
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
/*
* Poll the value location we just wrote until
* we see the 1's complement of the magic number.
* This indicates that the firmware initialization
* is complete.
*/
for (i = 0; i < BGE_TIMEOUT; i++) {
val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
if (val == ~BGE_MAGIC_NUMBER)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
return;
}
/*
* XXX Wait for the value of the PCISTATE register to
* return to its original pre-reset state. This is a
* fairly good indicator of reset completion. If we don't
* wait for the reset to fully complete, trying to read
* from the device's non-PCI registers may yield garbage
* results.
*/
for (i = 0; i < BGE_TIMEOUT; i++) {
if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
break;
DELAY(10);
}
/* Fix up byte swapping */
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
BGE_MODECTL_BYTESWAP_DATA);
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
/*
* The 5704 in TBI mode apparently needs some special
* adjustment to insure the SERDES drive level is set
* to 1.2V.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
uint32_t serdescfg;
serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
serdescfg = (serdescfg & ~0xFFF) | 0x880;
CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
}
/* XXX: Broadcom Linux driver. */
if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
uint32_t v;
v = CSR_READ_4(sc, 0x7c00);
CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
}
DELAY(10000);
return;
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle two possibilities here:
* 1) the frame is from the jumbo receive ring
* 2) the frame is from the standard receive ring
*/
static void
bge_rxeof(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
int stdcnt = 0, jumbocnt = 0;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map,
BUS_DMASYNC_POSTREAD);
}
while(sc->bge_rx_saved_considx !=
sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
struct bge_rx_bd *cur_rx;
u_int32_t rxidx;
struct ether_header *eh;
struct mbuf *m = NULL;
u_int16_t vlan_tag = 0;
int have_tag = 0;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx =
&sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
rxidx = cur_rx->bge_idx;
BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->bge_vlan_tag;
}
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
jumbocnt++;
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
if (bge_newbuf_jumbo(sc,
sc->bge_jumbo, NULL) == ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
} else {
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_std_dmamap[rxidx],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
stdcnt++;
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m);
continue;
}
if (bge_newbuf_std(sc, sc->bge_std,
NULL) == ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m);
continue;
}
}
ifp->if_ipackets++;
#ifndef __NO_STRICT_ALIGNMENT
/*
* For architectures with strict alignment we must make sure
* the payload is aligned.
*/
if (sc->bge_rx_alignment_bug) {
bcopy(m->m_data, m->m_data + ETHER_ALIGN,
cur_rx->bge_len);
m->m_data += ETHER_ALIGN;
}
#endif
eh = mtod(m, struct ether_header *);
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
if (ifp->if_capenable & IFCAP_RXCSUM) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
m->m_pkthdr.csum_data =
cur_rx->bge_tcp_udp_csum;
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
}
}
/*
* If we received a packet with a vlan tag,
* attach that information to the packet.
*/
if (have_tag) {
VLAN_INPUT_TAG(ifp, m, vlan_tag);
if (m == NULL)
continue;
}
BGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
BGE_LOCK(sc);
}
if (stdcnt > 0)
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
if (jumbocnt > 0)
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
sc->bge_cdata.bge_rx_jumbo_ring_map,
BUS_DMASYNC_PREWRITE);
}
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
if (stdcnt)
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
if (jumbocnt)
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
return;
}
static void
bge_txeof(sc)
struct bge_softc *sc;
{
struct bge_tx_bd *cur_tx = NULL;
struct ifnet *ifp;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
sc->bge_cdata.bge_tx_ring_map,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->bge_tx_saved_considx !=
sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
u_int32_t idx = 0;
idx = sc->bge_tx_saved_considx;
cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
ifp->if_opackets++;
if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
bus_dmamap_sync(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_tx_dmamap[idx],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_cdata.bge_mtag,
sc->bge_cdata.bge_tx_dmamap[idx]);
m_freem(sc->bge_cdata.bge_tx_chain[idx]);
sc->bge_cdata.bge_tx_chain[idx] = NULL;
}
sc->bge_txcnt--;
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
ifp->if_timer = 0;
}
if (cur_tx != NULL)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
return;
}
#ifdef DEVICE_POLLING
static void
bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct bge_softc *sc = ifp->if_softc;
BGE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bge_poll_locked(ifp, cmd, count);
BGE_UNLOCK(sc);
}
static void
bge_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct bge_softc *sc = ifp->if_softc;
BGE_LOCK_ASSERT(sc);
sc->rxcycles = count;
bge_rxeof(sc);
bge_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bge_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
uint32_t statusword;
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
statusword = atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status);
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
bge_link_upd(sc);
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
}
}
#endif /* DEVICE_POLLING */
static void
bge_intr(xsc)
void *xsc;
{
struct bge_softc *sc;
struct ifnet *ifp;
uint32_t statusword;
sc = xsc;
BGE_LOCK(sc);
ifp = sc->bge_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
BGE_UNLOCK(sc);
return;
}
#endif
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
statusword =
atomic_readandclear_32(&sc->bge_ldata.bge_status_block->bge_status);
#ifdef notdef
/* Avoid this for now -- checking this register is expensive. */
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
return;
#endif
/* Ack interrupt and stop others from occuring. */
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
bge_link_upd(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Check RX return ring producer/consumer */
bge_rxeof(sc);
/* Check TX ring producer/consumer */
bge_txeof(sc);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bge_start_locked(ifp);
BGE_UNLOCK(sc);
return;
}
static void
bge_tick_locked(sc)
struct bge_softc *sc;
{
struct mii_data *mii = NULL;
struct ifnet *ifp;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
sc->bge_asicrev == BGE_ASICREV_BCM5750)
bge_stats_update_regs(sc);
else
bge_stats_update(sc);
if (sc->bge_tbi) {
if (!sc->bge_link) {
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED) {
sc->bge_link++;
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_TBI_SEND_CFGS);
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
if (bootverbose)
printf("bge%d: gigabit link up\n",
sc->bge_unit);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bge_start_locked(ifp);
}
}
}
else {
mii = device_get_softc(sc->bge_miibus);
mii_tick(mii);
if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->bge_link++;
if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)&&
bootverbose)
printf("bge%d: gigabit link up\n", sc->bge_unit);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bge_start_locked(ifp);
}
}
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
}
static void
bge_tick(xsc)
void *xsc;
{
struct bge_softc *sc;
sc = xsc;
BGE_LOCK(sc);
bge_tick_locked(sc);
BGE_UNLOCK(sc);
}
static void
bge_stats_update_regs(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
struct bge_mac_stats_regs stats;
u_int32_t *s;
int i;
ifp = sc->bge_ifp;
s = (u_int32_t *)&stats;
for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
*s = CSR_READ_4(sc, BGE_RX_STATS + i);
s++;
}
ifp->if_collisions +=
(stats.dot3StatsSingleCollisionFrames +
stats.dot3StatsMultipleCollisionFrames +
stats.dot3StatsExcessiveCollisions +
stats.dot3StatsLateCollisions) -
ifp->if_collisions;
return;
}
static void
bge_stats_update(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
bus_size_t stats;
ifp = sc->bge_ifp;
stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
#define READ_STAT(sc, stats, stat) \
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
ifp->if_collisions +=
(READ_STAT(sc, stats,
txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
READ_STAT(sc, stats,
txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
READ_STAT(sc, stats,
txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
READ_STAT(sc, stats,
txstats.dot3StatsLateCollisions.bge_addr_lo)) -
ifp->if_collisions;
#undef READ_STAT
#ifdef notdef
ifp->if_collisions +=
(sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
ifp->if_collisions;
#endif
return;
}
/*
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
* but when such padded frames employ the bge IP/TCP checksum offload,
* the hardware checksum assist gives incorrect results (possibly
* from incorporating its own padding into the UDP/TCP checksum; who knows).
* If we pad such runts with zeros, the onboard checksum comes out correct.
*/
static __inline int
bge_cksum_pad(struct mbuf *m)
{
int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
struct mbuf *last;
/* If there's only the packet-header and we can pad there, use it. */
if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
M_TRAILINGSPACE(m) >= padlen) {
last = m;
} else {
/*
* Walk packet chain to find last mbuf. We will either
* pad there, or append a new mbuf and pad it.
*/
for (last = m; last->m_next != NULL; last = last->m_next);
if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
/* Allocate new empty mbuf, pad it. Compact later. */
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
if (n == NULL)
return (ENOBUFS);
n->m_len = 0;
last->m_next = n;
last = n;
}
}
/* Now zero the pad area, to avoid the bge cksum-assist bug. */
memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
last->m_len += padlen;
m->m_pkthdr.len += padlen;
return (0);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
bge_encap(sc, m_head, txidx)
struct bge_softc *sc;
struct mbuf *m_head;
uint32_t *txidx;
{
bus_dma_segment_t segs[BGE_NSEG_NEW];
bus_dmamap_t map;
struct bge_tx_bd *d = NULL;
struct m_tag *mtag;
uint32_t idx = *txidx;
uint16_t csum_flags = 0;
int nsegs, i, error;
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
if (m_head->m_pkthdr.len < ETHER_MIN_NOPAD &&
bge_cksum_pad(m_head) != 0)
return (ENOBUFS);
}
if (m_head->m_flags & M_LASTFRAG)
csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
else if (m_head->m_flags & M_FRAG)
csum_flags |= BGE_TXBDFLAG_IP_FRAG;
}
mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m_head);
map = sc->bge_cdata.bge_tx_dmamap[idx];
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map,
m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
if (error == EFBIG) {
struct mbuf *m0;
m0 = m_defrag(m_head, M_DONTWAIT);
if (m0 == NULL)
return (ENOBUFS);
m_head = m0;
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag,
map, m_head, segs, &nsegs, BUS_DMA_NOWAIT);
}
if (error)
return (error);
}
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if (nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
return (ENOBUFS);
}
bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
for (i = 0; ; i++) {
d = &sc->bge_ldata.bge_tx_ring[idx];
d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
d->bge_len = segs[i].ds_len;
d->bge_flags = csum_flags;
if (i == nsegs - 1)
break;
BGE_INC(idx, BGE_TX_RING_CNT);
}
/* Mark the last segment as end of packet... */
d->bge_flags |= BGE_TXBDFLAG_END;
/* ... and put VLAN tag into first segment. */
d = &sc->bge_ldata.bge_tx_ring[*txidx];
if (mtag != NULL) {
d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
d->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
} else
d->bge_vlan_tag = 0;
/*
* Insure that the map for this transmission
* is placed at the array index of the last descriptor
* in this chain.
*/
sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
sc->bge_cdata.bge_tx_dmamap[idx] = map;
sc->bge_cdata.bge_tx_chain[idx] = m_head;
sc->bge_txcnt += nsegs;
BGE_INC(idx, BGE_TX_RING_CNT);
*txidx = idx;
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
bge_start_locked(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
struct mbuf *m_head = NULL;
uint32_t prodidx;
int count = 0;
sc = ifp->if_softc;
if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd))
return;
prodidx = sc->bge_tx_prodidx;
while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* XXX
* The code inside the if() block is never reached since we
* must mark CSUM_IP_FRAGS in our if_hwassist to start getting
* requests to checksum TCP/UDP in a fragmented packet.
*
* XXX
* safety overkill. If this is a fragmented packet chain
* with delayed TCP/UDP checksums, then only encapsulate
* it if we have enough descriptors to handle the entire
* chain at once.
* (paranoia -- may not actually be needed)
*/
if (m_head->m_flags & M_FIRSTFRAG &&
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
m_head->m_pkthdr.csum_data + 16) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
}
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (bge_encap(sc, m_head, &prodidx)) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
++count;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (count == 0) {
/* no packets were dequeued */
return;
}
/* Transmit */
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
/* 5700 b2 errata */
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
sc->bge_tx_prodidx = prodidx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
bge_start(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
sc = ifp->if_softc;
BGE_LOCK(sc);
bge_start_locked(ifp);
BGE_UNLOCK(sc);
}
static void
bge_init_locked(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
u_int16_t *m;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/* Cancel pending I/O and flush buffers. */
bge_stop(sc);
bge_reset(sc);
bge_chipinit(sc);
/*
* Init the various state machines, ring
* control blocks and firmware.
*/
if (bge_blockinit(sc)) {
printf("bge%d: initialization failure\n", sc->bge_unit);
return;
}
ifp = sc->bge_ifp;
/* Specify MTU. */
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
/* Load our MAC address. */
m = (u_int16_t *)IF_LLADDR(sc->bge_ifp);
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC) {
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
} else {
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
}
/* Program multicast filter. */
bge_setmulti(sc);
/* Init RX ring. */
bge_init_rx_ring_std(sc);
/*
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
* memory to insure that the chip has in fact read the first
* entry of the ring.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
u_int32_t v, i;
for (i = 0; i < 10; i++) {
DELAY(20);
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
if (v == (MCLBYTES - ETHER_ALIGN))
break;
}
if (i == 10)
printf ("bge%d: 5705 A0 chip failed to load RX ring\n",
sc->bge_unit);
}
/* Init jumbo RX ring. */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
bge_init_rx_ring_jumbo(sc);
/* Init our RX return ring index */
sc->bge_rx_saved_considx = 0;
/* Init TX ring. */
bge_init_tx_ring(sc);
/* Turn on transmitter */
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
/* Turn on receiver */
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
/* Tell firmware we're alive. */
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_capenable & IFCAP_POLLING) {
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
} else
#endif
/* Enable host interrupts. */
{
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
}
bge_ifmedia_upd(ifp);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
return;
}
static void
bge_init(xsc)
void *xsc;
{
struct bge_softc *sc = xsc;
BGE_LOCK(sc);
bge_init_locked(sc);
BGE_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
bge_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->bge_ifmedia;
/* If this is a 1000baseX NIC, enable the TBI port. */
if (sc->bge_tbi) {
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
#ifndef BGE_FAKE_AUTONEG
/*
* The BCM5704 ASIC appears to have a special
* mechanism for programming the autoneg
* advertisement registers in TBI mode.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
uint32_t sgdig;
CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
sgdig |= BGE_SGDIGCFG_AUTO|
BGE_SGDIGCFG_PAUSE_CAP|
BGE_SGDIGCFG_ASYM_PAUSE;
CSR_WRITE_4(sc, BGE_SGDIG_CFG,
sgdig|BGE_SGDIGCFG_SEND);
DELAY(5);
CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
}
#endif
break;
case IFM_1000_SX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
}
break;
default:
return(EINVAL);
}
return(0);
}
mii = device_get_softc(sc->bge_miibus);
sc->bge_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list))
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
bge_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct bge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->bge_tbi) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED)
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_1000_SX;
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
return;
}
mii = device_get_softc(sc->bge_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
bge_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct bge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int mask, error = 0;
struct mii_data *mii;
switch(command) {
case SIOCSIFMTU:
/* Disallow jumbo frames on 5705. */
if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bge_init(sc);
}
break;
case SIOCSIFFLAGS:
BGE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->bge_if_flags & IFF_PROMISC)) {
BGE_SETBIT(sc, BGE_RX_MODE,
BGE_RXMODE_RX_PROMISC);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->bge_if_flags & IFF_PROMISC) {
BGE_CLRBIT(sc, BGE_RX_MODE,
BGE_RXMODE_RX_PROMISC);
} else
bge_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
bge_stop(sc);
}
}
sc->bge_if_flags = ifp->if_flags;
BGE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
BGE_LOCK(sc);
bge_setmulti(sc);
BGE_UNLOCK(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->bge_tbi) {
error = ifmedia_ioctl(ifp, ifr,
&sc->bge_ifmedia, command);
} else {
mii = device_get_softc(sc->bge_miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
}
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(bge_poll, ifp);
if (error)
return(error);
BGE_LOCK(sc);
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
ifp->if_capenable |= IFCAP_POLLING;
BGE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
BGE_LOCK(sc);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
ifp->if_capenable &= ~IFCAP_POLLING;
BGE_UNLOCK(sc);
}
}
#endif
if (mask & IFCAP_HWCSUM) {
ifp->if_capenable ^= IFCAP_HWCSUM;
if (IFCAP_HWCSUM & ifp->if_capenable &&
IFCAP_HWCSUM & ifp->if_capabilities)
ifp->if_hwassist = BGE_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return(error);
}
static void
bge_watchdog(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
sc = ifp->if_softc;
printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bge_init(sc);
ifp->if_oerrors++;
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
bge_stop(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
struct ifmedia_entry *ifm;
struct mii_data *mii = NULL;
int mtmp, itmp;
BGE_LOCK_ASSERT(sc);
ifp = sc->bge_ifp;
if (!sc->bge_tbi)
mii = device_get_softc(sc->bge_miibus);
callout_stop(&sc->bge_stat_ch);
/*
* Disable all of the receiver blocks
*/
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
/*
* Disable all of the transmit blocks
*/
BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/*
* Shut down all of the memory managers and related
* state machines.
*/
BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750) {
BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
}
/* Disable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
/*
* Tell firmware we're shutting down.
*/
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Free the RX lists. */
bge_free_rx_ring_std(sc);
/* Free jumbo RX list. */
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
sc->bge_asicrev != BGE_ASICREV_BCM5750)
bge_free_rx_ring_jumbo(sc);
/* Free TX buffers. */
bge_free_tx_ring(sc);
/*
* Isolate/power down the PHY, but leave the media selection
* unchanged so that things will be put back to normal when
* we bring the interface back up.
*/
if (!sc->bge_tbi) {
itmp = ifp->if_flags;
ifp->if_flags |= IFF_UP;
/*
* If we are called from bge_detach(), mii is already NULL.
*/
if (mii != NULL) {
ifm = mii->mii_media.ifm_cur;
mtmp = ifm->ifm_media;
ifm->ifm_media = IFM_ETHER|IFM_NONE;
mii_mediachg(mii);
ifm->ifm_media = mtmp;
}
ifp->if_flags = itmp;
}
sc->bge_link = 0;
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
bge_shutdown(dev)
device_t dev;
{
struct bge_softc *sc;
sc = device_get_softc(dev);
BGE_LOCK(sc);
bge_stop(sc);
bge_reset(sc);
BGE_UNLOCK(sc);
return;
}
static int
bge_suspend(device_t dev)
{
struct bge_softc *sc;
sc = device_get_softc(dev);
BGE_LOCK(sc);
bge_stop(sc);
BGE_UNLOCK(sc);
return (0);
}
static int
bge_resume(device_t dev)
{
struct bge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
BGE_LOCK(sc);
ifp = sc->bge_ifp;
if (ifp->if_flags & IFF_UP) {
bge_init_locked(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bge_start_locked(ifp);
}
BGE_UNLOCK(sc);
return (0);
}
static void
bge_link_upd(sc)
struct bge_softc *sc;
{
uint32_t status;
BGE_LOCK_ASSERT(sc);
/*
* Process link state changes.
* Grrr. The link status word in the status block does
* not work correctly on the BCM5700 rev AX and BX chips,
* according to all available information. Hence, we have
* to enable MII interrupts in order to properly obtain
* async link changes. Unfortunately, this also means that
* we have to read the MAC status register to detect link
* changes, thereby adding an additional register access to
* the interrupt handler.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_MI_INTERRUPT) {
sc->bge_link = 0;
callout_stop(&sc->bge_stat_ch);
bge_tick_locked(sc);
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
BRGPHY_INTRS);
}
return;
}
/*
* Sometimes PCS encoding errors are detected in
* TBI mode (on fiber NICs), and for some reason
* the chip will signal them as link changes.
* If we get a link change event, but the 'PCS
* encoding error' bit in the MAC status register
* is set, don't bother doing a link check.
* This avoids spurious "gigabit link up" messages
* that sometimes appear on fiber NICs during
* periods of heavy traffic. (There should be no
* effect on copper NICs.)
*/
if (!sc->bge_tbi || ((status = CSR_READ_4(sc, BGE_MAC_STS)) &
(BGE_MACSTAT_PORT_DECODE_ERROR | BGE_MACSTAT_MI_COMPLETE)) == 0) {
sc->bge_link = 0;
callout_stop(&sc->bge_stat_ch);
bge_tick_locked(sc);
}
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
BGE_MACSTAT_LINK_CHANGED);
/* Force flush the status block cached by PCI bridge */
CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
}