freebsd-dev/sbin/hastd/primary.c
Pedro F. Giffuni 1de7b4b805 various: general adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

No functional change intended.
2017-11-27 15:37:16 +00:00

2454 lines
67 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009 The FreeBSD Foundation
* Copyright (c) 2010-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
* All rights reserved.
*
* This software was developed by Pawel Jakub Dawidek under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/time.h>
#include <sys/bio.h>
#include <sys/disk.h>
#include <sys/stat.h>
#include <geom/gate/g_gate.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <libgeom.h>
#include <pthread.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>
#include <activemap.h>
#include <nv.h>
#include <rangelock.h>
#include "control.h"
#include "event.h"
#include "hast.h"
#include "hast_proto.h"
#include "hastd.h"
#include "hooks.h"
#include "metadata.h"
#include "proto.h"
#include "pjdlog.h"
#include "refcnt.h"
#include "subr.h"
#include "synch.h"
/* The is only one remote component for now. */
#define ISREMOTE(no) ((no) == 1)
struct hio {
/*
* Number of components we are still waiting for.
* When this field goes to 0, we can send the request back to the
* kernel. Each component has to decrease this counter by one
* even on failure.
*/
refcnt_t hio_countdown;
/*
* Each component has a place to store its own error.
* Once the request is handled by all components we can decide if the
* request overall is successful or not.
*/
int *hio_errors;
/*
* Structure used to communicate with GEOM Gate class.
*/
struct g_gate_ctl_io hio_ggio;
/*
* Request was already confirmed to GEOM Gate.
*/
bool hio_done;
/*
* Number of components we are still waiting before sending write
* completion ack to GEOM Gate. Used for memsync.
*/
refcnt_t hio_writecount;
/*
* Memsync request was acknowleged by remote.
*/
bool hio_memsyncacked;
/*
* Remember replication from the time the request was initiated,
* so we won't get confused when replication changes on reload.
*/
int hio_replication;
TAILQ_ENTRY(hio) *hio_next;
};
#define hio_free_next hio_next[0]
#define hio_done_next hio_next[0]
/*
* Free list holds unused structures. When free list is empty, we have to wait
* until some in-progress requests are freed.
*/
static TAILQ_HEAD(, hio) hio_free_list;
static size_t hio_free_list_size;
static pthread_mutex_t hio_free_list_lock;
static pthread_cond_t hio_free_list_cond;
/*
* There is one send list for every component. One requests is placed on all
* send lists - each component gets the same request, but each component is
* responsible for managing his own send list.
*/
static TAILQ_HEAD(, hio) *hio_send_list;
static size_t *hio_send_list_size;
static pthread_mutex_t *hio_send_list_lock;
static pthread_cond_t *hio_send_list_cond;
#define hio_send_local_list_size hio_send_list_size[0]
#define hio_send_remote_list_size hio_send_list_size[1]
/*
* There is one recv list for every component, although local components don't
* use recv lists as local requests are done synchronously.
*/
static TAILQ_HEAD(, hio) *hio_recv_list;
static size_t *hio_recv_list_size;
static pthread_mutex_t *hio_recv_list_lock;
static pthread_cond_t *hio_recv_list_cond;
#define hio_recv_remote_list_size hio_recv_list_size[1]
/*
* Request is placed on done list by the slowest component (the one that
* decreased hio_countdown from 1 to 0).
*/
static TAILQ_HEAD(, hio) hio_done_list;
static size_t hio_done_list_size;
static pthread_mutex_t hio_done_list_lock;
static pthread_cond_t hio_done_list_cond;
/*
* Structure below are for interaction with sync thread.
*/
static bool sync_inprogress;
static pthread_mutex_t sync_lock;
static pthread_cond_t sync_cond;
/*
* The lock below allows to synchornize access to remote connections.
*/
static pthread_rwlock_t *hio_remote_lock;
/*
* Lock to synchronize metadata updates. Also synchronize access to
* hr_primary_localcnt and hr_primary_remotecnt fields.
*/
static pthread_mutex_t metadata_lock;
/*
* Maximum number of outstanding I/O requests.
*/
#define HAST_HIO_MAX 256
/*
* Number of components. At this point there are only two components: local
* and remote, but in the future it might be possible to use multiple local
* and remote components.
*/
#define HAST_NCOMPONENTS 2
#define ISCONNECTED(res, no) \
((res)->hr_remotein != NULL && (res)->hr_remoteout != NULL)
#define QUEUE_INSERT1(hio, name, ncomp) do { \
mtx_lock(&hio_##name##_list_lock[(ncomp)]); \
if (TAILQ_EMPTY(&hio_##name##_list[(ncomp)])) \
cv_broadcast(&hio_##name##_list_cond[(ncomp)]); \
TAILQ_INSERT_TAIL(&hio_##name##_list[(ncomp)], (hio), \
hio_next[(ncomp)]); \
hio_##name##_list_size[(ncomp)]++; \
mtx_unlock(&hio_##name##_list_lock[(ncomp)]); \
} while (0)
#define QUEUE_INSERT2(hio, name) do { \
mtx_lock(&hio_##name##_list_lock); \
if (TAILQ_EMPTY(&hio_##name##_list)) \
cv_broadcast(&hio_##name##_list_cond); \
TAILQ_INSERT_TAIL(&hio_##name##_list, (hio), hio_##name##_next);\
hio_##name##_list_size++; \
mtx_unlock(&hio_##name##_list_lock); \
} while (0)
#define QUEUE_TAKE1(hio, name, ncomp, timeout) do { \
bool _last; \
\
mtx_lock(&hio_##name##_list_lock[(ncomp)]); \
_last = false; \
while (((hio) = TAILQ_FIRST(&hio_##name##_list[(ncomp)])) == NULL && !_last) { \
cv_timedwait(&hio_##name##_list_cond[(ncomp)], \
&hio_##name##_list_lock[(ncomp)], (timeout)); \
if ((timeout) != 0) \
_last = true; \
} \
if (hio != NULL) { \
PJDLOG_ASSERT(hio_##name##_list_size[(ncomp)] != 0); \
hio_##name##_list_size[(ncomp)]--; \
TAILQ_REMOVE(&hio_##name##_list[(ncomp)], (hio), \
hio_next[(ncomp)]); \
} \
mtx_unlock(&hio_##name##_list_lock[(ncomp)]); \
} while (0)
#define QUEUE_TAKE2(hio, name) do { \
mtx_lock(&hio_##name##_list_lock); \
while (((hio) = TAILQ_FIRST(&hio_##name##_list)) == NULL) { \
cv_wait(&hio_##name##_list_cond, \
&hio_##name##_list_lock); \
} \
PJDLOG_ASSERT(hio_##name##_list_size != 0); \
hio_##name##_list_size--; \
TAILQ_REMOVE(&hio_##name##_list, (hio), hio_##name##_next); \
mtx_unlock(&hio_##name##_list_lock); \
} while (0)
#define ISFULLSYNC(hio) ((hio)->hio_replication == HAST_REPLICATION_FULLSYNC)
#define ISMEMSYNC(hio) ((hio)->hio_replication == HAST_REPLICATION_MEMSYNC)
#define ISASYNC(hio) ((hio)->hio_replication == HAST_REPLICATION_ASYNC)
#define SYNCREQ(hio) do { \
(hio)->hio_ggio.gctl_unit = -1; \
(hio)->hio_ggio.gctl_seq = 1; \
} while (0)
#define ISSYNCREQ(hio) ((hio)->hio_ggio.gctl_unit == -1)
#define SYNCREQDONE(hio) do { (hio)->hio_ggio.gctl_unit = -2; } while (0)
#define ISSYNCREQDONE(hio) ((hio)->hio_ggio.gctl_unit == -2)
#define ISMEMSYNCWRITE(hio) (ISMEMSYNC(hio) && \
(hio)->hio_ggio.gctl_cmd == BIO_WRITE && !ISSYNCREQ(hio))
static struct hast_resource *gres;
static pthread_mutex_t range_lock;
static struct rangelocks *range_regular;
static bool range_regular_wait;
static pthread_cond_t range_regular_cond;
static struct rangelocks *range_sync;
static bool range_sync_wait;
static pthread_cond_t range_sync_cond;
static bool fullystarted;
static void *ggate_recv_thread(void *arg);
static void *local_send_thread(void *arg);
static void *remote_send_thread(void *arg);
static void *remote_recv_thread(void *arg);
static void *ggate_send_thread(void *arg);
static void *sync_thread(void *arg);
static void *guard_thread(void *arg);
static void
output_status_aux(struct nv *nvout)
{
nv_add_uint64(nvout, (uint64_t)hio_free_list_size,
"idle_queue_size");
nv_add_uint64(nvout, (uint64_t)hio_send_local_list_size,
"local_queue_size");
nv_add_uint64(nvout, (uint64_t)hio_send_remote_list_size,
"send_queue_size");
nv_add_uint64(nvout, (uint64_t)hio_recv_remote_list_size,
"recv_queue_size");
nv_add_uint64(nvout, (uint64_t)hio_done_list_size,
"done_queue_size");
}
static void
cleanup(struct hast_resource *res)
{
int rerrno;
/* Remember errno. */
rerrno = errno;
/* Destroy ggate provider if we created one. */
if (res->hr_ggateunit >= 0) {
struct g_gate_ctl_destroy ggiod;
bzero(&ggiod, sizeof(ggiod));
ggiod.gctl_version = G_GATE_VERSION;
ggiod.gctl_unit = res->hr_ggateunit;
ggiod.gctl_force = 1;
if (ioctl(res->hr_ggatefd, G_GATE_CMD_DESTROY, &ggiod) == -1) {
pjdlog_errno(LOG_WARNING,
"Unable to destroy hast/%s device",
res->hr_provname);
}
res->hr_ggateunit = -1;
}
/* Restore errno. */
errno = rerrno;
}
static __dead2 void
primary_exit(int exitcode, const char *fmt, ...)
{
va_list ap;
PJDLOG_ASSERT(exitcode != EX_OK);
va_start(ap, fmt);
pjdlogv_errno(LOG_ERR, fmt, ap);
va_end(ap);
cleanup(gres);
exit(exitcode);
}
static __dead2 void
primary_exitx(int exitcode, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
pjdlogv(exitcode == EX_OK ? LOG_INFO : LOG_ERR, fmt, ap);
va_end(ap);
cleanup(gres);
exit(exitcode);
}
static int
hast_activemap_flush(struct hast_resource *res) __unlocks(res->hr_amp_lock)
{
const unsigned char *buf;
size_t size;
int ret;
mtx_lock(&res->hr_amp_diskmap_lock);
buf = activemap_bitmap(res->hr_amp, &size);
mtx_unlock(&res->hr_amp_lock);
PJDLOG_ASSERT(buf != NULL);
PJDLOG_ASSERT((size % res->hr_local_sectorsize) == 0);
ret = 0;
if (pwrite(res->hr_localfd, buf, size, METADATA_SIZE) !=
(ssize_t)size) {
pjdlog_errno(LOG_ERR, "Unable to flush activemap to disk");
res->hr_stat_activemap_write_error++;
ret = -1;
}
if (ret == 0 && res->hr_metaflush == 1 &&
g_flush(res->hr_localfd) == -1) {
if (errno == EOPNOTSUPP) {
pjdlog_warning("The %s provider doesn't support flushing write cache. Disabling it.",
res->hr_localpath);
res->hr_metaflush = 0;
} else {
pjdlog_errno(LOG_ERR,
"Unable to flush disk cache on activemap update");
res->hr_stat_activemap_flush_error++;
ret = -1;
}
}
mtx_unlock(&res->hr_amp_diskmap_lock);
return (ret);
}
static bool
real_remote(const struct hast_resource *res)
{
return (strcmp(res->hr_remoteaddr, "none") != 0);
}
static void
init_environment(struct hast_resource *res __unused)
{
struct hio *hio;
unsigned int ii, ncomps;
/*
* In the future it might be per-resource value.
*/
ncomps = HAST_NCOMPONENTS;
/*
* Allocate memory needed by lists.
*/
hio_send_list = malloc(sizeof(hio_send_list[0]) * ncomps);
if (hio_send_list == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for send lists.",
sizeof(hio_send_list[0]) * ncomps);
}
hio_send_list_size = malloc(sizeof(hio_send_list_size[0]) * ncomps);
if (hio_send_list_size == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for send list counters.",
sizeof(hio_send_list_size[0]) * ncomps);
}
hio_send_list_lock = malloc(sizeof(hio_send_list_lock[0]) * ncomps);
if (hio_send_list_lock == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for send list locks.",
sizeof(hio_send_list_lock[0]) * ncomps);
}
hio_send_list_cond = malloc(sizeof(hio_send_list_cond[0]) * ncomps);
if (hio_send_list_cond == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for send list condition variables.",
sizeof(hio_send_list_cond[0]) * ncomps);
}
hio_recv_list = malloc(sizeof(hio_recv_list[0]) * ncomps);
if (hio_recv_list == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for recv lists.",
sizeof(hio_recv_list[0]) * ncomps);
}
hio_recv_list_size = malloc(sizeof(hio_recv_list_size[0]) * ncomps);
if (hio_recv_list_size == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for recv list counters.",
sizeof(hio_recv_list_size[0]) * ncomps);
}
hio_recv_list_lock = malloc(sizeof(hio_recv_list_lock[0]) * ncomps);
if (hio_recv_list_lock == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for recv list locks.",
sizeof(hio_recv_list_lock[0]) * ncomps);
}
hio_recv_list_cond = malloc(sizeof(hio_recv_list_cond[0]) * ncomps);
if (hio_recv_list_cond == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for recv list condition variables.",
sizeof(hio_recv_list_cond[0]) * ncomps);
}
hio_remote_lock = malloc(sizeof(hio_remote_lock[0]) * ncomps);
if (hio_remote_lock == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for remote connections locks.",
sizeof(hio_remote_lock[0]) * ncomps);
}
/*
* Initialize lists, their counters, locks and condition variables.
*/
TAILQ_INIT(&hio_free_list);
mtx_init(&hio_free_list_lock);
cv_init(&hio_free_list_cond);
for (ii = 0; ii < HAST_NCOMPONENTS; ii++) {
TAILQ_INIT(&hio_send_list[ii]);
hio_send_list_size[ii] = 0;
mtx_init(&hio_send_list_lock[ii]);
cv_init(&hio_send_list_cond[ii]);
TAILQ_INIT(&hio_recv_list[ii]);
hio_recv_list_size[ii] = 0;
mtx_init(&hio_recv_list_lock[ii]);
cv_init(&hio_recv_list_cond[ii]);
rw_init(&hio_remote_lock[ii]);
}
TAILQ_INIT(&hio_done_list);
mtx_init(&hio_done_list_lock);
cv_init(&hio_done_list_cond);
mtx_init(&metadata_lock);
/*
* Allocate requests pool and initialize requests.
*/
for (ii = 0; ii < HAST_HIO_MAX; ii++) {
hio = malloc(sizeof(*hio));
if (hio == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for hio request.",
sizeof(*hio));
}
refcnt_init(&hio->hio_countdown, 0);
hio->hio_errors = malloc(sizeof(hio->hio_errors[0]) * ncomps);
if (hio->hio_errors == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable allocate %zu bytes of memory for hio errors.",
sizeof(hio->hio_errors[0]) * ncomps);
}
hio->hio_next = malloc(sizeof(hio->hio_next[0]) * ncomps);
if (hio->hio_next == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable allocate %zu bytes of memory for hio_next field.",
sizeof(hio->hio_next[0]) * ncomps);
}
hio->hio_ggio.gctl_version = G_GATE_VERSION;
hio->hio_ggio.gctl_data = malloc(MAXPHYS);
if (hio->hio_ggio.gctl_data == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate %zu bytes of memory for gctl_data.",
MAXPHYS);
}
hio->hio_ggio.gctl_length = MAXPHYS;
hio->hio_ggio.gctl_error = 0;
TAILQ_INSERT_HEAD(&hio_free_list, hio, hio_free_next);
hio_free_list_size++;
}
}
static bool
init_resuid(struct hast_resource *res)
{
mtx_lock(&metadata_lock);
if (res->hr_resuid != 0) {
mtx_unlock(&metadata_lock);
return (false);
} else {
/* Initialize unique resource identifier. */
arc4random_buf(&res->hr_resuid, sizeof(res->hr_resuid));
mtx_unlock(&metadata_lock);
if (metadata_write(res) == -1)
exit(EX_NOINPUT);
return (true);
}
}
static void
init_local(struct hast_resource *res)
{
unsigned char *buf;
size_t mapsize;
if (metadata_read(res, true) == -1)
exit(EX_NOINPUT);
mtx_init(&res->hr_amp_lock);
if (activemap_init(&res->hr_amp, res->hr_datasize, res->hr_extentsize,
res->hr_local_sectorsize, res->hr_keepdirty) == -1) {
primary_exit(EX_TEMPFAIL, "Unable to create activemap");
}
mtx_init(&range_lock);
cv_init(&range_regular_cond);
if (rangelock_init(&range_regular) == -1)
primary_exit(EX_TEMPFAIL, "Unable to create regular range lock");
cv_init(&range_sync_cond);
if (rangelock_init(&range_sync) == -1)
primary_exit(EX_TEMPFAIL, "Unable to create sync range lock");
mapsize = activemap_ondisk_size(res->hr_amp);
buf = calloc(1, mapsize);
if (buf == NULL) {
primary_exitx(EX_TEMPFAIL,
"Unable to allocate buffer for activemap.");
}
if (pread(res->hr_localfd, buf, mapsize, METADATA_SIZE) !=
(ssize_t)mapsize) {
primary_exit(EX_NOINPUT, "Unable to read activemap");
}
activemap_copyin(res->hr_amp, buf, mapsize);
free(buf);
if (res->hr_resuid != 0)
return;
/*
* We're using provider for the first time. Initialize local and remote
* counters. We don't initialize resuid here, as we want to do it just
* in time. The reason for this is that we want to inform secondary
* that there were no writes yet, so there is no need to synchronize
* anything.
*/
res->hr_primary_localcnt = 0;
res->hr_primary_remotecnt = 0;
if (metadata_write(res) == -1)
exit(EX_NOINPUT);
}
static int
primary_connect(struct hast_resource *res, struct proto_conn **connp)
{
struct proto_conn *conn;
int16_t val;
val = 1;
if (proto_send(res->hr_conn, &val, sizeof(val)) == -1) {
primary_exit(EX_TEMPFAIL,
"Unable to send connection request to parent");
}
if (proto_recv(res->hr_conn, &val, sizeof(val)) == -1) {
primary_exit(EX_TEMPFAIL,
"Unable to receive reply to connection request from parent");
}
if (val != 0) {
errno = val;
pjdlog_errno(LOG_WARNING, "Unable to connect to %s",
res->hr_remoteaddr);
return (-1);
}
if (proto_connection_recv(res->hr_conn, true, &conn) == -1) {
primary_exit(EX_TEMPFAIL,
"Unable to receive connection from parent");
}
if (proto_connect_wait(conn, res->hr_timeout) == -1) {
pjdlog_errno(LOG_WARNING, "Unable to connect to %s",
res->hr_remoteaddr);
proto_close(conn);
return (-1);
}
/* Error in setting timeout is not critical, but why should it fail? */
if (proto_timeout(conn, res->hr_timeout) == -1)
pjdlog_errno(LOG_WARNING, "Unable to set connection timeout");
*connp = conn;
return (0);
}
/*
* Function instructs GEOM_GATE to handle reads directly from within the kernel.
*/
static void
enable_direct_reads(struct hast_resource *res)
{
struct g_gate_ctl_modify ggiomodify;
bzero(&ggiomodify, sizeof(ggiomodify));
ggiomodify.gctl_version = G_GATE_VERSION;
ggiomodify.gctl_unit = res->hr_ggateunit;
ggiomodify.gctl_modify = GG_MODIFY_READPROV | GG_MODIFY_READOFFSET;
strlcpy(ggiomodify.gctl_readprov, res->hr_localpath,
sizeof(ggiomodify.gctl_readprov));
ggiomodify.gctl_readoffset = res->hr_localoff;
if (ioctl(res->hr_ggatefd, G_GATE_CMD_MODIFY, &ggiomodify) == 0)
pjdlog_debug(1, "Direct reads enabled.");
else
pjdlog_errno(LOG_WARNING, "Failed to enable direct reads");
}
static int
init_remote(struct hast_resource *res, struct proto_conn **inp,
struct proto_conn **outp)
{
struct proto_conn *in, *out;
struct nv *nvout, *nvin;
const unsigned char *token;
unsigned char *map;
const char *errmsg;
int32_t extentsize;
int64_t datasize;
uint32_t mapsize;
uint8_t version;
size_t size;
int error;
PJDLOG_ASSERT((inp == NULL && outp == NULL) || (inp != NULL && outp != NULL));
PJDLOG_ASSERT(real_remote(res));
in = out = NULL;
errmsg = NULL;
if (primary_connect(res, &out) == -1)
return (ECONNREFUSED);
error = ECONNABORTED;
/*
* First handshake step.
* Setup outgoing connection with remote node.
*/
nvout = nv_alloc();
nv_add_string(nvout, res->hr_name, "resource");
nv_add_uint8(nvout, HAST_PROTO_VERSION, "version");
if (nv_error(nvout) != 0) {
pjdlog_common(LOG_WARNING, 0, nv_error(nvout),
"Unable to allocate header for connection with %s",
res->hr_remoteaddr);
nv_free(nvout);
goto close;
}
if (hast_proto_send(res, out, nvout, NULL, 0) == -1) {
pjdlog_errno(LOG_WARNING,
"Unable to send handshake header to %s",
res->hr_remoteaddr);
nv_free(nvout);
goto close;
}
nv_free(nvout);
if (hast_proto_recv_hdr(out, &nvin) == -1) {
pjdlog_errno(LOG_WARNING,
"Unable to receive handshake header from %s",
res->hr_remoteaddr);
goto close;
}
errmsg = nv_get_string(nvin, "errmsg");
if (errmsg != NULL) {
pjdlog_warning("%s", errmsg);
if (nv_exists(nvin, "wait"))
error = EBUSY;
nv_free(nvin);
goto close;
}
version = nv_get_uint8(nvin, "version");
if (version == 0) {
/*
* If no version is sent, it means this is protocol version 1.
*/
version = 1;
}
if (version > HAST_PROTO_VERSION) {
pjdlog_warning("Invalid version received (%hhu).", version);
nv_free(nvin);
goto close;
}
res->hr_version = version;
pjdlog_debug(1, "Negotiated protocol version %d.", res->hr_version);
token = nv_get_uint8_array(nvin, &size, "token");
if (token == NULL) {
pjdlog_warning("Handshake header from %s has no 'token' field.",
res->hr_remoteaddr);
nv_free(nvin);
goto close;
}
if (size != sizeof(res->hr_token)) {
pjdlog_warning("Handshake header from %s contains 'token' of wrong size (got %zu, expected %zu).",
res->hr_remoteaddr, size, sizeof(res->hr_token));
nv_free(nvin);
goto close;
}
bcopy(token, res->hr_token, sizeof(res->hr_token));
nv_free(nvin);
/*
* Second handshake step.
* Setup incoming connection with remote node.
*/
if (primary_connect(res, &in) == -1)
goto close;
nvout = nv_alloc();
nv_add_string(nvout, res->hr_name, "resource");
nv_add_uint8_array(nvout, res->hr_token, sizeof(res->hr_token),
"token");
if (res->hr_resuid == 0) {
/*
* The resuid field was not yet initialized.
* Because we do synchronization inside init_resuid(), it is
* possible that someone already initialized it, the function
* will return false then, but if we successfully initialized
* it, we will get true. True means that there were no writes
* to this resource yet and we want to inform secondary that
* synchronization is not needed by sending "virgin" argument.
*/
if (init_resuid(res))
nv_add_int8(nvout, 1, "virgin");
}
nv_add_uint64(nvout, res->hr_resuid, "resuid");
nv_add_uint64(nvout, res->hr_primary_localcnt, "localcnt");
nv_add_uint64(nvout, res->hr_primary_remotecnt, "remotecnt");
if (nv_error(nvout) != 0) {
pjdlog_common(LOG_WARNING, 0, nv_error(nvout),
"Unable to allocate header for connection with %s",
res->hr_remoteaddr);
nv_free(nvout);
goto close;
}
if (hast_proto_send(res, in, nvout, NULL, 0) == -1) {
pjdlog_errno(LOG_WARNING,
"Unable to send handshake header to %s",
res->hr_remoteaddr);
nv_free(nvout);
goto close;
}
nv_free(nvout);
if (hast_proto_recv_hdr(out, &nvin) == -1) {
pjdlog_errno(LOG_WARNING,
"Unable to receive handshake header from %s",
res->hr_remoteaddr);
goto close;
}
errmsg = nv_get_string(nvin, "errmsg");
if (errmsg != NULL) {
pjdlog_warning("%s", errmsg);
nv_free(nvin);
goto close;
}
datasize = nv_get_int64(nvin, "datasize");
if (datasize != res->hr_datasize) {
pjdlog_warning("Data size differs between nodes (local=%jd, remote=%jd).",
(intmax_t)res->hr_datasize, (intmax_t)datasize);
nv_free(nvin);
goto close;
}
extentsize = nv_get_int32(nvin, "extentsize");
if (extentsize != res->hr_extentsize) {
pjdlog_warning("Extent size differs between nodes (local=%zd, remote=%zd).",
(ssize_t)res->hr_extentsize, (ssize_t)extentsize);
nv_free(nvin);
goto close;
}
res->hr_secondary_localcnt = nv_get_uint64(nvin, "localcnt");
res->hr_secondary_remotecnt = nv_get_uint64(nvin, "remotecnt");
res->hr_syncsrc = nv_get_uint8(nvin, "syncsrc");
if (res->hr_syncsrc == HAST_SYNCSRC_PRIMARY)
enable_direct_reads(res);
if (nv_exists(nvin, "virgin")) {
/*
* Secondary was reinitialized, bump localcnt if it is 0 as
* only we have the data.
*/
PJDLOG_ASSERT(res->hr_syncsrc == HAST_SYNCSRC_PRIMARY);
PJDLOG_ASSERT(res->hr_secondary_localcnt == 0);
if (res->hr_primary_localcnt == 0) {
PJDLOG_ASSERT(res->hr_secondary_remotecnt == 0);
mtx_lock(&metadata_lock);
res->hr_primary_localcnt++;
pjdlog_debug(1, "Increasing localcnt to %ju.",
(uintmax_t)res->hr_primary_localcnt);
(void)metadata_write(res);
mtx_unlock(&metadata_lock);
}
}
map = NULL;
mapsize = nv_get_uint32(nvin, "mapsize");
if (mapsize > 0) {
map = malloc(mapsize);
if (map == NULL) {
pjdlog_error("Unable to allocate memory for remote activemap (mapsize=%ju).",
(uintmax_t)mapsize);
nv_free(nvin);
goto close;
}
/*
* Remote node have some dirty extents on its own, lets
* download its activemap.
*/
if (hast_proto_recv_data(res, out, nvin, map,
mapsize) == -1) {
pjdlog_errno(LOG_ERR,
"Unable to receive remote activemap");
nv_free(nvin);
free(map);
goto close;
}
mtx_lock(&res->hr_amp_lock);
/*
* Merge local and remote bitmaps.
*/
activemap_merge(res->hr_amp, map, mapsize);
free(map);
/*
* Now that we merged bitmaps from both nodes, flush it to the
* disk before we start to synchronize.
*/
(void)hast_activemap_flush(res);
}
nv_free(nvin);
#ifdef notyet
/* Setup directions. */
if (proto_send(out, NULL, 0) == -1)
pjdlog_errno(LOG_WARNING, "Unable to set connection direction");
if (proto_recv(in, NULL, 0) == -1)
pjdlog_errno(LOG_WARNING, "Unable to set connection direction");
#endif
pjdlog_info("Connected to %s.", res->hr_remoteaddr);
if (res->hr_original_replication == HAST_REPLICATION_MEMSYNC &&
res->hr_version < 2) {
pjdlog_warning("The 'memsync' replication mode is not supported by the remote node, falling back to 'fullsync' mode.");
res->hr_replication = HAST_REPLICATION_FULLSYNC;
} else if (res->hr_replication != res->hr_original_replication) {
/*
* This is in case hastd disconnected and was upgraded.
*/
res->hr_replication = res->hr_original_replication;
}
if (inp != NULL && outp != NULL) {
*inp = in;
*outp = out;
} else {
res->hr_remotein = in;
res->hr_remoteout = out;
}
event_send(res, EVENT_CONNECT);
return (0);
close:
if (errmsg != NULL && strcmp(errmsg, "Split-brain condition!") == 0)
event_send(res, EVENT_SPLITBRAIN);
proto_close(out);
if (in != NULL)
proto_close(in);
return (error);
}
static void
sync_start(void)
{
mtx_lock(&sync_lock);
sync_inprogress = true;
mtx_unlock(&sync_lock);
cv_signal(&sync_cond);
}
static void
sync_stop(void)
{
mtx_lock(&sync_lock);
if (sync_inprogress)
sync_inprogress = false;
mtx_unlock(&sync_lock);
}
static void
init_ggate(struct hast_resource *res)
{
struct g_gate_ctl_create ggiocreate;
struct g_gate_ctl_cancel ggiocancel;
/*
* We communicate with ggate via /dev/ggctl. Open it.
*/
res->hr_ggatefd = open("/dev/" G_GATE_CTL_NAME, O_RDWR);
if (res->hr_ggatefd == -1)
primary_exit(EX_OSFILE, "Unable to open /dev/" G_GATE_CTL_NAME);
/*
* Create provider before trying to connect, as connection failure
* is not critical, but may take some time.
*/
bzero(&ggiocreate, sizeof(ggiocreate));
ggiocreate.gctl_version = G_GATE_VERSION;
ggiocreate.gctl_mediasize = res->hr_datasize;
ggiocreate.gctl_sectorsize = res->hr_local_sectorsize;
ggiocreate.gctl_flags = 0;
ggiocreate.gctl_maxcount = 0;
ggiocreate.gctl_timeout = 0;
ggiocreate.gctl_unit = G_GATE_NAME_GIVEN;
snprintf(ggiocreate.gctl_name, sizeof(ggiocreate.gctl_name), "hast/%s",
res->hr_provname);
if (ioctl(res->hr_ggatefd, G_GATE_CMD_CREATE, &ggiocreate) == 0) {
pjdlog_info("Device hast/%s created.", res->hr_provname);
res->hr_ggateunit = ggiocreate.gctl_unit;
return;
}
if (errno != EEXIST) {
primary_exit(EX_OSERR, "Unable to create hast/%s device",
res->hr_provname);
}
pjdlog_debug(1,
"Device hast/%s already exists, we will try to take it over.",
res->hr_provname);
/*
* If we received EEXIST, we assume that the process who created the
* provider died and didn't clean up. In that case we will start from
* where he left of.
*/
bzero(&ggiocancel, sizeof(ggiocancel));
ggiocancel.gctl_version = G_GATE_VERSION;
ggiocancel.gctl_unit = G_GATE_NAME_GIVEN;
snprintf(ggiocancel.gctl_name, sizeof(ggiocancel.gctl_name), "hast/%s",
res->hr_provname);
if (ioctl(res->hr_ggatefd, G_GATE_CMD_CANCEL, &ggiocancel) == 0) {
pjdlog_info("Device hast/%s recovered.", res->hr_provname);
res->hr_ggateunit = ggiocancel.gctl_unit;
return;
}
primary_exit(EX_OSERR, "Unable to take over hast/%s device",
res->hr_provname);
}
void
hastd_primary(struct hast_resource *res)
{
pthread_t td;
pid_t pid;
int error, mode, debuglevel;
/*
* Create communication channel for sending control commands from
* parent to child.
*/
if (proto_client(NULL, "socketpair://", &res->hr_ctrl) == -1) {
/* TODO: There's no need for this to be fatal error. */
KEEP_ERRNO((void)pidfile_remove(pfh));
pjdlog_exit(EX_OSERR,
"Unable to create control sockets between parent and child");
}
/*
* Create communication channel for sending events from child to parent.
*/
if (proto_client(NULL, "socketpair://", &res->hr_event) == -1) {
/* TODO: There's no need for this to be fatal error. */
KEEP_ERRNO((void)pidfile_remove(pfh));
pjdlog_exit(EX_OSERR,
"Unable to create event sockets between child and parent");
}
/*
* Create communication channel for sending connection requests from
* child to parent.
*/
if (proto_client(NULL, "socketpair://", &res->hr_conn) == -1) {
/* TODO: There's no need for this to be fatal error. */
KEEP_ERRNO((void)pidfile_remove(pfh));
pjdlog_exit(EX_OSERR,
"Unable to create connection sockets between child and parent");
}
pid = fork();
if (pid == -1) {
/* TODO: There's no need for this to be fatal error. */
KEEP_ERRNO((void)pidfile_remove(pfh));
pjdlog_exit(EX_TEMPFAIL, "Unable to fork");
}
if (pid > 0) {
/* This is parent. */
/* Declare that we are receiver. */
proto_recv(res->hr_event, NULL, 0);
proto_recv(res->hr_conn, NULL, 0);
/* Declare that we are sender. */
proto_send(res->hr_ctrl, NULL, 0);
res->hr_workerpid = pid;
return;
}
gres = res;
res->output_status_aux = output_status_aux;
mode = pjdlog_mode_get();
debuglevel = pjdlog_debug_get();
/* Declare that we are sender. */
proto_send(res->hr_event, NULL, 0);
proto_send(res->hr_conn, NULL, 0);
/* Declare that we are receiver. */
proto_recv(res->hr_ctrl, NULL, 0);
descriptors_cleanup(res);
descriptors_assert(res, mode);
pjdlog_init(mode);
pjdlog_debug_set(debuglevel);
pjdlog_prefix_set("[%s] (%s) ", res->hr_name, role2str(res->hr_role));
setproctitle("%s (%s)", res->hr_name, role2str(res->hr_role));
init_local(res);
init_ggate(res);
init_environment(res);
if (drop_privs(res) != 0) {
cleanup(res);
exit(EX_CONFIG);
}
pjdlog_info("Privileges successfully dropped.");
/*
* Create the guard thread first, so we can handle signals from the
* very beginning.
*/
error = pthread_create(&td, NULL, guard_thread, res);
PJDLOG_ASSERT(error == 0);
/*
* Create the control thread before sending any event to the parent,
* as we can deadlock when parent sends control request to worker,
* but worker has no control thread started yet, so parent waits.
* In the meantime worker sends an event to the parent, but parent
* is unable to handle the event, because it waits for control
* request response.
*/
error = pthread_create(&td, NULL, ctrl_thread, res);
PJDLOG_ASSERT(error == 0);
if (real_remote(res)) {
error = init_remote(res, NULL, NULL);
if (error == 0) {
sync_start();
} else if (error == EBUSY) {
time_t start = time(NULL);
pjdlog_warning("Waiting for remote node to become %s for %ds.",
role2str(HAST_ROLE_SECONDARY),
res->hr_timeout);
for (;;) {
sleep(1);
error = init_remote(res, NULL, NULL);
if (error != EBUSY)
break;
if (time(NULL) > start + res->hr_timeout)
break;
}
if (error == EBUSY) {
pjdlog_warning("Remote node is still %s, starting anyway.",
role2str(HAST_ROLE_PRIMARY));
}
}
}
error = pthread_create(&td, NULL, ggate_recv_thread, res);
PJDLOG_ASSERT(error == 0);
error = pthread_create(&td, NULL, local_send_thread, res);
PJDLOG_ASSERT(error == 0);
error = pthread_create(&td, NULL, remote_send_thread, res);
PJDLOG_ASSERT(error == 0);
error = pthread_create(&td, NULL, remote_recv_thread, res);
PJDLOG_ASSERT(error == 0);
error = pthread_create(&td, NULL, ggate_send_thread, res);
PJDLOG_ASSERT(error == 0);
fullystarted = true;
(void)sync_thread(res);
}
static void
reqlog(int loglevel, int debuglevel, struct g_gate_ctl_io *ggio,
const char *fmt, ...)
{
char msg[1024];
va_list ap;
va_start(ap, fmt);
(void)vsnprintf(msg, sizeof(msg), fmt, ap);
va_end(ap);
switch (ggio->gctl_cmd) {
case BIO_READ:
(void)snprlcat(msg, sizeof(msg), "READ(%ju, %ju).",
(uintmax_t)ggio->gctl_offset, (uintmax_t)ggio->gctl_length);
break;
case BIO_DELETE:
(void)snprlcat(msg, sizeof(msg), "DELETE(%ju, %ju).",
(uintmax_t)ggio->gctl_offset, (uintmax_t)ggio->gctl_length);
break;
case BIO_FLUSH:
(void)snprlcat(msg, sizeof(msg), "FLUSH.");
break;
case BIO_WRITE:
(void)snprlcat(msg, sizeof(msg), "WRITE(%ju, %ju).",
(uintmax_t)ggio->gctl_offset, (uintmax_t)ggio->gctl_length);
break;
default:
(void)snprlcat(msg, sizeof(msg), "UNKNOWN(%u).",
(unsigned int)ggio->gctl_cmd);
break;
}
pjdlog_common(loglevel, debuglevel, -1, "%s", msg);
}
static void
remote_close(struct hast_resource *res, int ncomp)
{
rw_wlock(&hio_remote_lock[ncomp]);
/*
* Check for a race between dropping rlock and acquiring wlock -
* another thread can close connection in-between.
*/
if (!ISCONNECTED(res, ncomp)) {
PJDLOG_ASSERT(res->hr_remotein == NULL);
PJDLOG_ASSERT(res->hr_remoteout == NULL);
rw_unlock(&hio_remote_lock[ncomp]);
return;
}
PJDLOG_ASSERT(res->hr_remotein != NULL);
PJDLOG_ASSERT(res->hr_remoteout != NULL);
pjdlog_debug(2, "Closing incoming connection to %s.",
res->hr_remoteaddr);
proto_close(res->hr_remotein);
res->hr_remotein = NULL;
pjdlog_debug(2, "Closing outgoing connection to %s.",
res->hr_remoteaddr);
proto_close(res->hr_remoteout);
res->hr_remoteout = NULL;
rw_unlock(&hio_remote_lock[ncomp]);
pjdlog_warning("Disconnected from %s.", res->hr_remoteaddr);
/*
* Stop synchronization if in-progress.
*/
sync_stop();
event_send(res, EVENT_DISCONNECT);
}
/*
* Acknowledge write completion to the kernel, but don't update activemap yet.
*/
static void
write_complete(struct hast_resource *res, struct hio *hio)
{
struct g_gate_ctl_io *ggio;
unsigned int ncomp;
PJDLOG_ASSERT(!hio->hio_done);
ggio = &hio->hio_ggio;
PJDLOG_ASSERT(ggio->gctl_cmd == BIO_WRITE);
/*
* Bump local count if this is first write after
* connection failure with remote node.
*/
ncomp = 1;
rw_rlock(&hio_remote_lock[ncomp]);
if (!ISCONNECTED(res, ncomp)) {
mtx_lock(&metadata_lock);
if (res->hr_primary_localcnt == res->hr_secondary_remotecnt) {
res->hr_primary_localcnt++;
pjdlog_debug(1, "Increasing localcnt to %ju.",
(uintmax_t)res->hr_primary_localcnt);
(void)metadata_write(res);
}
mtx_unlock(&metadata_lock);
}
rw_unlock(&hio_remote_lock[ncomp]);
if (ioctl(res->hr_ggatefd, G_GATE_CMD_DONE, ggio) == -1)
primary_exit(EX_OSERR, "G_GATE_CMD_DONE failed");
hio->hio_done = true;
}
/*
* Thread receives ggate I/O requests from the kernel and passes them to
* appropriate threads:
* WRITE - always goes to both local_send and remote_send threads
* READ (when the block is up-to-date on local component) -
* only local_send thread
* READ (when the block isn't up-to-date on local component) -
* only remote_send thread
* DELETE - always goes to both local_send and remote_send threads
* FLUSH - always goes to both local_send and remote_send threads
*/
static void *
ggate_recv_thread(void *arg)
{
struct hast_resource *res = arg;
struct g_gate_ctl_io *ggio;
struct hio *hio;
unsigned int ii, ncomp, ncomps;
int error;
for (;;) {
pjdlog_debug(2, "ggate_recv: Taking free request.");
QUEUE_TAKE2(hio, free);
pjdlog_debug(2, "ggate_recv: (%p) Got free request.", hio);
ggio = &hio->hio_ggio;
ggio->gctl_unit = res->hr_ggateunit;
ggio->gctl_length = MAXPHYS;
ggio->gctl_error = 0;
hio->hio_done = false;
hio->hio_replication = res->hr_replication;
pjdlog_debug(2,
"ggate_recv: (%p) Waiting for request from the kernel.",
hio);
if (ioctl(res->hr_ggatefd, G_GATE_CMD_START, ggio) == -1) {
if (sigexit_received)
pthread_exit(NULL);
primary_exit(EX_OSERR, "G_GATE_CMD_START failed");
}
error = ggio->gctl_error;
switch (error) {
case 0:
break;
case ECANCELED:
/* Exit gracefully. */
if (!sigexit_received) {
pjdlog_debug(2,
"ggate_recv: (%p) Received cancel from the kernel.",
hio);
pjdlog_info("Received cancel from the kernel, exiting.");
}
pthread_exit(NULL);
case ENOMEM:
/*
* Buffer too small? Impossible, we allocate MAXPHYS
* bytes - request can't be bigger than that.
*/
/* FALLTHROUGH */
case ENXIO:
default:
primary_exitx(EX_OSERR, "G_GATE_CMD_START failed: %s.",
strerror(error));
}
ncomp = 0;
ncomps = HAST_NCOMPONENTS;
for (ii = 0; ii < ncomps; ii++)
hio->hio_errors[ii] = EINVAL;
reqlog(LOG_DEBUG, 2, ggio,
"ggate_recv: (%p) Request received from the kernel: ",
hio);
/*
* Inform all components about new write request.
* For read request prefer local component unless the given
* range is out-of-date, then use remote component.
*/
switch (ggio->gctl_cmd) {
case BIO_READ:
res->hr_stat_read++;
ncomps = 1;
mtx_lock(&metadata_lock);
if (res->hr_syncsrc == HAST_SYNCSRC_UNDEF ||
res->hr_syncsrc == HAST_SYNCSRC_PRIMARY) {
/*
* This range is up-to-date on local component,
* so handle request locally.
*/
/* Local component is 0 for now. */
ncomp = 0;
} else /* if (res->hr_syncsrc ==
HAST_SYNCSRC_SECONDARY) */ {
PJDLOG_ASSERT(res->hr_syncsrc ==
HAST_SYNCSRC_SECONDARY);
/*
* This range is out-of-date on local component,
* so send request to the remote node.
*/
/* Remote component is 1 for now. */
ncomp = 1;
}
mtx_unlock(&metadata_lock);
break;
case BIO_WRITE:
res->hr_stat_write++;
if (res->hr_resuid == 0 &&
res->hr_primary_localcnt == 0) {
/* This is first write. */
res->hr_primary_localcnt = 1;
}
for (;;) {
mtx_lock(&range_lock);
if (rangelock_islocked(range_sync,
ggio->gctl_offset, ggio->gctl_length)) {
pjdlog_debug(2,
"regular: Range offset=%jd length=%zu locked.",
(intmax_t)ggio->gctl_offset,
(size_t)ggio->gctl_length);
range_regular_wait = true;
cv_wait(&range_regular_cond, &range_lock);
range_regular_wait = false;
mtx_unlock(&range_lock);
continue;
}
if (rangelock_add(range_regular,
ggio->gctl_offset, ggio->gctl_length) == -1) {
mtx_unlock(&range_lock);
pjdlog_debug(2,
"regular: Range offset=%jd length=%zu is already locked, waiting.",
(intmax_t)ggio->gctl_offset,
(size_t)ggio->gctl_length);
sleep(1);
continue;
}
mtx_unlock(&range_lock);
break;
}
mtx_lock(&res->hr_amp_lock);
if (activemap_write_start(res->hr_amp,
ggio->gctl_offset, ggio->gctl_length)) {
res->hr_stat_activemap_update++;
(void)hast_activemap_flush(res);
} else {
mtx_unlock(&res->hr_amp_lock);
}
if (ISMEMSYNC(hio)) {
hio->hio_memsyncacked = false;
refcnt_init(&hio->hio_writecount, ncomps);
}
break;
case BIO_DELETE:
res->hr_stat_delete++;
break;
case BIO_FLUSH:
res->hr_stat_flush++;
break;
}
pjdlog_debug(2,
"ggate_recv: (%p) Moving request to the send queues.", hio);
refcnt_init(&hio->hio_countdown, ncomps);
for (ii = ncomp; ii < ncomps; ii++)
QUEUE_INSERT1(hio, send, ii);
}
/* NOTREACHED */
return (NULL);
}
/*
* Thread reads from or writes to local component.
* If local read fails, it redirects it to remote_send thread.
*/
static void *
local_send_thread(void *arg)
{
struct hast_resource *res = arg;
struct g_gate_ctl_io *ggio;
struct hio *hio;
unsigned int ncomp, rncomp;
ssize_t ret;
/* Local component is 0 for now. */
ncomp = 0;
/* Remote component is 1 for now. */
rncomp = 1;
for (;;) {
pjdlog_debug(2, "local_send: Taking request.");
QUEUE_TAKE1(hio, send, ncomp, 0);
pjdlog_debug(2, "local_send: (%p) Got request.", hio);
ggio = &hio->hio_ggio;
switch (ggio->gctl_cmd) {
case BIO_READ:
ret = pread(res->hr_localfd, ggio->gctl_data,
ggio->gctl_length,
ggio->gctl_offset + res->hr_localoff);
if (ret == ggio->gctl_length)
hio->hio_errors[ncomp] = 0;
else if (!ISSYNCREQ(hio)) {
/*
* If READ failed, try to read from remote node.
*/
if (ret == -1) {
reqlog(LOG_WARNING, 0, ggio,
"Local request failed (%s), trying remote node. ",
strerror(errno));
} else if (ret != ggio->gctl_length) {
reqlog(LOG_WARNING, 0, ggio,
"Local request failed (%zd != %jd), trying remote node. ",
ret, (intmax_t)ggio->gctl_length);
}
QUEUE_INSERT1(hio, send, rncomp);
continue;
}
break;
case BIO_WRITE:
ret = pwrite(res->hr_localfd, ggio->gctl_data,
ggio->gctl_length,
ggio->gctl_offset + res->hr_localoff);
if (ret == -1) {
hio->hio_errors[ncomp] = errno;
reqlog(LOG_WARNING, 0, ggio,
"Local request failed (%s): ",
strerror(errno));
} else if (ret != ggio->gctl_length) {
hio->hio_errors[ncomp] = EIO;
reqlog(LOG_WARNING, 0, ggio,
"Local request failed (%zd != %jd): ",
ret, (intmax_t)ggio->gctl_length);
} else {
hio->hio_errors[ncomp] = 0;
if (ISASYNC(hio)) {
ggio->gctl_error = 0;
write_complete(res, hio);
}
}
break;
case BIO_DELETE:
ret = g_delete(res->hr_localfd,
ggio->gctl_offset + res->hr_localoff,
ggio->gctl_length);
if (ret == -1) {
hio->hio_errors[ncomp] = errno;
reqlog(LOG_WARNING, 0, ggio,
"Local request failed (%s): ",
strerror(errno));
} else {
hio->hio_errors[ncomp] = 0;
}
break;
case BIO_FLUSH:
if (!res->hr_localflush) {
ret = -1;
errno = EOPNOTSUPP;
break;
}
ret = g_flush(res->hr_localfd);
if (ret == -1) {
if (errno == EOPNOTSUPP)
res->hr_localflush = false;
hio->hio_errors[ncomp] = errno;
reqlog(LOG_WARNING, 0, ggio,
"Local request failed (%s): ",
strerror(errno));
} else {
hio->hio_errors[ncomp] = 0;
}
break;
}
if (ISMEMSYNCWRITE(hio)) {
if (refcnt_release(&hio->hio_writecount) == 0) {
write_complete(res, hio);
}
}
if (refcnt_release(&hio->hio_countdown) > 0)
continue;
if (ISSYNCREQ(hio)) {
mtx_lock(&sync_lock);
SYNCREQDONE(hio);
mtx_unlock(&sync_lock);
cv_signal(&sync_cond);
} else {
pjdlog_debug(2,
"local_send: (%p) Moving request to the done queue.",
hio);
QUEUE_INSERT2(hio, done);
}
}
/* NOTREACHED */
return (NULL);
}
static void
keepalive_send(struct hast_resource *res, unsigned int ncomp)
{
struct nv *nv;
rw_rlock(&hio_remote_lock[ncomp]);
if (!ISCONNECTED(res, ncomp)) {
rw_unlock(&hio_remote_lock[ncomp]);
return;
}
PJDLOG_ASSERT(res->hr_remotein != NULL);
PJDLOG_ASSERT(res->hr_remoteout != NULL);
nv = nv_alloc();
nv_add_uint8(nv, HIO_KEEPALIVE, "cmd");
if (nv_error(nv) != 0) {
rw_unlock(&hio_remote_lock[ncomp]);
nv_free(nv);
pjdlog_debug(1,
"keepalive_send: Unable to prepare header to send.");
return;
}
if (hast_proto_send(res, res->hr_remoteout, nv, NULL, 0) == -1) {
rw_unlock(&hio_remote_lock[ncomp]);
pjdlog_common(LOG_DEBUG, 1, errno,
"keepalive_send: Unable to send request");
nv_free(nv);
remote_close(res, ncomp);
return;
}
rw_unlock(&hio_remote_lock[ncomp]);
nv_free(nv);
pjdlog_debug(2, "keepalive_send: Request sent.");
}
/*
* Thread sends request to secondary node.
*/
static void *
remote_send_thread(void *arg)
{
struct hast_resource *res = arg;
struct g_gate_ctl_io *ggio;
time_t lastcheck, now;
struct hio *hio;
struct nv *nv;
unsigned int ncomp;
bool wakeup;
uint64_t offset, length;
uint8_t cmd;
void *data;
/* Remote component is 1 for now. */
ncomp = 1;
lastcheck = time(NULL);
for (;;) {
pjdlog_debug(2, "remote_send: Taking request.");
QUEUE_TAKE1(hio, send, ncomp, HAST_KEEPALIVE);
if (hio == NULL) {
now = time(NULL);
if (lastcheck + HAST_KEEPALIVE <= now) {
keepalive_send(res, ncomp);
lastcheck = now;
}
continue;
}
pjdlog_debug(2, "remote_send: (%p) Got request.", hio);
ggio = &hio->hio_ggio;
switch (ggio->gctl_cmd) {
case BIO_READ:
cmd = HIO_READ;
data = NULL;
offset = ggio->gctl_offset;
length = ggio->gctl_length;
break;
case BIO_WRITE:
cmd = HIO_WRITE;
data = ggio->gctl_data;
offset = ggio->gctl_offset;
length = ggio->gctl_length;
break;
case BIO_DELETE:
cmd = HIO_DELETE;
data = NULL;
offset = ggio->gctl_offset;
length = ggio->gctl_length;
break;
case BIO_FLUSH:
cmd = HIO_FLUSH;
data = NULL;
offset = 0;
length = 0;
break;
default:
PJDLOG_ABORT("invalid condition");
}
nv = nv_alloc();
nv_add_uint8(nv, cmd, "cmd");
nv_add_uint64(nv, (uint64_t)ggio->gctl_seq, "seq");
nv_add_uint64(nv, offset, "offset");
nv_add_uint64(nv, length, "length");
if (ISMEMSYNCWRITE(hio))
nv_add_uint8(nv, 1, "memsync");
if (nv_error(nv) != 0) {
hio->hio_errors[ncomp] = nv_error(nv);
pjdlog_debug(2,
"remote_send: (%p) Unable to prepare header to send.",
hio);
reqlog(LOG_ERR, 0, ggio,
"Unable to prepare header to send (%s): ",
strerror(nv_error(nv)));
/* Move failed request immediately to the done queue. */
goto done_queue;
}
/*
* Protect connection from disappearing.
*/
rw_rlock(&hio_remote_lock[ncomp]);
if (!ISCONNECTED(res, ncomp)) {
rw_unlock(&hio_remote_lock[ncomp]);
hio->hio_errors[ncomp] = ENOTCONN;
goto done_queue;
}
/*
* Move the request to recv queue before sending it, because
* in different order we can get reply before we move request
* to recv queue.
*/
pjdlog_debug(2,
"remote_send: (%p) Moving request to the recv queue.",
hio);
mtx_lock(&hio_recv_list_lock[ncomp]);
wakeup = TAILQ_EMPTY(&hio_recv_list[ncomp]);
TAILQ_INSERT_TAIL(&hio_recv_list[ncomp], hio, hio_next[ncomp]);
hio_recv_list_size[ncomp]++;
mtx_unlock(&hio_recv_list_lock[ncomp]);
if (hast_proto_send(res, res->hr_remoteout, nv, data,
data != NULL ? length : 0) == -1) {
hio->hio_errors[ncomp] = errno;
rw_unlock(&hio_remote_lock[ncomp]);
pjdlog_debug(2,
"remote_send: (%p) Unable to send request.", hio);
reqlog(LOG_ERR, 0, ggio,
"Unable to send request (%s): ",
strerror(hio->hio_errors[ncomp]));
remote_close(res, ncomp);
} else {
rw_unlock(&hio_remote_lock[ncomp]);
}
nv_free(nv);
if (wakeup)
cv_signal(&hio_recv_list_cond[ncomp]);
continue;
done_queue:
nv_free(nv);
if (ISSYNCREQ(hio)) {
if (refcnt_release(&hio->hio_countdown) > 0)
continue;
mtx_lock(&sync_lock);
SYNCREQDONE(hio);
mtx_unlock(&sync_lock);
cv_signal(&sync_cond);
continue;
}
if (ggio->gctl_cmd == BIO_WRITE) {
mtx_lock(&res->hr_amp_lock);
if (activemap_need_sync(res->hr_amp, ggio->gctl_offset,
ggio->gctl_length)) {
(void)hast_activemap_flush(res);
} else {
mtx_unlock(&res->hr_amp_lock);
}
if (ISMEMSYNCWRITE(hio)) {
if (refcnt_release(&hio->hio_writecount) == 0) {
if (hio->hio_errors[0] == 0)
write_complete(res, hio);
}
}
}
if (refcnt_release(&hio->hio_countdown) > 0)
continue;
pjdlog_debug(2,
"remote_send: (%p) Moving request to the done queue.",
hio);
QUEUE_INSERT2(hio, done);
}
/* NOTREACHED */
return (NULL);
}
/*
* Thread receives answer from secondary node and passes it to ggate_send
* thread.
*/
static void *
remote_recv_thread(void *arg)
{
struct hast_resource *res = arg;
struct g_gate_ctl_io *ggio;
struct hio *hio;
struct nv *nv;
unsigned int ncomp;
uint64_t seq;
bool memsyncack;
int error;
/* Remote component is 1 for now. */
ncomp = 1;
for (;;) {
/* Wait until there is anything to receive. */
mtx_lock(&hio_recv_list_lock[ncomp]);
while (TAILQ_EMPTY(&hio_recv_list[ncomp])) {
pjdlog_debug(2, "remote_recv: No requests, waiting.");
cv_wait(&hio_recv_list_cond[ncomp],
&hio_recv_list_lock[ncomp]);
}
mtx_unlock(&hio_recv_list_lock[ncomp]);
memsyncack = false;
rw_rlock(&hio_remote_lock[ncomp]);
if (!ISCONNECTED(res, ncomp)) {
rw_unlock(&hio_remote_lock[ncomp]);
/*
* Connection is dead, so move all pending requests to
* the done queue (one-by-one).
*/
mtx_lock(&hio_recv_list_lock[ncomp]);
hio = TAILQ_FIRST(&hio_recv_list[ncomp]);
PJDLOG_ASSERT(hio != NULL);
TAILQ_REMOVE(&hio_recv_list[ncomp], hio,
hio_next[ncomp]);
hio_recv_list_size[ncomp]--;
mtx_unlock(&hio_recv_list_lock[ncomp]);
hio->hio_errors[ncomp] = ENOTCONN;
goto done_queue;
}
if (hast_proto_recv_hdr(res->hr_remotein, &nv) == -1) {
pjdlog_errno(LOG_ERR,
"Unable to receive reply header");
rw_unlock(&hio_remote_lock[ncomp]);
remote_close(res, ncomp);
continue;
}
rw_unlock(&hio_remote_lock[ncomp]);
seq = nv_get_uint64(nv, "seq");
if (seq == 0) {
pjdlog_error("Header contains no 'seq' field.");
nv_free(nv);
continue;
}
memsyncack = nv_exists(nv, "received");
mtx_lock(&hio_recv_list_lock[ncomp]);
TAILQ_FOREACH(hio, &hio_recv_list[ncomp], hio_next[ncomp]) {
if (hio->hio_ggio.gctl_seq == seq) {
TAILQ_REMOVE(&hio_recv_list[ncomp], hio,
hio_next[ncomp]);
hio_recv_list_size[ncomp]--;
break;
}
}
mtx_unlock(&hio_recv_list_lock[ncomp]);
if (hio == NULL) {
pjdlog_error("Found no request matching received 'seq' field (%ju).",
(uintmax_t)seq);
nv_free(nv);
continue;
}
ggio = &hio->hio_ggio;
error = nv_get_int16(nv, "error");
if (error != 0) {
/* Request failed on remote side. */
hio->hio_errors[ncomp] = error;
reqlog(LOG_WARNING, 0, ggio,
"Remote request failed (%s): ", strerror(error));
nv_free(nv);
goto done_queue;
}
switch (ggio->gctl_cmd) {
case BIO_READ:
rw_rlock(&hio_remote_lock[ncomp]);
if (!ISCONNECTED(res, ncomp)) {
rw_unlock(&hio_remote_lock[ncomp]);
nv_free(nv);
goto done_queue;
}
if (hast_proto_recv_data(res, res->hr_remotein, nv,
ggio->gctl_data, ggio->gctl_length) == -1) {
hio->hio_errors[ncomp] = errno;
pjdlog_errno(LOG_ERR,
"Unable to receive reply data");
rw_unlock(&hio_remote_lock[ncomp]);
nv_free(nv);
remote_close(res, ncomp);
goto done_queue;
}
rw_unlock(&hio_remote_lock[ncomp]);
break;
case BIO_WRITE:
case BIO_DELETE:
case BIO_FLUSH:
break;
default:
PJDLOG_ABORT("invalid condition");
}
hio->hio_errors[ncomp] = 0;
nv_free(nv);
done_queue:
if (ISMEMSYNCWRITE(hio)) {
if (!hio->hio_memsyncacked) {
PJDLOG_ASSERT(memsyncack ||
hio->hio_errors[ncomp] != 0);
/* Remote ack arrived. */
if (refcnt_release(&hio->hio_writecount) == 0) {
if (hio->hio_errors[0] == 0)
write_complete(res, hio);
}
hio->hio_memsyncacked = true;
if (hio->hio_errors[ncomp] == 0) {
pjdlog_debug(2,
"remote_recv: (%p) Moving request "
"back to the recv queue.", hio);
mtx_lock(&hio_recv_list_lock[ncomp]);
TAILQ_INSERT_TAIL(&hio_recv_list[ncomp],
hio, hio_next[ncomp]);
hio_recv_list_size[ncomp]++;
mtx_unlock(&hio_recv_list_lock[ncomp]);
continue;
}
} else {
PJDLOG_ASSERT(!memsyncack);
/* Remote final reply arrived. */
}
}
if (refcnt_release(&hio->hio_countdown) > 0)
continue;
if (ISSYNCREQ(hio)) {
mtx_lock(&sync_lock);
SYNCREQDONE(hio);
mtx_unlock(&sync_lock);
cv_signal(&sync_cond);
} else {
pjdlog_debug(2,
"remote_recv: (%p) Moving request to the done queue.",
hio);
QUEUE_INSERT2(hio, done);
}
}
/* NOTREACHED */
return (NULL);
}
/*
* Thread sends answer to the kernel.
*/
static void *
ggate_send_thread(void *arg)
{
struct hast_resource *res = arg;
struct g_gate_ctl_io *ggio;
struct hio *hio;
unsigned int ii, ncomps;
ncomps = HAST_NCOMPONENTS;
for (;;) {
pjdlog_debug(2, "ggate_send: Taking request.");
QUEUE_TAKE2(hio, done);
pjdlog_debug(2, "ggate_send: (%p) Got request.", hio);
ggio = &hio->hio_ggio;
for (ii = 0; ii < ncomps; ii++) {
if (hio->hio_errors[ii] == 0) {
/*
* One successful request is enough to declare
* success.
*/
ggio->gctl_error = 0;
break;
}
}
if (ii == ncomps) {
/*
* None of the requests were successful.
* Use the error from local component except the
* case when we did only remote request.
*/
if (ggio->gctl_cmd == BIO_READ &&
res->hr_syncsrc == HAST_SYNCSRC_SECONDARY)
ggio->gctl_error = hio->hio_errors[1];
else
ggio->gctl_error = hio->hio_errors[0];
}
if (ggio->gctl_error == 0 && ggio->gctl_cmd == BIO_WRITE) {
mtx_lock(&res->hr_amp_lock);
if (activemap_write_complete(res->hr_amp,
ggio->gctl_offset, ggio->gctl_length)) {
res->hr_stat_activemap_update++;
(void)hast_activemap_flush(res);
} else {
mtx_unlock(&res->hr_amp_lock);
}
}
if (ggio->gctl_cmd == BIO_WRITE) {
/*
* Unlock range we locked.
*/
mtx_lock(&range_lock);
rangelock_del(range_regular, ggio->gctl_offset,
ggio->gctl_length);
if (range_sync_wait)
cv_signal(&range_sync_cond);
mtx_unlock(&range_lock);
if (!hio->hio_done)
write_complete(res, hio);
} else {
if (ioctl(res->hr_ggatefd, G_GATE_CMD_DONE, ggio) == -1) {
primary_exit(EX_OSERR,
"G_GATE_CMD_DONE failed");
}
}
if (hio->hio_errors[0]) {
switch (ggio->gctl_cmd) {
case BIO_READ:
res->hr_stat_read_error++;
break;
case BIO_WRITE:
res->hr_stat_write_error++;
break;
case BIO_DELETE:
res->hr_stat_delete_error++;
break;
case BIO_FLUSH:
res->hr_stat_flush_error++;
break;
}
}
pjdlog_debug(2,
"ggate_send: (%p) Moving request to the free queue.", hio);
QUEUE_INSERT2(hio, free);
}
/* NOTREACHED */
return (NULL);
}
/*
* Thread synchronize local and remote components.
*/
static void *
sync_thread(void *arg __unused)
{
struct hast_resource *res = arg;
struct hio *hio;
struct g_gate_ctl_io *ggio;
struct timeval tstart, tend, tdiff;
unsigned int ii, ncomp, ncomps;
off_t offset, length, synced;
bool dorewind, directreads;
int syncext;
ncomps = HAST_NCOMPONENTS;
dorewind = true;
synced = 0;
offset = -1;
directreads = false;
for (;;) {
mtx_lock(&sync_lock);
if (offset >= 0 && !sync_inprogress) {
gettimeofday(&tend, NULL);
timersub(&tend, &tstart, &tdiff);
pjdlog_info("Synchronization interrupted after %#.0T. "
"%NB synchronized so far.", &tdiff,
(intmax_t)synced);
event_send(res, EVENT_SYNCINTR);
}
while (!sync_inprogress) {
dorewind = true;
synced = 0;
cv_wait(&sync_cond, &sync_lock);
}
mtx_unlock(&sync_lock);
/*
* Obtain offset at which we should synchronize.
* Rewind synchronization if needed.
*/
mtx_lock(&res->hr_amp_lock);
if (dorewind)
activemap_sync_rewind(res->hr_amp);
offset = activemap_sync_offset(res->hr_amp, &length, &syncext);
if (syncext != -1) {
/*
* We synchronized entire syncext extent, we can mark
* it as clean now.
*/
if (activemap_extent_complete(res->hr_amp, syncext))
(void)hast_activemap_flush(res);
else
mtx_unlock(&res->hr_amp_lock);
} else {
mtx_unlock(&res->hr_amp_lock);
}
if (dorewind) {
dorewind = false;
if (offset == -1)
pjdlog_info("Nodes are in sync.");
else {
pjdlog_info("Synchronization started. %NB to go.",
(intmax_t)(res->hr_extentsize *
activemap_ndirty(res->hr_amp)));
event_send(res, EVENT_SYNCSTART);
gettimeofday(&tstart, NULL);
}
}
if (offset == -1) {
sync_stop();
pjdlog_debug(1, "Nothing to synchronize.");
/*
* Synchronization complete, make both localcnt and
* remotecnt equal.
*/
ncomp = 1;
rw_rlock(&hio_remote_lock[ncomp]);
if (ISCONNECTED(res, ncomp)) {
if (synced > 0) {
int64_t bps;
gettimeofday(&tend, NULL);
timersub(&tend, &tstart, &tdiff);
bps = (int64_t)((double)synced /
((double)tdiff.tv_sec +
(double)tdiff.tv_usec / 1000000));
pjdlog_info("Synchronization complete. "
"%NB synchronized in %#.0lT (%NB/sec).",
(intmax_t)synced, &tdiff,
(intmax_t)bps);
event_send(res, EVENT_SYNCDONE);
}
mtx_lock(&metadata_lock);
if (res->hr_syncsrc == HAST_SYNCSRC_SECONDARY)
directreads = true;
res->hr_syncsrc = HAST_SYNCSRC_UNDEF;
res->hr_primary_localcnt =
res->hr_secondary_remotecnt;
res->hr_primary_remotecnt =
res->hr_secondary_localcnt;
pjdlog_debug(1,
"Setting localcnt to %ju and remotecnt to %ju.",
(uintmax_t)res->hr_primary_localcnt,
(uintmax_t)res->hr_primary_remotecnt);
(void)metadata_write(res);
mtx_unlock(&metadata_lock);
}
rw_unlock(&hio_remote_lock[ncomp]);
if (directreads) {
directreads = false;
enable_direct_reads(res);
}
continue;
}
pjdlog_debug(2, "sync: Taking free request.");
QUEUE_TAKE2(hio, free);
pjdlog_debug(2, "sync: (%p) Got free request.", hio);
/*
* Lock the range we are going to synchronize. We don't want
* race where someone writes between our read and write.
*/
for (;;) {
mtx_lock(&range_lock);
if (rangelock_islocked(range_regular, offset, length)) {
pjdlog_debug(2,
"sync: Range offset=%jd length=%jd locked.",
(intmax_t)offset, (intmax_t)length);
range_sync_wait = true;
cv_wait(&range_sync_cond, &range_lock);
range_sync_wait = false;
mtx_unlock(&range_lock);
continue;
}
if (rangelock_add(range_sync, offset, length) == -1) {
mtx_unlock(&range_lock);
pjdlog_debug(2,
"sync: Range offset=%jd length=%jd is already locked, waiting.",
(intmax_t)offset, (intmax_t)length);
sleep(1);
continue;
}
mtx_unlock(&range_lock);
break;
}
/*
* First read the data from synchronization source.
*/
SYNCREQ(hio);
ggio = &hio->hio_ggio;
ggio->gctl_cmd = BIO_READ;
ggio->gctl_offset = offset;
ggio->gctl_length = length;
ggio->gctl_error = 0;
hio->hio_done = false;
hio->hio_replication = res->hr_replication;
for (ii = 0; ii < ncomps; ii++)
hio->hio_errors[ii] = EINVAL;
reqlog(LOG_DEBUG, 2, ggio, "sync: (%p) Sending sync request: ",
hio);
pjdlog_debug(2, "sync: (%p) Moving request to the send queue.",
hio);
mtx_lock(&metadata_lock);
if (res->hr_syncsrc == HAST_SYNCSRC_PRIMARY) {
/*
* This range is up-to-date on local component,
* so handle request locally.
*/
/* Local component is 0 for now. */
ncomp = 0;
} else /* if (res->hr_syncsrc == HAST_SYNCSRC_SECONDARY) */ {
PJDLOG_ASSERT(res->hr_syncsrc == HAST_SYNCSRC_SECONDARY);
/*
* This range is out-of-date on local component,
* so send request to the remote node.
*/
/* Remote component is 1 for now. */
ncomp = 1;
}
mtx_unlock(&metadata_lock);
refcnt_init(&hio->hio_countdown, 1);
QUEUE_INSERT1(hio, send, ncomp);
/*
* Let's wait for READ to finish.
*/
mtx_lock(&sync_lock);
while (!ISSYNCREQDONE(hio))
cv_wait(&sync_cond, &sync_lock);
mtx_unlock(&sync_lock);
if (hio->hio_errors[ncomp] != 0) {
pjdlog_error("Unable to read synchronization data: %s.",
strerror(hio->hio_errors[ncomp]));
goto free_queue;
}
/*
* We read the data from synchronization source, now write it
* to synchronization target.
*/
SYNCREQ(hio);
ggio->gctl_cmd = BIO_WRITE;
for (ii = 0; ii < ncomps; ii++)
hio->hio_errors[ii] = EINVAL;
reqlog(LOG_DEBUG, 2, ggio, "sync: (%p) Sending sync request: ",
hio);
pjdlog_debug(2, "sync: (%p) Moving request to the send queue.",
hio);
mtx_lock(&metadata_lock);
if (res->hr_syncsrc == HAST_SYNCSRC_PRIMARY) {
/*
* This range is up-to-date on local component,
* so we update remote component.
*/
/* Remote component is 1 for now. */
ncomp = 1;
} else /* if (res->hr_syncsrc == HAST_SYNCSRC_SECONDARY) */ {
PJDLOG_ASSERT(res->hr_syncsrc == HAST_SYNCSRC_SECONDARY);
/*
* This range is out-of-date on local component,
* so we update it.
*/
/* Local component is 0 for now. */
ncomp = 0;
}
mtx_unlock(&metadata_lock);
pjdlog_debug(2, "sync: (%p) Moving request to the send queue.",
hio);
refcnt_init(&hio->hio_countdown, 1);
QUEUE_INSERT1(hio, send, ncomp);
/*
* Let's wait for WRITE to finish.
*/
mtx_lock(&sync_lock);
while (!ISSYNCREQDONE(hio))
cv_wait(&sync_cond, &sync_lock);
mtx_unlock(&sync_lock);
if (hio->hio_errors[ncomp] != 0) {
pjdlog_error("Unable to write synchronization data: %s.",
strerror(hio->hio_errors[ncomp]));
goto free_queue;
}
synced += length;
free_queue:
mtx_lock(&range_lock);
rangelock_del(range_sync, offset, length);
if (range_regular_wait)
cv_signal(&range_regular_cond);
mtx_unlock(&range_lock);
pjdlog_debug(2, "sync: (%p) Moving request to the free queue.",
hio);
QUEUE_INSERT2(hio, free);
}
/* NOTREACHED */
return (NULL);
}
void
primary_config_reload(struct hast_resource *res, struct nv *nv)
{
unsigned int ii, ncomps;
int modified, vint;
const char *vstr;
pjdlog_info("Reloading configuration...");
PJDLOG_ASSERT(res->hr_role == HAST_ROLE_PRIMARY);
PJDLOG_ASSERT(gres == res);
nv_assert(nv, "remoteaddr");
nv_assert(nv, "sourceaddr");
nv_assert(nv, "replication");
nv_assert(nv, "checksum");
nv_assert(nv, "compression");
nv_assert(nv, "timeout");
nv_assert(nv, "exec");
nv_assert(nv, "metaflush");
ncomps = HAST_NCOMPONENTS;
#define MODIFIED_REMOTEADDR 0x01
#define MODIFIED_SOURCEADDR 0x02
#define MODIFIED_REPLICATION 0x04
#define MODIFIED_CHECKSUM 0x08
#define MODIFIED_COMPRESSION 0x10
#define MODIFIED_TIMEOUT 0x20
#define MODIFIED_EXEC 0x40
#define MODIFIED_METAFLUSH 0x80
modified = 0;
vstr = nv_get_string(nv, "remoteaddr");
if (strcmp(gres->hr_remoteaddr, vstr) != 0) {
/*
* Don't copy res->hr_remoteaddr to gres just yet.
* We want remote_close() to log disconnect from the old
* addresses, not from the new ones.
*/
modified |= MODIFIED_REMOTEADDR;
}
vstr = nv_get_string(nv, "sourceaddr");
if (strcmp(gres->hr_sourceaddr, vstr) != 0) {
strlcpy(gres->hr_sourceaddr, vstr, sizeof(gres->hr_sourceaddr));
modified |= MODIFIED_SOURCEADDR;
}
vint = nv_get_int32(nv, "replication");
if (gres->hr_replication != vint) {
gres->hr_replication = vint;
modified |= MODIFIED_REPLICATION;
}
vint = nv_get_int32(nv, "checksum");
if (gres->hr_checksum != vint) {
gres->hr_checksum = vint;
modified |= MODIFIED_CHECKSUM;
}
vint = nv_get_int32(nv, "compression");
if (gres->hr_compression != vint) {
gres->hr_compression = vint;
modified |= MODIFIED_COMPRESSION;
}
vint = nv_get_int32(nv, "timeout");
if (gres->hr_timeout != vint) {
gres->hr_timeout = vint;
modified |= MODIFIED_TIMEOUT;
}
vstr = nv_get_string(nv, "exec");
if (strcmp(gres->hr_exec, vstr) != 0) {
strlcpy(gres->hr_exec, vstr, sizeof(gres->hr_exec));
modified |= MODIFIED_EXEC;
}
vint = nv_get_int32(nv, "metaflush");
if (gres->hr_metaflush != vint) {
gres->hr_metaflush = vint;
modified |= MODIFIED_METAFLUSH;
}
/*
* Change timeout for connected sockets.
* Don't bother if we need to reconnect.
*/
if ((modified & MODIFIED_TIMEOUT) != 0 &&
(modified & (MODIFIED_REMOTEADDR | MODIFIED_SOURCEADDR)) == 0) {
for (ii = 0; ii < ncomps; ii++) {
if (!ISREMOTE(ii))
continue;
rw_rlock(&hio_remote_lock[ii]);
if (!ISCONNECTED(gres, ii)) {
rw_unlock(&hio_remote_lock[ii]);
continue;
}
rw_unlock(&hio_remote_lock[ii]);
if (proto_timeout(gres->hr_remotein,
gres->hr_timeout) == -1) {
pjdlog_errno(LOG_WARNING,
"Unable to set connection timeout");
}
if (proto_timeout(gres->hr_remoteout,
gres->hr_timeout) == -1) {
pjdlog_errno(LOG_WARNING,
"Unable to set connection timeout");
}
}
}
if ((modified & (MODIFIED_REMOTEADDR | MODIFIED_SOURCEADDR)) != 0) {
for (ii = 0; ii < ncomps; ii++) {
if (!ISREMOTE(ii))
continue;
remote_close(gres, ii);
}
if (modified & MODIFIED_REMOTEADDR) {
vstr = nv_get_string(nv, "remoteaddr");
strlcpy(gres->hr_remoteaddr, vstr,
sizeof(gres->hr_remoteaddr));
}
}
#undef MODIFIED_REMOTEADDR
#undef MODIFIED_SOURCEADDR
#undef MODIFIED_REPLICATION
#undef MODIFIED_CHECKSUM
#undef MODIFIED_COMPRESSION
#undef MODIFIED_TIMEOUT
#undef MODIFIED_EXEC
#undef MODIFIED_METAFLUSH
pjdlog_info("Configuration reloaded successfully.");
}
static void
guard_one(struct hast_resource *res, unsigned int ncomp)
{
struct proto_conn *in, *out;
if (!ISREMOTE(ncomp))
return;
rw_rlock(&hio_remote_lock[ncomp]);
if (!real_remote(res)) {
rw_unlock(&hio_remote_lock[ncomp]);
return;
}
if (ISCONNECTED(res, ncomp)) {
PJDLOG_ASSERT(res->hr_remotein != NULL);
PJDLOG_ASSERT(res->hr_remoteout != NULL);
rw_unlock(&hio_remote_lock[ncomp]);
pjdlog_debug(2, "remote_guard: Connection to %s is ok.",
res->hr_remoteaddr);
return;
}
PJDLOG_ASSERT(res->hr_remotein == NULL);
PJDLOG_ASSERT(res->hr_remoteout == NULL);
/*
* Upgrade the lock. It doesn't have to be atomic as no other thread
* can change connection status from disconnected to connected.
*/
rw_unlock(&hio_remote_lock[ncomp]);
pjdlog_debug(2, "remote_guard: Reconnecting to %s.",
res->hr_remoteaddr);
in = out = NULL;
if (init_remote(res, &in, &out) == 0) {
rw_wlock(&hio_remote_lock[ncomp]);
PJDLOG_ASSERT(res->hr_remotein == NULL);
PJDLOG_ASSERT(res->hr_remoteout == NULL);
PJDLOG_ASSERT(in != NULL && out != NULL);
res->hr_remotein = in;
res->hr_remoteout = out;
rw_unlock(&hio_remote_lock[ncomp]);
pjdlog_info("Successfully reconnected to %s.",
res->hr_remoteaddr);
sync_start();
} else {
/* Both connections should be NULL. */
PJDLOG_ASSERT(res->hr_remotein == NULL);
PJDLOG_ASSERT(res->hr_remoteout == NULL);
PJDLOG_ASSERT(in == NULL && out == NULL);
pjdlog_debug(2, "remote_guard: Reconnect to %s failed.",
res->hr_remoteaddr);
}
}
/*
* Thread guards remote connections and reconnects when needed, handles
* signals, etc.
*/
static void *
guard_thread(void *arg)
{
struct hast_resource *res = arg;
unsigned int ii, ncomps;
struct timespec timeout;
time_t lastcheck, now;
sigset_t mask;
int signo;
ncomps = HAST_NCOMPONENTS;
lastcheck = time(NULL);
PJDLOG_VERIFY(sigemptyset(&mask) == 0);
PJDLOG_VERIFY(sigaddset(&mask, SIGINT) == 0);
PJDLOG_VERIFY(sigaddset(&mask, SIGTERM) == 0);
timeout.tv_sec = HAST_KEEPALIVE;
timeout.tv_nsec = 0;
signo = -1;
for (;;) {
switch (signo) {
case SIGINT:
case SIGTERM:
sigexit_received = true;
primary_exitx(EX_OK,
"Termination signal received, exiting.");
break;
default:
break;
}
/*
* Don't check connections until we fully started,
* as we may still be looping, waiting for remote node
* to switch from primary to secondary.
*/
if (fullystarted) {
pjdlog_debug(2, "remote_guard: Checking connections.");
now = time(NULL);
if (lastcheck + HAST_KEEPALIVE <= now) {
for (ii = 0; ii < ncomps; ii++)
guard_one(res, ii);
lastcheck = now;
}
}
signo = sigtimedwait(&mask, NULL, &timeout);
}
/* NOTREACHED */
return (NULL);
}