freebsd-dev/sys/dev/mlx4/mlx4_en/mlx4_en_rx.c
Slava Shwartsman 8567696305 mlx4en: Optimise reception of small packets.
Copy small packets like TCP ACKs into a new mbuf
reusing the existing mbuf to receive a new ethernet
frame. This avoids wasting buffer space for
small sized packets.

Submitted by:   hselasky@
Approved by:    hselasky (mentor)
MFC after:      1 week
Sponsored by:   Mellanox Technologies
2018-12-05 13:39:35 +00:00

1130 lines
30 KiB
C

/*
* Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include "opt_inet.h"
#include <dev/mlx4/cq.h>
#include <linux/slab.h>
#include <dev/mlx4/qp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <dev/mlx4/driver.h>
#ifdef CONFIG_NET_RX_BUSY_POLL
#include <net/busy_poll.h>
#endif
#include "en.h"
#if (MLX4_EN_MAX_RX_SEGS == 1)
static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring,
int index)
{
struct mlx4_en_rx_desc *rx_desc =
((struct mlx4_en_rx_desc *)ring->buf) + index;
int i;
/* Set size and memtype fields */
rx_desc->data[0].byte_count = cpu_to_be32(priv->rx_mb_size - MLX4_NET_IP_ALIGN);
rx_desc->data[0].lkey = cpu_to_be32(priv->mdev->mr.key);
/*
* If the number of used fragments does not fill up the ring
* stride, remaining (unused) fragments must be padded with
* null address/size and a special memory key:
*/
for (i = 1; i < MLX4_EN_MAX_RX_SEGS; i++) {
rx_desc->data[i].byte_count = 0;
rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
rx_desc->data[i].addr = 0;
}
}
#endif
static inline struct mbuf *
mlx4_en_alloc_mbuf(struct mlx4_en_rx_ring *ring)
{
struct mbuf *mb;
#if (MLX4_EN_MAX_RX_SEGS == 1)
mb = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, ring->rx_mb_size);
if (likely(mb != NULL))
mb->m_pkthdr.len = mb->m_len = ring->rx_mb_size;
#else
mb = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MLX4_EN_MAX_RX_BYTES);
if (likely(mb != NULL)) {
struct mbuf *mb_head = mb;
int i;
mb->m_len = MLX4_EN_MAX_RX_BYTES;
mb->m_pkthdr.len = MLX4_EN_MAX_RX_BYTES;
for (i = 1; i != MLX4_EN_MAX_RX_SEGS; i++) {
if (mb_head->m_pkthdr.len >= ring->rx_mb_size)
break;
mb = (mb->m_next = m_getjcl(M_NOWAIT, MT_DATA, 0, MLX4_EN_MAX_RX_BYTES));
if (unlikely(mb == NULL)) {
m_freem(mb_head);
return (NULL);
}
mb->m_len = MLX4_EN_MAX_RX_BYTES;
mb_head->m_pkthdr.len += MLX4_EN_MAX_RX_BYTES;
}
/* rewind to first mbuf in chain */
mb = mb_head;
}
#endif
return (mb);
}
static int
mlx4_en_alloc_buf(struct mlx4_en_rx_ring *ring, struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_mbuf *mb_list)
{
bus_dma_segment_t segs[MLX4_EN_MAX_RX_SEGS];
bus_dmamap_t map;
struct mbuf *mb;
int nsegs;
int err;
#if (MLX4_EN_MAX_RX_SEGS != 1)
int i;
#endif
/* try to allocate a new spare mbuf */
if (unlikely(ring->spare.mbuf == NULL)) {
mb = mlx4_en_alloc_mbuf(ring);
if (unlikely(mb == NULL))
return (-ENOMEM);
/* make sure IP header gets aligned */
m_adj(mb, MLX4_NET_IP_ALIGN);
/* load spare mbuf into BUSDMA */
err = -bus_dmamap_load_mbuf_sg(ring->dma_tag, ring->spare.dma_map,
mb, ring->spare.segs, &nsegs, BUS_DMA_NOWAIT);
if (unlikely(err != 0)) {
m_freem(mb);
return (err);
}
/* store spare info */
ring->spare.mbuf = mb;
#if (MLX4_EN_MAX_RX_SEGS != 1)
/* zero remaining segs */
for (i = nsegs; i != MLX4_EN_MAX_RX_SEGS; i++) {
ring->spare.segs[i].ds_addr = 0;
ring->spare.segs[i].ds_len = 0;
}
#endif
bus_dmamap_sync(ring->dma_tag, ring->spare.dma_map,
BUS_DMASYNC_PREREAD);
}
/* synchronize and unload the current mbuf, if any */
if (likely(mb_list->mbuf != NULL)) {
bus_dmamap_sync(ring->dma_tag, mb_list->dma_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->dma_tag, mb_list->dma_map);
}
mb = mlx4_en_alloc_mbuf(ring);
if (unlikely(mb == NULL))
goto use_spare;
/* make sure IP header gets aligned */
m_adj(mb, MLX4_NET_IP_ALIGN);
err = -bus_dmamap_load_mbuf_sg(ring->dma_tag, mb_list->dma_map,
mb, segs, &nsegs, BUS_DMA_NOWAIT);
if (unlikely(err != 0)) {
m_freem(mb);
goto use_spare;
}
#if (MLX4_EN_MAX_RX_SEGS == 1)
rx_desc->data[0].addr = cpu_to_be64(segs[0].ds_addr);
#else
for (i = 0; i != nsegs; i++) {
rx_desc->data[i].byte_count = cpu_to_be32(segs[i].ds_len);
rx_desc->data[i].lkey = ring->rx_mr_key_be;
rx_desc->data[i].addr = cpu_to_be64(segs[i].ds_addr);
}
for (; i != MLX4_EN_MAX_RX_SEGS; i++) {
rx_desc->data[i].byte_count = 0;
rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
rx_desc->data[i].addr = 0;
}
#endif
mb_list->mbuf = mb;
bus_dmamap_sync(ring->dma_tag, mb_list->dma_map, BUS_DMASYNC_PREREAD);
return (0);
use_spare:
/* swap DMA maps */
map = mb_list->dma_map;
mb_list->dma_map = ring->spare.dma_map;
ring->spare.dma_map = map;
/* swap MBUFs */
mb_list->mbuf = ring->spare.mbuf;
ring->spare.mbuf = NULL;
/* store physical address */
#if (MLX4_EN_MAX_RX_SEGS == 1)
rx_desc->data[0].addr = cpu_to_be64(ring->spare.segs[0].ds_addr);
#else
for (i = 0; i != MLX4_EN_MAX_RX_SEGS; i++) {
if (ring->spare.segs[i].ds_len != 0) {
rx_desc->data[i].byte_count = cpu_to_be32(ring->spare.segs[i].ds_len);
rx_desc->data[i].lkey = ring->rx_mr_key_be;
rx_desc->data[i].addr = cpu_to_be64(ring->spare.segs[i].ds_addr);
} else {
rx_desc->data[i].byte_count = 0;
rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
rx_desc->data[i].addr = 0;
}
}
#endif
return (0);
}
static void
mlx4_en_free_buf(struct mlx4_en_rx_ring *ring, struct mlx4_en_rx_mbuf *mb_list)
{
bus_dmamap_t map = mb_list->dma_map;
bus_dmamap_sync(ring->dma_tag, map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->dma_tag, map);
m_freem(mb_list->mbuf);
mb_list->mbuf = NULL; /* safety clearing */
}
static int
mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index)
{
struct mlx4_en_rx_desc *rx_desc =
((struct mlx4_en_rx_desc *)ring->buf) + index;
struct mlx4_en_rx_mbuf *mb_list = ring->mbuf + index;
mb_list->mbuf = NULL;
if (mlx4_en_alloc_buf(ring, rx_desc, mb_list)) {
priv->port_stats.rx_alloc_failed++;
return (-ENOMEM);
}
return (0);
}
static inline void
mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
{
*ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
}
static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int ring_ind;
int buf_ind;
int new_size;
int err;
for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
err = mlx4_en_prepare_rx_desc(priv, ring,
ring->actual_size);
if (err) {
if (ring->actual_size == 0) {
en_err(priv, "Failed to allocate "
"enough rx buffers\n");
return -ENOMEM;
} else {
new_size =
rounddown_pow_of_two(ring->actual_size);
en_warn(priv, "Only %d buffers allocated "
"reducing ring size to %d\n",
ring->actual_size, new_size);
goto reduce_rings;
}
}
ring->actual_size++;
ring->prod++;
}
}
return 0;
reduce_rings:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
while (ring->actual_size > new_size) {
ring->actual_size--;
ring->prod--;
mlx4_en_free_buf(ring,
ring->mbuf + ring->actual_size);
}
}
return 0;
}
static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int index;
en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
ring->cons, ring->prod);
/* Unmap and free Rx buffers */
BUG_ON((u32) (ring->prod - ring->cons) > ring->actual_size);
while (ring->cons != ring->prod) {
index = ring->cons & ring->size_mask;
en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
mlx4_en_free_buf(ring, ring->mbuf + index);
++ring->cons;
}
}
void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
{
int i;
int num_of_eqs;
int num_rx_rings;
struct mlx4_dev *dev = mdev->dev;
mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
num_of_eqs = max_t(int, MIN_RX_RINGS,
min_t(int,
mlx4_get_eqs_per_port(mdev->dev, i),
DEF_RX_RINGS));
num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
num_of_eqs;
mdev->profile.prof[i].rx_ring_num =
rounddown_pow_of_two(num_rx_rings);
}
}
void mlx4_en_calc_rx_buf(struct net_device *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int eff_mtu = dev->if_mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN +
MLX4_NET_IP_ALIGN;
if (eff_mtu > MJUM16BYTES) {
en_err(priv, "MTU(%u) is too big\n", (unsigned)dev->if_mtu);
eff_mtu = MJUM16BYTES;
} else if (eff_mtu > MJUM9BYTES) {
eff_mtu = MJUM16BYTES;
} else if (eff_mtu > MJUMPAGESIZE) {
eff_mtu = MJUM9BYTES;
} else if (eff_mtu > MCLBYTES) {
eff_mtu = MJUMPAGESIZE;
} else {
eff_mtu = MCLBYTES;
}
priv->rx_mb_size = eff_mtu;
en_dbg(DRV, priv, "Effective RX MTU: %d bytes\n", eff_mtu);
}
int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size, int node)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring;
int err;
int tmp;
uint32_t x;
ring = kzalloc(sizeof(struct mlx4_en_rx_ring), GFP_KERNEL);
if (!ring) {
en_err(priv, "Failed to allocate RX ring structure\n");
return -ENOMEM;
}
/* Create DMA descriptor TAG */
if ((err = -bus_dma_tag_create(
bus_get_dma_tag(mdev->pdev->dev.bsddev),
1, /* any alignment */
0, /* no boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM16BYTES, /* maxsize */
MLX4_EN_MAX_RX_SEGS, /* nsegments */
MJUM16BYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&ring->dma_tag))) {
en_err(priv, "Failed to create DMA tag\n");
goto err_ring;
}
ring->prod = 0;
ring->cons = 0;
ring->size = size;
ring->size_mask = size - 1;
ring->log_stride = ilog2(sizeof(struct mlx4_en_rx_desc));
ring->buf_size = (ring->size * sizeof(struct mlx4_en_rx_desc)) + TXBB_SIZE;
tmp = size * sizeof(struct mlx4_en_rx_mbuf);
ring->mbuf = kzalloc(tmp, GFP_KERNEL);
if (ring->mbuf == NULL) {
err = -ENOMEM;
goto err_dma_tag;
}
err = -bus_dmamap_create(ring->dma_tag, 0, &ring->spare.dma_map);
if (err != 0)
goto err_info;
for (x = 0; x != size; x++) {
err = -bus_dmamap_create(ring->dma_tag, 0,
&ring->mbuf[x].dma_map);
if (err != 0) {
while (x--)
bus_dmamap_destroy(ring->dma_tag,
ring->mbuf[x].dma_map);
goto err_info;
}
}
en_dbg(DRV, priv, "Allocated MBUF ring at addr:%p size:%d\n",
ring->mbuf, tmp);
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
ring->buf_size, 2 * PAGE_SIZE);
if (err)
goto err_dma_map;
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map RX buffer\n");
goto err_hwq;
}
ring->buf = ring->wqres.buf.direct.buf;
*pring = ring;
return 0;
err_hwq:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_dma_map:
for (x = 0; x != size; x++) {
bus_dmamap_destroy(ring->dma_tag,
ring->mbuf[x].dma_map);
}
bus_dmamap_destroy(ring->dma_tag, ring->spare.dma_map);
err_info:
vfree(ring->mbuf);
err_dma_tag:
bus_dma_tag_destroy(ring->dma_tag);
err_ring:
kfree(ring);
return (err);
}
int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
#if (MLX4_EN_MAX_RX_SEGS == 1)
int i;
#endif
int ring_ind;
int err;
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->prod = 0;
ring->cons = 0;
ring->actual_size = 0;
ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
ring->rx_mb_size = priv->rx_mb_size;
if (sizeof(struct mlx4_en_rx_desc) <= TXBB_SIZE) {
/* Stamp first unused send wqe */
__be32 *ptr = (__be32 *)ring->buf;
__be32 stamp = cpu_to_be32(1 << STAMP_SHIFT);
*ptr = stamp;
/* Move pointer to start of rx section */
ring->buf += TXBB_SIZE;
}
ring->log_stride = ilog2(sizeof(struct mlx4_en_rx_desc));
ring->buf_size = ring->size * sizeof(struct mlx4_en_rx_desc);
memset(ring->buf, 0, ring->buf_size);
mlx4_en_update_rx_prod_db(ring);
#if (MLX4_EN_MAX_RX_SEGS == 1)
/* Initialize all descriptors */
for (i = 0; i < ring->size; i++)
mlx4_en_init_rx_desc(priv, ring, i);
#endif
ring->rx_mr_key_be = cpu_to_be32(priv->mdev->mr.key);
#ifdef INET
/* Configure lro mngr */
if (priv->dev->if_capenable & IFCAP_LRO) {
if (tcp_lro_init(&ring->lro))
priv->dev->if_capenable &= ~IFCAP_LRO;
else
ring->lro.ifp = priv->dev;
}
#endif
}
err = mlx4_en_fill_rx_buffers(priv);
if (err)
goto err_buffers;
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->size_mask = ring->actual_size - 1;
mlx4_en_update_rx_prod_db(ring);
}
return 0;
err_buffers:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
ring_ind = priv->rx_ring_num - 1;
while (ring_ind >= 0) {
ring = priv->rx_ring[ring_ind];
if (sizeof(struct mlx4_en_rx_desc) <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
ring_ind--;
}
return err;
}
void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring = *pring;
uint32_t x;
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * sizeof(struct mlx4_en_rx_desc) + TXBB_SIZE);
for (x = 0; x != size; x++)
bus_dmamap_destroy(ring->dma_tag, ring->mbuf[x].dma_map);
/* free spare mbuf, if any */
if (ring->spare.mbuf != NULL) {
bus_dmamap_sync(ring->dma_tag, ring->spare.dma_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->dma_tag, ring->spare.dma_map);
m_freem(ring->spare.mbuf);
}
bus_dmamap_destroy(ring->dma_tag, ring->spare.dma_map);
vfree(ring->mbuf);
bus_dma_tag_destroy(ring->dma_tag);
kfree(ring);
*pring = NULL;
#ifdef CONFIG_RFS_ACCEL
mlx4_en_cleanup_filters(priv, ring);
#endif
}
void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
#ifdef INET
tcp_lro_free(&ring->lro);
#endif
mlx4_en_free_rx_buf(priv, ring);
if (sizeof(struct mlx4_en_rx_desc) <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
}
static void validate_loopback(struct mlx4_en_priv *priv, struct mbuf *mb)
{
int i;
int offset = ETHER_HDR_LEN;
for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
if (*(mb->m_data + offset) != (unsigned char) (i & 0xff))
goto out_loopback;
}
/* Loopback found */
priv->loopback_ok = 1;
out_loopback:
m_freem(mb);
}
static inline int invalid_cqe(struct mlx4_en_priv *priv,
struct mlx4_cqe *cqe)
{
/* Drop packet on bad receive or bad checksum */
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
((struct mlx4_err_cqe *)cqe)->syndrome);
return 1;
}
if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
return 1;
}
return 0;
}
static struct mbuf *
mlx4_en_rx_mb(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring,
struct mlx4_en_rx_desc *rx_desc, struct mlx4_en_rx_mbuf *mb_list,
int length)
{
#if (MLX4_EN_MAX_RX_SEGS != 1)
struct mbuf *mb_head;
#endif
struct mbuf *mb;
/* optimise reception of small packets */
if (length <= (MHLEN - MLX4_NET_IP_ALIGN) &&
(mb = m_gethdr(M_NOWAIT, MT_DATA)) != NULL) {
/* set packet length */
mb->m_pkthdr.len = mb->m_len = length;
/* make sure IP header gets aligned */
mb->m_data += MLX4_NET_IP_ALIGN;
bus_dmamap_sync(ring->dma_tag, mb_list->dma_map,
BUS_DMASYNC_POSTREAD);
bcopy(mtod(mb_list->mbuf, caddr_t), mtod(mb, caddr_t), length);
return (mb);
}
/* get mbuf */
mb = mb_list->mbuf;
/* collect used fragment while atomically replacing it */
if (mlx4_en_alloc_buf(ring, rx_desc, mb_list))
return (NULL);
/* range check hardware computed value */
if (unlikely(length > mb->m_pkthdr.len))
length = mb->m_pkthdr.len;
#if (MLX4_EN_MAX_RX_SEGS == 1)
/* update total packet length in packet header */
mb->m_len = mb->m_pkthdr.len = length;
#else
mb->m_pkthdr.len = length;
for (mb_head = mb; mb != NULL; mb = mb->m_next) {
if (mb->m_len > length)
mb->m_len = length;
length -= mb->m_len;
if (likely(length == 0)) {
if (likely(mb->m_next != NULL)) {
/* trim off empty mbufs */
m_freem(mb->m_next);
mb->m_next = NULL;
}
break;
}
}
/* rewind to first mbuf in chain */
mb = mb_head;
#endif
return (mb);
}
static __inline int
mlx4_en_rss_hash(__be16 status, int udp_rss)
{
enum {
status_all = cpu_to_be16(
MLX4_CQE_STATUS_IPV4 |
MLX4_CQE_STATUS_IPV4F |
MLX4_CQE_STATUS_IPV6 |
MLX4_CQE_STATUS_TCP |
MLX4_CQE_STATUS_UDP),
status_ipv4_tcp = cpu_to_be16(
MLX4_CQE_STATUS_IPV4 |
MLX4_CQE_STATUS_TCP),
status_ipv6_tcp = cpu_to_be16(
MLX4_CQE_STATUS_IPV6 |
MLX4_CQE_STATUS_TCP),
status_ipv4_udp = cpu_to_be16(
MLX4_CQE_STATUS_IPV4 |
MLX4_CQE_STATUS_UDP),
status_ipv6_udp = cpu_to_be16(
MLX4_CQE_STATUS_IPV6 |
MLX4_CQE_STATUS_UDP),
status_ipv4 = cpu_to_be16(MLX4_CQE_STATUS_IPV4),
status_ipv6 = cpu_to_be16(MLX4_CQE_STATUS_IPV6)
};
status &= status_all;
switch (status) {
case status_ipv4_tcp:
return (M_HASHTYPE_RSS_TCP_IPV4);
case status_ipv6_tcp:
return (M_HASHTYPE_RSS_TCP_IPV6);
case status_ipv4_udp:
return (udp_rss ? M_HASHTYPE_RSS_UDP_IPV4
: M_HASHTYPE_RSS_IPV4);
case status_ipv6_udp:
return (udp_rss ? M_HASHTYPE_RSS_UDP_IPV6
: M_HASHTYPE_RSS_IPV6);
default:
if (status & status_ipv4)
return (M_HASHTYPE_RSS_IPV4);
if (status & status_ipv6)
return (M_HASHTYPE_RSS_IPV6);
return (M_HASHTYPE_OPAQUE_HASH);
}
}
/* For cpu arch with cache line of 64B the performance is better when cqe size==64B
* To enlarge cqe size from 32B to 64B --> 32B of garbage (i.e. 0xccccccc)
* was added in the beginning of each cqe (the real data is in the corresponding 32B).
* The following calc ensures that when factor==1, it means we are aligned to 64B
* and we get the real cqe data*/
#define CQE_FACTOR_INDEX(index, factor) (((index) << (factor)) + (factor))
int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_cqe *cqe;
struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring];
struct mlx4_en_rx_mbuf *mb_list;
struct mlx4_en_rx_desc *rx_desc;
struct mbuf *mb;
struct mlx4_cq *mcq = &cq->mcq;
struct mlx4_cqe *buf = cq->buf;
int index;
unsigned int length;
int polled = 0;
u32 cons_index = mcq->cons_index;
u32 size_mask = ring->size_mask;
int size = cq->size;
int factor = priv->cqe_factor;
const int udp_rss = priv->mdev->profile.udp_rss;
if (!priv->port_up)
return 0;
/* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
* descriptor offset can be deducted from the CQE index instead of
* reading 'cqe->index' */
index = cons_index & size_mask;
cqe = &buf[CQE_FACTOR_INDEX(index, factor)];
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cons_index & size)) {
mb_list = ring->mbuf + index;
rx_desc = ((struct mlx4_en_rx_desc *)ring->buf) + index;
/*
* make sure we read the CQE after we read the ownership bit
*/
rmb();
if (invalid_cqe(priv, cqe)) {
goto next;
}
/*
* Packet is OK - process it.
*/
length = be32_to_cpu(cqe->byte_cnt);
length -= ring->fcs_del;
mb = mlx4_en_rx_mb(priv, ring, rx_desc, mb_list, length);
if (unlikely(!mb)) {
ring->errors++;
goto next;
}
ring->bytes += length;
ring->packets++;
if (unlikely(priv->validate_loopback)) {
validate_loopback(priv, mb);
goto next;
}
/* forward Toeplitz compatible hash value */
mb->m_pkthdr.flowid = be32_to_cpu(cqe->immed_rss_invalid);
M_HASHTYPE_SET(mb, mlx4_en_rss_hash(cqe->status, udp_rss));
mb->m_pkthdr.rcvif = dev;
if (be32_to_cpu(cqe->vlan_my_qpn) &
MLX4_CQE_CVLAN_PRESENT_MASK) {
mb->m_pkthdr.ether_vtag = be16_to_cpu(cqe->sl_vid);
mb->m_flags |= M_VLANTAG;
}
if (likely(dev->if_capenable &
(IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) &&
(cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
(cqe->checksum == cpu_to_be16(0xffff))) {
priv->port_stats.rx_chksum_good++;
mb->m_pkthdr.csum_flags =
CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
mb->m_pkthdr.csum_data = htons(0xffff);
/* This packet is eligible for LRO if it is:
* - DIX Ethernet (type interpretation)
* - TCP/IP (v4)
* - without IP options
* - not an IP fragment
*/
#ifdef INET
if (mlx4_en_can_lro(cqe->status) &&
(dev->if_capenable & IFCAP_LRO)) {
if (ring->lro.lro_cnt != 0 &&
tcp_lro_rx(&ring->lro, mb, 0) == 0)
goto next;
}
#endif
/* LRO not possible, complete processing here */
INC_PERF_COUNTER(priv->pstats.lro_misses);
} else {
mb->m_pkthdr.csum_flags = 0;
priv->port_stats.rx_chksum_none++;
}
/* Push it up the stack */
dev->if_input(dev, mb);
next:
++cons_index;
index = cons_index & size_mask;
cqe = &buf[CQE_FACTOR_INDEX(index, factor)];
if (++polled == budget)
goto out;
}
/* Flush all pending IP reassembly sessions */
out:
#ifdef INET
tcp_lro_flush_all(&ring->lro);
#endif
AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
mcq->cons_index = cons_index;
mlx4_cq_set_ci(mcq);
wmb(); /* ensure HW sees CQ consumer before we post new buffers */
ring->cons = mcq->cons_index;
ring->prod += polled; /* Polled descriptors were realocated in place */
mlx4_en_update_rx_prod_db(ring);
return polled;
}
/* Rx CQ polling - called by NAPI */
static int mlx4_en_poll_rx_cq(struct mlx4_en_cq *cq, int budget)
{
struct net_device *dev = cq->dev;
int done;
done = mlx4_en_process_rx_cq(dev, cq, budget);
cq->tot_rx += done;
return done;
}
void mlx4_en_rx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
int done;
// Shoot one within the irq context
// Because there is no NAPI in freeBSD
done = mlx4_en_poll_rx_cq(cq, MLX4_EN_RX_BUDGET);
if (priv->port_up && (done == MLX4_EN_RX_BUDGET) ) {
cq->curr_poll_rx_cpu_id = curcpu;
taskqueue_enqueue(cq->tq, &cq->cq_task);
}
else {
mlx4_en_arm_cq(priv, cq);
}
}
void mlx4_en_rx_que(void *context, int pending)
{
struct mlx4_en_cq *cq;
struct thread *td;
cq = context;
td = curthread;
thread_lock(td);
sched_bind(td, cq->curr_poll_rx_cpu_id);
thread_unlock(td);
while (mlx4_en_poll_rx_cq(cq, MLX4_EN_RX_BUDGET)
== MLX4_EN_RX_BUDGET);
mlx4_en_arm_cq(cq->dev->if_softc, cq);
}
/* RSS related functions */
static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
struct mlx4_en_rx_ring *ring,
enum mlx4_qp_state *state,
struct mlx4_qp *qp)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_qp_context *context;
int err = 0;
context = kmalloc(sizeof *context , GFP_KERNEL);
if (!context) {
en_err(priv, "Failed to allocate qp context\n");
return -ENOMEM;
}
err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed to allocate qp #%x\n", qpn);
goto out;
}
qp->event = mlx4_en_sqp_event;
memset(context, 0, sizeof *context);
mlx4_en_fill_qp_context(priv, ring->actual_size, sizeof(struct mlx4_en_rx_desc), 0, 0,
qpn, ring->cqn, -1, context);
context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
/* Cancel FCS removal if FW allows */
if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
context->param3 |= cpu_to_be32(1 << 29);
ring->fcs_del = ETH_FCS_LEN;
} else
ring->fcs_del = 0;
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
if (err) {
mlx4_qp_remove(mdev->dev, qp);
mlx4_qp_free(mdev->dev, qp);
}
mlx4_en_update_rx_prod_db(ring);
out:
kfree(context);
return err;
}
int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
{
int err;
u32 qpn;
err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn, 0);
if (err) {
en_err(priv, "Failed reserving drop qpn\n");
return err;
}
err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed allocating drop qp\n");
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
return err;
}
return 0;
}
void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
{
u32 qpn;
qpn = priv->drop_qp.qpn;
mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
}
const u32 *
mlx4_en_get_rss_key(struct mlx4_en_priv *priv __unused,
u16 *keylen)
{
static const u32 rsskey[10] = {
cpu_to_be32(0xD181C62C),
cpu_to_be32(0xF7F4DB5B),
cpu_to_be32(0x1983A2FC),
cpu_to_be32(0x943E1ADB),
cpu_to_be32(0xD9389E6B),
cpu_to_be32(0xD1039C2C),
cpu_to_be32(0xA74499AD),
cpu_to_be32(0x593D56D9),
cpu_to_be32(0xF3253C06),
cpu_to_be32(0x2ADC1FFC)
};
if (keylen != NULL)
*keylen = sizeof(rsskey);
return (rsskey);
}
u8 mlx4_en_get_rss_mask(struct mlx4_en_priv *priv)
{
u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
MLX4_RSS_TCP_IPV6);
if (priv->mdev->profile.udp_rss)
rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
return (rss_mask);
}
/* Allocate rx qp's and configure them according to rss map */
int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
struct mlx4_qp_context context;
struct mlx4_rss_context *rss_context;
const u32 *key;
int rss_rings;
void *ptr;
int i;
int err = 0;
int good_qps = 0;
en_dbg(DRV, priv, "Configuring rss steering\n");
err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
priv->rx_ring_num,
&rss_map->base_qpn, 0);
if (err) {
en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
return err;
}
for (i = 0; i < priv->rx_ring_num; i++) {
priv->rx_ring[i]->qpn = rss_map->base_qpn + i;
err = mlx4_en_config_rss_qp(priv, priv->rx_ring[i]->qpn,
priv->rx_ring[i],
&rss_map->state[i],
&rss_map->qps[i]);
if (err)
goto rss_err;
++good_qps;
}
/* Configure RSS indirection qp */
err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed to allocate RSS indirection QP\n");
goto rss_err;
}
rss_map->indir_qp.event = mlx4_en_sqp_event;
mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
priv->rx_ring[0]->cqn, -1, &context);
if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
rss_rings = priv->rx_ring_num;
else
rss_rings = priv->prof->rss_rings;
ptr = ((u8 *)&context) + offsetof(struct mlx4_qp_context, pri_path) +
MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
rss_context = ptr;
rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
(rss_map->base_qpn));
rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
if (priv->mdev->profile.udp_rss)
rss_context->base_qpn_udp = rss_context->default_qpn;
rss_context->flags = mlx4_en_get_rss_mask(priv);
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
key = mlx4_en_get_rss_key(priv, NULL);
for (i = 0; i < 10; i++)
rss_context->rss_key[i] = key[i];
err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
&rss_map->indir_qp, &rss_map->indir_state);
if (err)
goto indir_err;
return 0;
indir_err:
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
rss_err:
for (i = 0; i < good_qps; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
return err;
}
void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
int i;
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
for (i = 0; i < priv->rx_ring_num; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
}