566 lines
14 KiB
C
566 lines
14 KiB
C
/*-
|
|
* Copyright (c) 2013 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/memdesc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sf_buf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/tree.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <x86/include/busdma_impl.h>
|
|
#include <x86/iommu/intel_reg.h>
|
|
#include <x86/iommu/busdma_dmar.h>
|
|
#include <x86/iommu/intel_dmar.h>
|
|
|
|
u_int
|
|
dmar_nd2mask(u_int nd)
|
|
{
|
|
static const u_int masks[] = {
|
|
0x000f, /* nd == 0 */
|
|
0x002f, /* nd == 1 */
|
|
0x00ff, /* nd == 2 */
|
|
0x02ff, /* nd == 3 */
|
|
0x0fff, /* nd == 4 */
|
|
0x2fff, /* nd == 5 */
|
|
0xffff, /* nd == 6 */
|
|
0x0000, /* nd == 7 reserved */
|
|
};
|
|
|
|
KASSERT(nd <= 6, ("number of domains %d", nd));
|
|
return (masks[nd]);
|
|
}
|
|
|
|
static const struct sagaw_bits_tag {
|
|
int agaw;
|
|
int cap;
|
|
int awlvl;
|
|
int pglvl;
|
|
} sagaw_bits[] = {
|
|
{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
|
|
.pglvl = 2},
|
|
{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
|
|
.pglvl = 3},
|
|
{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
|
|
.pglvl = 4},
|
|
{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
|
|
.pglvl = 5},
|
|
{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
|
|
.pglvl = 6}
|
|
};
|
|
#define SIZEOF_SAGAW_BITS (sizeof(sagaw_bits) / sizeof(sagaw_bits[0]))
|
|
|
|
bool
|
|
dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SIZEOF_SAGAW_BITS; i++) {
|
|
if (sagaw_bits[i].pglvl != pglvl)
|
|
continue;
|
|
if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
|
|
return (true);
|
|
}
|
|
return (false);
|
|
}
|
|
|
|
int
|
|
ctx_set_agaw(struct dmar_ctx *ctx, int mgaw)
|
|
{
|
|
int sagaw, i;
|
|
|
|
ctx->mgaw = mgaw;
|
|
sagaw = DMAR_CAP_SAGAW(ctx->dmar->hw_cap);
|
|
for (i = 0; i < SIZEOF_SAGAW_BITS; i++) {
|
|
if (sagaw_bits[i].agaw >= mgaw) {
|
|
ctx->agaw = sagaw_bits[i].agaw;
|
|
ctx->pglvl = sagaw_bits[i].pglvl;
|
|
ctx->awlvl = sagaw_bits[i].awlvl;
|
|
return (0);
|
|
}
|
|
}
|
|
device_printf(ctx->dmar->dev,
|
|
"context request mgaw %d for pci%d:%d:%d:%d, "
|
|
"no agaw found, sagaw %x\n", mgaw, ctx->dmar->segment,
|
|
pci_get_bus(ctx->ctx_tag.owner),
|
|
pci_get_slot(ctx->ctx_tag.owner),
|
|
pci_get_function(ctx->ctx_tag.owner), sagaw);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Find a best fit mgaw for the given maxaddr:
|
|
* - if allow_less is false, must find sagaw which maps all requested
|
|
* addresses (used by identity mappings);
|
|
* - if allow_less is true, and no supported sagaw can map all requested
|
|
* address space, accept the biggest sagaw, whatever is it.
|
|
*/
|
|
int
|
|
dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SIZEOF_SAGAW_BITS; i++) {
|
|
if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
|
|
(DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
|
|
break;
|
|
}
|
|
if (allow_less && i == SIZEOF_SAGAW_BITS) {
|
|
do {
|
|
i--;
|
|
} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
|
|
== 0);
|
|
}
|
|
if (i < SIZEOF_SAGAW_BITS)
|
|
return (sagaw_bits[i].agaw);
|
|
KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
|
|
(uintmax_t) maxaddr, allow_less));
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total amount of page table pages needed to map the
|
|
* whole bus address space on the context with the selected agaw.
|
|
*/
|
|
vm_pindex_t
|
|
pglvl_max_pages(int pglvl)
|
|
{
|
|
vm_pindex_t res;
|
|
int i;
|
|
|
|
for (res = 0, i = pglvl; i > 0; i--) {
|
|
res *= DMAR_NPTEPG;
|
|
res++;
|
|
}
|
|
return (res);
|
|
}
|
|
|
|
/*
|
|
* Return true if the page table level lvl supports the superpage for
|
|
* the context ctx.
|
|
*/
|
|
int
|
|
ctx_is_sp_lvl(struct dmar_ctx *ctx, int lvl)
|
|
{
|
|
int alvl, cap_sps;
|
|
static const int sagaw_sp[] = {
|
|
DMAR_CAP_SPS_2M,
|
|
DMAR_CAP_SPS_1G,
|
|
DMAR_CAP_SPS_512G,
|
|
DMAR_CAP_SPS_1T
|
|
};
|
|
|
|
alvl = ctx->pglvl - lvl - 1;
|
|
cap_sps = DMAR_CAP_SPS(ctx->dmar->hw_cap);
|
|
return (alvl < sizeof(sagaw_sp) / sizeof(sagaw_sp[0]) &&
|
|
(sagaw_sp[alvl] & cap_sps) != 0);
|
|
}
|
|
|
|
dmar_gaddr_t
|
|
pglvl_page_size(int total_pglvl, int lvl)
|
|
{
|
|
int rlvl;
|
|
static const dmar_gaddr_t pg_sz[] = {
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE,
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
|
|
(dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
|
|
};
|
|
|
|
KASSERT(lvl >= 0 && lvl < total_pglvl,
|
|
("total %d lvl %d", total_pglvl, lvl));
|
|
rlvl = total_pglvl - lvl - 1;
|
|
KASSERT(rlvl < sizeof(pg_sz) / sizeof(pg_sz[0]),
|
|
("sizeof pg_sz lvl %d", lvl));
|
|
return (pg_sz[rlvl]);
|
|
}
|
|
|
|
dmar_gaddr_t
|
|
ctx_page_size(struct dmar_ctx *ctx, int lvl)
|
|
{
|
|
|
|
return (pglvl_page_size(ctx->pglvl, lvl));
|
|
}
|
|
|
|
int
|
|
calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
|
|
dmar_gaddr_t *isizep)
|
|
{
|
|
dmar_gaddr_t isize;
|
|
int am;
|
|
|
|
for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
|
|
isize = 1ULL << (am + DMAR_PAGE_SHIFT);
|
|
if ((base & (isize - 1)) == 0 && size >= isize)
|
|
break;
|
|
if (am == 0)
|
|
break;
|
|
}
|
|
*isizep = isize;
|
|
return (am);
|
|
}
|
|
|
|
dmar_haddr_t dmar_high;
|
|
int haw;
|
|
int dmar_tbl_pagecnt;
|
|
|
|
vm_page_t
|
|
dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
|
|
{
|
|
vm_page_t m;
|
|
int zeroed;
|
|
|
|
zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
|
|
for (;;) {
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WLOCK(obj);
|
|
m = vm_page_lookup(obj, idx);
|
|
if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
break;
|
|
}
|
|
m = vm_page_alloc_contig(obj, idx, VM_ALLOC_NOBUSY |
|
|
VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | zeroed, 1, 0,
|
|
dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
if (m != NULL) {
|
|
if (zeroed && (m->flags & PG_ZERO) == 0)
|
|
pmap_zero_page(m);
|
|
atomic_add_int(&dmar_tbl_pagecnt, 1);
|
|
break;
|
|
}
|
|
if ((flags & DMAR_PGF_WAITOK) == 0)
|
|
break;
|
|
if ((flags & DMAR_PGF_OBJL) != 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
VM_WAIT;
|
|
if ((flags & DMAR_PGF_OBJL) != 0)
|
|
VM_OBJECT_WLOCK(obj);
|
|
}
|
|
return (m);
|
|
}
|
|
|
|
void
|
|
dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
|
|
{
|
|
vm_page_t m;
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WLOCK(obj);
|
|
m = vm_page_lookup(obj, idx);
|
|
if (m != NULL) {
|
|
vm_page_free(m);
|
|
atomic_subtract_int(&dmar_tbl_pagecnt, 1);
|
|
}
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
}
|
|
|
|
void *
|
|
dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
|
|
struct sf_buf **sf)
|
|
{
|
|
vm_page_t m;
|
|
bool allocated;
|
|
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WLOCK(obj);
|
|
m = vm_page_lookup(obj, idx);
|
|
if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
|
|
m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
|
|
allocated = true;
|
|
} else
|
|
allocated = false;
|
|
if (m == NULL) {
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
return (NULL);
|
|
}
|
|
/* Sleepable allocations cannot fail. */
|
|
if ((flags & DMAR_PGF_WAITOK) != 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
sched_pin();
|
|
*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
|
|
== 0 ? SFB_NOWAIT : 0));
|
|
if (*sf == NULL) {
|
|
sched_unpin();
|
|
if (allocated) {
|
|
VM_OBJECT_ASSERT_WLOCKED(obj);
|
|
dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
|
|
}
|
|
if ((flags & DMAR_PGF_OBJL) == 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
return (NULL);
|
|
}
|
|
if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
|
|
(DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
|
|
VM_OBJECT_WLOCK(obj);
|
|
else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
|
|
VM_OBJECT_WUNLOCK(obj);
|
|
return ((void *)sf_buf_kva(*sf));
|
|
}
|
|
|
|
void
|
|
dmar_unmap_pgtbl(struct sf_buf *sf, bool coherent)
|
|
{
|
|
vm_page_t m;
|
|
|
|
m = sf_buf_page(sf);
|
|
sf_buf_free(sf);
|
|
sched_unpin();
|
|
|
|
/*
|
|
* If DMAR does not snoop paging structures accesses, flush
|
|
* CPU cache to memory.
|
|
*/
|
|
if (!coherent)
|
|
pmap_invalidate_cache_pages(&m, 1);
|
|
}
|
|
|
|
/*
|
|
* Load the root entry pointer into the hardware, busily waiting for
|
|
* the completion.
|
|
*/
|
|
int
|
|
dmar_load_root_entry_ptr(struct dmar_unit *unit)
|
|
{
|
|
vm_page_t root_entry;
|
|
|
|
/*
|
|
* Access to the GCMD register must be serialized while the
|
|
* command is submitted.
|
|
*/
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
/* VM_OBJECT_RLOCK(unit->ctx_obj); */
|
|
VM_OBJECT_WLOCK(unit->ctx_obj);
|
|
root_entry = vm_page_lookup(unit->ctx_obj, 0);
|
|
/* VM_OBJECT_RUNLOCK(unit->ctx_obj); */
|
|
VM_OBJECT_WUNLOCK(unit->ctx_obj);
|
|
dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
|
|
/* XXXKIB should have a timeout */
|
|
while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) == 0)
|
|
cpu_spinwait();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Globally invalidate the context entries cache, busily waiting for
|
|
* the completion.
|
|
*/
|
|
int
|
|
dmar_inv_ctx_glob(struct dmar_unit *unit)
|
|
{
|
|
|
|
/*
|
|
* Access to the CCMD register must be serialized while the
|
|
* command is submitted.
|
|
*/
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
KASSERT(!unit->qi_enabled, ("QI enabled"));
|
|
|
|
/*
|
|
* The DMAR_CCMD_ICC bit in the upper dword should be written
|
|
* after the low dword write is completed. Amd64
|
|
* dmar_write8() does not have this issue, i386 dmar_write8()
|
|
* writes the upper dword last.
|
|
*/
|
|
dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
|
|
/* XXXKIB should have a timeout */
|
|
while ((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) != 0)
|
|
cpu_spinwait();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Globally invalidate the IOTLB, busily waiting for the completion.
|
|
*/
|
|
int
|
|
dmar_inv_iotlb_glob(struct dmar_unit *unit)
|
|
{
|
|
int reg;
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
KASSERT(!unit->qi_enabled, ("QI enabled"));
|
|
|
|
reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
|
|
/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
|
|
dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
|
|
DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
|
|
/* XXXKIB should have a timeout */
|
|
while ((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
|
|
DMAR_IOTLB_IVT32) != 0)
|
|
cpu_spinwait();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Flush the chipset write buffers. See 11.1 "Write Buffer Flushing"
|
|
* in the architecture specification.
|
|
*/
|
|
int
|
|
dmar_flush_write_bufs(struct dmar_unit *unit)
|
|
{
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
|
|
/*
|
|
* DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
|
|
*/
|
|
KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
|
|
("dmar%d: no RWBF", unit->unit));
|
|
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
|
|
/* XXXKIB should have a timeout */
|
|
while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) == 0)
|
|
cpu_spinwait();
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmar_enable_translation(struct dmar_unit *unit)
|
|
{
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
unit->hw_gcmd |= DMAR_GCMD_TE;
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
|
|
/* XXXKIB should have a timeout */
|
|
while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0)
|
|
cpu_spinwait();
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmar_disable_translation(struct dmar_unit *unit)
|
|
{
|
|
|
|
DMAR_ASSERT_LOCKED(unit);
|
|
unit->hw_gcmd &= ~DMAR_GCMD_TE;
|
|
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
|
|
/* XXXKIB should have a timeout */
|
|
while ((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0)
|
|
cpu_spinwait();
|
|
return (0);
|
|
}
|
|
|
|
#define BARRIER_F \
|
|
u_int f_done, f_inproc, f_wakeup; \
|
|
\
|
|
f_done = 1 << (barrier_id * 3); \
|
|
f_inproc = 1 << (barrier_id * 3 + 1); \
|
|
f_wakeup = 1 << (barrier_id * 3 + 2)
|
|
|
|
bool
|
|
dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
|
|
{
|
|
BARRIER_F;
|
|
|
|
DMAR_LOCK(dmar);
|
|
if ((dmar->barrier_flags & f_done) != 0) {
|
|
DMAR_UNLOCK(dmar);
|
|
return (false);
|
|
}
|
|
|
|
if ((dmar->barrier_flags & f_inproc) != 0) {
|
|
while ((dmar->barrier_flags & f_inproc) != 0) {
|
|
dmar->barrier_flags |= f_wakeup;
|
|
msleep(&dmar->barrier_flags, &dmar->lock, 0,
|
|
"dmarb", 0);
|
|
}
|
|
KASSERT((dmar->barrier_flags & f_done) != 0,
|
|
("dmar%d barrier %d missing done", dmar->unit, barrier_id));
|
|
DMAR_UNLOCK(dmar);
|
|
return (false);
|
|
}
|
|
|
|
dmar->barrier_flags |= f_inproc;
|
|
DMAR_UNLOCK(dmar);
|
|
return (true);
|
|
}
|
|
|
|
void
|
|
dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
|
|
{
|
|
BARRIER_F;
|
|
|
|
DMAR_ASSERT_LOCKED(dmar);
|
|
KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
|
|
("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
|
|
dmar->barrier_flags |= f_done;
|
|
if ((dmar->barrier_flags & f_wakeup) != 0)
|
|
wakeup(&dmar->barrier_flags);
|
|
dmar->barrier_flags &= ~(f_inproc | f_wakeup);
|
|
DMAR_UNLOCK(dmar);
|
|
}
|
|
|
|
int dmar_match_verbose;
|
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
|
|
SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
|
|
&dmar_tbl_pagecnt, 0,
|
|
"Count of pages used for DMAR pagetables");
|
|
SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
|
|
&dmar_match_verbose, 0,
|
|
"Verbose matching of the PCI devices to DMAR paths");
|
|
#ifdef INVARIANTS
|
|
int dmar_check_free;
|
|
SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
|
|
&dmar_check_free, 0,
|
|
"Check the GPA RBtree for free_down and free_after validity");
|
|
#endif
|
|
|