freebsd-dev/sys/crypto/ccp/ccp_hardware.c
Conrad Meyer 844d9543dc Add ccp(4): experimental driver for AMD Crypto Co-Processor
* Registers TRNG source for random(4)
* Finds available queues, LSBs; allocates static objects
* Allocates a shared MSI-X for all queues.  The hardware does not have
  separate interrupts per queue.  Working interrupt mode driver.
* Computes SHA hashes, HMAC.  Passes cryptotest.py, cryptocheck tests.
* Does AES-CBC, CTR mode, and XTS.  cryptotest.py and cryptocheck pass.
* Support for "authenc" (AES + HMAC).  (SHA1 seems to result in
  "unaligned" cleartext inputs from cryptocheck -- which the engine
  cannot handle.  SHA2 seems to work fine.)
* GCM passes for block-multiple AAD, input lengths

Largely based on ccr(4), part of cxgbe(4).

Rough performance averages on AMD Ryzen 1950X (4kB buffer):
aesni:      SHA1: ~8300 Mb/s    SHA256: ~8000 Mb/s
ccp:               ~630 Mb/s    SHA256:  ~660 Mb/s  SHA512:  ~700 Mb/s
cryptosoft:       ~1800 Mb/s    SHA256: ~1800 Mb/s  SHA512: ~2700 Mb/s

As you can see, performance is poor in comparison to aesni(4) and even
cryptosoft (due to high setup cost).  At a larger buffer size (128kB),
throughput is a little better (but still worse than aesni(4)):

aesni:      SHA1:~10400 Mb/s    SHA256: ~9950 Mb/s
ccp:              ~2200 Mb/s    SHA256: ~2600 Mb/s  SHA512: ~3800 Mb/s
cryptosoft:       ~1750 Mb/s    SHA256: ~1800 Mb/s  SHA512: ~2700 Mb/s

AES performance has a similar story:

aesni:      4kB: ~11250 Mb/s    128kB: ~11250 Mb/s
ccp:               ~350 Mb/s    128kB:  ~4600 Mb/s
cryptosoft:       ~1750 Mb/s    128kB:  ~1700 Mb/s

This driver is EXPERIMENTAL.  You should verify cryptographic results on
typical and corner case inputs from your application against a known- good
implementation.

Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D12723
2018-01-18 22:01:30 +00:00

2143 lines
58 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2017 Chelsio Communications, Inc.
* Copyright (c) 2017 Conrad Meyer <cem@FreeBSD.org>
* All rights reserved.
* Largely borrowed from ccr(4), Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/types.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/sglist.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/vmparam.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include "cryptodev_if.h"
#include "ccp.h"
#include "ccp_hardware.h"
#include "ccp_lsb.h"
CTASSERT(sizeof(struct ccp_desc) == 32);
static struct ccp_xts_unitsize_map_entry {
enum ccp_xts_unitsize cxu_id;
unsigned cxu_size;
} ccp_xts_unitsize_map[] = {
{ CCP_XTS_AES_UNIT_SIZE_16, 16 },
{ CCP_XTS_AES_UNIT_SIZE_512, 512 },
{ CCP_XTS_AES_UNIT_SIZE_1024, 1024 },
{ CCP_XTS_AES_UNIT_SIZE_2048, 2048 },
{ CCP_XTS_AES_UNIT_SIZE_4096, 4096 },
};
SYSCTL_NODE(_hw, OID_AUTO, ccp, CTLFLAG_RD, 0, "ccp node");
unsigned g_ccp_ring_order = 11;
SYSCTL_UINT(_hw_ccp, OID_AUTO, ring_order, CTLFLAG_RDTUN, &g_ccp_ring_order,
0, "Set CCP ring order. (1 << this) == ring size. Min: 6, Max: 16");
/*
* Zero buffer, sufficient for padding LSB entries, that does not span a page
* boundary
*/
static const char g_zeroes[32] __aligned(32);
static inline uint32_t
ccp_read_4(struct ccp_softc *sc, uint32_t offset)
{
return (bus_space_read_4(sc->pci_bus_tag, sc->pci_bus_handle, offset));
}
static inline void
ccp_write_4(struct ccp_softc *sc, uint32_t offset, uint32_t value)
{
bus_space_write_4(sc->pci_bus_tag, sc->pci_bus_handle, offset, value);
}
static inline uint32_t
ccp_read_queue_4(struct ccp_softc *sc, unsigned queue, uint32_t offset)
{
/*
* Each queue gets its own 4kB register space. Queue 0 is at 0x1000.
*/
return (ccp_read_4(sc, (CMD_Q_STATUS_INCR * (1 + queue)) + offset));
}
static inline void
ccp_write_queue_4(struct ccp_softc *sc, unsigned queue, uint32_t offset,
uint32_t value)
{
ccp_write_4(sc, (CMD_Q_STATUS_INCR * (1 + queue)) + offset, value);
}
void
ccp_queue_write_tail(struct ccp_queue *qp)
{
ccp_write_queue_4(qp->cq_softc, qp->cq_qindex, CMD_Q_TAIL_LO_BASE,
((uint32_t)qp->desc_ring_bus_addr) + (Q_DESC_SIZE * qp->cq_tail));
}
/*
* Given a queue and a reserved LSB entry index, compute the LSB *entry id* of
* that entry for the queue's private LSB region.
*/
static inline uint8_t
ccp_queue_lsb_entry(struct ccp_queue *qp, unsigned lsb_entry)
{
return ((qp->private_lsb * LSB_REGION_LENGTH + lsb_entry));
}
/*
* Given a queue and a reserved LSB entry index, compute the LSB *address* of
* that entry for the queue's private LSB region.
*/
static inline uint32_t
ccp_queue_lsb_address(struct ccp_queue *qp, unsigned lsb_entry)
{
return (ccp_queue_lsb_entry(qp, lsb_entry) * LSB_ENTRY_SIZE);
}
/*
* Some terminology:
*
* LSB - Local Storage Block
* =========================
*
* 8 segments/regions, each containing 16 entries.
*
* Each entry contains 256 bits (32 bytes).
*
* Segments are virtually addressed in commands, but accesses cannot cross
* segment boundaries. Virtual map uses an identity mapping by default
* (virtual segment N corresponds to physical segment N).
*
* Access to a physical region can be restricted to any subset of all five
* queues.
*
* "Pass-through" mode
* ===================
*
* Pass-through is a generic DMA engine, much like ioat(4). Some nice
* features:
*
* - Supports byte-swapping for endian conversion (32- or 256-bit words)
* - AND, OR, XOR with fixed 256-bit mask
* - CRC32 of data (may be used in tandem with bswap, but not bit operations)
* - Read/write of LSB
* - Memset
*
* If bit manipulation mode is enabled, input must be a multiple of 256 bits
* (32 bytes).
*
* If byte-swapping is enabled, input must be a multiple of the word size.
*
* Zlib mode -- only usable from one queue at a time, single job at a time.
* ========================================================================
*
* Only usable from private host, aka PSP? Not host processor?
*
* RNG.
* ====
*
* Raw bits are conditioned with AES and fed through CTR_DRBG. Output goes in
* a ring buffer readable by software.
*
* NIST SP 800-90B Repetition Count and Adaptive Proportion health checks are
* implemented on the raw input stream and may be enabled to verify min-entropy
* of 0.5 bits per bit.
*/
static void
ccp_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr;
KASSERT(error == 0, ("%s: error:%d", __func__, error));
baddr = arg;
*baddr = segs->ds_addr;
}
static int
ccp_hw_attach_queue(device_t dev, uint64_t lsbmask, unsigned queue)
{
struct ccp_softc *sc;
struct ccp_queue *qp;
void *desc;
size_t ringsz, num_descriptors;
int error;
desc = NULL;
sc = device_get_softc(dev);
qp = &sc->queues[queue];
/*
* Don't bother allocating a ring for queues the host isn't allowed to
* drive.
*/
if ((sc->valid_queues & (1 << queue)) == 0)
return (0);
ccp_queue_decode_lsb_regions(sc, lsbmask, queue);
/* Ignore queues that do not have any LSB access. */
if (qp->lsb_mask == 0) {
device_printf(dev, "Ignoring queue %u with no LSB access\n",
queue);
sc->valid_queues &= ~(1 << queue);
return (0);
}
num_descriptors = 1 << sc->ring_size_order;
ringsz = sizeof(struct ccp_desc) * num_descriptors;
/*
* "Queue_Size" is order - 1.
*
* Queue must be aligned to 5+Queue_Size+1 == 5 + order bits.
*/
error = bus_dma_tag_create(bus_get_dma_tag(dev),
1 << (5 + sc->ring_size_order),
#if defined(__i386__) && !defined(PAE)
0, BUS_SPACE_MAXADDR,
#else
(bus_addr_t)1 << 32, BUS_SPACE_MAXADDR_48BIT,
#endif
BUS_SPACE_MAXADDR, NULL, NULL, ringsz, 1,
ringsz, 0, NULL, NULL, &qp->ring_desc_tag);
if (error != 0)
goto out;
error = bus_dmamem_alloc(qp->ring_desc_tag, &desc,
BUS_DMA_ZERO | BUS_DMA_WAITOK, &qp->ring_desc_map);
if (error != 0)
goto out;
error = bus_dmamap_load(qp->ring_desc_tag, qp->ring_desc_map, desc,
ringsz, ccp_dmamap_cb, &qp->desc_ring_bus_addr, BUS_DMA_WAITOK);
if (error != 0)
goto out;
qp->desc_ring = desc;
qp->completions_ring = malloc(num_descriptors *
sizeof(*qp->completions_ring), M_CCP, M_ZERO | M_WAITOK);
/* Zero control register; among other things, clears the RUN flag. */
qp->qcontrol = 0;
ccp_write_queue_4(sc, queue, CMD_Q_CONTROL_BASE, qp->qcontrol);
ccp_write_queue_4(sc, queue, CMD_Q_INT_ENABLE_BASE, 0);
/* Clear any leftover interrupt status flags */
ccp_write_queue_4(sc, queue, CMD_Q_INTERRUPT_STATUS_BASE,
ALL_INTERRUPTS);
qp->qcontrol |= (sc->ring_size_order - 1) << CMD_Q_SIZE_SHIFT;
ccp_write_queue_4(sc, queue, CMD_Q_TAIL_LO_BASE,
(uint32_t)qp->desc_ring_bus_addr);
ccp_write_queue_4(sc, queue, CMD_Q_HEAD_LO_BASE,
(uint32_t)qp->desc_ring_bus_addr);
/*
* Enable completion interrupts, as well as error or administrative
* halt interrupts. We don't use administrative halts, but they
* shouldn't trip unless we do, so it ought to be harmless.
*/
ccp_write_queue_4(sc, queue, CMD_Q_INT_ENABLE_BASE,
INT_COMPLETION | INT_ERROR | INT_QUEUE_STOPPED);
qp->qcontrol |= (qp->desc_ring_bus_addr >> 32) << CMD_Q_PTR_HI_SHIFT;
qp->qcontrol |= CMD_Q_RUN;
ccp_write_queue_4(sc, queue, CMD_Q_CONTROL_BASE, qp->qcontrol);
out:
if (error != 0) {
if (qp->desc_ring != NULL)
bus_dmamap_unload(qp->ring_desc_tag,
qp->ring_desc_map);
if (desc != NULL)
bus_dmamem_free(qp->ring_desc_tag, desc,
qp->ring_desc_map);
if (qp->ring_desc_tag != NULL)
bus_dma_tag_destroy(qp->ring_desc_tag);
}
return (error);
}
static void
ccp_hw_detach_queue(device_t dev, unsigned queue)
{
struct ccp_softc *sc;
struct ccp_queue *qp;
sc = device_get_softc(dev);
qp = &sc->queues[queue];
/*
* Don't bother allocating a ring for queues the host isn't allowed to
* drive.
*/
if ((sc->valid_queues & (1 << queue)) == 0)
return;
free(qp->completions_ring, M_CCP);
bus_dmamap_unload(qp->ring_desc_tag, qp->ring_desc_map);
bus_dmamem_free(qp->ring_desc_tag, qp->desc_ring, qp->ring_desc_map);
bus_dma_tag_destroy(qp->ring_desc_tag);
}
static int
ccp_map_pci_bar(device_t dev)
{
struct ccp_softc *sc;
sc = device_get_softc(dev);
sc->pci_resource_id = PCIR_BAR(2);
sc->pci_resource = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->pci_resource_id, RF_ACTIVE);
if (sc->pci_resource == NULL) {
device_printf(dev, "unable to allocate pci resource\n");
return (ENODEV);
}
sc->pci_resource_id_msix = PCIR_BAR(5);
sc->pci_resource_msix = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->pci_resource_id_msix, RF_ACTIVE);
if (sc->pci_resource_msix == NULL) {
device_printf(dev, "unable to allocate pci resource msix\n");
bus_release_resource(dev, SYS_RES_MEMORY, sc->pci_resource_id,
sc->pci_resource);
return (ENODEV);
}
sc->pci_bus_tag = rman_get_bustag(sc->pci_resource);
sc->pci_bus_handle = rman_get_bushandle(sc->pci_resource);
return (0);
}
static void
ccp_unmap_pci_bar(device_t dev)
{
struct ccp_softc *sc;
sc = device_get_softc(dev);
bus_release_resource(dev, SYS_RES_MEMORY, sc->pci_resource_id_msix,
sc->pci_resource_msix);
bus_release_resource(dev, SYS_RES_MEMORY, sc->pci_resource_id,
sc->pci_resource);
}
const static struct ccp_error_code {
uint8_t ce_code;
const char *ce_name;
int ce_errno;
const char *ce_desc;
} ccp_error_codes[] = {
{ 0x01, "ILLEGAL_ENGINE", EIO, "Requested engine was invalid" },
{ 0x03, "ILLEGAL_FUNCTION_TYPE", EIO,
"A non-supported function type was specified" },
{ 0x04, "ILLEGAL_FUNCTION_MODE", EIO,
"A non-supported function mode was specified" },
{ 0x05, "ILLEGAL_FUNCTION_ENCRYPT", EIO,
"A CMAC type was specified when ENCRYPT was not specified" },
{ 0x06, "ILLEGAL_FUNCTION_SIZE", EIO,
"A non-supported function size was specified.\n"
"AES-CFB: Size was not 127 or 7;\n"
"3DES-CFB: Size was not 7;\n"
"RSA: See supported size table (7.4.2);\n"
"ECC: Size was greater than 576 bits." },
{ 0x07, "Zlib_MISSING_INIT_EOM", EIO,
"Zlib command does not have INIT and EOM set" },
{ 0x08, "ILLEGAL_FUNCTION_RSVD", EIO,
"Reserved bits in a function specification were not 0" },
{ 0x09, "ILLEGAL_BUFFER_LENGTH", EIO,
"The buffer length specified was not correct for the selected engine"
},
{ 0x0A, "VLSB_FAULT", EIO, "Illegal VLSB segment mapping:\n"
"Undefined VLSB segment mapping or\n"
"mapping to unsupported LSB segment id" },
{ 0x0B, "ILLEGAL_MEM_ADDR", EFAULT,
"The specified source/destination buffer access was illegal:\n"
"Data buffer located in a LSB location disallowed by the LSB protection masks; or\n"
"Data buffer not completely contained within a single segment; or\n"
"Pointer with Fixed=1 is not 32-bit aligned; or\n"
"Pointer with Fixed=1 attempted to reference non-AXI1 (local) memory."
},
{ 0x0C, "ILLEGAL_MEM_SEL", EIO,
"A src_mem, dst_mem, or key_mem field was illegal:\n"
"A field was set to a reserved value; or\n"
"A public command attempted to reference AXI1 (local) or GART memory; or\n"
"A Zlib command attmpted to use the LSB." },
{ 0x0D, "ILLEGAL_CONTEXT_ADDR", EIO,
"The specified context location was illegal:\n"
"Context located in a LSB location disallowed by the LSB protection masks; or\n"
"Context not completely contained within a single segment." },
{ 0x0E, "ILLEGAL_KEY_ADDR", EIO,
"The specified key location was illegal:\n"
"Key located in a LSB location disallowed by the LSB protection masks; or\n"
"Key not completely contained within a single segment." },
{ 0x12, "CMD_TIMEOUT", EIO, "A command timeout violation occurred" },
/* XXX Could fill out these descriptions too */
{ 0x13, "IDMA0_AXI_SLVERR", EIO, "" },
{ 0x14, "IDMA0_AXI_DECERR", EIO, "" },
{ 0x16, "IDMA1_AXI_SLVERR", EIO, "" },
{ 0x17, "IDMA1_AXI_DECERR", EIO, "" },
{ 0x19, "ZLIBVHB_AXI_SLVERR", EIO, "" },
{ 0x1A, "ZLIBVHB_AXI_DECERR", EIO, "" },
{ 0x1C, "ZLIB_UNEXPECTED_EOM", EIO, "" },
{ 0x1D, "ZLIB_EXTRA_DATA", EIO, "" },
{ 0x1E, "ZLIB_BTYPE", EIO, "" },
{ 0x20, "ZLIB_UNDEFINED_DISTANCE_SYMBOL", EIO, "" },
{ 0x21, "ZLIB_CODE_LENGTH_SYMBOL", EIO, "" },
{ 0x22, "ZLIB_VHB_ILLEGAL_FETCH", EIO, "" },
{ 0x23, "ZLIB_UNCOMPRESSED_LEN", EIO, "" },
{ 0x24, "ZLIB_LIMIT_REACHED", EIO, "" },
{ 0x25, "ZLIB_CHECKSUM_MISMATCH", EIO, "" },
{ 0x26, "ODMA0_AXI_SLVERR", EIO, "" },
{ 0x27, "ODMA0_AXI_DECERR", EIO, "" },
{ 0x29, "ODMA1_AXI_SLVERR", EIO, "" },
{ 0x2A, "ODMA1_AXI_DECERR", EIO, "" },
{ 0x2B, "LSB_PARITY_ERR", EIO,
"A read from the LSB encountered a parity error" },
};
static void
ccp_intr_handle_error(struct ccp_queue *qp, const struct ccp_desc *desc)
{
struct ccp_completion_ctx *cctx;
const struct ccp_error_code *ec;
struct ccp_softc *sc;
uint32_t status, error, esource, faultblock;
unsigned q, idx;
int errno;
sc = qp->cq_softc;
q = qp->cq_qindex;
status = ccp_read_queue_4(sc, q, CMD_Q_STATUS_BASE);
error = status & STATUS_ERROR_MASK;
/* Decode error status */
ec = NULL;
for (idx = 0; idx < nitems(ccp_error_codes); idx++)
if (ccp_error_codes[idx].ce_code == error) {
ec = &ccp_error_codes[idx];
break;
}
esource = (status >> STATUS_ERRORSOURCE_SHIFT) &
STATUS_ERRORSOURCE_MASK;
faultblock = (status >> STATUS_VLSB_FAULTBLOCK_SHIFT) &
STATUS_VLSB_FAULTBLOCK_MASK;
device_printf(sc->dev, "Error: %s (%u) Source: %u Faulting LSB block: %u\n",
(ec != NULL) ? ec->ce_name : "(reserved)", error, esource,
faultblock);
if (ec != NULL)
device_printf(sc->dev, "Error description: %s\n", ec->ce_desc);
/* TODO Could format the desc nicely here */
idx = desc - qp->desc_ring;
DPRINTF(sc->dev, "Bad descriptor index: %u contents: %32D\n", idx,
(const void *)desc, " ");
/*
* TODO Per § 14.4 "Error Handling," DMA_Status, DMA_Read/Write_Status,
* Zlib Decompress status may be interesting.
*/
while (true) {
/* Keep unused descriptors zero for next use. */
memset(&qp->desc_ring[idx], 0, sizeof(qp->desc_ring[idx]));
cctx = &qp->completions_ring[idx];
/*
* Restart procedure described in § 14.2.5. Could be used by HoC if we
* used that.
*
* Advance HEAD_LO past bad descriptor + any remaining in
* transaction manually, then restart queue.
*/
idx = (idx + 1) % (1 << sc->ring_size_order);
/* Callback function signals end of transaction */
if (cctx->callback_fn != NULL) {
if (ec == NULL)
errno = EIO;
else
errno = ec->ce_errno;
/* TODO More specific error code */
cctx->callback_fn(qp, cctx->session, cctx->callback_arg, errno);
cctx->callback_fn = NULL;
break;
}
}
qp->cq_head = idx;
qp->cq_waiting = false;
wakeup(&qp->cq_tail);
DPRINTF(sc->dev, "%s: wrote sw head:%u\n", __func__, qp->cq_head);
ccp_write_queue_4(sc, q, CMD_Q_HEAD_LO_BASE,
(uint32_t)qp->desc_ring_bus_addr + (idx * Q_DESC_SIZE));
ccp_write_queue_4(sc, q, CMD_Q_CONTROL_BASE, qp->qcontrol);
DPRINTF(sc->dev, "%s: Restarted queue\n", __func__);
}
static void
ccp_intr_run_completions(struct ccp_queue *qp, uint32_t ints)
{
struct ccp_completion_ctx *cctx;
struct ccp_softc *sc;
const struct ccp_desc *desc;
uint32_t headlo, idx;
unsigned q, completed;
sc = qp->cq_softc;
q = qp->cq_qindex;
mtx_lock(&qp->cq_lock);
/*
* Hardware HEAD_LO points to the first incomplete descriptor. Process
* any submitted and completed descriptors, up to but not including
* HEAD_LO.
*/
headlo = ccp_read_queue_4(sc, q, CMD_Q_HEAD_LO_BASE);
idx = (headlo - (uint32_t)qp->desc_ring_bus_addr) / Q_DESC_SIZE;
DPRINTF(sc->dev, "%s: hw head:%u sw head:%u\n", __func__, idx,
qp->cq_head);
completed = 0;
while (qp->cq_head != idx) {
DPRINTF(sc->dev, "%s: completing:%u\n", __func__, qp->cq_head);
cctx = &qp->completions_ring[qp->cq_head];
if (cctx->callback_fn != NULL) {
cctx->callback_fn(qp, cctx->session,
cctx->callback_arg, 0);
cctx->callback_fn = NULL;
}
/* Keep unused descriptors zero for next use. */
memset(&qp->desc_ring[qp->cq_head], 0,
sizeof(qp->desc_ring[qp->cq_head]));
qp->cq_head = (qp->cq_head + 1) % (1 << sc->ring_size_order);
completed++;
}
if (completed > 0) {
qp->cq_waiting = false;
wakeup(&qp->cq_tail);
}
DPRINTF(sc->dev, "%s: wrote sw head:%u\n", __func__, qp->cq_head);
/*
* Desc points to the first incomplete descriptor, at the time we read
* HEAD_LO. If there was an error flagged in interrupt status, the HW
* will not proceed past the erroneous descriptor by itself.
*/
desc = &qp->desc_ring[idx];
if ((ints & INT_ERROR) != 0)
ccp_intr_handle_error(qp, desc);
mtx_unlock(&qp->cq_lock);
}
static void
ccp_intr_handler(void *arg)
{
struct ccp_softc *sc = arg;
size_t i;
uint32_t ints;
DPRINTF(sc->dev, "%s: interrupt\n", __func__);
/*
* We get one global interrupt per PCI device, shared over all of
* its queues. Scan each valid queue on interrupt for flags indicating
* activity.
*/
for (i = 0; i < nitems(sc->queues); i++) {
if ((sc->valid_queues & (1 << i)) == 0)
continue;
ints = ccp_read_queue_4(sc, i, CMD_Q_INTERRUPT_STATUS_BASE);
if (ints == 0)
continue;
#if 0
DPRINTF(sc->dev, "%s: %x interrupts on queue %zu\n", __func__,
(unsigned)ints, i);
#endif
/* Write back 1s to clear interrupt status bits. */
ccp_write_queue_4(sc, i, CMD_Q_INTERRUPT_STATUS_BASE, ints);
/*
* If there was an error, we still need to run completions on
* any descriptors prior to the error. The completions handler
* invoked below will also handle the error descriptor.
*/
if ((ints & (INT_COMPLETION | INT_ERROR)) != 0)
ccp_intr_run_completions(&sc->queues[i], ints);
if ((ints & INT_QUEUE_STOPPED) != 0)
device_printf(sc->dev, "%s: queue %zu stopped\n",
__func__, i);
}
/* Re-enable interrupts after processing */
for (i = 0; i < nitems(sc->queues); i++) {
if ((sc->valid_queues & (1 << i)) == 0)
continue;
ccp_write_queue_4(sc, i, CMD_Q_INT_ENABLE_BASE,
INT_COMPLETION | INT_ERROR | INT_QUEUE_STOPPED);
}
}
static int
ccp_intr_filter(void *arg)
{
struct ccp_softc *sc = arg;
size_t i;
/* TODO: Split individual queues into separate taskqueues? */
for (i = 0; i < nitems(sc->queues); i++) {
if ((sc->valid_queues & (1 << i)) == 0)
continue;
/* Mask interrupt until task completes */
ccp_write_queue_4(sc, i, CMD_Q_INT_ENABLE_BASE, 0);
}
return (FILTER_SCHEDULE_THREAD);
}
static int
ccp_setup_interrupts(struct ccp_softc *sc)
{
uint32_t nvec;
int rid, error, n, ridcopy;
n = pci_msix_count(sc->dev);
if (n < 1) {
device_printf(sc->dev, "%s: msix_count: %d\n", __func__, n);
return (ENXIO);
}
nvec = n;
error = pci_alloc_msix(sc->dev, &nvec);
if (error != 0) {
device_printf(sc->dev, "%s: alloc_msix error: %d\n", __func__,
error);
return (error);
}
if (nvec < 1) {
device_printf(sc->dev, "%s: alloc_msix: 0 vectors\n",
__func__);
return (ENXIO);
}
if (nvec > nitems(sc->intr_res)) {
device_printf(sc->dev, "%s: too many vectors: %u\n", __func__,
nvec);
nvec = nitems(sc->intr_res);
}
for (rid = 1; rid < 1 + nvec; rid++) {
ridcopy = rid;
sc->intr_res[rid - 1] = bus_alloc_resource_any(sc->dev,
SYS_RES_IRQ, &ridcopy, RF_ACTIVE);
if (sc->intr_res[rid - 1] == NULL) {
device_printf(sc->dev, "%s: Failed to alloc IRQ resource\n",
__func__);
return (ENXIO);
}
sc->intr_tag[rid - 1] = NULL;
error = bus_setup_intr(sc->dev, sc->intr_res[rid - 1],
INTR_MPSAFE | INTR_TYPE_MISC, ccp_intr_filter,
ccp_intr_handler, sc, &sc->intr_tag[rid - 1]);
if (error != 0)
device_printf(sc->dev, "%s: setup_intr: %d\n",
__func__, error);
}
sc->intr_count = nvec;
return (error);
}
static void
ccp_release_interrupts(struct ccp_softc *sc)
{
unsigned i;
for (i = 0; i < sc->intr_count; i++) {
if (sc->intr_tag[i] != NULL)
bus_teardown_intr(sc->dev, sc->intr_res[i],
sc->intr_tag[i]);
if (sc->intr_res[i] != NULL)
bus_release_resource(sc->dev, SYS_RES_IRQ,
rman_get_rid(sc->intr_res[i]), sc->intr_res[i]);
}
pci_release_msi(sc->dev);
}
int
ccp_hw_attach(device_t dev)
{
struct ccp_softc *sc;
uint64_t lsbmask;
uint32_t version, lsbmasklo, lsbmaskhi;
unsigned queue_idx, j;
int error;
bool bars_mapped, interrupts_setup;
queue_idx = 0;
bars_mapped = interrupts_setup = false;
sc = device_get_softc(dev);
error = ccp_map_pci_bar(dev);
if (error != 0) {
device_printf(dev, "%s: couldn't map BAR(s)\n", __func__);
goto out;
}
bars_mapped = true;
error = pci_enable_busmaster(dev);
if (error != 0) {
device_printf(dev, "%s: couldn't enable busmaster\n",
__func__);
goto out;
}
sc->ring_size_order = g_ccp_ring_order;
if (sc->ring_size_order < 6 || sc->ring_size_order > 16) {
device_printf(dev, "bogus hw.ccp.ring_order\n");
error = EINVAL;
goto out;
}
sc->valid_queues = ccp_read_4(sc, CMD_QUEUE_MASK_OFFSET);
version = ccp_read_4(sc, VERSION_REG);
if ((version & VERSION_NUM_MASK) < 5) {
device_printf(dev,
"driver supports version 5 and later hardware\n");
error = ENXIO;
goto out;
}
error = ccp_setup_interrupts(sc);
if (error != 0)
goto out;
interrupts_setup = true;
sc->hw_version = version & VERSION_NUM_MASK;
sc->num_queues = (version >> VERSION_NUMVQM_SHIFT) &
VERSION_NUMVQM_MASK;
sc->num_lsb_entries = (version >> VERSION_LSBSIZE_SHIFT) &
VERSION_LSBSIZE_MASK;
sc->hw_features = version & VERSION_CAP_MASK;
/*
* Copy private LSB mask to public registers to enable access to LSB
* from all queues allowed by BIOS.
*/
lsbmasklo = ccp_read_4(sc, LSB_PRIVATE_MASK_LO_OFFSET);
lsbmaskhi = ccp_read_4(sc, LSB_PRIVATE_MASK_HI_OFFSET);
ccp_write_4(sc, LSB_PUBLIC_MASK_LO_OFFSET, lsbmasklo);
ccp_write_4(sc, LSB_PUBLIC_MASK_HI_OFFSET, lsbmaskhi);
lsbmask = ((uint64_t)lsbmaskhi << 30) | lsbmasklo;
for (; queue_idx < nitems(sc->queues); queue_idx++) {
error = ccp_hw_attach_queue(dev, lsbmask, queue_idx);
if (error != 0) {
device_printf(dev, "%s: couldn't attach queue %u\n",
__func__, queue_idx);
goto out;
}
}
ccp_assign_lsb_regions(sc, lsbmask);
out:
if (error != 0) {
if (interrupts_setup)
ccp_release_interrupts(sc);
for (j = 0; j < queue_idx; j++)
ccp_hw_detach_queue(dev, j);
if (sc->ring_size_order != 0)
pci_disable_busmaster(dev);
if (bars_mapped)
ccp_unmap_pci_bar(dev);
}
return (error);
}
void
ccp_hw_detach(device_t dev)
{
struct ccp_softc *sc;
unsigned i;
sc = device_get_softc(dev);
for (i = 0; i < nitems(sc->queues); i++)
ccp_hw_detach_queue(dev, i);
ccp_release_interrupts(sc);
pci_disable_busmaster(dev);
ccp_unmap_pci_bar(dev);
}
static int __must_check
ccp_passthrough(struct ccp_queue *qp, bus_addr_t dst,
enum ccp_memtype dst_type, bus_addr_t src, enum ccp_memtype src_type,
bus_size_t len, enum ccp_passthru_byteswap swapmode,
enum ccp_passthru_bitwise bitmode, bool interrupt,
const struct ccp_completion_ctx *cctx)
{
struct ccp_desc *desc;
if (ccp_queue_get_ring_space(qp) == 0)
return (EAGAIN);
desc = &qp->desc_ring[qp->cq_tail];
memset(desc, 0, sizeof(*desc));
desc->engine = CCP_ENGINE_PASSTHRU;
desc->pt.ioc = interrupt;
desc->pt.byteswap = swapmode;
desc->pt.bitwise = bitmode;
desc->length = len;
desc->src_lo = (uint32_t)src;
desc->src_hi = src >> 32;
desc->src_mem = src_type;
desc->dst_lo = (uint32_t)dst;
desc->dst_hi = dst >> 32;
desc->dst_mem = dst_type;
if (bitmode != CCP_PASSTHRU_BITWISE_NOOP)
desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_KEY);
if (cctx != NULL)
memcpy(&qp->completions_ring[qp->cq_tail], cctx, sizeof(*cctx));
qp->cq_tail = (qp->cq_tail + 1) % (1 << qp->cq_softc->ring_size_order);
return (0);
}
static int __must_check
ccp_passthrough_sgl(struct ccp_queue *qp, bus_addr_t lsb_addr, bool tolsb,
struct sglist *sgl, bus_size_t len, bool interrupt,
const struct ccp_completion_ctx *cctx)
{
struct sglist_seg *seg;
size_t i, remain, nb;
int error;
remain = len;
for (i = 0; i < sgl->sg_nseg && remain != 0; i++) {
seg = &sgl->sg_segs[i];
/* crd_len is int, so 32-bit min() is ok. */
nb = min(remain, seg->ss_len);
if (tolsb)
error = ccp_passthrough(qp, lsb_addr, CCP_MEMTYPE_SB,
seg->ss_paddr, CCP_MEMTYPE_SYSTEM, nb,
CCP_PASSTHRU_BYTESWAP_NOOP,
CCP_PASSTHRU_BITWISE_NOOP,
(nb == remain) && interrupt, cctx);
else
error = ccp_passthrough(qp, seg->ss_paddr,
CCP_MEMTYPE_SYSTEM, lsb_addr, CCP_MEMTYPE_SB, nb,
CCP_PASSTHRU_BYTESWAP_NOOP,
CCP_PASSTHRU_BITWISE_NOOP,
(nb == remain) && interrupt, cctx);
if (error != 0)
return (error);
remain -= nb;
}
return (0);
}
/*
* Note that these vectors are in reverse of the usual order.
*/
const struct SHA_vectors {
uint32_t SHA1[8];
uint32_t SHA224[8];
uint32_t SHA256[8];
uint64_t SHA384[8];
uint64_t SHA512[8];
} SHA_H __aligned(PAGE_SIZE) = {
.SHA1 = {
0xc3d2e1f0ul,
0x10325476ul,
0x98badcfeul,
0xefcdab89ul,
0x67452301ul,
0,
0,
0,
},
.SHA224 = {
0xbefa4fa4ul,
0x64f98fa7ul,
0x68581511ul,
0xffc00b31ul,
0xf70e5939ul,
0x3070dd17ul,
0x367cd507ul,
0xc1059ed8ul,
},
.SHA256 = {
0x5be0cd19ul,
0x1f83d9abul,
0x9b05688cul,
0x510e527ful,
0xa54ff53aul,
0x3c6ef372ul,
0xbb67ae85ul,
0x6a09e667ul,
},
.SHA384 = {
0x47b5481dbefa4fa4ull,
0xdb0c2e0d64f98fa7ull,
0x8eb44a8768581511ull,
0x67332667ffc00b31ull,
0x152fecd8f70e5939ull,
0x9159015a3070dd17ull,
0x629a292a367cd507ull,
0xcbbb9d5dc1059ed8ull,
},
.SHA512 = {
0x5be0cd19137e2179ull,
0x1f83d9abfb41bd6bull,
0x9b05688c2b3e6c1full,
0x510e527fade682d1ull,
0xa54ff53a5f1d36f1ull,
0x3c6ef372fe94f82bull,
0xbb67ae8584caa73bull,
0x6a09e667f3bcc908ull,
},
};
/*
* Ensure vectors do not cross a page boundary.
*
* Disabled due to a new Clang error: "expression is not an integral constant
* expression." GCC (cross toolchain) seems to handle this assertion with
* _Static_assert just fine.
*/
#if 0
CTASSERT(PAGE_SIZE - ((uintptr_t)&SHA_H % PAGE_SIZE) >= sizeof(SHA_H));
#endif
const struct SHA_Defn {
enum sha_version version;
const void *H_vectors;
size_t H_size;
struct auth_hash *axf;
enum ccp_sha_type engine_type;
} SHA_definitions[] = {
{
.version = SHA1,
.H_vectors = SHA_H.SHA1,
.H_size = sizeof(SHA_H.SHA1),
.axf = &auth_hash_hmac_sha1,
.engine_type = CCP_SHA_TYPE_1,
},
#if 0
{
.version = SHA2_224,
.H_vectors = SHA_H.SHA224,
.H_size = sizeof(SHA_H.SHA224),
.axf = &auth_hash_hmac_sha2_224,
.engine_type = CCP_SHA_TYPE_224,
},
#endif
{
.version = SHA2_256,
.H_vectors = SHA_H.SHA256,
.H_size = sizeof(SHA_H.SHA256),
.axf = &auth_hash_hmac_sha2_256,
.engine_type = CCP_SHA_TYPE_256,
},
{
.version = SHA2_384,
.H_vectors = SHA_H.SHA384,
.H_size = sizeof(SHA_H.SHA384),
.axf = &auth_hash_hmac_sha2_384,
.engine_type = CCP_SHA_TYPE_384,
},
{
.version = SHA2_512,
.H_vectors = SHA_H.SHA512,
.H_size = sizeof(SHA_H.SHA512),
.axf = &auth_hash_hmac_sha2_512,
.engine_type = CCP_SHA_TYPE_512,
},
};
static int __must_check
ccp_sha_single_desc(struct ccp_queue *qp, const struct SHA_Defn *defn,
vm_paddr_t addr, size_t len, bool start, bool end, uint64_t msgbits)
{
struct ccp_desc *desc;
if (ccp_queue_get_ring_space(qp) == 0)
return (EAGAIN);
desc = &qp->desc_ring[qp->cq_tail];
memset(desc, 0, sizeof(*desc));
desc->engine = CCP_ENGINE_SHA;
desc->som = start;
desc->eom = end;
desc->sha.type = defn->engine_type;
desc->length = len;
if (end) {
desc->sha_len_lo = (uint32_t)msgbits;
desc->sha_len_hi = msgbits >> 32;
}
desc->src_lo = (uint32_t)addr;
desc->src_hi = addr >> 32;
desc->src_mem = CCP_MEMTYPE_SYSTEM;
desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_SHA);
qp->cq_tail = (qp->cq_tail + 1) % (1 << qp->cq_softc->ring_size_order);
return (0);
}
static int __must_check
ccp_sha(struct ccp_queue *qp, enum sha_version version, struct sglist *sgl_src,
struct sglist *sgl_dst, const struct ccp_completion_ctx *cctx)
{
const struct SHA_Defn *defn;
struct sglist_seg *seg;
size_t i, msgsize, remaining, nb;
uint32_t lsbaddr;
int error;
for (i = 0; i < nitems(SHA_definitions); i++)
if (SHA_definitions[i].version == version)
break;
if (i == nitems(SHA_definitions))
return (EINVAL);
defn = &SHA_definitions[i];
/* XXX validate input ??? */
/* Load initial SHA state into LSB */
/* XXX ensure H_vectors don't span page boundaries */
error = ccp_passthrough(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_SHA),
CCP_MEMTYPE_SB, pmap_kextract((vm_offset_t)defn->H_vectors),
CCP_MEMTYPE_SYSTEM, roundup2(defn->H_size, LSB_ENTRY_SIZE),
CCP_PASSTHRU_BYTESWAP_NOOP, CCP_PASSTHRU_BITWISE_NOOP, false,
NULL);
if (error != 0)
return (error);
/* Execute series of SHA updates on correctly sized buffers */
msgsize = 0;
for (i = 0; i < sgl_src->sg_nseg; i++) {
seg = &sgl_src->sg_segs[i];
msgsize += seg->ss_len;
error = ccp_sha_single_desc(qp, defn, seg->ss_paddr,
seg->ss_len, i == 0, i == sgl_src->sg_nseg - 1,
msgsize << 3);
if (error != 0)
return (error);
}
/* Copy result out to sgl_dst */
remaining = roundup2(defn->H_size, LSB_ENTRY_SIZE);
lsbaddr = ccp_queue_lsb_address(qp, LSB_ENTRY_SHA);
for (i = 0; i < sgl_dst->sg_nseg; i++) {
seg = &sgl_dst->sg_segs[i];
/* crd_len is int, so 32-bit min() is ok. */
nb = min(remaining, seg->ss_len);
error = ccp_passthrough(qp, seg->ss_paddr, CCP_MEMTYPE_SYSTEM,
lsbaddr, CCP_MEMTYPE_SB, nb, CCP_PASSTHRU_BYTESWAP_NOOP,
CCP_PASSTHRU_BITWISE_NOOP,
(cctx != NULL) ? (nb == remaining) : false,
(nb == remaining) ? cctx : NULL);
if (error != 0)
return (error);
remaining -= nb;
lsbaddr += nb;
if (remaining == 0)
break;
}
return (0);
}
static void
byteswap256(uint64_t *buffer)
{
uint64_t t;
t = bswap64(buffer[3]);
buffer[3] = bswap64(buffer[0]);
buffer[0] = t;
t = bswap64(buffer[2]);
buffer[2] = bswap64(buffer[1]);
buffer[1] = t;
}
/*
* Translate CCP internal LSB hash format into a standard hash ouput.
*
* Manipulates input buffer with byteswap256 operation.
*/
static void
ccp_sha_copy_result(char *output, char *buffer, enum sha_version version)
{
const struct SHA_Defn *defn;
size_t i;
for (i = 0; i < nitems(SHA_definitions); i++)
if (SHA_definitions[i].version == version)
break;
if (i == nitems(SHA_definitions))
panic("bogus sha version auth_mode %u\n", (unsigned)version);
defn = &SHA_definitions[i];
/* Swap 256bit manually -- DMA engine can, but with limitations */
byteswap256((void *)buffer);
if (defn->axf->hashsize > LSB_ENTRY_SIZE)
byteswap256((void *)(buffer + LSB_ENTRY_SIZE));
switch (defn->version) {
case SHA1:
memcpy(output, buffer + 12, defn->axf->hashsize);
break;
#if 0
case SHA2_224:
memcpy(output, buffer + XXX, defn->axf->hashsize);
break;
#endif
case SHA2_256:
memcpy(output, buffer, defn->axf->hashsize);
break;
case SHA2_384:
memcpy(output,
buffer + LSB_ENTRY_SIZE * 3 - defn->axf->hashsize,
defn->axf->hashsize - LSB_ENTRY_SIZE);
memcpy(output + defn->axf->hashsize - LSB_ENTRY_SIZE, buffer,
LSB_ENTRY_SIZE);
break;
case SHA2_512:
memcpy(output, buffer + LSB_ENTRY_SIZE, LSB_ENTRY_SIZE);
memcpy(output + LSB_ENTRY_SIZE, buffer, LSB_ENTRY_SIZE);
break;
}
}
static void
ccp_do_hmac_done(struct ccp_queue *qp, struct ccp_session *s,
struct cryptop *crp, struct cryptodesc *crd, int error)
{
char ihash[SHA2_512_HASH_LEN /* max hash len */];
union authctx auth_ctx;
struct auth_hash *axf;
axf = s->hmac.auth_hash;
s->pending--;
if (error != 0) {
crp->crp_etype = error;
goto out;
}
/* Do remaining outer hash over small inner hash in software */
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize);
ccp_sha_copy_result(ihash, s->hmac.ipad, s->hmac.auth_mode);
#if 0
INSECURE_DEBUG(dev, "%s sha intermediate=%64D\n", __func__,
(u_char *)ihash, " ");
#endif
axf->Update(&auth_ctx, ihash, axf->hashsize);
axf->Final(s->hmac.ipad, &auth_ctx);
crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
s->hmac.hash_len, s->hmac.ipad);
/* Avoid leaking key material */
explicit_bzero(&auth_ctx, sizeof(auth_ctx));
explicit_bzero(s->hmac.ipad, sizeof(s->hmac.ipad));
explicit_bzero(s->hmac.opad, sizeof(s->hmac.opad));
out:
crypto_done(crp);
}
static void
ccp_hmac_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
int error)
{
struct cryptodesc *crd;
struct cryptop *crp;
crp = vcrp;
crd = crp->crp_desc;
ccp_do_hmac_done(qp, s, crp, crd, error);
}
static int __must_check
ccp_do_hmac(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp,
struct cryptodesc *crd, const struct ccp_completion_ctx *cctx)
{
device_t dev;
struct auth_hash *axf;
int error;
dev = qp->cq_softc->dev;
axf = s->hmac.auth_hash;
/*
* Populate the SGL describing inside hash contents. We want to hash
* the ipad (key XOR fixed bit pattern) concatenated with the user
* data.
*/
sglist_reset(qp->cq_sg_ulptx);
error = sglist_append(qp->cq_sg_ulptx, s->hmac.ipad, axf->blocksize);
if (error != 0)
return (error);
error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
crd->crd_skip, crd->crd_len);
if (error != 0) {
DPRINTF(dev, "%s: sglist too short\n", __func__);
return (error);
}
/* Populate SGL for output -- just reuse hmac.ipad buffer. */
sglist_reset(qp->cq_sg_dst);
error = sglist_append(qp->cq_sg_dst, s->hmac.ipad,
roundup2(axf->hashsize, LSB_ENTRY_SIZE));
if (error != 0)
return (error);
error = ccp_sha(qp, s->hmac.auth_mode, qp->cq_sg_ulptx, qp->cq_sg_dst,
cctx);
if (error != 0) {
DPRINTF(dev, "%s: ccp_sha error\n", __func__);
return (error);
}
return (0);
}
int __must_check
ccp_hmac(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp)
{
struct ccp_completion_ctx ctx;
struct cryptodesc *crd;
crd = crp->crp_desc;
ctx.callback_fn = ccp_hmac_done;
ctx.callback_arg = crp;
ctx.session = s;
return (ccp_do_hmac(qp, s, crp, crd, &ctx));
}
static void
ccp_byteswap(char *data, size_t len)
{
size_t i;
char t;
len--;
for (i = 0; i < len; i++, len--) {
t = data[i];
data[i] = data[len];
data[len] = t;
}
}
static void
ccp_blkcipher_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
int error)
{
struct cryptop *crp;
explicit_bzero(&s->blkcipher, sizeof(s->blkcipher));
crp = vcrp;
s->pending--;
if (error != 0)
crp->crp_etype = error;
DPRINTF(qp->cq_softc->dev, "%s: qp=%p crp=%p\n", __func__, qp, crp);
crypto_done(crp);
}
static void
ccp_collect_iv(struct ccp_session *s, struct cryptop *crp,
struct cryptodesc *crd)
{
if (crd->crd_flags & CRD_F_ENCRYPT) {
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(s->blkcipher.iv, crd->crd_iv,
s->blkcipher.iv_len);
else
arc4rand(s->blkcipher.iv, s->blkcipher.iv_len, 0);
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, s->blkcipher.iv_len,
s->blkcipher.iv);
} else {
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(s->blkcipher.iv, crd->crd_iv,
s->blkcipher.iv_len);
else
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_inject, s->blkcipher.iv_len,
s->blkcipher.iv);
}
/*
* If the input IV is 12 bytes, append an explicit counter of 1.
*/
if (crd->crd_alg == CRYPTO_AES_NIST_GCM_16 &&
s->blkcipher.iv_len == 12) {
*(uint32_t *)&s->blkcipher.iv[12] = htobe32(1);
s->blkcipher.iv_len = AES_BLOCK_LEN;
}
if (crd->crd_alg == CRYPTO_AES_XTS && s->blkcipher.iv_len != AES_BLOCK_LEN) {
DPRINTF(NULL, "got ivlen != 16: %u\n", s->blkcipher.iv_len);
if (s->blkcipher.iv_len < AES_BLOCK_LEN)
memset(&s->blkcipher.iv[s->blkcipher.iv_len], 0,
AES_BLOCK_LEN - s->blkcipher.iv_len);
s->blkcipher.iv_len = AES_BLOCK_LEN;
}
/* Reverse order of IV material for HW */
INSECURE_DEBUG(NULL, "%s: IV: %16D len: %u\n", __func__,
s->blkcipher.iv, " ", s->blkcipher.iv_len);
/*
* For unknown reasons, XTS mode expects the IV in the reverse byte
* order to every other AES mode.
*/
if (crd->crd_alg != CRYPTO_AES_XTS)
ccp_byteswap(s->blkcipher.iv, s->blkcipher.iv_len);
}
static int __must_check
ccp_do_pst_to_lsb(struct ccp_queue *qp, uint32_t lsbaddr, const void *src,
size_t len)
{
int error;
sglist_reset(qp->cq_sg_ulptx);
error = sglist_append(qp->cq_sg_ulptx, __DECONST(void *, src), len);
if (error != 0)
return (error);
error = ccp_passthrough_sgl(qp, lsbaddr, true, qp->cq_sg_ulptx, len,
false, NULL);
return (error);
}
static int __must_check
ccp_do_xts(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp,
struct cryptodesc *crd, enum ccp_cipher_dir dir,
const struct ccp_completion_ctx *cctx)
{
struct ccp_desc *desc;
device_t dev;
unsigned i;
enum ccp_xts_unitsize usize;
/* IV and Key data are already loaded */
dev = qp->cq_softc->dev;
for (i = 0; i < nitems(ccp_xts_unitsize_map); i++)
if (ccp_xts_unitsize_map[i].cxu_size == crd->crd_len) {
usize = ccp_xts_unitsize_map[i].cxu_id;
break;
}
if (i >= nitems(ccp_xts_unitsize_map))
return (EINVAL);
for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
struct sglist_seg *seg;
seg = &qp->cq_sg_ulptx->sg_segs[i];
desc = &qp->desc_ring[qp->cq_tail];
desc->engine = CCP_ENGINE_XTS_AES;
desc->som = (i == 0);
desc->eom = (i == qp->cq_sg_ulptx->sg_nseg - 1);
desc->ioc = (desc->eom && cctx != NULL);
DPRINTF(dev, "%s: XTS %u: som:%d eom:%d ioc:%d dir:%d\n",
__func__, qp->cq_tail, (int)desc->som, (int)desc->eom,
(int)desc->ioc, (int)dir);
if (desc->ioc)
memcpy(&qp->completions_ring[qp->cq_tail], cctx,
sizeof(*cctx));
desc->aes_xts.encrypt = dir;
desc->aes_xts.type = s->blkcipher.cipher_type;
desc->aes_xts.size = usize;
DPRINTF(dev, "XXX %s: XTS %u: type:%u size:%u\n", __func__,
qp->cq_tail, (unsigned)desc->aes_xts.type,
(unsigned)desc->aes_xts.size);
desc->length = seg->ss_len;
desc->src_lo = (uint32_t)seg->ss_paddr;
desc->src_hi = (seg->ss_paddr >> 32);
desc->src_mem = CCP_MEMTYPE_SYSTEM;
/* Crypt in-place */
desc->dst_lo = desc->src_lo;
desc->dst_hi = desc->src_hi;
desc->dst_mem = desc->src_mem;
desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
desc->key_hi = 0;
desc->key_mem = CCP_MEMTYPE_SB;
desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
qp->cq_tail = (qp->cq_tail + 1) %
(1 << qp->cq_softc->ring_size_order);
}
return (0);
}
static int __must_check
ccp_do_blkcipher(struct ccp_queue *qp, struct ccp_session *s,
struct cryptop *crp, struct cryptodesc *crd,
const struct ccp_completion_ctx *cctx)
{
struct ccp_desc *desc;
char *keydata;
device_t dev;
enum ccp_cipher_dir dir;
int error;
size_t keydata_len;
unsigned i, j;
dev = qp->cq_softc->dev;
if (s->blkcipher.key_len == 0 || crd->crd_len == 0) {
DPRINTF(dev, "%s: empty\n", __func__);
return (EINVAL);
}
if ((crd->crd_len % AES_BLOCK_LEN) != 0) {
DPRINTF(dev, "%s: len modulo: %d\n", __func__, crd->crd_len);
return (EINVAL);
}
/*
* Individual segments must be multiples of AES block size for the HW
* to process it. Non-compliant inputs aren't bogus, just not doable
* on this hardware.
*/
for (i = 0; i < qp->cq_sg_crp->sg_nseg; i++)
if ((qp->cq_sg_crp->sg_segs[i].ss_len % AES_BLOCK_LEN) != 0) {
DPRINTF(dev, "%s: seg modulo: %zu\n", __func__,
qp->cq_sg_crp->sg_segs[i].ss_len);
return (EINVAL);
}
/* Gather IV/nonce data */
ccp_collect_iv(s, crp, crd);
if ((crd->crd_flags & CRD_F_ENCRYPT) != 0)
dir = CCP_CIPHER_DIR_ENCRYPT;
else
dir = CCP_CIPHER_DIR_DECRYPT;
/* Set up passthrough op(s) to copy IV into LSB */
error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_IV),
s->blkcipher.iv, s->blkcipher.iv_len);
if (error != 0)
return (error);
/*
* Initialize keydata and keydata_len for GCC. The default case of the
* following switch is impossible to reach, but GCC doesn't know that.
*/
keydata_len = 0;
keydata = NULL;
switch (crd->crd_alg) {
case CRYPTO_AES_XTS:
for (j = 0; j < nitems(ccp_xts_unitsize_map); j++)
if (ccp_xts_unitsize_map[j].cxu_size == crd->crd_len)
break;
/* Input buffer must be a supported UnitSize */
if (j >= nitems(ccp_xts_unitsize_map)) {
device_printf(dev, "%s: rejected block size: %u\n",
__func__, crd->crd_len);
return (EOPNOTSUPP);
}
/* FALLTHROUGH */
case CRYPTO_AES_CBC:
case CRYPTO_AES_ICM:
keydata = s->blkcipher.enckey;
keydata_len = s->blkcipher.key_len;
break;
}
INSECURE_DEBUG(dev, "%s: KEY(%zu): %16D\n", __func__, keydata_len,
keydata, " ");
if (crd->crd_alg == CRYPTO_AES_XTS)
INSECURE_DEBUG(dev, "%s: KEY(XTS): %64D\n", __func__, keydata, " ");
/* Reverse order of key material for HW */
ccp_byteswap(keydata, keydata_len);
/* Store key material into LSB to avoid page boundaries */
if (crd->crd_alg == CRYPTO_AES_XTS) {
/*
* XTS mode uses 2 256-bit vectors for the primary key and the
* tweak key. For 128-bit keys, the vectors are zero-padded.
*
* After byteswapping the combined OCF-provided K1:K2 vector
* above, we need to reverse the order again so the hardware
* gets the swapped keys in the order K1':K2'.
*/
error = ccp_do_pst_to_lsb(qp,
ccp_queue_lsb_address(qp, LSB_ENTRY_KEY + 1), keydata,
keydata_len / 2);
if (error != 0)
return (error);
error = ccp_do_pst_to_lsb(qp,
ccp_queue_lsb_address(qp, LSB_ENTRY_KEY),
keydata + (keydata_len / 2), keydata_len / 2);
/* Zero-pad 128 bit keys */
if (keydata_len == 32) {
if (error != 0)
return (error);
error = ccp_do_pst_to_lsb(qp,
ccp_queue_lsb_address(qp, LSB_ENTRY_KEY) +
keydata_len / 2, g_zeroes, keydata_len / 2);
if (error != 0)
return (error);
error = ccp_do_pst_to_lsb(qp,
ccp_queue_lsb_address(qp, LSB_ENTRY_KEY + 1) +
keydata_len / 2, g_zeroes, keydata_len / 2);
}
} else
error = ccp_do_pst_to_lsb(qp,
ccp_queue_lsb_address(qp, LSB_ENTRY_KEY), keydata,
keydata_len);
if (error != 0)
return (error);
/*
* Point SGLs at the subset of cryptop buffer contents representing the
* data.
*/
sglist_reset(qp->cq_sg_ulptx);
error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
crd->crd_skip, crd->crd_len);
if (error != 0)
return (error);
INSECURE_DEBUG(dev, "%s: Contents: %16D\n", __func__,
(void *)PHYS_TO_DMAP(qp->cq_sg_ulptx->sg_segs[0].ss_paddr), " ");
DPRINTF(dev, "%s: starting AES ops @ %u\n", __func__, qp->cq_tail);
if (ccp_queue_get_ring_space(qp) < qp->cq_sg_ulptx->sg_nseg)
return (EAGAIN);
if (crd->crd_alg == CRYPTO_AES_XTS)
return (ccp_do_xts(qp, s, crp, crd, dir, cctx));
for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
struct sglist_seg *seg;
seg = &qp->cq_sg_ulptx->sg_segs[i];
desc = &qp->desc_ring[qp->cq_tail];
desc->engine = CCP_ENGINE_AES;
desc->som = (i == 0);
desc->eom = (i == qp->cq_sg_ulptx->sg_nseg - 1);
desc->ioc = (desc->eom && cctx != NULL);
DPRINTF(dev, "%s: AES %u: som:%d eom:%d ioc:%d dir:%d\n",
__func__, qp->cq_tail, (int)desc->som, (int)desc->eom,
(int)desc->ioc, (int)dir);
if (desc->ioc)
memcpy(&qp->completions_ring[qp->cq_tail], cctx,
sizeof(*cctx));
desc->aes.encrypt = dir;
desc->aes.mode = s->blkcipher.cipher_mode;
desc->aes.type = s->blkcipher.cipher_type;
if (crd->crd_alg == CRYPTO_AES_ICM)
/*
* Size of CTR value in bits, - 1. ICM mode uses all
* 128 bits as counter.
*/
desc->aes.size = 127;
DPRINTF(dev, "%s: AES %u: mode:%u type:%u size:%u\n", __func__,
qp->cq_tail, (unsigned)desc->aes.mode,
(unsigned)desc->aes.type, (unsigned)desc->aes.size);
desc->length = seg->ss_len;
desc->src_lo = (uint32_t)seg->ss_paddr;
desc->src_hi = (seg->ss_paddr >> 32);
desc->src_mem = CCP_MEMTYPE_SYSTEM;
/* Crypt in-place */
desc->dst_lo = desc->src_lo;
desc->dst_hi = desc->src_hi;
desc->dst_mem = desc->src_mem;
desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
desc->key_hi = 0;
desc->key_mem = CCP_MEMTYPE_SB;
desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
qp->cq_tail = (qp->cq_tail + 1) %
(1 << qp->cq_softc->ring_size_order);
}
return (0);
}
int __must_check
ccp_blkcipher(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp)
{
struct ccp_completion_ctx ctx;
struct cryptodesc *crd;
crd = crp->crp_desc;
ctx.callback_fn = ccp_blkcipher_done;
ctx.session = s;
ctx.callback_arg = crp;
return (ccp_do_blkcipher(qp, s, crp, crd, &ctx));
}
static void
ccp_authenc_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
int error)
{
struct cryptodesc *crda;
struct cryptop *crp;
explicit_bzero(&s->blkcipher, sizeof(s->blkcipher));
crp = vcrp;
if (s->cipher_first)
crda = crp->crp_desc->crd_next;
else
crda = crp->crp_desc;
ccp_do_hmac_done(qp, s, crp, crda, error);
}
int __must_check
ccp_authenc(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp,
struct cryptodesc *crda, struct cryptodesc *crde)
{
struct ccp_completion_ctx ctx;
int error;
ctx.callback_fn = ccp_authenc_done;
ctx.session = s;
ctx.callback_arg = crp;
/* Perform first operation */
if (s->cipher_first)
error = ccp_do_blkcipher(qp, s, crp, crde, NULL);
else
error = ccp_do_hmac(qp, s, crp, crda, NULL);
if (error != 0)
return (error);
/* Perform second operation */
if (s->cipher_first)
error = ccp_do_hmac(qp, s, crp, crda, &ctx);
else
error = ccp_do_blkcipher(qp, s, crp, crde, &ctx);
return (error);
}
static int __must_check
ccp_do_ghash_aad(struct ccp_queue *qp, struct ccp_session *s)
{
struct ccp_desc *desc;
struct sglist_seg *seg;
unsigned i;
if (ccp_queue_get_ring_space(qp) < qp->cq_sg_ulptx->sg_nseg)
return (EAGAIN);
for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
seg = &qp->cq_sg_ulptx->sg_segs[i];
desc = &qp->desc_ring[qp->cq_tail];
desc->engine = CCP_ENGINE_AES;
desc->aes.mode = CCP_AES_MODE_GHASH;
desc->aes.type = s->blkcipher.cipher_type;
desc->aes.encrypt = CCP_AES_MODE_GHASH_AAD;
desc->som = (i == 0);
desc->length = seg->ss_len;
desc->src_lo = (uint32_t)seg->ss_paddr;
desc->src_hi = (seg->ss_paddr >> 32);
desc->src_mem = CCP_MEMTYPE_SYSTEM;
desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
desc->key_mem = CCP_MEMTYPE_SB;
qp->cq_tail = (qp->cq_tail + 1) %
(1 << qp->cq_softc->ring_size_order);
}
return (0);
}
static int __must_check
ccp_do_gctr(struct ccp_queue *qp, struct ccp_session *s,
enum ccp_cipher_dir dir, struct sglist_seg *seg, bool som, bool eom)
{
struct ccp_desc *desc;
if (ccp_queue_get_ring_space(qp) == 0)
return (EAGAIN);
desc = &qp->desc_ring[qp->cq_tail];
desc->engine = CCP_ENGINE_AES;
desc->aes.mode = CCP_AES_MODE_GCTR;
desc->aes.type = s->blkcipher.cipher_type;
desc->aes.encrypt = dir;
desc->aes.size = 8 * (seg->ss_len % GMAC_BLOCK_LEN) - 1;
desc->som = som;
desc->eom = eom;
/* Trailing bytes will be masked off by aes.size above. */
desc->length = roundup2(seg->ss_len, GMAC_BLOCK_LEN);
desc->dst_lo = desc->src_lo = (uint32_t)seg->ss_paddr;
desc->dst_hi = desc->src_hi = seg->ss_paddr >> 32;
desc->dst_mem = desc->src_mem = CCP_MEMTYPE_SYSTEM;
desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
desc->key_mem = CCP_MEMTYPE_SB;
qp->cq_tail = (qp->cq_tail + 1) %
(1 << qp->cq_softc->ring_size_order);
return (0);
}
static int __must_check
ccp_do_ghash_final(struct ccp_queue *qp, struct ccp_session *s)
{
struct ccp_desc *desc;
if (ccp_queue_get_ring_space(qp) == 0)
return (EAGAIN);
desc = &qp->desc_ring[qp->cq_tail];
desc->engine = CCP_ENGINE_AES;
desc->aes.mode = CCP_AES_MODE_GHASH;
desc->aes.type = s->blkcipher.cipher_type;
desc->aes.encrypt = CCP_AES_MODE_GHASH_FINAL;
desc->length = GMAC_BLOCK_LEN;
desc->src_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH_IN);
desc->src_mem = CCP_MEMTYPE_SB;
desc->lsb_ctx_id = ccp_queue_lsb_entry(qp, LSB_ENTRY_IV);
desc->key_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_KEY);
desc->key_mem = CCP_MEMTYPE_SB;
desc->dst_lo = ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH);
desc->dst_mem = CCP_MEMTYPE_SB;
qp->cq_tail = (qp->cq_tail + 1) %
(1 << qp->cq_softc->ring_size_order);
return (0);
}
static void
ccp_gcm_done(struct ccp_queue *qp, struct ccp_session *s, void *vcrp,
int error)
{
char tag[GMAC_DIGEST_LEN];
struct cryptodesc *crde, *crda;
struct cryptop *crp;
crp = vcrp;
if (s->cipher_first) {
crde = crp->crp_desc;
crda = crp->crp_desc->crd_next;
} else {
crde = crp->crp_desc->crd_next;
crda = crp->crp_desc;
}
s->pending--;
if (error != 0) {
crp->crp_etype = error;
goto out;
}
/* Encrypt is done. Decrypt needs to verify tag. */
if ((crde->crd_flags & CRD_F_ENCRYPT) != 0)
goto out;
/* Copy in message tag. */
crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject,
sizeof(tag), tag);
/* Verify tag against computed GMAC */
if (timingsafe_bcmp(tag, s->gmac.final_block, s->gmac.hash_len) != 0)
crp->crp_etype = EBADMSG;
out:
explicit_bzero(&s->blkcipher, sizeof(s->blkcipher));
explicit_bzero(&s->gmac, sizeof(s->gmac));
crypto_done(crp);
}
int __must_check
ccp_gcm(struct ccp_queue *qp, struct ccp_session *s, struct cryptop *crp,
struct cryptodesc *crda, struct cryptodesc *crde)
{
struct ccp_completion_ctx ctx;
enum ccp_cipher_dir dir;
device_t dev;
unsigned i;
int error;
if (s->blkcipher.key_len == 0)
return (EINVAL);
/*
* AAD is only permitted before the cipher/plain text, not
* after.
*/
if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
return (EINVAL);
dev = qp->cq_softc->dev;
if ((crde->crd_flags & CRD_F_ENCRYPT) != 0)
dir = CCP_CIPHER_DIR_ENCRYPT;
else
dir = CCP_CIPHER_DIR_DECRYPT;
/* Zero initial GHASH portion of context */
memset(s->blkcipher.iv, 0, sizeof(s->blkcipher.iv));
/* Gather IV data */
ccp_collect_iv(s, crp, crde);
/* Reverse order of key material for HW */
ccp_byteswap(s->blkcipher.enckey, s->blkcipher.key_len);
/* Prepare input buffer of concatenated lengths for final GHASH */
be64enc(s->gmac.final_block, (uint64_t)crda->crd_len * 8);
be64enc(&s->gmac.final_block[8], (uint64_t)crde->crd_len * 8);
/* Send IV + initial zero GHASH, key data, and lengths buffer to LSB */
error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_IV),
s->blkcipher.iv, 32);
if (error != 0)
return (error);
error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_KEY),
s->blkcipher.enckey, s->blkcipher.key_len);
if (error != 0)
return (error);
error = ccp_do_pst_to_lsb(qp,
ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH_IN), s->gmac.final_block,
GMAC_BLOCK_LEN);
if (error != 0)
return (error);
/* First step - compute GHASH over AAD */
if (crda->crd_len != 0) {
sglist_reset(qp->cq_sg_ulptx);
error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
crda->crd_skip, crda->crd_len);
if (error != 0)
return (error);
/* This engine cannot process non-block multiple AAD data. */
for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++)
if ((qp->cq_sg_ulptx->sg_segs[i].ss_len %
GMAC_BLOCK_LEN) != 0) {
DPRINTF(dev, "%s: AD seg modulo: %zu\n",
__func__,
qp->cq_sg_ulptx->sg_segs[i].ss_len);
return (EINVAL);
}
error = ccp_do_ghash_aad(qp, s);
if (error != 0)
return (error);
}
/* Feed data piece by piece into GCTR */
sglist_reset(qp->cq_sg_ulptx);
error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
crde->crd_skip, crde->crd_len);
if (error != 0)
return (error);
/*
* All segments except the last must be even multiples of AES block
* size for the HW to process it. Non-compliant inputs aren't bogus,
* just not doable on this hardware.
*
* XXX: Well, the hardware will produce a valid tag for shorter final
* segment inputs, but it will still write out a block-sized plaintext
* or ciphertext chunk. For a typical CRP this tramples trailing data,
* including the provided message tag. So, reject such inputs for now.
*/
for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++)
if ((qp->cq_sg_ulptx->sg_segs[i].ss_len % AES_BLOCK_LEN) != 0) {
DPRINTF(dev, "%s: seg modulo: %zu\n", __func__,
qp->cq_sg_ulptx->sg_segs[i].ss_len);
return (EINVAL);
}
for (i = 0; i < qp->cq_sg_ulptx->sg_nseg; i++) {
struct sglist_seg *seg;
seg = &qp->cq_sg_ulptx->sg_segs[i];
error = ccp_do_gctr(qp, s, dir, seg,
(i == 0 && crda->crd_len == 0),
i == (qp->cq_sg_ulptx->sg_nseg - 1));
if (error != 0)
return (error);
}
/* Send just initial IV (not GHASH!) to LSB again */
error = ccp_do_pst_to_lsb(qp, ccp_queue_lsb_address(qp, LSB_ENTRY_IV),
s->blkcipher.iv, s->blkcipher.iv_len);
if (error != 0)
return (error);
ctx.callback_fn = ccp_gcm_done;
ctx.session = s;
ctx.callback_arg = crp;
/* Compute final hash and copy result back */
error = ccp_do_ghash_final(qp, s);
if (error != 0)
return (error);
/* When encrypting, copy computed tag out to caller buffer. */
sglist_reset(qp->cq_sg_ulptx);
if (dir == CCP_CIPHER_DIR_ENCRYPT)
error = sglist_append_sglist(qp->cq_sg_ulptx, qp->cq_sg_crp,
crda->crd_inject, s->gmac.hash_len);
else
/*
* For decrypting, copy the computed tag out to our session
* buffer to verify in our callback.
*/
error = sglist_append(qp->cq_sg_ulptx, s->gmac.final_block,
s->gmac.hash_len);
if (error != 0)
return (error);
error = ccp_passthrough_sgl(qp,
ccp_queue_lsb_address(qp, LSB_ENTRY_GHASH), false, qp->cq_sg_ulptx,
s->gmac.hash_len, true, &ctx);
return (error);
}
#define MAX_TRNG_RETRIES 10
u_int
random_ccp_read(void *v, u_int c)
{
uint32_t *buf;
u_int i, j;
KASSERT(c % sizeof(*buf) == 0, ("%u not multiple of u_long", c));
buf = v;
for (i = c; i > 0; i -= sizeof(*buf)) {
for (j = 0; j < MAX_TRNG_RETRIES; j++) {
*buf = ccp_read_4(g_ccp_softc, TRNG_OUT_OFFSET);
if (*buf != 0)
break;
}
if (j == MAX_TRNG_RETRIES)
return (0);
buf++;
}
return (c);
}
#ifdef DDB
void
db_ccp_show_hw(struct ccp_softc *sc)
{
db_printf(" queue mask: 0x%x\n",
ccp_read_4(sc, CMD_QUEUE_MASK_OFFSET));
db_printf(" queue prio: 0x%x\n",
ccp_read_4(sc, CMD_QUEUE_PRIO_OFFSET));
db_printf(" reqid: 0x%x\n", ccp_read_4(sc, CMD_REQID_CONFIG_OFFSET));
db_printf(" trng output: 0x%x\n", ccp_read_4(sc, TRNG_OUT_OFFSET));
db_printf(" cmd timeout: 0x%x\n",
ccp_read_4(sc, CMD_CMD_TIMEOUT_OFFSET));
db_printf(" lsb public mask lo: 0x%x\n",
ccp_read_4(sc, LSB_PUBLIC_MASK_LO_OFFSET));
db_printf(" lsb public mask hi: 0x%x\n",
ccp_read_4(sc, LSB_PUBLIC_MASK_HI_OFFSET));
db_printf(" lsb private mask lo: 0x%x\n",
ccp_read_4(sc, LSB_PRIVATE_MASK_LO_OFFSET));
db_printf(" lsb private mask hi: 0x%x\n",
ccp_read_4(sc, LSB_PRIVATE_MASK_HI_OFFSET));
db_printf(" version: 0x%x\n", ccp_read_4(sc, VERSION_REG));
}
void
db_ccp_show_queue_hw(struct ccp_queue *qp)
{
const struct ccp_error_code *ec;
struct ccp_softc *sc;
uint32_t status, error, esource, faultblock, headlo, qcontrol;
unsigned q, i;
sc = qp->cq_softc;
q = qp->cq_qindex;
qcontrol = ccp_read_queue_4(sc, q, CMD_Q_CONTROL_BASE);
db_printf(" qcontrol: 0x%x%s%s\n", qcontrol,
(qcontrol & CMD_Q_RUN) ? " RUN" : "",
(qcontrol & CMD_Q_HALTED) ? " HALTED" : "");
db_printf(" tail_lo: 0x%x\n",
ccp_read_queue_4(sc, q, CMD_Q_TAIL_LO_BASE));
headlo = ccp_read_queue_4(sc, q, CMD_Q_HEAD_LO_BASE);
db_printf(" head_lo: 0x%x\n", headlo);
db_printf(" int enable: 0x%x\n",
ccp_read_queue_4(sc, q, CMD_Q_INT_ENABLE_BASE));
db_printf(" interrupt status: 0x%x\n",
ccp_read_queue_4(sc, q, CMD_Q_INTERRUPT_STATUS_BASE));
status = ccp_read_queue_4(sc, q, CMD_Q_STATUS_BASE);
db_printf(" status: 0x%x\n", status);
db_printf(" int stats: 0x%x\n",
ccp_read_queue_4(sc, q, CMD_Q_INT_STATUS_BASE));
error = status & STATUS_ERROR_MASK;
if (error == 0)
return;
esource = (status >> STATUS_ERRORSOURCE_SHIFT) &
STATUS_ERRORSOURCE_MASK;
faultblock = (status >> STATUS_VLSB_FAULTBLOCK_SHIFT) &
STATUS_VLSB_FAULTBLOCK_MASK;
ec = NULL;
for (i = 0; i < nitems(ccp_error_codes); i++)
if (ccp_error_codes[i].ce_code == error)
break;
if (i < nitems(ccp_error_codes))
ec = &ccp_error_codes[i];
db_printf(" Error: %s (%u) Source: %u Faulting LSB block: %u\n",
(ec != NULL) ? ec->ce_name : "(reserved)", error, esource,
faultblock);
if (ec != NULL)
db_printf(" Error description: %s\n", ec->ce_desc);
i = (headlo - (uint32_t)qp->desc_ring_bus_addr) / Q_DESC_SIZE;
db_printf(" Bad descriptor idx: %u contents:\n %32D\n", i,
(void *)&qp->desc_ring[i], " ");
}
#endif