freebsd-dev/sys/geom/raid/md_promise.c
Conrad Meyer ac03832ef3 GEOM: Reduce unnecessary log interleaving with sbufs
Similar to what was done for device_printfs in r347229.

Convert g_print_bio() to a thin shim around g_format_bio(), which acts on an
sbuf; documented in g_bio.9.

Reviewed by:	markj
Discussed with:	rlibby
Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D21165
2019-08-07 19:28:35 +00:00

2009 lines
56 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <geom/geom.h>
#include <geom/geom_dbg.h>
#include "geom/raid/g_raid.h"
#include "g_raid_md_if.h"
static MALLOC_DEFINE(M_MD_PROMISE, "md_promise_data", "GEOM_RAID Promise metadata");
#define PROMISE_MAX_DISKS 8
#define PROMISE_MAX_SUBDISKS 2
#define PROMISE_META_OFFSET 14
struct promise_raid_disk {
uint8_t flags; /* Subdisk status. */
#define PROMISE_F_VALID 0x01
#define PROMISE_F_ONLINE 0x02
#define PROMISE_F_ASSIGNED 0x04
#define PROMISE_F_SPARE 0x08
#define PROMISE_F_DUPLICATE 0x10
#define PROMISE_F_REDIR 0x20
#define PROMISE_F_DOWN 0x40
#define PROMISE_F_READY 0x80
uint8_t number; /* Position in a volume. */
uint8_t channel; /* ATA channel number. */
uint8_t device; /* ATA device number. */
uint64_t id __packed; /* Subdisk ID. */
} __packed;
struct promise_raid_conf {
char promise_id[24];
#define PROMISE_MAGIC "Promise Technology, Inc."
#define FREEBSD_MAGIC "FreeBSD ATA driver RAID "
uint32_t dummy_0;
uint64_t magic_0;
#define PROMISE_MAGIC0(x) (((uint64_t)(x.channel) << 48) | \
((uint64_t)(x.device != 0) << 56))
uint16_t magic_1;
uint32_t magic_2;
uint8_t filler1[470];
uint32_t integrity;
#define PROMISE_I_VALID 0x00000080
struct promise_raid_disk disk; /* This subdisk info. */
uint32_t disk_offset; /* Subdisk offset. */
uint32_t disk_sectors; /* Subdisk size */
uint32_t disk_rebuild; /* Rebuild position. */
uint16_t generation; /* Generation number. */
uint8_t status; /* Volume status. */
#define PROMISE_S_VALID 0x01
#define PROMISE_S_ONLINE 0x02
#define PROMISE_S_INITED 0x04
#define PROMISE_S_READY 0x08
#define PROMISE_S_DEGRADED 0x10
#define PROMISE_S_MARKED 0x20
#define PROMISE_S_MIGRATING 0x40
#define PROMISE_S_FUNCTIONAL 0x80
uint8_t type; /* Voluem type. */
#define PROMISE_T_RAID0 0x00
#define PROMISE_T_RAID1 0x01
#define PROMISE_T_RAID3 0x02
#define PROMISE_T_RAID5 0x04
#define PROMISE_T_SPAN 0x08
#define PROMISE_T_JBOD 0x10
uint8_t total_disks; /* Disks in this volume. */
uint8_t stripe_shift; /* Strip size. */
uint8_t array_width; /* Number of RAID0 stripes. */
uint8_t array_number; /* Global volume number. */
uint32_t total_sectors; /* Volume size. */
uint16_t cylinders; /* Volume geometry: C. */
uint8_t heads; /* Volume geometry: H. */
uint8_t sectors; /* Volume geometry: S. */
uint64_t volume_id __packed; /* Volume ID, */
struct promise_raid_disk disks[PROMISE_MAX_DISKS];
/* Subdisks in this volume. */
char name[32]; /* Volume label. */
uint32_t filler2[8];
uint32_t magic_3; /* Something related to rebuild. */
uint64_t rebuild_lba64; /* Per-volume rebuild position. */
uint32_t magic_4;
uint32_t magic_5;
uint32_t total_sectors_high;
uint8_t magic_6;
uint8_t sector_size;
uint16_t magic_7;
uint32_t magic_8[31];
uint32_t backup_time;
uint16_t magic_9;
uint32_t disk_offset_high;
uint32_t disk_sectors_high;
uint32_t disk_rebuild_high;
uint16_t magic_10;
uint32_t magic_11[3];
uint32_t filler3[284];
uint32_t checksum;
} __packed;
struct g_raid_md_promise_perdisk {
int pd_updated;
int pd_subdisks;
struct promise_raid_conf *pd_meta[PROMISE_MAX_SUBDISKS];
};
struct g_raid_md_promise_pervolume {
struct promise_raid_conf *pv_meta;
uint64_t pv_id;
uint16_t pv_generation;
int pv_disks_present;
int pv_started;
struct callout pv_start_co; /* STARTING state timer. */
};
static g_raid_md_create_t g_raid_md_create_promise;
static g_raid_md_taste_t g_raid_md_taste_promise;
static g_raid_md_event_t g_raid_md_event_promise;
static g_raid_md_volume_event_t g_raid_md_volume_event_promise;
static g_raid_md_ctl_t g_raid_md_ctl_promise;
static g_raid_md_write_t g_raid_md_write_promise;
static g_raid_md_fail_disk_t g_raid_md_fail_disk_promise;
static g_raid_md_free_disk_t g_raid_md_free_disk_promise;
static g_raid_md_free_volume_t g_raid_md_free_volume_promise;
static g_raid_md_free_t g_raid_md_free_promise;
static kobj_method_t g_raid_md_promise_methods[] = {
KOBJMETHOD(g_raid_md_create, g_raid_md_create_promise),
KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_promise),
KOBJMETHOD(g_raid_md_event, g_raid_md_event_promise),
KOBJMETHOD(g_raid_md_volume_event, g_raid_md_volume_event_promise),
KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_promise),
KOBJMETHOD(g_raid_md_write, g_raid_md_write_promise),
KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_promise),
KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_promise),
KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_promise),
KOBJMETHOD(g_raid_md_free, g_raid_md_free_promise),
{ 0, 0 }
};
static struct g_raid_md_class g_raid_md_promise_class = {
"Promise",
g_raid_md_promise_methods,
sizeof(struct g_raid_md_object),
.mdc_enable = 1,
.mdc_priority = 100
};
static void
g_raid_md_promise_print(struct promise_raid_conf *meta)
{
int i;
if (g_raid_debug < 1)
return;
printf("********* ATA Promise Metadata *********\n");
printf("promise_id <%.24s>\n", meta->promise_id);
printf("disk %02x %02x %02x %02x %016jx\n",
meta->disk.flags, meta->disk.number, meta->disk.channel,
meta->disk.device, meta->disk.id);
printf("disk_offset %u\n", meta->disk_offset);
printf("disk_sectors %u\n", meta->disk_sectors);
printf("disk_rebuild %u\n", meta->disk_rebuild);
printf("generation %u\n", meta->generation);
printf("status 0x%02x\n", meta->status);
printf("type %u\n", meta->type);
printf("total_disks %u\n", meta->total_disks);
printf("stripe_shift %u\n", meta->stripe_shift);
printf("array_width %u\n", meta->array_width);
printf("array_number %u\n", meta->array_number);
printf("total_sectors %u\n", meta->total_sectors);
printf("cylinders %u\n", meta->cylinders);
printf("heads %u\n", meta->heads);
printf("sectors %u\n", meta->sectors);
printf("volume_id 0x%016jx\n", meta->volume_id);
printf("disks:\n");
for (i = 0; i < PROMISE_MAX_DISKS; i++ ) {
printf(" %02x %02x %02x %02x %016jx\n",
meta->disks[i].flags, meta->disks[i].number,
meta->disks[i].channel, meta->disks[i].device,
meta->disks[i].id);
}
printf("name <%.32s>\n", meta->name);
printf("magic_3 0x%08x\n", meta->magic_3);
printf("rebuild_lba64 %ju\n", meta->rebuild_lba64);
printf("magic_4 0x%08x\n", meta->magic_4);
printf("magic_5 0x%08x\n", meta->magic_5);
printf("total_sectors_high 0x%08x\n", meta->total_sectors_high);
printf("sector_size %u\n", meta->sector_size);
printf("backup_time %d\n", meta->backup_time);
printf("disk_offset_high 0x%08x\n", meta->disk_offset_high);
printf("disk_sectors_high 0x%08x\n", meta->disk_sectors_high);
printf("disk_rebuild_high 0x%08x\n", meta->disk_rebuild_high);
printf("=================================================\n");
}
static struct promise_raid_conf *
promise_meta_copy(struct promise_raid_conf *meta)
{
struct promise_raid_conf *nmeta;
nmeta = malloc(sizeof(*nmeta), M_MD_PROMISE, M_WAITOK);
memcpy(nmeta, meta, sizeof(*nmeta));
return (nmeta);
}
static int
promise_meta_find_disk(struct promise_raid_conf *meta, uint64_t id)
{
int pos;
for (pos = 0; pos < meta->total_disks; pos++) {
if (meta->disks[pos].id == id)
return (pos);
}
return (-1);
}
static int
promise_meta_unused_range(struct promise_raid_conf **metaarr, int nsd,
off_t sectors, off_t *off, off_t *size)
{
off_t coff, csize, tmp;
int i, j;
sectors -= 131072;
*off = 0;
*size = 0;
coff = 0;
csize = sectors;
i = 0;
while (1) {
for (j = 0; j < nsd; j++) {
tmp = ((off_t)metaarr[j]->disk_offset_high << 32) +
metaarr[j]->disk_offset;
if (tmp >= coff)
csize = MIN(csize, tmp - coff);
}
if (csize > *size) {
*off = coff;
*size = csize;
}
if (i >= nsd)
break;
coff = ((off_t)metaarr[i]->disk_offset_high << 32) +
metaarr[i]->disk_offset +
((off_t)metaarr[i]->disk_sectors_high << 32) +
metaarr[i]->disk_sectors;
csize = sectors - coff;
i++;
}
return ((*size > 0) ? 1 : 0);
}
static int
promise_meta_translate_disk(struct g_raid_volume *vol, int md_disk_pos)
{
int disk_pos, width;
if (md_disk_pos >= 0 && vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) {
width = vol->v_disks_count / 2;
disk_pos = (md_disk_pos / width) +
(md_disk_pos % width) * width;
} else
disk_pos = md_disk_pos;
return (disk_pos);
}
static void
promise_meta_get_name(struct promise_raid_conf *meta, char *buf)
{
int i;
strncpy(buf, meta->name, 32);
buf[32] = 0;
for (i = 31; i >= 0; i--) {
if (buf[i] > 0x20)
break;
buf[i] = 0;
}
}
static void
promise_meta_put_name(struct promise_raid_conf *meta, char *buf)
{
memset(meta->name, 0x20, 32);
memcpy(meta->name, buf, MIN(strlen(buf), 32));
}
static int
promise_meta_read(struct g_consumer *cp, struct promise_raid_conf **metaarr)
{
struct g_provider *pp;
struct promise_raid_conf *meta;
char *buf;
int error, i, subdisks;
uint32_t checksum, *ptr;
pp = cp->provider;
subdisks = 0;
if (pp->sectorsize * 4 > MAXPHYS) {
G_RAID_DEBUG(1, "%s: Blocksize is too big.", pp->name);
return (subdisks);
}
next:
/* Read metadata block. */
buf = g_read_data(cp, pp->mediasize - pp->sectorsize *
(63 - subdisks * PROMISE_META_OFFSET),
pp->sectorsize * 4, &error);
if (buf == NULL) {
G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
pp->name, error);
return (subdisks);
}
meta = (struct promise_raid_conf *)buf;
/* Check if this is an Promise RAID struct */
if (strncmp(meta->promise_id, PROMISE_MAGIC, strlen(PROMISE_MAGIC)) &&
strncmp(meta->promise_id, FREEBSD_MAGIC, strlen(FREEBSD_MAGIC))) {
if (subdisks == 0)
G_RAID_DEBUG(1,
"Promise signature check failed on %s", pp->name);
g_free(buf);
return (subdisks);
}
meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK);
memcpy(meta, buf, MIN(sizeof(*meta), pp->sectorsize * 4));
g_free(buf);
/* Check metadata checksum. */
for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < 511; i++)
checksum += *ptr++;
if (checksum != meta->checksum) {
G_RAID_DEBUG(1, "Promise checksum check failed on %s", pp->name);
free(meta, M_MD_PROMISE);
return (subdisks);
}
if ((meta->integrity & PROMISE_I_VALID) == 0) {
G_RAID_DEBUG(1, "Promise metadata is invalid on %s", pp->name);
free(meta, M_MD_PROMISE);
return (subdisks);
}
if (meta->total_disks > PROMISE_MAX_DISKS) {
G_RAID_DEBUG(1, "Wrong number of disks on %s (%d)",
pp->name, meta->total_disks);
free(meta, M_MD_PROMISE);
return (subdisks);
}
/* Remove filler garbage from fields used in newer metadata. */
if (meta->disk_offset_high == 0x8b8c8d8e &&
meta->disk_sectors_high == 0x8788898a &&
meta->disk_rebuild_high == 0x83848586) {
meta->disk_offset_high = 0;
meta->disk_sectors_high = 0;
if (meta->disk_rebuild == UINT32_MAX)
meta->disk_rebuild_high = UINT32_MAX;
else
meta->disk_rebuild_high = 0;
if (meta->total_sectors_high == 0x15161718) {
meta->total_sectors_high = 0;
meta->backup_time = 0;
if (meta->rebuild_lba64 == 0x2122232425262728)
meta->rebuild_lba64 = UINT64_MAX;
}
}
if (meta->sector_size < 1 || meta->sector_size > 8)
meta->sector_size = 1;
/* Save this part and look for next. */
*metaarr = meta;
metaarr++;
subdisks++;
if (subdisks < PROMISE_MAX_SUBDISKS)
goto next;
return (subdisks);
}
static int
promise_meta_write(struct g_consumer *cp,
struct promise_raid_conf **metaarr, int nsd)
{
struct g_provider *pp;
struct promise_raid_conf *meta;
char *buf;
off_t off, size;
int error, i, subdisk, fake;
uint32_t checksum, *ptr;
pp = cp->provider;
subdisk = 0;
fake = 0;
next:
buf = malloc(pp->sectorsize * 4, M_MD_PROMISE, M_WAITOK | M_ZERO);
meta = NULL;
if (subdisk < nsd) {
meta = metaarr[subdisk];
} else if (!fake && promise_meta_unused_range(metaarr, nsd,
cp->provider->mediasize / cp->provider->sectorsize,
&off, &size)) {
/* Optionally add record for unused space. */
meta = (struct promise_raid_conf *)buf;
memcpy(&meta->promise_id[0], PROMISE_MAGIC,
sizeof(PROMISE_MAGIC) - 1);
meta->dummy_0 = 0x00020000;
meta->integrity = PROMISE_I_VALID;
meta->disk.flags = PROMISE_F_ONLINE | PROMISE_F_VALID;
meta->disk.number = 0xff;
arc4rand(&meta->disk.id, sizeof(meta->disk.id), 0);
meta->disk_offset_high = off >> 32;
meta->disk_offset = (uint32_t)off;
meta->disk_sectors_high = size >> 32;
meta->disk_sectors = (uint32_t)size;
meta->disk_rebuild_high = UINT32_MAX;
meta->disk_rebuild = UINT32_MAX;
fake = 1;
}
if (meta != NULL) {
/* Recalculate checksum for case if metadata were changed. */
meta->checksum = 0;
for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < 511; i++)
checksum += *ptr++;
meta->checksum = checksum;
memcpy(buf, meta, MIN(pp->sectorsize * 4, sizeof(*meta)));
}
error = g_write_data(cp, pp->mediasize - pp->sectorsize *
(63 - subdisk * PROMISE_META_OFFSET),
buf, pp->sectorsize * 4);
if (error != 0) {
G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
pp->name, error);
}
free(buf, M_MD_PROMISE);
subdisk++;
if (subdisk < PROMISE_MAX_SUBDISKS)
goto next;
return (error);
}
static int
promise_meta_erase(struct g_consumer *cp)
{
struct g_provider *pp;
char *buf;
int error, subdisk;
pp = cp->provider;
buf = malloc(4 * pp->sectorsize, M_MD_PROMISE, M_WAITOK | M_ZERO);
for (subdisk = 0; subdisk < PROMISE_MAX_SUBDISKS; subdisk++) {
error = g_write_data(cp, pp->mediasize - pp->sectorsize *
(63 - subdisk * PROMISE_META_OFFSET),
buf, 4 * pp->sectorsize);
if (error != 0) {
G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
pp->name, error);
}
}
free(buf, M_MD_PROMISE);
return (error);
}
static int
promise_meta_write_spare(struct g_consumer *cp)
{
struct promise_raid_conf *meta;
off_t tmp;
int error;
meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK | M_ZERO);
memcpy(&meta->promise_id[0], PROMISE_MAGIC, sizeof(PROMISE_MAGIC) - 1);
meta->dummy_0 = 0x00020000;
meta->integrity = PROMISE_I_VALID;
meta->disk.flags = PROMISE_F_SPARE | PROMISE_F_ONLINE | PROMISE_F_VALID;
meta->disk.number = 0xff;
arc4rand(&meta->disk.id, sizeof(meta->disk.id), 0);
tmp = cp->provider->mediasize / cp->provider->sectorsize - 131072;
meta->disk_sectors_high = tmp >> 32;
meta->disk_sectors = (uint32_t)tmp;
meta->disk_rebuild_high = UINT32_MAX;
meta->disk_rebuild = UINT32_MAX;
error = promise_meta_write(cp, &meta, 1);
free(meta, M_MD_PROMISE);
return (error);
}
static struct g_raid_volume *
g_raid_md_promise_get_volume(struct g_raid_softc *sc, uint64_t id)
{
struct g_raid_volume *vol;
struct g_raid_md_promise_pervolume *pv;
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
pv = vol->v_md_data;
if (pv->pv_id == id)
break;
}
return (vol);
}
static int
g_raid_md_promise_purge_volumes(struct g_raid_softc *sc)
{
struct g_raid_volume *vol, *tvol;
struct g_raid_md_promise_pervolume *pv;
int i, res;
res = 0;
TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) {
pv = vol->v_md_data;
if (!pv->pv_started || vol->v_stopping)
continue;
for (i = 0; i < vol->v_disks_count; i++) {
if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE)
break;
}
if (i >= vol->v_disks_count) {
g_raid_destroy_volume(vol);
res = 1;
}
}
return (res);
}
static int
g_raid_md_promise_purge_disks(struct g_raid_softc *sc)
{
struct g_raid_disk *disk, *tdisk;
struct g_raid_volume *vol;
struct g_raid_md_promise_perdisk *pd;
int i, j, res;
res = 0;
TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
if (disk->d_state == G_RAID_DISK_S_SPARE)
continue;
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
/* Scan for deleted volumes. */
for (i = 0; i < pd->pd_subdisks; ) {
vol = g_raid_md_promise_get_volume(sc,
pd->pd_meta[i]->volume_id);
if (vol != NULL && !vol->v_stopping) {
i++;
continue;
}
free(pd->pd_meta[i], M_MD_PROMISE);
for (j = i; j < pd->pd_subdisks - 1; j++)
pd->pd_meta[j] = pd->pd_meta[j + 1];
pd->pd_meta[pd->pd_subdisks - 1] = NULL;
pd->pd_subdisks--;
pd->pd_updated = 1;
}
/* If there is no metadata left - erase and delete disk. */
if (pd->pd_subdisks == 0) {
promise_meta_erase(disk->d_consumer);
g_raid_destroy_disk(disk);
res = 1;
}
}
return (res);
}
static int
g_raid_md_promise_supported(int level, int qual, int disks, int force)
{
if (disks > PROMISE_MAX_DISKS)
return (0);
switch (level) {
case G_RAID_VOLUME_RL_RAID0:
if (disks < 1)
return (0);
if (!force && disks < 2)
return (0);
break;
case G_RAID_VOLUME_RL_RAID1:
if (disks < 1)
return (0);
if (!force && (disks != 2))
return (0);
break;
case G_RAID_VOLUME_RL_RAID1E:
if (disks < 2)
return (0);
if (disks % 2 != 0)
return (0);
if (!force && (disks != 4))
return (0);
break;
case G_RAID_VOLUME_RL_SINGLE:
if (disks != 1)
return (0);
break;
case G_RAID_VOLUME_RL_CONCAT:
if (disks < 2)
return (0);
break;
case G_RAID_VOLUME_RL_RAID5:
if (disks < 3)
return (0);
if (qual != G_RAID_VOLUME_RLQ_R5LA)
return (0);
break;
default:
return (0);
}
if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
return (0);
return (1);
}
static int
g_raid_md_promise_start_disk(struct g_raid_disk *disk, int sdn,
struct g_raid_volume *vol)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd;
struct g_raid_md_promise_perdisk *pd;
struct g_raid_md_promise_pervolume *pv;
struct promise_raid_conf *meta;
off_t eoff, esize, size;
int disk_pos, md_disk_pos, i, resurrection = 0;
sc = disk->d_softc;
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
pv = vol->v_md_data;
meta = pv->pv_meta;
if (sdn >= 0) {
/* Find disk position in metadata by its serial. */
md_disk_pos = promise_meta_find_disk(meta, pd->pd_meta[sdn]->disk.id);
/* For RAID0+1 we need to translate order. */
disk_pos = promise_meta_translate_disk(vol, md_disk_pos);
} else {
md_disk_pos = -1;
disk_pos = -1;
}
if (disk_pos < 0) {
G_RAID_DEBUG1(1, sc, "Disk %s is not part of the volume %s",
g_raid_get_diskname(disk), vol->v_name);
/* Failed stale disk is useless for us. */
if (sdn >= 0 &&
pd->pd_meta[sdn]->disk.flags & PROMISE_F_DOWN) {
g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
return (0);
}
/* If we were given specific metadata subdisk - erase it. */
if (sdn >= 0) {
free(pd->pd_meta[sdn], M_MD_PROMISE);
for (i = sdn; i < pd->pd_subdisks - 1; i++)
pd->pd_meta[i] = pd->pd_meta[i + 1];
pd->pd_meta[pd->pd_subdisks - 1] = NULL;
pd->pd_subdisks--;
}
/* If we are in the start process, that's all for now. */
if (!pv->pv_started)
goto nofit;
/*
* If we have already started - try to get use of the disk.
* Try to replace OFFLINE disks first, then FAILED.
*/
promise_meta_unused_range(pd->pd_meta, pd->pd_subdisks,
disk->d_consumer->provider->mediasize /
disk->d_consumer->provider->sectorsize,
&eoff, &esize);
if (esize == 0) {
G_RAID_DEBUG1(1, sc, "No free space on disk %s",
g_raid_get_diskname(disk));
goto nofit;
}
size = INT64_MAX;
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
if (sd->sd_state != G_RAID_SUBDISK_S_NONE)
size = sd->sd_size;
if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED &&
(disk_pos < 0 ||
vol->v_subdisks[i].sd_state < sd->sd_state))
disk_pos = i;
}
if (disk_pos >= 0 &&
vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT &&
(off_t)esize * 512 < size) {
G_RAID_DEBUG1(1, sc, "Disk %s free space "
"is too small (%ju < %ju)",
g_raid_get_diskname(disk),
(off_t)esize * 512, size);
disk_pos = -1;
}
if (disk_pos >= 0) {
if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT)
esize = size / 512;
/* For RAID0+1 we need to translate order. */
md_disk_pos = promise_meta_translate_disk(vol, disk_pos);
} else {
nofit:
if (pd->pd_subdisks == 0) {
g_raid_change_disk_state(disk,
G_RAID_DISK_S_SPARE);
}
return (0);
}
G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s",
g_raid_get_diskname(disk), disk_pos, vol->v_name);
resurrection = 1;
}
sd = &vol->v_subdisks[disk_pos];
if (resurrection && sd->sd_disk != NULL) {
g_raid_change_disk_state(sd->sd_disk,
G_RAID_DISK_S_STALE_FAILED);
TAILQ_REMOVE(&sd->sd_disk->d_subdisks,
sd, sd_next);
}
vol->v_subdisks[disk_pos].sd_disk = disk;
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
/* Welcome the new disk. */
if (resurrection)
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
else if (meta->disks[md_disk_pos].flags & PROMISE_F_DOWN)
g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
else
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
if (resurrection) {
sd->sd_offset = (off_t)eoff * 512;
sd->sd_size = (off_t)esize * 512;
} else {
sd->sd_offset = (((off_t)pd->pd_meta[sdn]->disk_offset_high
<< 32) + pd->pd_meta[sdn]->disk_offset) * 512;
sd->sd_size = (((off_t)pd->pd_meta[sdn]->disk_sectors_high
<< 32) + pd->pd_meta[sdn]->disk_sectors) * 512;
}
if (resurrection) {
/* Stale disk, almost same as new. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else if (meta->disks[md_disk_pos].flags & PROMISE_F_DOWN) {
/* Failed disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_FAILED);
} else if (meta->disks[md_disk_pos].flags & PROMISE_F_REDIR) {
/* Rebuilding disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_REBUILD);
if (pd->pd_meta[sdn]->generation != meta->generation)
sd->sd_rebuild_pos = 0;
else {
sd->sd_rebuild_pos =
(((off_t)pd->pd_meta[sdn]->disk_rebuild_high << 32) +
pd->pd_meta[sdn]->disk_rebuild) * 512;
}
} else if (!(meta->disks[md_disk_pos].flags & PROMISE_F_ONLINE)) {
/* Rebuilding disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else if (pd->pd_meta[sdn]->generation != meta->generation ||
(meta->status & PROMISE_S_MARKED)) {
/* Stale disk or dirty volume (unclean shutdown). */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_STALE);
} else {
/* Up to date disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
}
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
G_RAID_EVENT_SUBDISK);
return (resurrection);
}
static void
g_raid_md_promise_refill(struct g_raid_softc *sc)
{
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
struct g_raid_md_object *md;
struct g_raid_md_promise_perdisk *pd;
struct g_raid_md_promise_pervolume *pv;
int update, updated, i, bad;
md = sc->sc_md;
restart:
updated = 0;
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
pv = vol->v_md_data;
if (!pv->pv_started || vol->v_stopping)
continue;
/* Search for subdisk that needs replacement. */
bad = 0;
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
sd->sd_state == G_RAID_SUBDISK_S_FAILED)
bad = 1;
}
if (!bad)
continue;
G_RAID_DEBUG1(1, sc, "Volume %s is not complete, "
"trying to refill.", vol->v_name);
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
/* Skip failed. */
if (disk->d_state < G_RAID_DISK_S_SPARE)
continue;
/* Skip already used by this volume. */
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
if (sd->sd_disk == disk)
break;
}
if (i < vol->v_disks_count)
continue;
/* Try to use disk if it has empty extents. */
pd = disk->d_md_data;
if (pd->pd_subdisks < PROMISE_MAX_SUBDISKS) {
update =
g_raid_md_promise_start_disk(disk, -1, vol);
} else
update = 0;
if (update) {
updated = 1;
g_raid_md_write_promise(md, vol, NULL, disk);
break;
}
}
}
if (updated)
goto restart;
}
static void
g_raid_md_promise_start(struct g_raid_volume *vol)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
struct g_raid_md_object *md;
struct g_raid_md_promise_perdisk *pd;
struct g_raid_md_promise_pervolume *pv;
struct promise_raid_conf *meta;
u_int i;
sc = vol->v_softc;
md = sc->sc_md;
pv = vol->v_md_data;
meta = pv->pv_meta;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
if (meta->type == PROMISE_T_RAID0)
vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
else if (meta->type == PROMISE_T_RAID1) {
if (meta->array_width == 1)
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
else
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
} else if (meta->type == PROMISE_T_RAID3)
vol->v_raid_level = G_RAID_VOLUME_RL_RAID3;
else if (meta->type == PROMISE_T_RAID5) {
vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
} else if (meta->type == PROMISE_T_SPAN)
vol->v_raid_level = G_RAID_VOLUME_RL_CONCAT;
else if (meta->type == PROMISE_T_JBOD)
vol->v_raid_level = G_RAID_VOLUME_RL_SINGLE;
else
vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
vol->v_strip_size = 512 << meta->stripe_shift; //ZZZ
vol->v_disks_count = meta->total_disks;
vol->v_mediasize = (off_t)meta->total_sectors * 512; //ZZZ
if (meta->total_sectors_high < 256) /* If value looks sane. */
vol->v_mediasize +=
((off_t)meta->total_sectors_high << 32) * 512; //ZZZ
vol->v_sectorsize = 512 * meta->sector_size;
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
sd->sd_offset = (((off_t)meta->disk_offset_high << 32) +
meta->disk_offset) * 512;
sd->sd_size = (((off_t)meta->disk_sectors_high << 32) +
meta->disk_sectors) * 512;
}
g_raid_start_volume(vol);
/* Make all disks found till the moment take their places. */
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = disk->d_md_data;
for (i = 0; i < pd->pd_subdisks; i++) {
if (pd->pd_meta[i]->volume_id == meta->volume_id)
g_raid_md_promise_start_disk(disk, i, vol);
}
}
pv->pv_started = 1;
callout_stop(&pv->pv_start_co);
G_RAID_DEBUG1(0, sc, "Volume started.");
g_raid_md_write_promise(md, vol, NULL, NULL);
/* Pickup any STALE/SPARE disks to refill array if needed. */
g_raid_md_promise_refill(sc);
g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
}
static void
g_raid_promise_go(void *arg)
{
struct g_raid_volume *vol;
struct g_raid_softc *sc;
struct g_raid_md_promise_pervolume *pv;
vol = arg;
pv = vol->v_md_data;
sc = vol->v_softc;
if (!pv->pv_started) {
G_RAID_DEBUG1(0, sc, "Force volume start due to timeout.");
g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD,
G_RAID_EVENT_VOLUME);
}
}
static void
g_raid_md_promise_new_disk(struct g_raid_disk *disk)
{
struct g_raid_softc *sc;
struct g_raid_md_object *md;
struct promise_raid_conf *pdmeta;
struct g_raid_md_promise_perdisk *pd;
struct g_raid_md_promise_pervolume *pv;
struct g_raid_volume *vol;
int i;
char buf[33];
sc = disk->d_softc;
md = sc->sc_md;
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
if (pd->pd_subdisks == 0) {
g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
g_raid_md_promise_refill(sc);
return;
}
for (i = 0; i < pd->pd_subdisks; i++) {
pdmeta = pd->pd_meta[i];
/* Look for volume with matching ID. */
vol = g_raid_md_promise_get_volume(sc, pdmeta->volume_id);
if (vol == NULL) {
promise_meta_get_name(pdmeta, buf);
vol = g_raid_create_volume(sc, buf, pdmeta->array_number);
pv = malloc(sizeof(*pv), M_MD_PROMISE, M_WAITOK | M_ZERO);
pv->pv_id = pdmeta->volume_id;
vol->v_md_data = pv;
callout_init(&pv->pv_start_co, 1);
callout_reset(&pv->pv_start_co,
g_raid_start_timeout * hz,
g_raid_promise_go, vol);
} else
pv = vol->v_md_data;
/* If we haven't started yet - check metadata freshness. */
if (pv->pv_meta == NULL || !pv->pv_started) {
if (pv->pv_meta == NULL ||
((int16_t)(pdmeta->generation - pv->pv_generation)) > 0) {
G_RAID_DEBUG1(1, sc, "Newer disk");
if (pv->pv_meta != NULL)
free(pv->pv_meta, M_MD_PROMISE);
pv->pv_meta = promise_meta_copy(pdmeta);
pv->pv_generation = pv->pv_meta->generation;
pv->pv_disks_present = 1;
} else if (pdmeta->generation == pv->pv_generation) {
pv->pv_disks_present++;
G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
pv->pv_disks_present,
pv->pv_meta->total_disks);
} else {
G_RAID_DEBUG1(1, sc, "Older disk");
}
}
}
for (i = 0; i < pd->pd_subdisks; i++) {
pdmeta = pd->pd_meta[i];
/* Look for volume with matching ID. */
vol = g_raid_md_promise_get_volume(sc, pdmeta->volume_id);
if (vol == NULL)
continue;
pv = vol->v_md_data;
if (pv->pv_started) {
if (g_raid_md_promise_start_disk(disk, i, vol))
g_raid_md_write_promise(md, vol, NULL, NULL);
} else {
/* If we collected all needed disks - start array. */
if (pv->pv_disks_present == pv->pv_meta->total_disks)
g_raid_md_promise_start(vol);
}
}
}
static int
g_raid_md_create_promise(struct g_raid_md_object *md, struct g_class *mp,
struct g_geom **gp)
{
struct g_geom *geom;
struct g_raid_softc *sc;
/* Search for existing node. */
LIST_FOREACH(geom, &mp->geom, geom) {
sc = geom->softc;
if (sc == NULL)
continue;
if (sc->sc_stopping != 0)
continue;
if (sc->sc_md->mdo_class != md->mdo_class)
continue;
break;
}
if (geom != NULL) {
*gp = geom;
return (G_RAID_MD_TASTE_EXISTING);
}
/* Create new one if not found. */
sc = g_raid_create_node(mp, "Promise", md);
if (sc == NULL)
return (G_RAID_MD_TASTE_FAIL);
md->mdo_softc = sc;
*gp = sc->sc_geom;
return (G_RAID_MD_TASTE_NEW);
}
static int
g_raid_md_taste_promise(struct g_raid_md_object *md, struct g_class *mp,
struct g_consumer *cp, struct g_geom **gp)
{
struct g_consumer *rcp;
struct g_provider *pp;
struct g_raid_softc *sc;
struct g_raid_disk *disk;
struct promise_raid_conf *metaarr[4];
struct g_raid_md_promise_perdisk *pd;
struct g_geom *geom;
int i, j, result, len, subdisks;
char name[16];
uint16_t vendor;
G_RAID_DEBUG(1, "Tasting Promise on %s", cp->provider->name);
pp = cp->provider;
/* Read metadata from device. */
g_topology_unlock();
vendor = 0xffff;
len = sizeof(vendor);
if (pp->geom->rank == 1)
g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
subdisks = promise_meta_read(cp, metaarr);
g_topology_lock();
if (subdisks == 0) {
if (g_raid_aggressive_spare) {
if (vendor == 0x105a || vendor == 0x1002) {
G_RAID_DEBUG(1,
"No Promise metadata, forcing spare.");
goto search;
} else {
G_RAID_DEBUG(1,
"Promise/ATI vendor mismatch "
"0x%04x != 0x105a/0x1002",
vendor);
}
}
return (G_RAID_MD_TASTE_FAIL);
}
/* Metadata valid. Print it. */
for (i = 0; i < subdisks; i++)
g_raid_md_promise_print(metaarr[i]);
/* Purge meaningless (empty/spare) records. */
for (i = 0; i < subdisks; ) {
if (metaarr[i]->disk.flags & PROMISE_F_ASSIGNED) {
i++;
continue;
}
free(metaarr[i], M_MD_PROMISE);
for (j = i; j < subdisks - 1; j++)
metaarr[i] = metaarr[j + 1];
metaarr[subdisks - 1] = NULL;
subdisks--;
}
search:
/* Search for matching node. */
sc = NULL;
LIST_FOREACH(geom, &mp->geom, geom) {
sc = geom->softc;
if (sc == NULL)
continue;
if (sc->sc_stopping != 0)
continue;
if (sc->sc_md->mdo_class != md->mdo_class)
continue;
break;
}
/* Found matching node. */
if (geom != NULL) {
G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
result = G_RAID_MD_TASTE_EXISTING;
} else { /* Not found matching node -- create one. */
result = G_RAID_MD_TASTE_NEW;
snprintf(name, sizeof(name), "Promise");
sc = g_raid_create_node(mp, name, md);
md->mdo_softc = sc;
geom = sc->sc_geom;
}
/* There is no return after this point, so we close passed consumer. */
g_access(cp, -1, 0, 0);
rcp = g_new_consumer(geom);
rcp->flags |= G_CF_DIRECT_RECEIVE;
g_attach(rcp, pp);
if (g_access(rcp, 1, 1, 1) != 0)
; //goto fail1;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO);
pd->pd_subdisks = subdisks;
for (i = 0; i < subdisks; i++)
pd->pd_meta[i] = metaarr[i];
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_consumer = rcp;
rcp->private = disk;
g_raid_get_disk_info(disk);
g_raid_md_promise_new_disk(disk);
sx_xunlock(&sc->sc_lock);
g_topology_lock();
*gp = geom;
return (result);
}
static int
g_raid_md_event_promise(struct g_raid_md_object *md,
struct g_raid_disk *disk, u_int event)
{
struct g_raid_softc *sc;
sc = md->mdo_softc;
if (disk == NULL)
return (-1);
switch (event) {
case G_RAID_DISK_E_DISCONNECTED:
/* Delete disk. */
g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
g_raid_destroy_disk(disk);
g_raid_md_promise_purge_volumes(sc);
/* Write updated metadata to all disks. */
g_raid_md_write_promise(md, NULL, NULL, NULL);
/* Check if anything left. */
if (g_raid_ndisks(sc, -1) == 0)
g_raid_destroy_node(sc, 0);
else
g_raid_md_promise_refill(sc);
return (0);
}
return (-2);
}
static int
g_raid_md_volume_event_promise(struct g_raid_md_object *md,
struct g_raid_volume *vol, u_int event)
{
struct g_raid_md_promise_pervolume *pv;
pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data;
switch (event) {
case G_RAID_VOLUME_E_STARTMD:
if (!pv->pv_started)
g_raid_md_promise_start(vol);
return (0);
}
return (-2);
}
static int
g_raid_md_ctl_promise(struct g_raid_md_object *md,
struct gctl_req *req)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol, *vol1;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk, *disks[PROMISE_MAX_DISKS];
struct g_raid_md_promise_perdisk *pd;
struct g_raid_md_promise_pervolume *pv;
struct g_consumer *cp;
struct g_provider *pp;
char arg[16];
const char *nodename, *verb, *volname, *levelname, *diskname;
char *tmp;
int *nargs, *force;
off_t esize, offs[PROMISE_MAX_DISKS], size, sectorsize, strip;
intmax_t *sizearg, *striparg;
int numdisks, i, len, level, qual;
int error;
sc = md->mdo_softc;
verb = gctl_get_param(req, "verb", NULL);
nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
error = 0;
if (strcmp(verb, "label") == 0) {
if (*nargs < 4) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
volname = gctl_get_asciiparam(req, "arg1");
if (volname == NULL) {
gctl_error(req, "No volume name.");
return (-2);
}
levelname = gctl_get_asciiparam(req, "arg2");
if (levelname == NULL) {
gctl_error(req, "No RAID level.");
return (-3);
}
if (strcasecmp(levelname, "RAID5") == 0)
levelname = "RAID5-LA";
if (g_raid_volume_str2level(levelname, &level, &qual)) {
gctl_error(req, "Unknown RAID level '%s'.", levelname);
return (-4);
}
numdisks = *nargs - 3;
force = gctl_get_paraml(req, "force", sizeof(*force));
if (!g_raid_md_promise_supported(level, qual, numdisks,
force ? *force : 0)) {
gctl_error(req, "Unsupported RAID level "
"(0x%02x/0x%02x), or number of disks (%d).",
level, qual, numdisks);
return (-5);
}
/* Search for disks, connect them and probe. */
size = INT64_MAX;
sectorsize = 0;
bzero(disks, sizeof(disks));
bzero(offs, sizeof(offs));
for (i = 0; i < numdisks; i++) {
snprintf(arg, sizeof(arg), "arg%d", i + 3);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -6;
break;
}
if (strcmp(diskname, "NONE") == 0)
continue;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer != NULL &&
disk->d_consumer->provider != NULL &&
strcmp(disk->d_consumer->provider->name,
diskname) == 0)
break;
}
if (disk != NULL) {
if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
gctl_error(req, "Disk '%s' is in a "
"wrong state (%s).", diskname,
g_raid_disk_state2str(disk->d_state));
error = -7;
break;
}
pd = disk->d_md_data;
if (pd->pd_subdisks >= PROMISE_MAX_SUBDISKS) {
gctl_error(req, "Disk '%s' already "
"used by %d volumes.",
diskname, pd->pd_subdisks);
error = -7;
break;
}
pp = disk->d_consumer->provider;
disks[i] = disk;
promise_meta_unused_range(pd->pd_meta,
pd->pd_subdisks,
pp->mediasize / pp->sectorsize,
&offs[i], &esize);
size = MIN(size, (off_t)esize * pp->sectorsize);
sectorsize = MAX(sectorsize, pp->sectorsize);
continue;
}
g_topology_lock();
cp = g_raid_open_consumer(sc, diskname);
if (cp == NULL) {
gctl_error(req, "Can't open disk '%s'.",
diskname);
g_topology_unlock();
error = -8;
break;
}
pp = cp->provider;
pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO);
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_consumer = cp;
disks[i] = disk;
cp->private = disk;
g_topology_unlock();
g_raid_get_disk_info(disk);
/* Reserve some space for metadata. */
size = MIN(size, pp->mediasize - 131072llu * pp->sectorsize);
sectorsize = MAX(sectorsize, pp->sectorsize);
}
if (error != 0) {
for (i = 0; i < numdisks; i++) {
if (disks[i] != NULL &&
disks[i]->d_state == G_RAID_DISK_S_NONE)
g_raid_destroy_disk(disks[i]);
}
return (error);
}
if (sectorsize <= 0) {
gctl_error(req, "Can't get sector size.");
return (-8);
}
/* Handle size argument. */
len = sizeof(*sizearg);
sizearg = gctl_get_param(req, "size", &len);
if (sizearg != NULL && len == sizeof(*sizearg) &&
*sizearg > 0) {
if (*sizearg > size) {
gctl_error(req, "Size too big %lld > %lld.",
(long long)*sizearg, (long long)size);
return (-9);
}
size = *sizearg;
}
/* Handle strip argument. */
strip = 131072;
len = sizeof(*striparg);
striparg = gctl_get_param(req, "strip", &len);
if (striparg != NULL && len == sizeof(*striparg) &&
*striparg > 0) {
if (*striparg < sectorsize) {
gctl_error(req, "Strip size too small.");
return (-10);
}
if (*striparg % sectorsize != 0) {
gctl_error(req, "Incorrect strip size.");
return (-11);
}
strip = *striparg;
}
/* Round size down to strip or sector. */
if (level == G_RAID_VOLUME_RL_RAID1 ||
level == G_RAID_VOLUME_RL_SINGLE ||
level == G_RAID_VOLUME_RL_CONCAT)
size -= (size % sectorsize);
else if (level == G_RAID_VOLUME_RL_RAID1E &&
(numdisks & 1) != 0)
size -= (size % (2 * strip));
else
size -= (size % strip);
if (size <= 0) {
gctl_error(req, "Size too small.");
return (-13);
}
/* We have all we need, create things: volume, ... */
pv = malloc(sizeof(*pv), M_MD_PROMISE, M_WAITOK | M_ZERO);
arc4rand(&pv->pv_id, sizeof(pv->pv_id), 0);
pv->pv_generation = 0;
pv->pv_started = 1;
vol = g_raid_create_volume(sc, volname, -1);
vol->v_md_data = pv;
vol->v_raid_level = level;
vol->v_raid_level_qualifier = qual;
vol->v_strip_size = strip;
vol->v_disks_count = numdisks;
if (level == G_RAID_VOLUME_RL_RAID0 ||
level == G_RAID_VOLUME_RL_CONCAT ||
level == G_RAID_VOLUME_RL_SINGLE)
vol->v_mediasize = size * numdisks;
else if (level == G_RAID_VOLUME_RL_RAID1)
vol->v_mediasize = size;
else if (level == G_RAID_VOLUME_RL_RAID3 ||
level == G_RAID_VOLUME_RL_RAID5)
vol->v_mediasize = size * (numdisks - 1);
else { /* RAID1E */
vol->v_mediasize = ((size * numdisks) / strip / 2) *
strip;
}
vol->v_sectorsize = sectorsize;
g_raid_start_volume(vol);
/* , and subdisks. */
for (i = 0; i < numdisks; i++) {
disk = disks[i];
sd = &vol->v_subdisks[i];
sd->sd_disk = disk;
sd->sd_offset = (off_t)offs[i] * 512;
sd->sd_size = size;
if (disk == NULL)
continue;
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
g_raid_change_disk_state(disk,
G_RAID_DISK_S_ACTIVE);
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
G_RAID_EVENT_SUBDISK);
}
/* Write metadata based on created entities. */
G_RAID_DEBUG1(0, sc, "Array started.");
g_raid_md_write_promise(md, vol, NULL, NULL);
/* Pickup any STALE/SPARE disks to refill array if needed. */
g_raid_md_promise_refill(sc);
g_raid_event_send(vol, G_RAID_VOLUME_E_START,
G_RAID_EVENT_VOLUME);
return (0);
}
if (strcmp(verb, "add") == 0) {
gctl_error(req, "`add` command is not applicable, "
"use `label` instead.");
return (-99);
}
if (strcmp(verb, "delete") == 0) {
nodename = gctl_get_asciiparam(req, "arg0");
if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
nodename = NULL;
/* Full node destruction. */
if (*nargs == 1 && nodename != NULL) {
/* Check if some volume is still open. */
force = gctl_get_paraml(req, "force", sizeof(*force));
if (force != NULL && *force == 0 &&
g_raid_nopens(sc) != 0) {
gctl_error(req, "Some volume is still open.");
return (-4);
}
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer)
promise_meta_erase(disk->d_consumer);
}
g_raid_destroy_node(sc, 0);
return (0);
}
/* Destroy specified volume. If it was last - all node. */
if (*nargs > 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
volname = gctl_get_asciiparam(req,
nodename != NULL ? "arg1" : "arg0");
if (volname == NULL) {
gctl_error(req, "No volume name.");
return (-2);
}
/* Search for volume. */
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (strcmp(vol->v_name, volname) == 0)
break;
pp = vol->v_provider;
if (pp == NULL)
continue;
if (strcmp(pp->name, volname) == 0)
break;
if (strncmp(pp->name, "raid/", 5) == 0 &&
strcmp(pp->name + 5, volname) == 0)
break;
}
if (vol == NULL) {
i = strtol(volname, &tmp, 10);
if (verb != volname && tmp[0] == 0) {
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (vol->v_global_id == i)
break;
}
}
}
if (vol == NULL) {
gctl_error(req, "Volume '%s' not found.", volname);
return (-3);
}
/* Check if volume is still open. */
force = gctl_get_paraml(req, "force", sizeof(*force));
if (force != NULL && *force == 0 &&
vol->v_provider_open != 0) {
gctl_error(req, "Volume is still open.");
return (-4);
}
/* Destroy volume and potentially node. */
i = 0;
TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
i++;
if (i >= 2) {
g_raid_destroy_volume(vol);
g_raid_md_promise_purge_disks(sc);
g_raid_md_write_promise(md, NULL, NULL, NULL);
} else {
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer)
promise_meta_erase(disk->d_consumer);
}
g_raid_destroy_node(sc, 0);
}
return (0);
}
if (strcmp(verb, "remove") == 0 ||
strcmp(verb, "fail") == 0) {
if (*nargs < 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
for (i = 1; i < *nargs; i++) {
snprintf(arg, sizeof(arg), "arg%d", i);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -2;
break;
}
if (strncmp(diskname, "/dev/", 5) == 0)
diskname += 5;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer != NULL &&
disk->d_consumer->provider != NULL &&
strcmp(disk->d_consumer->provider->name,
diskname) == 0)
break;
}
if (disk == NULL) {
gctl_error(req, "Disk '%s' not found.",
diskname);
error = -3;
break;
}
if (strcmp(verb, "fail") == 0) {
g_raid_md_fail_disk_promise(md, NULL, disk);
continue;
}
/* Erase metadata on deleting disk and destroy it. */
promise_meta_erase(disk->d_consumer);
g_raid_destroy_disk(disk);
}
g_raid_md_promise_purge_volumes(sc);
/* Write updated metadata to remaining disks. */
g_raid_md_write_promise(md, NULL, NULL, NULL);
/* Check if anything left. */
if (g_raid_ndisks(sc, -1) == 0)
g_raid_destroy_node(sc, 0);
else
g_raid_md_promise_refill(sc);
return (error);
}
if (strcmp(verb, "insert") == 0) {
if (*nargs < 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
for (i = 1; i < *nargs; i++) {
/* Get disk name. */
snprintf(arg, sizeof(arg), "arg%d", i);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -3;
break;
}
/* Try to find provider with specified name. */
g_topology_lock();
cp = g_raid_open_consumer(sc, diskname);
if (cp == NULL) {
gctl_error(req, "Can't open disk '%s'.",
diskname);
g_topology_unlock();
error = -4;
break;
}
pp = cp->provider;
g_topology_unlock();
pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO);
disk = g_raid_create_disk(sc);
disk->d_consumer = cp;
disk->d_md_data = (void *)pd;
cp->private = disk;
g_raid_get_disk_info(disk);
/* Welcome the "new" disk. */
g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
promise_meta_write_spare(cp);
g_raid_md_promise_refill(sc);
}
return (error);
}
return (-100);
}
static int
g_raid_md_write_promise(struct g_raid_md_object *md, struct g_raid_volume *tvol,
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
struct g_raid_md_promise_perdisk *pd;
struct g_raid_md_promise_pervolume *pv;
struct promise_raid_conf *meta;
off_t rebuild_lba64;
int i, j, pos, rebuild;
sc = md->mdo_softc;
if (sc->sc_stopping == G_RAID_DESTROY_HARD)
return (0);
/* Generate new per-volume metadata for affected volumes. */
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
if (vol->v_stopping)
continue;
/* Skip volumes not related to specified targets. */
if (tvol != NULL && vol != tvol)
continue;
if (tsd != NULL && vol != tsd->sd_volume)
continue;
if (tdisk != NULL) {
for (i = 0; i < vol->v_disks_count; i++) {
if (vol->v_subdisks[i].sd_disk == tdisk)
break;
}
if (i >= vol->v_disks_count)
continue;
}
pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data;
pv->pv_generation++;
meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK | M_ZERO);
if (pv->pv_meta != NULL)
memcpy(meta, pv->pv_meta, sizeof(*meta));
memcpy(meta->promise_id, PROMISE_MAGIC,
sizeof(PROMISE_MAGIC) - 1);
meta->dummy_0 = 0x00020000;
meta->integrity = PROMISE_I_VALID;
meta->generation = pv->pv_generation;
meta->status = PROMISE_S_VALID | PROMISE_S_ONLINE |
PROMISE_S_INITED | PROMISE_S_READY;
if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED)
meta->status |= PROMISE_S_DEGRADED;
if (vol->v_dirty)
meta->status |= PROMISE_S_MARKED; /* XXX: INVENTED! */
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0 ||
vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE)
meta->type = PROMISE_T_RAID0;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
meta->type = PROMISE_T_RAID1;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3)
meta->type = PROMISE_T_RAID3;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
meta->type = PROMISE_T_RAID5;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT)
meta->type = PROMISE_T_SPAN;
else
meta->type = PROMISE_T_JBOD;
meta->total_disks = vol->v_disks_count;
meta->stripe_shift = ffs(vol->v_strip_size / 1024);
meta->array_width = vol->v_disks_count;
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
meta->array_width /= 2;
meta->array_number = vol->v_global_id;
meta->total_sectors = vol->v_mediasize / 512;
meta->total_sectors_high = (vol->v_mediasize / 512) >> 32;
meta->sector_size = vol->v_sectorsize / 512;
meta->cylinders = meta->total_sectors / (255 * 63) - 1;
meta->heads = 254;
meta->sectors = 63;
meta->volume_id = pv->pv_id;
rebuild_lba64 = UINT64_MAX;
rebuild = 0;
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
/* For RAID0+1 we need to translate order. */
pos = promise_meta_translate_disk(vol, i);
meta->disks[pos].flags = PROMISE_F_VALID |
PROMISE_F_ASSIGNED;
if (sd->sd_state == G_RAID_SUBDISK_S_NONE) {
meta->disks[pos].flags |= 0;
} else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED) {
meta->disks[pos].flags |=
PROMISE_F_DOWN | PROMISE_F_REDIR;
} else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD) {
meta->disks[pos].flags |=
PROMISE_F_ONLINE | PROMISE_F_REDIR;
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) {
rebuild_lba64 = MIN(rebuild_lba64,
sd->sd_rebuild_pos / 512);
} else
rebuild_lba64 = 0;
rebuild = 1;
} else {
meta->disks[pos].flags |= PROMISE_F_ONLINE;
if (sd->sd_state < G_RAID_SUBDISK_S_ACTIVE) {
meta->status |= PROMISE_S_MARKED;
if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
rebuild_lba64 = MIN(rebuild_lba64,
sd->sd_rebuild_pos / 512);
} else
rebuild_lba64 = 0;
}
}
if (pv->pv_meta != NULL) {
meta->disks[pos].id = pv->pv_meta->disks[pos].id;
} else {
meta->disks[pos].number = i * 2;
arc4rand(&meta->disks[pos].id,
sizeof(meta->disks[pos].id), 0);
}
}
promise_meta_put_name(meta, vol->v_name);
/* Try to mimic AMD BIOS rebuild/resync behavior. */
if (rebuild_lba64 != UINT64_MAX) {
if (rebuild)
meta->magic_3 = 0x03040010UL; /* Rebuild? */
else
meta->magic_3 = 0x03040008UL; /* Resync? */
/* Translate from per-disk to per-volume LBA. */
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) {
rebuild_lba64 *= meta->array_width;
} else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) {
rebuild_lba64 *= meta->array_width - 1;
} else
rebuild_lba64 = 0;
} else
meta->magic_3 = 0x03000000UL;
meta->rebuild_lba64 = rebuild_lba64;
meta->magic_4 = 0x04010101UL;
/* Replace per-volume metadata with new. */
if (pv->pv_meta != NULL)
free(pv->pv_meta, M_MD_PROMISE);
pv->pv_meta = meta;
/* Copy new metadata to the disks, adding or replacing old. */
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
disk = sd->sd_disk;
if (disk == NULL)
continue;
/* For RAID0+1 we need to translate order. */
pos = promise_meta_translate_disk(vol, i);
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
for (j = 0; j < pd->pd_subdisks; j++) {
if (pd->pd_meta[j]->volume_id == meta->volume_id)
break;
}
if (j == pd->pd_subdisks)
pd->pd_subdisks++;
if (pd->pd_meta[j] != NULL)
free(pd->pd_meta[j], M_MD_PROMISE);
pd->pd_meta[j] = promise_meta_copy(meta);
pd->pd_meta[j]->disk = meta->disks[pos];
pd->pd_meta[j]->disk.number = pos;
pd->pd_meta[j]->disk_offset_high =
(sd->sd_offset / 512) >> 32;
pd->pd_meta[j]->disk_offset = sd->sd_offset / 512;
pd->pd_meta[j]->disk_sectors_high =
(sd->sd_size / 512) >> 32;
pd->pd_meta[j]->disk_sectors = sd->sd_size / 512;
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) {
pd->pd_meta[j]->disk_rebuild_high =
(sd->sd_rebuild_pos / 512) >> 32;
pd->pd_meta[j]->disk_rebuild =
sd->sd_rebuild_pos / 512;
} else if (sd->sd_state < G_RAID_SUBDISK_S_REBUILD) {
pd->pd_meta[j]->disk_rebuild_high = 0;
pd->pd_meta[j]->disk_rebuild = 0;
} else {
pd->pd_meta[j]->disk_rebuild_high = UINT32_MAX;
pd->pd_meta[j]->disk_rebuild = UINT32_MAX;
}
pd->pd_updated = 1;
}
}
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
if (disk->d_state != G_RAID_DISK_S_ACTIVE)
continue;
if (!pd->pd_updated)
continue;
G_RAID_DEBUG(1, "Writing Promise metadata to %s",
g_raid_get_diskname(disk));
for (i = 0; i < pd->pd_subdisks; i++)
g_raid_md_promise_print(pd->pd_meta[i]);
promise_meta_write(disk->d_consumer,
pd->pd_meta, pd->pd_subdisks);
pd->pd_updated = 0;
}
return (0);
}
static int
g_raid_md_fail_disk_promise(struct g_raid_md_object *md,
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
{
struct g_raid_softc *sc;
struct g_raid_md_promise_perdisk *pd;
struct g_raid_subdisk *sd;
int i, pos;
sc = md->mdo_softc;
pd = (struct g_raid_md_promise_perdisk *)tdisk->d_md_data;
/* We can't fail disk that is not a part of array now. */
if (tdisk->d_state != G_RAID_DISK_S_ACTIVE)
return (-1);
/*
* Mark disk as failed in metadata and try to write that metadata
* to the disk itself to prevent it's later resurrection as STALE.
*/
if (pd->pd_subdisks > 0 && tdisk->d_consumer != NULL)
G_RAID_DEBUG(1, "Writing Promise metadata to %s",
g_raid_get_diskname(tdisk));
for (i = 0; i < pd->pd_subdisks; i++) {
pd->pd_meta[i]->disk.flags |=
PROMISE_F_DOWN | PROMISE_F_REDIR;
pos = pd->pd_meta[i]->disk.number;
if (pos >= 0 && pos < PROMISE_MAX_DISKS) {
pd->pd_meta[i]->disks[pos].flags |=
PROMISE_F_DOWN | PROMISE_F_REDIR;
}
g_raid_md_promise_print(pd->pd_meta[i]);
}
if (tdisk->d_consumer != NULL)
promise_meta_write(tdisk->d_consumer,
pd->pd_meta, pd->pd_subdisks);
/* Change states. */
g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_FAILED);
g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
G_RAID_EVENT_SUBDISK);
}
/* Write updated metadata to remaining disks. */
g_raid_md_write_promise(md, NULL, NULL, tdisk);
g_raid_md_promise_refill(sc);
return (0);
}
static int
g_raid_md_free_disk_promise(struct g_raid_md_object *md,
struct g_raid_disk *disk)
{
struct g_raid_md_promise_perdisk *pd;
int i;
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
for (i = 0; i < pd->pd_subdisks; i++) {
if (pd->pd_meta[i] != NULL) {
free(pd->pd_meta[i], M_MD_PROMISE);
pd->pd_meta[i] = NULL;
}
}
free(pd, M_MD_PROMISE);
disk->d_md_data = NULL;
return (0);
}
static int
g_raid_md_free_volume_promise(struct g_raid_md_object *md,
struct g_raid_volume *vol)
{
struct g_raid_md_promise_pervolume *pv;
pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data;
if (pv && pv->pv_meta != NULL) {
free(pv->pv_meta, M_MD_PROMISE);
pv->pv_meta = NULL;
}
if (pv && !pv->pv_started) {
pv->pv_started = 1;
callout_stop(&pv->pv_start_co);
}
free(pv, M_MD_PROMISE);
vol->v_md_data = NULL;
return (0);
}
static int
g_raid_md_free_promise(struct g_raid_md_object *md)
{
return (0);
}
G_RAID_MD_DECLARE(promise, "Promise");