freebsd-dev/sys/amd64/vmm/intel/vtd.c
Pedro F. Giffuni 500eb14ae8 vmm(4): Small spelling fixes.
Reviewed by:	grehan
2016-05-03 22:07:18 +00:00

689 lines
16 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/pci/pcireg.h>
#include <machine/vmparam.h>
#include <contrib/dev/acpica/include/acpi.h>
#include "io/iommu.h"
/*
* Documented in the "Intel Virtualization Technology for Directed I/O",
* Architecture Spec, September 2008.
*/
/* Section 10.4 "Register Descriptions" */
struct vtdmap {
volatile uint32_t version;
volatile uint32_t res0;
volatile uint64_t cap;
volatile uint64_t ext_cap;
volatile uint32_t gcr;
volatile uint32_t gsr;
volatile uint64_t rta;
volatile uint64_t ccr;
};
#define VTD_CAP_SAGAW(cap) (((cap) >> 8) & 0x1F)
#define VTD_CAP_ND(cap) ((cap) & 0x7)
#define VTD_CAP_CM(cap) (((cap) >> 7) & 0x1)
#define VTD_CAP_SPS(cap) (((cap) >> 34) & 0xF)
#define VTD_CAP_RWBF(cap) (((cap) >> 4) & 0x1)
#define VTD_ECAP_DI(ecap) (((ecap) >> 2) & 0x1)
#define VTD_ECAP_COHERENCY(ecap) ((ecap) & 0x1)
#define VTD_ECAP_IRO(ecap) (((ecap) >> 8) & 0x3FF)
#define VTD_GCR_WBF (1 << 27)
#define VTD_GCR_SRTP (1 << 30)
#define VTD_GCR_TE (1U << 31)
#define VTD_GSR_WBFS (1 << 27)
#define VTD_GSR_RTPS (1 << 30)
#define VTD_GSR_TES (1U << 31)
#define VTD_CCR_ICC (1UL << 63) /* invalidate context cache */
#define VTD_CCR_CIRG_GLOBAL (1UL << 61) /* global invalidation */
#define VTD_IIR_IVT (1UL << 63) /* invalidation IOTLB */
#define VTD_IIR_IIRG_GLOBAL (1ULL << 60) /* global IOTLB invalidation */
#define VTD_IIR_IIRG_DOMAIN (2ULL << 60) /* domain IOTLB invalidation */
#define VTD_IIR_IIRG_PAGE (3ULL << 60) /* page IOTLB invalidation */
#define VTD_IIR_DRAIN_READS (1ULL << 49) /* drain pending DMA reads */
#define VTD_IIR_DRAIN_WRITES (1ULL << 48) /* drain pending DMA writes */
#define VTD_IIR_DOMAIN_P 32
#define VTD_ROOT_PRESENT 0x1
#define VTD_CTX_PRESENT 0x1
#define VTD_CTX_TT_ALL (1UL << 2)
#define VTD_PTE_RD (1UL << 0)
#define VTD_PTE_WR (1UL << 1)
#define VTD_PTE_SUPERPAGE (1UL << 7)
#define VTD_PTE_ADDR_M (0x000FFFFFFFFFF000UL)
#define VTD_RID2IDX(rid) (((rid) & 0xff) * 2)
struct domain {
uint64_t *ptp; /* first level page table page */
int pt_levels; /* number of page table levels */
int addrwidth; /* 'AW' field in context entry */
int spsmask; /* supported super page sizes */
u_int id; /* domain id */
vm_paddr_t maxaddr; /* highest address to be mapped */
SLIST_ENTRY(domain) next;
};
static SLIST_HEAD(, domain) domhead;
#define DRHD_MAX_UNITS 8
static int drhd_num;
static struct vtdmap *vtdmaps[DRHD_MAX_UNITS];
static int max_domains;
typedef int (*drhd_ident_func_t)(void);
static uint64_t root_table[PAGE_SIZE / sizeof(uint64_t)] __aligned(4096);
static uint64_t ctx_tables[256][PAGE_SIZE / sizeof(uint64_t)] __aligned(4096);
static MALLOC_DEFINE(M_VTD, "vtd", "vtd");
static int
vtd_max_domains(struct vtdmap *vtdmap)
{
int nd;
nd = VTD_CAP_ND(vtdmap->cap);
switch (nd) {
case 0:
return (16);
case 1:
return (64);
case 2:
return (256);
case 3:
return (1024);
case 4:
return (4 * 1024);
case 5:
return (16 * 1024);
case 6:
return (64 * 1024);
default:
panic("vtd_max_domains: invalid value of nd (0x%0x)", nd);
}
}
static u_int
domain_id(void)
{
u_int id;
struct domain *dom;
/* Skip domain id 0 - it is reserved when Caching Mode field is set */
for (id = 1; id < max_domains; id++) {
SLIST_FOREACH(dom, &domhead, next) {
if (dom->id == id)
break;
}
if (dom == NULL)
break; /* found it */
}
if (id >= max_domains)
panic("domain ids exhausted");
return (id);
}
static void
vtd_wbflush(struct vtdmap *vtdmap)
{
if (VTD_ECAP_COHERENCY(vtdmap->ext_cap) == 0)
pmap_invalidate_cache();
if (VTD_CAP_RWBF(vtdmap->cap)) {
vtdmap->gcr = VTD_GCR_WBF;
while ((vtdmap->gsr & VTD_GSR_WBFS) != 0)
;
}
}
static void
vtd_ctx_global_invalidate(struct vtdmap *vtdmap)
{
vtdmap->ccr = VTD_CCR_ICC | VTD_CCR_CIRG_GLOBAL;
while ((vtdmap->ccr & VTD_CCR_ICC) != 0)
;
}
static void
vtd_iotlb_global_invalidate(struct vtdmap *vtdmap)
{
int offset;
volatile uint64_t *iotlb_reg, val;
vtd_wbflush(vtdmap);
offset = VTD_ECAP_IRO(vtdmap->ext_cap) * 16;
iotlb_reg = (volatile uint64_t *)((caddr_t)vtdmap + offset + 8);
*iotlb_reg = VTD_IIR_IVT | VTD_IIR_IIRG_GLOBAL |
VTD_IIR_DRAIN_READS | VTD_IIR_DRAIN_WRITES;
while (1) {
val = *iotlb_reg;
if ((val & VTD_IIR_IVT) == 0)
break;
}
}
static void
vtd_translation_enable(struct vtdmap *vtdmap)
{
vtdmap->gcr = VTD_GCR_TE;
while ((vtdmap->gsr & VTD_GSR_TES) == 0)
;
}
static void
vtd_translation_disable(struct vtdmap *vtdmap)
{
vtdmap->gcr = 0;
while ((vtdmap->gsr & VTD_GSR_TES) != 0)
;
}
static int
vtd_init(void)
{
int i, units, remaining;
struct vtdmap *vtdmap;
vm_paddr_t ctx_paddr;
char *end, envname[32];
unsigned long mapaddr;
ACPI_STATUS status;
ACPI_TABLE_DMAR *dmar;
ACPI_DMAR_HEADER *hdr;
ACPI_DMAR_HARDWARE_UNIT *drhd;
/*
* Allow the user to override the ACPI DMAR table by specifying the
* physical address of each remapping unit.
*
* The following example specifies two remapping units at
* physical addresses 0xfed90000 and 0xfeda0000 respectively.
* set vtd.regmap.0.addr=0xfed90000
* set vtd.regmap.1.addr=0xfeda0000
*/
for (units = 0; units < DRHD_MAX_UNITS; units++) {
snprintf(envname, sizeof(envname), "vtd.regmap.%d.addr", units);
if (getenv_ulong(envname, &mapaddr) == 0)
break;
vtdmaps[units] = (struct vtdmap *)PHYS_TO_DMAP(mapaddr);
}
if (units > 0)
goto skip_dmar;
/* Search for DMAR table. */
status = AcpiGetTable(ACPI_SIG_DMAR, 0, (ACPI_TABLE_HEADER **)&dmar);
if (ACPI_FAILURE(status))
return (ENXIO);
end = (char *)dmar + dmar->Header.Length;
remaining = dmar->Header.Length - sizeof(ACPI_TABLE_DMAR);
while (remaining > sizeof(ACPI_DMAR_HEADER)) {
hdr = (ACPI_DMAR_HEADER *)(end - remaining);
if (hdr->Length > remaining)
break;
/*
* From Intel VT-d arch spec, version 1.3:
* BIOS implementations must report mapping structures
* in numerical order, i.e. All remapping structures of
* type 0 (DRHD) enumerated before remapping structures of
* type 1 (RMRR) and so forth.
*/
if (hdr->Type != ACPI_DMAR_TYPE_HARDWARE_UNIT)
break;
drhd = (ACPI_DMAR_HARDWARE_UNIT *)hdr;
vtdmaps[units++] = (struct vtdmap *)PHYS_TO_DMAP(drhd->Address);
if (units >= DRHD_MAX_UNITS)
break;
remaining -= hdr->Length;
}
if (units <= 0)
return (ENXIO);
skip_dmar:
drhd_num = units;
vtdmap = vtdmaps[0];
if (VTD_CAP_CM(vtdmap->cap) != 0)
panic("vtd_init: invalid caching mode");
max_domains = vtd_max_domains(vtdmap);
/*
* Set up the root-table to point to the context-entry tables
*/
for (i = 0; i < 256; i++) {
ctx_paddr = vtophys(ctx_tables[i]);
if (ctx_paddr & PAGE_MASK)
panic("ctx table (0x%0lx) not page aligned", ctx_paddr);
root_table[i * 2] = ctx_paddr | VTD_ROOT_PRESENT;
}
return (0);
}
static void
vtd_cleanup(void)
{
}
static void
vtd_enable(void)
{
int i;
struct vtdmap *vtdmap;
for (i = 0; i < drhd_num; i++) {
vtdmap = vtdmaps[i];
vtd_wbflush(vtdmap);
/* Update the root table address */
vtdmap->rta = vtophys(root_table);
vtdmap->gcr = VTD_GCR_SRTP;
while ((vtdmap->gsr & VTD_GSR_RTPS) == 0)
;
vtd_ctx_global_invalidate(vtdmap);
vtd_iotlb_global_invalidate(vtdmap);
vtd_translation_enable(vtdmap);
}
}
static void
vtd_disable(void)
{
int i;
struct vtdmap *vtdmap;
for (i = 0; i < drhd_num; i++) {
vtdmap = vtdmaps[i];
vtd_translation_disable(vtdmap);
}
}
static void
vtd_add_device(void *arg, uint16_t rid)
{
int idx;
uint64_t *ctxp;
struct domain *dom = arg;
vm_paddr_t pt_paddr;
struct vtdmap *vtdmap;
uint8_t bus;
vtdmap = vtdmaps[0];
bus = PCI_RID2BUS(rid);
ctxp = ctx_tables[bus];
pt_paddr = vtophys(dom->ptp);
idx = VTD_RID2IDX(rid);
if (ctxp[idx] & VTD_CTX_PRESENT) {
panic("vtd_add_device: device %x is already owned by "
"domain %d", rid,
(uint16_t)(ctxp[idx + 1] >> 8));
}
/*
* Order is important. The 'present' bit is set only after all fields
* of the context pointer are initialized.
*/
ctxp[idx + 1] = dom->addrwidth | (dom->id << 8);
if (VTD_ECAP_DI(vtdmap->ext_cap))
ctxp[idx] = VTD_CTX_TT_ALL;
else
ctxp[idx] = 0;
ctxp[idx] |= pt_paddr | VTD_CTX_PRESENT;
/*
* 'Not Present' entries are not cached in either the Context Cache
* or in the IOTLB, so there is no need to invalidate either of them.
*/
}
static void
vtd_remove_device(void *arg, uint16_t rid)
{
int i, idx;
uint64_t *ctxp;
struct vtdmap *vtdmap;
uint8_t bus;
bus = PCI_RID2BUS(rid);
ctxp = ctx_tables[bus];
idx = VTD_RID2IDX(rid);
/*
* Order is important. The 'present' bit is must be cleared first.
*/
ctxp[idx] = 0;
ctxp[idx + 1] = 0;
/*
* Invalidate the Context Cache and the IOTLB.
*
* XXX use device-selective invalidation for Context Cache
* XXX use domain-selective invalidation for IOTLB
*/
for (i = 0; i < drhd_num; i++) {
vtdmap = vtdmaps[i];
vtd_ctx_global_invalidate(vtdmap);
vtd_iotlb_global_invalidate(vtdmap);
}
}
#define CREATE_MAPPING 0
#define REMOVE_MAPPING 1
static uint64_t
vtd_update_mapping(void *arg, vm_paddr_t gpa, vm_paddr_t hpa, uint64_t len,
int remove)
{
struct domain *dom;
int i, spshift, ptpshift, ptpindex, nlevels;
uint64_t spsize, *ptp;
dom = arg;
ptpindex = 0;
ptpshift = 0;
KASSERT(gpa + len > gpa, ("%s: invalid gpa range %#lx/%#lx", __func__,
gpa, len));
KASSERT(gpa + len <= dom->maxaddr, ("%s: gpa range %#lx/%#lx beyond "
"domain maxaddr %#lx", __func__, gpa, len, dom->maxaddr));
if (gpa & PAGE_MASK)
panic("vtd_create_mapping: unaligned gpa 0x%0lx", gpa);
if (hpa & PAGE_MASK)
panic("vtd_create_mapping: unaligned hpa 0x%0lx", hpa);
if (len & PAGE_MASK)
panic("vtd_create_mapping: unaligned len 0x%0lx", len);
/*
* Compute the size of the mapping that we can accommodate.
*
* This is based on three factors:
* - supported super page size
* - alignment of the region starting at 'gpa' and 'hpa'
* - length of the region 'len'
*/
spshift = 48;
for (i = 3; i >= 0; i--) {
spsize = 1UL << spshift;
if ((dom->spsmask & (1 << i)) != 0 &&
(gpa & (spsize - 1)) == 0 &&
(hpa & (spsize - 1)) == 0 &&
(len >= spsize)) {
break;
}
spshift -= 9;
}
ptp = dom->ptp;
nlevels = dom->pt_levels;
while (--nlevels >= 0) {
ptpshift = 12 + nlevels * 9;
ptpindex = (gpa >> ptpshift) & 0x1FF;
/* We have reached the leaf mapping */
if (spshift >= ptpshift) {
break;
}
/*
* We are working on a non-leaf page table page.
*
* Create a downstream page table page if necessary and point
* to it from the current page table.
*/
if (ptp[ptpindex] == 0) {
void *nlp = malloc(PAGE_SIZE, M_VTD, M_WAITOK | M_ZERO);
ptp[ptpindex] = vtophys(nlp)| VTD_PTE_RD | VTD_PTE_WR;
}
ptp = (uint64_t *)PHYS_TO_DMAP(ptp[ptpindex] & VTD_PTE_ADDR_M);
}
if ((gpa & ((1UL << ptpshift) - 1)) != 0)
panic("gpa 0x%lx and ptpshift %d mismatch", gpa, ptpshift);
/*
* Update the 'gpa' -> 'hpa' mapping
*/
if (remove) {
ptp[ptpindex] = 0;
} else {
ptp[ptpindex] = hpa | VTD_PTE_RD | VTD_PTE_WR;
if (nlevels > 0)
ptp[ptpindex] |= VTD_PTE_SUPERPAGE;
}
return (1UL << ptpshift);
}
static uint64_t
vtd_create_mapping(void *arg, vm_paddr_t gpa, vm_paddr_t hpa, uint64_t len)
{
return (vtd_update_mapping(arg, gpa, hpa, len, CREATE_MAPPING));
}
static uint64_t
vtd_remove_mapping(void *arg, vm_paddr_t gpa, uint64_t len)
{
return (vtd_update_mapping(arg, gpa, 0, len, REMOVE_MAPPING));
}
static void
vtd_invalidate_tlb(void *dom)
{
int i;
struct vtdmap *vtdmap;
/*
* Invalidate the IOTLB.
* XXX use domain-selective invalidation for IOTLB
*/
for (i = 0; i < drhd_num; i++) {
vtdmap = vtdmaps[i];
vtd_iotlb_global_invalidate(vtdmap);
}
}
static void *
vtd_create_domain(vm_paddr_t maxaddr)
{
struct domain *dom;
vm_paddr_t addr;
int tmp, i, gaw, agaw, sagaw, res, pt_levels, addrwidth;
struct vtdmap *vtdmap;
if (drhd_num <= 0)
panic("vtd_create_domain: no dma remapping hardware available");
vtdmap = vtdmaps[0];
/*
* Calculate AGAW.
* Section 3.4.2 "Adjusted Guest Address Width", Architecture Spec.
*/
addr = 0;
for (gaw = 0; addr < maxaddr; gaw++)
addr = 1ULL << gaw;
res = (gaw - 12) % 9;
if (res == 0)
agaw = gaw;
else
agaw = gaw + 9 - res;
if (agaw > 64)
agaw = 64;
/*
* Select the smallest Supported AGAW and the corresponding number
* of page table levels.
*/
pt_levels = 2;
sagaw = 30;
addrwidth = 0;
tmp = VTD_CAP_SAGAW(vtdmap->cap);
for (i = 0; i < 5; i++) {
if ((tmp & (1 << i)) != 0 && sagaw >= agaw)
break;
pt_levels++;
addrwidth++;
sagaw += 9;
if (sagaw > 64)
sagaw = 64;
}
if (i >= 5) {
panic("vtd_create_domain: SAGAW 0x%lx does not support AGAW %d",
VTD_CAP_SAGAW(vtdmap->cap), agaw);
}
dom = malloc(sizeof(struct domain), M_VTD, M_ZERO | M_WAITOK);
dom->pt_levels = pt_levels;
dom->addrwidth = addrwidth;
dom->id = domain_id();
dom->maxaddr = maxaddr;
dom->ptp = malloc(PAGE_SIZE, M_VTD, M_ZERO | M_WAITOK);
if ((uintptr_t)dom->ptp & PAGE_MASK)
panic("vtd_create_domain: ptp (%p) not page aligned", dom->ptp);
#ifdef notyet
/*
* XXX superpage mappings for the iommu do not work correctly.
*
* By default all physical memory is mapped into the host_domain.
* When a VM is allocated wired memory the pages belonging to it
* are removed from the host_domain and added to the vm's domain.
*
* If the page being removed was mapped using a superpage mapping
* in the host_domain then we need to demote the mapping before
* removing the page.
*
* There is not any code to deal with the demotion at the moment
* so we disable superpage mappings altogether.
*/
dom->spsmask = VTD_CAP_SPS(vtdmap->cap);
#endif
SLIST_INSERT_HEAD(&domhead, dom, next);
return (dom);
}
static void
vtd_free_ptp(uint64_t *ptp, int level)
{
int i;
uint64_t *nlp;
if (level > 1) {
for (i = 0; i < 512; i++) {
if ((ptp[i] & (VTD_PTE_RD | VTD_PTE_WR)) == 0)
continue;
if ((ptp[i] & VTD_PTE_SUPERPAGE) != 0)
continue;
nlp = (uint64_t *)PHYS_TO_DMAP(ptp[i] & VTD_PTE_ADDR_M);
vtd_free_ptp(nlp, level - 1);
}
}
bzero(ptp, PAGE_SIZE);
free(ptp, M_VTD);
}
static void
vtd_destroy_domain(void *arg)
{
struct domain *dom;
dom = arg;
SLIST_REMOVE(&domhead, dom, domain, next);
vtd_free_ptp(dom->ptp, dom->pt_levels);
free(dom, M_VTD);
}
struct iommu_ops iommu_ops_intel = {
vtd_init,
vtd_cleanup,
vtd_enable,
vtd_disable,
vtd_create_domain,
vtd_destroy_domain,
vtd_create_mapping,
vtd_remove_mapping,
vtd_add_device,
vtd_remove_device,
vtd_invalidate_tlb,
};