freebsd-dev/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c
2020-09-01 21:41:07 +00:00

804 lines
30 KiB
C

/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
/*
* This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
* supports only 2Ghz operation.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom_v14.h"
#include "ah_eeprom_v4k.h"
#include "ar9002/ar9285.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ar9002/ar9002phy.h"
#include "ar9002/ar9285phy.h"
#include "ar9002/ar9285an.h"
#include "ar9002/ar9285_diversity.h"
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
#define EEP_MINOR(_ah) \
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
#define PLL_SETTLE_DELAY 300 /* 300 usec */
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan, int16_t *ratesArray,
uint16_t cfgCtl, uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit);
static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan,
int16_t *pTxPowerIndexOffset);
static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower,
uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
uint16_t numXpdGains);
HAL_BOOL
ar9285SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
#define N(a) (sizeof (a) / sizeof (a[0]))
MODAL_EEP4K_HEADER *pModal;
struct ath_hal_5212 *ahp = AH5212(ah);
int16_t txPowerIndexOffset = 0;
int i;
uint16_t cfgCtl;
uint16_t powerLimit;
uint16_t twiceAntennaReduction;
uint16_t twiceMaxRegulatoryPower;
int16_t maxPower;
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
struct ar5416eeprom_4k *pEepData = &ee->ee_base;
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
/* Setup info for the actual eeprom */
OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
cfgCtl = ath_hal_getctl(ah, chan);
powerLimit = chan->ic_maxregpower * 2;
twiceAntennaReduction = chan->ic_maxantgain;
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
pModal = &pEepData->modalHeader;
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
__func__,chan->ic_freq, cfgCtl );
if (IS_EEP_MINOR_V2(ah)) {
AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
}
if (!ar9285SetPowerPerRateTable(ah, pEepData, chan,
&AH5416(ah)->ah_ratesArray[0],cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower, powerLimit)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to set tx power per rate table\n", __func__);
return AH_FALSE;
}
if (!ar9285SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
__func__);
return AH_FALSE;
}
maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
AH5416(ah)->ah_ratesArray[rateHt20_0]);
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
if (IEEE80211_IS_CHAN_HT40(chan)) {
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
}
ahp->ah_tx6PowerInHalfDbm = maxPower;
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
/*
* txPowerIndexOffset is set by the SetPowerTable() call -
* adjust the rate table (0 offset if rates EEPROM not loaded)
*/
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
/* -5 dBm offset for Merlin and later; this includes Kite */
AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
if (AH5416(ah)->ah_ratesArray[i] < 0)
AH5416(ah)->ah_ratesArray[i] = 0;
}
#ifdef AH_EEPROM_DUMP
ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
#endif
/*
* Adjust the HT40 power to meet the correct target TX power
* for 40MHz mode, based on TX power curves that are established
* for 20MHz mode.
*
* XXX handle overflow/too high power level?
*/
if (IEEE80211_IS_CHAN_HT40(chan)) {
AH5416(ah)->ah_ratesArray[rateHt40_0] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_1] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_2] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_3] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_4] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_5] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_6] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
AH5416(ah)->ah_ratesArray[rateHt40_7] +=
AH5416(ah)->ah_ht40PowerIncForPdadc;
}
/* Write the TX power rate registers */
ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
return AH_TRUE;
#undef POW_SM
#undef N
}
static void
ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
{
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
pModal->antCtrlChain[0]);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_3) {
txRxAttenLocal = pModal->txRxAttenCh[0];
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
/* Set the block 1 value to block 0 value */
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->bswMargin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
pModal->xatten2Margin[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
}
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
}
/*
* Read EEPROM header info and program the device for correct operation
* given the channel value.
*/
HAL_BOOL
ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
const struct ar5416eeprom_4k *eep = &ee->ee_base;
const MODAL_EEP4K_HEADER *pModal;
uint8_t txRxAttenLocal;
uint8_t ob[5], db1[5], db2[5];
pModal = &eep->modalHeader;
txRxAttenLocal = 23;
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
/* Single chain for 4K EEPROM*/
ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
/* Initialize Ant Diversity settings if supported */
(void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
/* Configure TX power calibration */
if (pModal->version >= 2) {
ob[0] = pModal->ob_0;
ob[1] = pModal->ob_1;
ob[2] = pModal->ob_2;
ob[3] = pModal->ob_3;
ob[4] = pModal->ob_4;
db1[0] = pModal->db1_0;
db1[1] = pModal->db1_1;
db1[2] = pModal->db1_2;
db1[3] = pModal->db1_3;
db1[4] = pModal->db1_4;
db2[0] = pModal->db2_0;
db2[1] = pModal->db2_1;
db2[2] = pModal->db2_2;
db2[3] = pModal->db2_3;
db2[4] = pModal->db2_4;
} else if (pModal->version == 1) {
ob[0] = pModal->ob_0;
ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
db1[0] = pModal->db1_0;
db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
db2[0] = pModal->db2_0;
db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
} else {
int i;
for (i = 0; i < 5; i++) {
ob[i] = pModal->ob_0;
db1[i] = pModal->db1_0;
db2[i] = pModal->db1_0;
}
}
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
pModal->switchSettling);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
pModal->adcDesiredSize);
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
pModal->txEndToRxOn);
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
pModal->thresh62);
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
pModal->thresh62);
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_2) {
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
pModal->txFrameToDataStart);
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
pModal->txFrameToPaOn);
}
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
AR5416_EEP_MINOR_VER_3) {
if (IEEE80211_IS_CHAN_HT40(chan))
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
}
/*
* Program the CCK TX gain factor appropriately if needed.
* The AR9285/AR9271 has a non-constant PA tx gain behaviour
* for CCK versus OFDM rates; other chips deal with this
* differently.
*
* The mask/shift/multiply hackery is done so place the same
* value (bb_desired_scale) into multiple 5-bit fields.
* For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
* to three fields: (0..4), (5..9) and (10..14).
*/
if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
uint32_t pwrctrl, mask, clr;
mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
pwrctrl = mask * bb_desired_scale;
clr = mask * 0x1f;
OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
mask = (1<<0) | (1<<5) | (1<<15);
pwrctrl = mask * bb_desired_scale;
clr = mask * 0x1f;
OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
mask = (1<<0) | (1<<5);
pwrctrl = mask * bb_desired_scale;
clr = mask * 0x1f;
OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
}
}
return AH_TRUE;
}
/*
* Helper functions common for AP/CB/XB
*/
static HAL_BOOL
ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan,
int16_t *ratesArray, uint16_t cfgCtl,
uint16_t AntennaReduction,
uint16_t twiceMaxRegulatoryPower,
uint16_t powerLimit)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
int16_t twiceLargestAntenna;
CAL_CTL_DATA_4K *rep;
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
int16_t scaledPower, minCtlPower;
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
static const uint16_t ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
const uint16_t *pCtlMode;
uint16_t numCtlModes, ctlMode, freq;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
/* XXX setup for 5212 use (really used?) */
ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
/*
* scaledPower is the minimum of the user input power level and
* the regulatory allowed power level
*/
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
/* Get target powers from EEPROM - our baseline for TX Power */
/* Setup for CTL modes */
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
pCtlMode = ctlModesFor11g;
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
if (IEEE80211_IS_CHAN_HT40(chan)) {
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
/* Get target powers for extension channels */
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
}
/*
* For MIMO, need to apply regulatory caps individually across dynamically
* running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode) {
freq = centers.ctl_center;
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
freq = centers.ext_center;
} else {
freq = centers.ctl_center;
}
/* walk through each CTL index stored in EEPROM */
for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
uint16_t twiceMinEdgePower;
/* compare test group from regulatory channel list with test mode from pCtlMode list */
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
rep = &(pEepData->ctlData[i]);
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
rep->ctlEdges[
owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
} else {
/* specific */
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch(pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
break;
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
}
break;
default:
return AH_FALSE;
break;
}
} /* end ctl mode checking */
/* Set rates Array from collected data */
ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
&targetPowerCck,
&targetPowerCckExt,
&targetPowerOfdm,
&targetPowerOfdmExt,
&targetPowerHt20,
&targetPowerHt40);
return AH_TRUE;
#undef EXT_ADDITIVE
#undef CTL_11G_EXT
#undef CTL_11B_EXT
#undef SUB_NUM_CTL_MODES_AT_2G_40
#undef N
}
static HAL_BOOL
ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
{
CAL_DATA_PER_FREQ_4K *pRawDataset;
uint8_t *pCalBChans = AH_NULL;
uint16_t pdGainOverlap_t2;
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
uint16_t numPiers, i;
int16_t tMinCalPower;
uint16_t numXpdGain, xpdMask;
uint16_t xpdGainValues[4]; /* v4k eeprom has 2; the other two stay 0 */
uint32_t regChainOffset;
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
xpdMask = pEepData->modalHeader.xpdGain;
if (IS_EEP_MINOR_V2(ah)) {
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
} else {
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
}
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
HALASSERT(0);
break;
}
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
numXpdGain++;
}
}
/* Write the detector gain biases and their number */
ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
regChainOffset = ar5416GetRegChainOffset(ah, i);
if (pEepData->baseEepHeader.txMask & (1 << i)) {
pRawDataset = pEepData->calPierData2G[i];
ar9285GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
&tMinCalPower, gainBoundaries,
pdadcValues, numXpdGain);
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
/*
* Note the pdadc table may not start at 0 dBm power, could be
* negative or greater than 0. Need to offset the power
* values by the amount of minPower for griffin
*/
ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
}
/* Write the power values into the baseband power table */
ar5416WritePdadcValues(ah, i, pdadcValues);
}
}
*pTxPowerIndexOffset = 0;
return AH_TRUE;
}
static void
ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
const struct ieee80211_channel *chan,
CAL_DATA_PER_FREQ_4K *pRawDataSet,
uint8_t * bChans, uint16_t availPiers,
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
uint8_t * pPDADCValues, uint16_t numXpdGains)
{
int i, j, k;
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
uint16_t idxL, idxR, numPiers; /* Pier indexes */
/* filled out Vpd table for all pdGains (chanL) */
static uint8_t vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (chanR) */
static uint8_t vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (interpolated) */
static uint8_t vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
uint8_t minPwrT4[AR5416_4K_NUM_PD_GAINS];
uint8_t maxPwrT4[AR5416_4K_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
HAL_BOOL match;
int16_t minDelta = 0;
CHAN_CENTERS centers;
ar5416GetChannelCenters(ah, chan, &centers);
/* Trim numPiers for the number of populated channel Piers */
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
break;
}
}
/* Find pier indexes around the current channel */
match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
if (match) {
/* Directly fill both vpd tables from the matching index */
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i],
AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
/* Start Vpd interpolation from the max of the minimum powers */
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
/* End Vpd interpolation from the min of the max powers */
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
/* Fill pier Vpds */
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
/* Interpolate the final vpd */
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
IEEE80211_IS_CHAN_2GHZ(chan)),
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
k = 0; /* index for the final table */
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1)) {
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
} else {
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
}
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
/* NB: only applies to owl 1.0 */
if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
/*
* fix the gain delta, but get a delta that can be applied to min to
* keep the upper power values accurate, don't think max needs to
* be adjusted because should not be at that area of the table?
*/
minDelta = pPdGainBoundaries[0] - 23;
pPdGainBoundaries[0] = 23;
}
else {
minDelta = 0;
}
/* Find starting index for this pdGain */
if (i == 0) {
if (AR_SREV_MERLIN_20_OR_LATER(ah))
ss = (int16_t)(0 - (minPwrT4[i] / 2));
else
ss = 0; /* for the first pdGain, start from index 0 */
} else {
/* need overlap entries extrapolated below. */
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
*-ve ss indicates need to extrapolate data below for this pdGain
*/
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
pPDADCValues[k++] = vpdTableI[i][ss++];
}
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
/*
* for last gain, pdGainBoundary == Pmax_t2, so will
* have to extrapolate
*/
if (tgtIndex >= maxIndex) { /* need to extrapolate above */
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
(ss - maxIndex +1) * vpdStep));
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
ss++;
}
} /* extrapolated above */
} /* for all pdGainUsed */
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k-1];
k++;
}
return;
}