freebsd-dev/sys/contrib/dev/acpica/include/acmacros.h
2017-01-19 22:07:21 +00:00

503 lines
24 KiB
C

/******************************************************************************
*
* Name: acmacros.h - C macros for the entire subsystem.
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2017, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#ifndef __ACMACROS_H__
#define __ACMACROS_H__
/*
* Extract data using a pointer. Any more than a byte and we
* get into potential alignment issues -- see the STORE macros below.
* Use with care.
*/
#define ACPI_CAST8(ptr) ACPI_CAST_PTR (UINT8, (ptr))
#define ACPI_CAST16(ptr) ACPI_CAST_PTR (UINT16, (ptr))
#define ACPI_CAST32(ptr) ACPI_CAST_PTR (UINT32, (ptr))
#define ACPI_CAST64(ptr) ACPI_CAST_PTR (UINT64, (ptr))
#define ACPI_GET8(ptr) (*ACPI_CAST8 (ptr))
#define ACPI_GET16(ptr) (*ACPI_CAST16 (ptr))
#define ACPI_GET32(ptr) (*ACPI_CAST32 (ptr))
#define ACPI_GET64(ptr) (*ACPI_CAST64 (ptr))
#define ACPI_SET8(ptr, val) (*ACPI_CAST8 (ptr) = (UINT8) (val))
#define ACPI_SET16(ptr, val) (*ACPI_CAST16 (ptr) = (UINT16) (val))
#define ACPI_SET32(ptr, val) (*ACPI_CAST32 (ptr) = (UINT32) (val))
#define ACPI_SET64(ptr, val) (*ACPI_CAST64 (ptr) = (UINT64) (val))
/*
* printf() format helper. This macro is a workaround for the difficulties
* with emitting 64-bit integers and 64-bit pointers with the same code
* for both 32-bit and 64-bit hosts.
*/
#define ACPI_FORMAT_UINT64(i) ACPI_HIDWORD(i), ACPI_LODWORD(i)
/*
* Macros for moving data around to/from buffers that are possibly unaligned.
* If the hardware supports the transfer of unaligned data, just do the store.
* Otherwise, we have to move one byte at a time.
*/
#ifdef ACPI_BIG_ENDIAN
/*
* Macros for big-endian machines
*/
/* These macros reverse the bytes during the move, converting little-endian to big endian */
/* Big Endian <== Little Endian */
/* Hi...Lo Lo...Hi */
/* 16-bit source, 16/32/64 destination */
#define ACPI_MOVE_16_TO_16(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[1];\
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[0];}
#define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d))=0;\
((UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[1];\
((UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[0];}
#define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\
((UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\
((UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];}
/* 32-bit source, 16/32/64 destination */
#define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
#define ACPI_MOVE_32_TO_32(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[3];\
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[2];\
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[1];\
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[0];}
#define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d))=0;\
((UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[3];\
((UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[2];\
((UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\
((UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];}
/* 64-bit source, 16/32/64 destination */
#define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
#define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */
#define ACPI_MOVE_64_TO_64(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[7];\
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[6];\
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[5];\
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[4];\
(( UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[3];\
(( UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[2];\
(( UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[1];\
(( UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[0];}
#else
/*
* Macros for little-endian machines
*/
#ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED
/* The hardware supports unaligned transfers, just do the little-endian move */
/* 16-bit source, 16/32/64 destination */
#define ACPI_MOVE_16_TO_16(d, s) *(UINT16 *)(void *)(d) = *(UINT16 *)(void *)(s)
#define ACPI_MOVE_16_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT16 *)(void *)(s)
#define ACPI_MOVE_16_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT16 *)(void *)(s)
/* 32-bit source, 16/32/64 destination */
#define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
#define ACPI_MOVE_32_TO_32(d, s) *(UINT32 *)(void *)(d) = *(UINT32 *)(void *)(s)
#define ACPI_MOVE_32_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT32 *)(void *)(s)
/* 64-bit source, 16/32/64 destination */
#define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
#define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */
#define ACPI_MOVE_64_TO_64(d, s) *(UINT64 *)(void *)(d) = *(UINT64 *)(void *)(s)
#else
/*
* The hardware does not support unaligned transfers. We must move the
* data one byte at a time. These macros work whether the source or
* the destination (or both) is/are unaligned. (Little-endian move)
*/
/* 16-bit source, 16/32/64 destination */
#define ACPI_MOVE_16_TO_16(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];}
#define ACPI_MOVE_16_TO_32(d, s) {(*(UINT32 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);}
#define ACPI_MOVE_16_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);}
/* 32-bit source, 16/32/64 destination */
#define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
#define ACPI_MOVE_32_TO_32(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];\
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[2];\
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[3];}
#define ACPI_MOVE_32_TO_64(d, s) {(*(UINT64 *)(void *)(d)) = 0; ACPI_MOVE_32_TO_32(d, s);}
/* 64-bit source, 16/32/64 destination */
#define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */
#define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */
#define ACPI_MOVE_64_TO_64(d, s) {(( UINT8 *)(void *)(d))[0] = ((UINT8 *)(void *)(s))[0];\
(( UINT8 *)(void *)(d))[1] = ((UINT8 *)(void *)(s))[1];\
(( UINT8 *)(void *)(d))[2] = ((UINT8 *)(void *)(s))[2];\
(( UINT8 *)(void *)(d))[3] = ((UINT8 *)(void *)(s))[3];\
(( UINT8 *)(void *)(d))[4] = ((UINT8 *)(void *)(s))[4];\
(( UINT8 *)(void *)(d))[5] = ((UINT8 *)(void *)(s))[5];\
(( UINT8 *)(void *)(d))[6] = ((UINT8 *)(void *)(s))[6];\
(( UINT8 *)(void *)(d))[7] = ((UINT8 *)(void *)(s))[7];}
#endif
#endif
/*
* Fast power-of-two math macros for non-optimized compilers
*/
#define _ACPI_DIV(value, PowerOf2) ((UINT32) ((value) >> (PowerOf2)))
#define _ACPI_MUL(value, PowerOf2) ((UINT32) ((value) << (PowerOf2)))
#define _ACPI_MOD(value, Divisor) ((UINT32) ((value) & ((Divisor) -1)))
#define ACPI_DIV_2(a) _ACPI_DIV(a, 1)
#define ACPI_MUL_2(a) _ACPI_MUL(a, 1)
#define ACPI_MOD_2(a) _ACPI_MOD(a, 2)
#define ACPI_DIV_4(a) _ACPI_DIV(a, 2)
#define ACPI_MUL_4(a) _ACPI_MUL(a, 2)
#define ACPI_MOD_4(a) _ACPI_MOD(a, 4)
#define ACPI_DIV_8(a) _ACPI_DIV(a, 3)
#define ACPI_MUL_8(a) _ACPI_MUL(a, 3)
#define ACPI_MOD_8(a) _ACPI_MOD(a, 8)
#define ACPI_DIV_16(a) _ACPI_DIV(a, 4)
#define ACPI_MUL_16(a) _ACPI_MUL(a, 4)
#define ACPI_MOD_16(a) _ACPI_MOD(a, 16)
#define ACPI_DIV_32(a) _ACPI_DIV(a, 5)
#define ACPI_MUL_32(a) _ACPI_MUL(a, 5)
#define ACPI_MOD_32(a) _ACPI_MOD(a, 32)
/* Test for ASCII character */
#define ACPI_IS_ASCII(c) ((c) < 0x80)
/* Signed integers */
#define ACPI_SIGN_POSITIVE 0
#define ACPI_SIGN_NEGATIVE 1
/*
* Rounding macros (Power of two boundaries only)
*/
#define ACPI_ROUND_DOWN(value, boundary) (((ACPI_SIZE)(value)) & \
(~(((ACPI_SIZE) boundary)-1)))
#define ACPI_ROUND_UP(value, boundary) ((((ACPI_SIZE)(value)) + \
(((ACPI_SIZE) boundary)-1)) & \
(~(((ACPI_SIZE) boundary)-1)))
/* Note: sizeof(ACPI_SIZE) evaluates to either 4 or 8 (32- vs 64-bit mode) */
#define ACPI_ROUND_DOWN_TO_32BIT(a) ACPI_ROUND_DOWN(a, 4)
#define ACPI_ROUND_DOWN_TO_64BIT(a) ACPI_ROUND_DOWN(a, 8)
#define ACPI_ROUND_DOWN_TO_NATIVE_WORD(a) ACPI_ROUND_DOWN(a, sizeof(ACPI_SIZE))
#define ACPI_ROUND_UP_TO_32BIT(a) ACPI_ROUND_UP(a, 4)
#define ACPI_ROUND_UP_TO_64BIT(a) ACPI_ROUND_UP(a, 8)
#define ACPI_ROUND_UP_TO_NATIVE_WORD(a) ACPI_ROUND_UP(a, sizeof(ACPI_SIZE))
#define ACPI_ROUND_BITS_UP_TO_BYTES(a) ACPI_DIV_8((a) + 7)
#define ACPI_ROUND_BITS_DOWN_TO_BYTES(a) ACPI_DIV_8((a))
#define ACPI_ROUND_UP_TO_1K(a) (((a) + 1023) >> 10)
/* Generic (non-power-of-two) rounding */
#define ACPI_ROUND_UP_TO(value, boundary) (((value) + ((boundary)-1)) / (boundary))
#define ACPI_IS_MISALIGNED(value) (((ACPI_SIZE) value) & (sizeof(ACPI_SIZE)-1))
/* Generic bit manipulation */
#ifndef ACPI_USE_NATIVE_BIT_FINDER
#define __ACPI_FIND_LAST_BIT_2(a, r) ((((UINT8) (a)) & 0x02) ? (r)+1 : (r))
#define __ACPI_FIND_LAST_BIT_4(a, r) ((((UINT8) (a)) & 0x0C) ? \
__ACPI_FIND_LAST_BIT_2 ((a)>>2, (r)+2) : \
__ACPI_FIND_LAST_BIT_2 ((a), (r)))
#define __ACPI_FIND_LAST_BIT_8(a, r) ((((UINT8) (a)) & 0xF0) ? \
__ACPI_FIND_LAST_BIT_4 ((a)>>4, (r)+4) : \
__ACPI_FIND_LAST_BIT_4 ((a), (r)))
#define __ACPI_FIND_LAST_BIT_16(a, r) ((((UINT16) (a)) & 0xFF00) ? \
__ACPI_FIND_LAST_BIT_8 ((a)>>8, (r)+8) : \
__ACPI_FIND_LAST_BIT_8 ((a), (r)))
#define __ACPI_FIND_LAST_BIT_32(a, r) ((((UINT32) (a)) & 0xFFFF0000) ? \
__ACPI_FIND_LAST_BIT_16 ((a)>>16, (r)+16) : \
__ACPI_FIND_LAST_BIT_16 ((a), (r)))
#define __ACPI_FIND_LAST_BIT_64(a, r) ((((UINT64) (a)) & 0xFFFFFFFF00000000) ? \
__ACPI_FIND_LAST_BIT_32 ((a)>>32, (r)+32) : \
__ACPI_FIND_LAST_BIT_32 ((a), (r)))
#define ACPI_FIND_LAST_BIT_8(a) ((a) ? __ACPI_FIND_LAST_BIT_8 (a, 1) : 0)
#define ACPI_FIND_LAST_BIT_16(a) ((a) ? __ACPI_FIND_LAST_BIT_16 (a, 1) : 0)
#define ACPI_FIND_LAST_BIT_32(a) ((a) ? __ACPI_FIND_LAST_BIT_32 (a, 1) : 0)
#define ACPI_FIND_LAST_BIT_64(a) ((a) ? __ACPI_FIND_LAST_BIT_64 (a, 1) : 0)
#define __ACPI_FIND_FIRST_BIT_2(a, r) ((((UINT8) (a)) & 0x01) ? (r) : (r)+1)
#define __ACPI_FIND_FIRST_BIT_4(a, r) ((((UINT8) (a)) & 0x03) ? \
__ACPI_FIND_FIRST_BIT_2 ((a), (r)) : \
__ACPI_FIND_FIRST_BIT_2 ((a)>>2, (r)+2))
#define __ACPI_FIND_FIRST_BIT_8(a, r) ((((UINT8) (a)) & 0x0F) ? \
__ACPI_FIND_FIRST_BIT_4 ((a), (r)) : \
__ACPI_FIND_FIRST_BIT_4 ((a)>>4, (r)+4))
#define __ACPI_FIND_FIRST_BIT_16(a, r) ((((UINT16) (a)) & 0x00FF) ? \
__ACPI_FIND_FIRST_BIT_8 ((a), (r)) : \
__ACPI_FIND_FIRST_BIT_8 ((a)>>8, (r)+8))
#define __ACPI_FIND_FIRST_BIT_32(a, r) ((((UINT32) (a)) & 0x0000FFFF) ? \
__ACPI_FIND_FIRST_BIT_16 ((a), (r)) : \
__ACPI_FIND_FIRST_BIT_16 ((a)>>16, (r)+16))
#define __ACPI_FIND_FIRST_BIT_64(a, r) ((((UINT64) (a)) & 0x00000000FFFFFFFF) ? \
__ACPI_FIND_FIRST_BIT_32 ((a), (r)) : \
__ACPI_FIND_FIRST_BIT_32 ((a)>>32, (r)+32))
#define ACPI_FIND_FIRST_BIT_8(a) ((a) ? __ACPI_FIND_FIRST_BIT_8 (a, 1) : 0)
#define ACPI_FIND_FIRST_BIT_16(a) ((a) ? __ACPI_FIND_FIRST_BIT_16 (a, 1) : 0)
#define ACPI_FIND_FIRST_BIT_32(a) ((a) ? __ACPI_FIND_FIRST_BIT_32 (a, 1) : 0)
#define ACPI_FIND_FIRST_BIT_64(a) ((a) ? __ACPI_FIND_FIRST_BIT_64 (a, 1) : 0)
#endif /* ACPI_USE_NATIVE_BIT_FINDER */
/* Generic (power-of-two) rounding */
#define ACPI_ROUND_UP_POWER_OF_TWO_8(a) ((UINT8) \
(((UINT16) 1) << ACPI_FIND_LAST_BIT_8 ((a) - 1)))
#define ACPI_ROUND_DOWN_POWER_OF_TWO_8(a) ((UINT8) \
(((UINT16) 1) << (ACPI_FIND_LAST_BIT_8 ((a)) - 1)))
#define ACPI_ROUND_UP_POWER_OF_TWO_16(a) ((UINT16) \
(((UINT32) 1) << ACPI_FIND_LAST_BIT_16 ((a) - 1)))
#define ACPI_ROUND_DOWN_POWER_OF_TWO_16(a) ((UINT16) \
(((UINT32) 1) << (ACPI_FIND_LAST_BIT_16 ((a)) - 1)))
#define ACPI_ROUND_UP_POWER_OF_TWO_32(a) ((UINT32) \
(((UINT64) 1) << ACPI_FIND_LAST_BIT_32 ((a) - 1)))
#define ACPI_ROUND_DOWN_POWER_OF_TWO_32(a) ((UINT32) \
(((UINT64) 1) << (ACPI_FIND_LAST_BIT_32 ((a)) - 1)))
#define ACPI_IS_ALIGNED(a, s) (((a) & ((s) - 1)) == 0)
#define ACPI_IS_POWER_OF_TWO(a) ACPI_IS_ALIGNED(a, a)
/*
* Bitmask creation
* Bit positions start at zero.
* MASK_BITS_ABOVE creates a mask starting AT the position and above
* MASK_BITS_BELOW creates a mask starting one bit BELOW the position
* MASK_BITS_ABOVE/BELOW accepts a bit offset to create a mask
* MASK_BITS_ABOVE/BELOW_32/64 accepts a bit width to create a mask
* Note: The ACPI_INTEGER_BIT_SIZE check is used to bypass compiler
* differences with the shift operator
*/
#define ACPI_MASK_BITS_ABOVE(position) (~((ACPI_UINT64_MAX) << ((UINT32) (position))))
#define ACPI_MASK_BITS_BELOW(position) ((ACPI_UINT64_MAX) << ((UINT32) (position)))
#define ACPI_MASK_BITS_ABOVE_32(width) ((UINT32) ACPI_MASK_BITS_ABOVE(width))
#define ACPI_MASK_BITS_BELOW_32(width) ((UINT32) ACPI_MASK_BITS_BELOW(width))
#define ACPI_MASK_BITS_ABOVE_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \
ACPI_UINT64_MAX : \
ACPI_MASK_BITS_ABOVE(width))
#define ACPI_MASK_BITS_BELOW_64(width) ((width) == ACPI_INTEGER_BIT_SIZE ? \
(UINT64) 0 : \
ACPI_MASK_BITS_BELOW(width))
/* Bitfields within ACPI registers */
#define ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask) \
((Val << Pos) & Mask)
#define ACPI_REGISTER_INSERT_VALUE(Reg, Pos, Mask, Val) \
Reg = (Reg & (~(Mask))) | ACPI_REGISTER_PREPARE_BITS(Val, Pos, Mask)
#define ACPI_INSERT_BITS(Target, Mask, Source) \
Target = ((Target & (~(Mask))) | (Source & Mask))
/* Generic bitfield macros and masks */
#define ACPI_GET_BITS(SourcePtr, Position, Mask) \
((*(SourcePtr) >> (Position)) & (Mask))
#define ACPI_SET_BITS(TargetPtr, Position, Mask, Value) \
(*(TargetPtr) |= (((Value) & (Mask)) << (Position)))
#define ACPI_1BIT_MASK 0x00000001
#define ACPI_2BIT_MASK 0x00000003
#define ACPI_3BIT_MASK 0x00000007
#define ACPI_4BIT_MASK 0x0000000F
#define ACPI_5BIT_MASK 0x0000001F
#define ACPI_6BIT_MASK 0x0000003F
#define ACPI_7BIT_MASK 0x0000007F
#define ACPI_8BIT_MASK 0x000000FF
#define ACPI_16BIT_MASK 0x0000FFFF
#define ACPI_24BIT_MASK 0x00FFFFFF
/* Macros to extract flag bits from position zero */
#define ACPI_GET_1BIT_FLAG(Value) ((Value) & ACPI_1BIT_MASK)
#define ACPI_GET_2BIT_FLAG(Value) ((Value) & ACPI_2BIT_MASK)
#define ACPI_GET_3BIT_FLAG(Value) ((Value) & ACPI_3BIT_MASK)
#define ACPI_GET_4BIT_FLAG(Value) ((Value) & ACPI_4BIT_MASK)
/* Macros to extract flag bits from position one and above */
#define ACPI_EXTRACT_1BIT_FLAG(Field, Position) (ACPI_GET_1BIT_FLAG ((Field) >> Position))
#define ACPI_EXTRACT_2BIT_FLAG(Field, Position) (ACPI_GET_2BIT_FLAG ((Field) >> Position))
#define ACPI_EXTRACT_3BIT_FLAG(Field, Position) (ACPI_GET_3BIT_FLAG ((Field) >> Position))
#define ACPI_EXTRACT_4BIT_FLAG(Field, Position) (ACPI_GET_4BIT_FLAG ((Field) >> Position))
/* ACPI Pathname helpers */
#define ACPI_IS_ROOT_PREFIX(c) ((c) == (UINT8) 0x5C) /* Backslash */
#define ACPI_IS_PARENT_PREFIX(c) ((c) == (UINT8) 0x5E) /* Carat */
#define ACPI_IS_PATH_SEPARATOR(c) ((c) == (UINT8) 0x2E) /* Period (dot) */
/*
* An object of type ACPI_NAMESPACE_NODE can appear in some contexts
* where a pointer to an object of type ACPI_OPERAND_OBJECT can also
* appear. This macro is used to distinguish them.
*
* The "DescriptorType" field is the second field in both structures.
*/
#define ACPI_GET_DESCRIPTOR_PTR(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.CommonPointer)
#define ACPI_SET_DESCRIPTOR_PTR(d, p) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.CommonPointer = (p))
#define ACPI_GET_DESCRIPTOR_TYPE(d) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.DescriptorType)
#define ACPI_SET_DESCRIPTOR_TYPE(d, t) (((ACPI_DESCRIPTOR *)(void *)(d))->Common.DescriptorType = (t))
/*
* Macros for the master AML opcode table
*/
#if defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT)
#define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \
{Name, (UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Type}
#else
#define ACPI_OP(Name, PArgs, IArgs, ObjType, Class, Type, Flags) \
{(UINT32)(PArgs), (UINT32)(IArgs), (UINT32)(Flags), ObjType, Class, Type}
#endif
#define ARG_TYPE_WIDTH 5
#define ARG_1(x) ((UINT32)(x))
#define ARG_2(x) ((UINT32)(x) << (1 * ARG_TYPE_WIDTH))
#define ARG_3(x) ((UINT32)(x) << (2 * ARG_TYPE_WIDTH))
#define ARG_4(x) ((UINT32)(x) << (3 * ARG_TYPE_WIDTH))
#define ARG_5(x) ((UINT32)(x) << (4 * ARG_TYPE_WIDTH))
#define ARG_6(x) ((UINT32)(x) << (5 * ARG_TYPE_WIDTH))
#define ARGI_LIST1(a) (ARG_1(a))
#define ARGI_LIST2(a, b) (ARG_1(b)|ARG_2(a))
#define ARGI_LIST3(a, b, c) (ARG_1(c)|ARG_2(b)|ARG_3(a))
#define ARGI_LIST4(a, b, c, d) (ARG_1(d)|ARG_2(c)|ARG_3(b)|ARG_4(a))
#define ARGI_LIST5(a, b, c, d, e) (ARG_1(e)|ARG_2(d)|ARG_3(c)|ARG_4(b)|ARG_5(a))
#define ARGI_LIST6(a, b, c, d, e, f) (ARG_1(f)|ARG_2(e)|ARG_3(d)|ARG_4(c)|ARG_5(b)|ARG_6(a))
#define ARGP_LIST1(a) (ARG_1(a))
#define ARGP_LIST2(a, b) (ARG_1(a)|ARG_2(b))
#define ARGP_LIST3(a, b, c) (ARG_1(a)|ARG_2(b)|ARG_3(c))
#define ARGP_LIST4(a, b, c, d) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d))
#define ARGP_LIST5(a, b, c, d, e) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e))
#define ARGP_LIST6(a, b, c, d, e, f) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)|ARG_6(f))
#define GET_CURRENT_ARG_TYPE(List) (List & ((UINT32) 0x1F))
#define INCREMENT_ARG_LIST(List) (List >>= ((UINT32) ARG_TYPE_WIDTH))
/*
* Ascii error messages can be configured out
*/
#ifndef ACPI_NO_ERROR_MESSAGES
/*
* Error reporting. The callers module and line number are inserted by AE_INFO,
* the plist contains a set of parens to allow variable-length lists.
* These macros are used for both the debug and non-debug versions of the code.
*/
#define ACPI_ERROR_NAMESPACE(s, e) AcpiUtNamespaceError (AE_INFO, s, e);
#define ACPI_ERROR_METHOD(s, n, p, e) AcpiUtMethodError (AE_INFO, s, n, p, e);
#define ACPI_WARN_PREDEFINED(plist) AcpiUtPredefinedWarning plist
#define ACPI_INFO_PREDEFINED(plist) AcpiUtPredefinedInfo plist
#define ACPI_BIOS_ERROR_PREDEFINED(plist) AcpiUtPredefinedBiosError plist
#else
/* No error messages */
#define ACPI_ERROR_NAMESPACE(s, e)
#define ACPI_ERROR_METHOD(s, n, p, e)
#define ACPI_WARN_PREDEFINED(plist)
#define ACPI_INFO_PREDEFINED(plist)
#define ACPI_BIOS_ERROR_PREDEFINED(plist)
#endif /* ACPI_NO_ERROR_MESSAGES */
#if (!ACPI_REDUCED_HARDWARE)
#define ACPI_HW_OPTIONAL_FUNCTION(addr) addr
#else
#define ACPI_HW_OPTIONAL_FUNCTION(addr) NULL
#endif
/*
* Macros used for ACPICA utilities only
*/
/* Generate a UUID */
#define ACPI_INIT_UUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
(a) & 0xFF, ((a) >> 8) & 0xFF, ((a) >> 16) & 0xFF, ((a) >> 24) & 0xFF, \
(b) & 0xFF, ((b) >> 8) & 0xFF, \
(c) & 0xFF, ((c) >> 8) & 0xFF, \
(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)
#define ACPI_IS_OCTAL_DIGIT(d) (((char)(d) >= '0') && ((char)(d) <= '7'))
#endif /* ACMACROS_H */