freebsd-dev/sys/powerpc/aim/trap.c

600 lines
13 KiB
C

/*
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: trap.c,v 1.26 2000/05/27 00:40:40 sommerfeld Exp $
*/
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include "opt_ddb.h"
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/syscall.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/user.h>
#include <sys/ktrace.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/trap.h>
/* These definitions should probably be somewhere else XXX */
#define FIRSTARG 3 /* first argument is in reg 3 */
#define NARGREG 8 /* 8 args are in registers */
#define MOREARGS(sp) ((caddr_t)((int)(sp) + 8)) /* more args go here */
volatile int astpending;
volatile int want_resched;
#if 0 /* XXX: not used yet */
static int fix_unaligned __P((struct proc *p, struct trapframe *frame));
#endif
void
trap(struct trapframe *frame)
{
#if 0 /* XXX: This code hasn't been reworked yet. */
struct proc *p;
int type;
u_quad_t sticks;
p = curproc;
type = frame->exc;
if (frame->srr1 & PSL_PR) {
type |= EXC_USER;
sticks = p->p_sticks;
}
switch (type) {
case EXC_TRC|EXC_USER:
frame->srr1 &= ~PSL_SE;
trapsignal(p, SIGTRAP, EXC_TRC);
break;
case EXC_DSI:
{
vm_map_t map;
vaddr_t va;
int ftype;
faultbuf *fb;
map = kernel_map;
va = frame->dar;
if ((va >> ADDR_SR_SHFT) == USER_SR) {
sr_t user_sr;
__asm ("mfsr %0, %1"
: "=r"(user_sr) : "K"(USER_SR));
va &= ADDR_PIDX | ADDR_POFF;
va |= user_sr << ADDR_SR_SHFT;
map = &p->p_vmspace->vm_map;
}
if (frame->dsisr & DSISR_STORE)
ftype = VM_PROT_READ | VM_PROT_WRITE;
else
ftype = VM_PROT_READ;
if (uvm_fault(map, trunc_page(va), 0, ftype)
== KERN_SUCCESS)
return;
if (fb = p->p_addr->u_pcb.pcb_onfault) {
frame->srr0 = (*fb)[0];
frame->fixreg[1] = (*fb)[1];
frame->fixreg[2] = (*fb)[2];
frame->cr = (*fb)[3];
bcopy(&(*fb)[4], &frame->fixreg[13],
19 * sizeof(register_t));
return;
}
map = kernel_map;
}
goto brain_damage;
case EXC_DSI|EXC_USER:
{
int ftype, rv;
if (frame->dsisr & DSISR_STORE)
ftype = VM_PROT_READ | VM_PROT_WRITE;
else
ftype = VM_PROT_READ;
if ((rv = uvm_fault(&p->p_vmspace->vm_map,
trunc_page(frame->dar), 0, ftype))
== KERN_SUCCESS)
break;
if (rv == KERN_RESOURCE_SHORTAGE) {
printf("UVM: pid %d (%s), uid %d killed: "
"out of swap\n",
p->p_pid, p->p_comm,
p->p_cred && p->p_ucred ?
p->p_ucred->cr_uid : -1);
trapsignal(p, SIGKILL, EXC_DSI);
} else {
trapsignal(p, SIGSEGV, EXC_DSI);
}
}
break;
case EXC_ISI|EXC_USER:
{
int ftype;
ftype = VM_PROT_READ | VM_PROT_EXECUTE;
if (uvm_fault(&p->p_vmspace->vm_map,
trunc_page(frame->srr0), 0, ftype)
== KERN_SUCCESS)
break;
}
trapsignal(p, SIGSEGV, EXC_ISI);
break;
case EXC_SC|EXC_USER:
{
struct sysent *callp;
size_t argsize;
register_t code, error;
register_t *params, rval[2];
int nsys, n;
register_t args[10];
uvmexp.syscalls++;
nsys = p->p_emul->e_nsysent;
callp = p->p_emul->e_sysent;
code = frame->fixreg[0];
params = frame->fixreg + FIRSTARG;
switch (code) {
case SYS_syscall:
/*
* code is first argument,
* followed by actual args.
*/
code = *params++;
break;
case SYS___syscall:
/*
* Like syscall, but code is a quad,
* so as to maintain quad alignment
* for the rest of the args.
*/
if (callp != sysent)
break;
params++;
code = *params++;
break;
default:
break;
}
if (code < 0 || code >= nsys)
callp += p->p_emul->e_nosys;
else
callp += code;
argsize = callp->sy_argsize;
n = NARGREG - (params - (frame->fixreg + FIRSTARG));
if (argsize > n * sizeof(register_t)) {
bcopy(params, args, n * sizeof(register_t));
if (error = copyin(MOREARGS(frame->fixreg[1]),
args + n,
argsize - n * sizeof(register_t))) {
#ifdef KTRACE
/* Can't get all the arguments! */
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(p, code, argsize,
args);
#endif
goto syscall_bad;
}
params = args;
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(p, code, argsize, params);
#endif
rval[0] = 0;
rval[1] = frame->fixreg[FIRSTARG + 1];
switch (error = (*callp->sy_call)(p, params, rval)) {
case 0:
frame->fixreg[FIRSTARG] = rval[0];
frame->fixreg[FIRSTARG + 1] = rval[1];
frame->cr &= ~0x10000000;
break;
case ERESTART:
/*
* Set user's pc back to redo the system call.
*/
frame->srr0 -= 4;
break;
case EJUSTRETURN:
/* nothing to do */
break;
default:
syscall_bad:
if (p->p_emul->e_errno)
error = p->p_emul->e_errno[error];
frame->fixreg[FIRSTARG] = error;
frame->cr |= 0x10000000;
break;
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSRET))
ktrsysret(p, code, error, rval[0]);
#endif
}
break;
case EXC_FPU|EXC_USER:
if (fpuproc)
save_fpu(fpuproc);
fpuproc = p;
enable_fpu(p);
break;
case EXC_AST|EXC_USER:
/* This is just here that we trap */
break;
case EXC_ALI|EXC_USER:
if (fix_unaligned(p, frame) != 0)
trapsignal(p, SIGBUS, EXC_ALI);
else
frame->srr0 += 4;
break;
case EXC_PGM|EXC_USER:
/* XXX temporarily */
if (frame->srr1 & 0x0002000)
trapsignal(p, SIGTRAP, EXC_PGM);
else
trapsignal(p, SIGILL, EXC_PGM);
break;
case EXC_MCHK:
{
faultbuf *fb;
if (fb = p->p_addr->u_pcb.pcb_onfault) {
frame->srr0 = (*fb)[0];
frame->fixreg[1] = (*fb)[1];
frame->fixreg[2] = (*fb)[2];
frame->cr = (*fb)[3];
bcopy(&(*fb)[4], &frame->fixreg[13],
19 * sizeof(register_t));
return;
}
}
goto brain_damage;
default:
brain_damage:
printf("trap type %x at %x\n", type, frame->srr0);
#ifdef DDB
Debugger(); /* XXX temporarily */
#endif
#ifdef TRAP_PANICWAIT
printf("Press a key to panic.\n");
cngetc();
#endif
panic("trap");
}
astpending = 0; /* we are about to do it */
uvmexp.softs++;
if (p->p_flag & P_OWEUPC) {
p->p_flag &= ~P_OWEUPC;
ADDUPROF(p);
}
/* take pending signals */
{
int sig;
while (sig = CURSIG(p))
postsig(sig);
}
p->p_priority = p->p_usrpri;
if (want_resched) {
int sig;
/*
* We are being preempted.
*/
preempt(NULL);
while (sig = CURSIG(p))
postsig(sig);
}
/*
* If profiling, charge recent system time to the trapped pc.
*/
if (p->p_flag & P_PROFIL) {
extern int psratio;
addupc_task(p, frame->srr0,
(int)(p->p_sticks - sticks) * psratio);
}
/*
* If someone stole the fpu while we were away, disable it
*/
if (p != fpuproc)
frame->srr1 &= ~PSL_FP;
curcpu()->ci_schedstate.spc_curpriority = p->p_priority;
#endif
}
#if 0 /* XXX: child_return not used */
void
child_return(void *arg)
{
struct proc *p;
struct trapframe *tf;
p = arg;
tf = trapframe(p);
tf->fixreg[FIRSTARG] = 0;
tf->fixreg[FIRSTARG + 1] = 1;
tf->cr &= ~0x10000000;
tf->srr1 &= ~PSL_FP; /* Disable FPU, as we can't be fpuproc */
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSRET))
ktrsysret(p, SYS_fork, 0, 0);
#endif
/* Profiling? XXX */
curcpu()->ci_schedstate.spc_curpriority = p->p_priority;
}
#endif
static __inline void
setusr(int content)
{
__asm __volatile ("isync; mtsr %0,%1; isync"
:: "n"(USER_SR), "r"(content));
}
int
copyin(udaddr, kaddr, len)
const void *udaddr;
void *kaddr;
size_t len;
{
const char *up;
char *kp;
char *p;
size_t l;
faultbuf env;
up = udaddr;
kp = kaddr;
#if 0
if (setfault(env)) {
curpcb->pcb_onfault = 0;
return EFAULT;
}
#endif
while (len > 0) {
p = (char *)USER_ADDR + ((u_int)up & ~SEGMENT_MASK);
l = ((char *)USER_ADDR + SEGMENT_LENGTH) - p;
if (l > len)
l = len;
setusr(curpcb->pcb_pm->pm_sr[(u_int)up >> ADDR_SR_SHFT]);
bcopy(p, kp, l);
up += l;
kp += l;
len -= l;
}
curpcb->pcb_onfault = 0;
return 0;
}
int
copyout(kaddr, udaddr, len)
const void *kaddr;
void *udaddr;
size_t len;
{
const char *kp;
char *up;
char *p;
size_t l;
faultbuf env;
kp = kaddr;
up = udaddr;
#if 0
if (setfault(env)) {
curpcb->pcb_onfault = 0;
return EFAULT;
}
#endif
while (len > 0) {
p = (char *)USER_ADDR + ((u_int)up & ~SEGMENT_MASK);
l = ((char *)USER_ADDR + SEGMENT_LENGTH) - p;
if (l > len)
l = len;
setusr(curpcb->pcb_pm->pm_sr[(u_int)up >> ADDR_SR_SHFT]);
bcopy(kp, p, l);
up += l;
kp += l;
len -= l;
}
curpcb->pcb_onfault = 0;
return 0;
}
#if 0 /* XXX: not used yet */
/*
* kcopy(const void *src, void *dst, size_t len);
*
* Copy len bytes from src to dst, aborting if we encounter a fatal
* page fault.
*
* kcopy() _must_ save and restore the old fault handler since it is
* called by uiomove(), which may be in the path of servicing a non-fatal
* page fault.
*/
int
kcopy(const void *src, void *dst, size_t len)
{
faultbuf env, *oldfault;
oldfault = curpcb->pcb_onfault;
if (setfault(env)) {
curpcb->pcb_onfault = oldfault;
return EFAULT;
}
bcopy(src, dst, len);
curpcb->pcb_onfault = oldfault;
return 0;
}
int
badaddr(void *addr, size_t size)
{
return badaddr_read(addr, size, NULL);
}
int
badaddr_read(void *addr, size_t size, int *rptr)
{
faultbuf env;
int x;
/* Get rid of any stale machine checks that have been waiting. */
__asm __volatile ("sync; isync");
if (setfault(env)) {
curpcb->pcb_onfault = 0;
__asm __volatile ("sync");
return 1;
}
__asm __volatile ("sync");
switch (size) {
case 1:
x = *(volatile int8_t *)addr;
break;
case 2:
x = *(volatile int16_t *)addr;
break;
case 4:
x = *(volatile int32_t *)addr;
break;
default:
panic("badaddr: invalid size (%d)", size);
}
/* Make sure we took the machine check, if we caused one. */
__asm __volatile ("sync; isync");
curpcb->pcb_onfault = 0;
__asm __volatile ("sync"); /* To be sure. */
/* Use the value to avoid reorder. */
if (rptr)
*rptr = x;
return 0;
}
#endif
/*
* For now, this only deals with the particular unaligned access case
* that gcc tends to generate. Eventually it should handle all of the
* possibilities that can happen on a 32-bit PowerPC in big-endian mode.
*/
#if 0 /* XXX: Not used yet */
static int
fix_unaligned(p, frame)
struct proc *p;
struct trapframe *frame;
{
int indicator;
indicator = EXC_ALI_OPCODE_INDICATOR(frame->dsisr);
switch (indicator) {
case EXC_ALI_LFD:
case EXC_ALI_STFD:
{
int reg = EXC_ALI_RST(frame->dsisr);
double *fpr = &p->p_addr->u_pcb.pcb_fpu.fpr[reg];
/* Juggle the FPU to ensure that we've initialized
* the FPRs, and that their current state is in
* the PCB.
*/
if (fpuproc != p) {
if (fpuproc)
save_fpu(fpuproc);
enable_fpu(p);
}
save_fpu(p);
if (indicator == EXC_ALI_LFD) {
if (copyin((void *)frame->dar, fpr,
sizeof(double)) != 0)
return -1;
enable_fpu(p);
} else {
if (copyout(fpr, (void *)frame->dar,
sizeof(double)) != 0)
return -1;
}
return 0;
}
break;
}
return -1;
}
#endif