freebsd-dev/contrib/apr-util/crypto/apr_sha1.c
Peter Wemm 937a200089 Introduce svnlite so that we can check out our source code again.
This is actually a fully functional build except:
* All internal shared libraries are static linked to make sure there
  is no interference with ports (and to reduce build time).
* It does not have the python/perl/etc plugin or API support.
* By default, it installs as "svnlite" rather than "svn".
* If WITH_SVN added in make.conf, you get "svn".
* If WITHOUT_SVNLITE is in make.conf, this is completely disabled.

To be absolutely clear, this is not intended for any use other than
checking out freebsd source and committing, like we once did with cvs.

It should be usable for small scale local repositories that don't
need the python/perl plugin architecture.
2013-06-18 02:53:45 +00:00

369 lines
11 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The exported function:
*
* apr_sha1_base64(const char *clear, int len, char *out);
*
* provides a means to SHA1 crypt/encode a plaintext password in
* a way which makes password files compatible with those commonly
* used in netscape web and ldap installations. It was put together
* by Clinton Wong <clintdw@netcom.com>, who also notes that:
*
* Note: SHA1 support is useful for migration purposes, but is less
* secure than Apache's password format, since Apache's (MD5)
* password format uses a random eight character salt to generate
* one of many possible hashes for the same password. Netscape
* uses plain SHA1 without a salt, so the same password
* will always generate the same hash, making it easier
* to break since the search space is smaller.
*
* See also the documentation in support/SHA1 as to hints on how to
* migrate an existing netscape installation and other supplied utitlites.
*
* This software also makes use of the following component:
*
* NIST Secure Hash Algorithm
* heavily modified by Uwe Hollerbach uh@alumni.caltech edu
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* This code is hereby placed in the public domain
*/
#include "apr_sha1.h"
#include "apr_base64.h"
#include "apr_strings.h"
#include "apr_lib.h"
#if APR_CHARSET_EBCDIC
#include "apr_xlate.h"
#endif /*APR_CHARSET_EBCDIC*/
#include <string.h>
/* a bit faster & bigger, if defined */
#define UNROLL_LOOPS
/* NIST's proposed modification to SHA, 7/11/94 */
#define USE_MODIFIED_SHA
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* 32-bit rotate */
#define ROT32(x,n) ((x << n) | (x >> (32 - n)))
#define FUNC(n,i) \
temp = ROT32(A,5) + f##n(B,C,D) + E + W[i] + CONST##n; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
#define SHA_BLOCKSIZE 64
#if APR_CHARSET_EBCDIC
static apr_xlate_t *ebcdic2ascii_xlate;
APU_DECLARE(apr_status_t) apr_SHA1InitEBCDIC(apr_xlate_t *x)
{
apr_status_t rv;
int onoff;
/* Only single-byte conversion is supported.
*/
rv = apr_xlate_sb_get(x, &onoff);
if (rv) {
return rv;
}
if (!onoff) { /* If conversion is not single-byte-only */
return APR_EINVAL;
}
ebcdic2ascii_xlate = x;
return APR_SUCCESS;
}
#endif
/* do SHA transformation */
static void sha_transform(apr_sha1_ctx_t *sha_info)
{
int i;
apr_uint32_t temp, A, B, C, D, E, W[80];
for (i = 0; i < 16; ++i) {
W[i] = sha_info->data[i];
}
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
#ifdef USE_MODIFIED_SHA
W[i] = ROT32(W[i], 1);
#endif /* USE_MODIFIED_SHA */
}
A = sha_info->digest[0];
B = sha_info->digest[1];
C = sha_info->digest[2];
D = sha_info->digest[3];
E = sha_info->digest[4];
#ifdef UNROLL_LOOPS
FUNC(1, 0); FUNC(1, 1); FUNC(1, 2); FUNC(1, 3); FUNC(1, 4);
FUNC(1, 5); FUNC(1, 6); FUNC(1, 7); FUNC(1, 8); FUNC(1, 9);
FUNC(1,10); FUNC(1,11); FUNC(1,12); FUNC(1,13); FUNC(1,14);
FUNC(1,15); FUNC(1,16); FUNC(1,17); FUNC(1,18); FUNC(1,19);
FUNC(2,20); FUNC(2,21); FUNC(2,22); FUNC(2,23); FUNC(2,24);
FUNC(2,25); FUNC(2,26); FUNC(2,27); FUNC(2,28); FUNC(2,29);
FUNC(2,30); FUNC(2,31); FUNC(2,32); FUNC(2,33); FUNC(2,34);
FUNC(2,35); FUNC(2,36); FUNC(2,37); FUNC(2,38); FUNC(2,39);
FUNC(3,40); FUNC(3,41); FUNC(3,42); FUNC(3,43); FUNC(3,44);
FUNC(3,45); FUNC(3,46); FUNC(3,47); FUNC(3,48); FUNC(3,49);
FUNC(3,50); FUNC(3,51); FUNC(3,52); FUNC(3,53); FUNC(3,54);
FUNC(3,55); FUNC(3,56); FUNC(3,57); FUNC(3,58); FUNC(3,59);
FUNC(4,60); FUNC(4,61); FUNC(4,62); FUNC(4,63); FUNC(4,64);
FUNC(4,65); FUNC(4,66); FUNC(4,67); FUNC(4,68); FUNC(4,69);
FUNC(4,70); FUNC(4,71); FUNC(4,72); FUNC(4,73); FUNC(4,74);
FUNC(4,75); FUNC(4,76); FUNC(4,77); FUNC(4,78); FUNC(4,79);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) {
FUNC(1,i);
}
for (i = 20; i < 40; ++i) {
FUNC(2,i);
}
for (i = 40; i < 60; ++i) {
FUNC(3,i);
}
for (i = 60; i < 80; ++i) {
FUNC(4,i);
}
#endif /* !UNROLL_LOOPS */
sha_info->digest[0] += A;
sha_info->digest[1] += B;
sha_info->digest[2] += C;
sha_info->digest[3] += D;
sha_info->digest[4] += E;
}
union endianTest {
long Long;
char Char[sizeof(long)];
};
static char isLittleEndian(void)
{
static union endianTest u;
u.Long = 1;
return (u.Char[0] == 1);
}
/* change endianness of data */
/* count is the number of bytes to do an endian flip */
static void maybe_byte_reverse(apr_uint32_t *buffer, int count)
{
int i;
apr_byte_t ct[4], *cp;
if (isLittleEndian()) { /* do the swap only if it is little endian */
count /= sizeof(apr_uint32_t);
cp = (apr_byte_t *) buffer;
for (i = 0; i < count; ++i) {
ct[0] = cp[0];
ct[1] = cp[1];
ct[2] = cp[2];
ct[3] = cp[3];
cp[0] = ct[3];
cp[1] = ct[2];
cp[2] = ct[1];
cp[3] = ct[0];
cp += sizeof(apr_uint32_t);
}
}
}
/* initialize the SHA digest */
APU_DECLARE(void) apr_sha1_init(apr_sha1_ctx_t *sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
}
/* update the SHA digest */
APU_DECLARE(void) apr_sha1_update_binary(apr_sha1_ctx_t *sha_info,
const unsigned char *buffer,
unsigned int count)
{
unsigned int i;
if ((sha_info->count_lo + ((apr_uint32_t) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (apr_uint32_t) count << 3;
sha_info->count_hi += (apr_uint32_t) count >> 29;
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(((apr_byte_t *) sha_info->data) + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = count;
}
APU_DECLARE(void) apr_sha1_update(apr_sha1_ctx_t *sha_info, const char *buf,
unsigned int count)
{
#if APR_CHARSET_EBCDIC
int i;
const apr_byte_t *buffer = (const apr_byte_t *) buf;
apr_size_t inbytes_left, outbytes_left;
if ((sha_info->count_lo + ((apr_uint32_t) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (apr_uint32_t) count << 3;
sha_info->count_hi += (apr_uint32_t) count >> 29;
/* Is there a remainder of the previous Update operation? */
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
inbytes_left = outbytes_left = i;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
((apr_byte_t *) sha_info->data) + sha_info->local,
&outbytes_left);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
inbytes_left = outbytes_left = SHA_BLOCKSIZE;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
(apr_byte_t *) sha_info->data, &outbytes_left);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
inbytes_left = outbytes_left = count;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
(apr_byte_t *) sha_info->data, &outbytes_left);
sha_info->local = count;
#else
apr_sha1_update_binary(sha_info, (const unsigned char *) buf, count);
#endif
}
/* finish computing the SHA digest */
APU_DECLARE(void) apr_sha1_final(unsigned char digest[APR_SHA1_DIGESTSIZE],
apr_sha1_ctx_t *sha_info)
{
int count, i, j;
apr_uint32_t lo_bit_count, hi_bit_count, k;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((apr_byte_t *) sha_info->data)[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8) {
memset(((apr_byte_t *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count);
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
memset((apr_byte_t *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
}
else {
memset(((apr_byte_t *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - 8 - count);
}
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_info->data[14] = hi_bit_count;
sha_info->data[15] = lo_bit_count;
sha_transform(sha_info);
for (i = 0, j = 0; j < APR_SHA1_DIGESTSIZE; i++) {
k = sha_info->digest[i];
digest[j++] = (unsigned char) ((k >> 24) & 0xff);
digest[j++] = (unsigned char) ((k >> 16) & 0xff);
digest[j++] = (unsigned char) ((k >> 8) & 0xff);
digest[j++] = (unsigned char) (k & 0xff);
}
}
APU_DECLARE(void) apr_sha1_base64(const char *clear, int len, char *out)
{
int l;
apr_sha1_ctx_t context;
apr_byte_t digest[APR_SHA1_DIGESTSIZE];
apr_sha1_init(&context);
apr_sha1_update(&context, clear, len);
apr_sha1_final(digest, &context);
/* private marker. */
apr_cpystrn(out, APR_SHA1PW_ID, APR_SHA1PW_IDLEN + 1);
/* SHA1 hash is always 20 chars */
l = apr_base64_encode_binary(out + APR_SHA1PW_IDLEN, digest, sizeof(digest));
out[l + APR_SHA1PW_IDLEN] = '\0';
/*
* output of base64 encoded SHA1 is always 28 chars + APR_SHA1PW_IDLEN
*/
}