freebsd-dev/sys/cam/cam_periph.c

1806 lines
46 KiB
C

/*-
* Common functions for CAM "type" (peripheral) drivers.
*
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/linker_set.h>
#include <sys/bio.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/devicestat.h>
#include <sys/bus.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_periph.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/scsi_pass.h>
static u_int camperiphnextunit(struct periph_driver *p_drv,
u_int newunit, int wired,
path_id_t pathid, target_id_t target,
lun_id_t lun);
static u_int camperiphunit(struct periph_driver *p_drv,
path_id_t pathid, target_id_t target,
lun_id_t lun);
static void camperiphdone(struct cam_periph *periph,
union ccb *done_ccb);
static void camperiphfree(struct cam_periph *periph);
static int camperiphscsistatuserror(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags,
union ccb *save_ccb,
int *openings,
u_int32_t *relsim_flags,
u_int32_t *timeout);
static int camperiphscsisenseerror(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags,
union ccb *save_ccb,
int *openings,
u_int32_t *relsim_flags,
u_int32_t *timeout);
static int nperiph_drivers;
struct periph_driver **periph_drivers;
MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
static int periph_selto_delay = 1000;
TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
static int periph_noresrc_delay = 500;
TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
static int periph_busy_delay = 500;
TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
void
periphdriver_register(void *data)
{
struct periph_driver **newdrivers, **old;
int ndrivers;
ndrivers = nperiph_drivers + 2;
newdrivers = malloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
M_WAITOK);
if (periph_drivers)
bcopy(periph_drivers, newdrivers,
sizeof(*newdrivers) * nperiph_drivers);
newdrivers[nperiph_drivers] = (struct periph_driver *)data;
newdrivers[nperiph_drivers + 1] = NULL;
old = periph_drivers;
periph_drivers = newdrivers;
if (old)
free(old, M_CAMPERIPH);
nperiph_drivers++;
}
cam_status
cam_periph_alloc(periph_ctor_t *periph_ctor,
periph_oninv_t *periph_oninvalidate,
periph_dtor_t *periph_dtor, periph_start_t *periph_start,
char *name, cam_periph_type type, struct cam_path *path,
ac_callback_t *ac_callback, ac_code code, void *arg)
{
struct periph_driver **p_drv;
struct cam_sim *sim;
struct cam_periph *periph;
struct cam_periph *cur_periph;
path_id_t path_id;
target_id_t target_id;
lun_id_t lun_id;
cam_status status;
u_int init_level;
init_level = 0;
/*
* Handle Hot-Plug scenarios. If there is already a peripheral
* of our type assigned to this path, we are likely waiting for
* final close on an old, invalidated, peripheral. If this is
* the case, queue up a deferred call to the peripheral's async
* handler. If it looks like a mistaken re-allocation, complain.
*/
if ((periph = cam_periph_find(path, name)) != NULL) {
if ((periph->flags & CAM_PERIPH_INVALID) != 0
&& (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
periph->deferred_callback = ac_callback;
periph->deferred_ac = code;
return (CAM_REQ_INPROG);
} else {
printf("cam_periph_alloc: attempt to re-allocate "
"valid device %s%d rejected\n",
periph->periph_name, periph->unit_number);
}
return (CAM_REQ_INVALID);
}
periph = (struct cam_periph *)malloc(sizeof(*periph), M_CAMPERIPH,
M_NOWAIT);
if (periph == NULL)
return (CAM_RESRC_UNAVAIL);
init_level++;
xpt_lock_buses();
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (strcmp((*p_drv)->driver_name, name) == 0)
break;
}
xpt_unlock_buses();
if (*p_drv == NULL) {
printf("cam_periph_alloc: invalid periph name '%s'\n", name);
free(periph, M_CAMPERIPH);
return (CAM_REQ_INVALID);
}
sim = xpt_path_sim(path);
path_id = xpt_path_path_id(path);
target_id = xpt_path_target_id(path);
lun_id = xpt_path_lun_id(path);
bzero(periph, sizeof(*periph));
cam_init_pinfo(&periph->pinfo);
periph->periph_start = periph_start;
periph->periph_dtor = periph_dtor;
periph->periph_oninval = periph_oninvalidate;
periph->type = type;
periph->periph_name = name;
periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
periph->immediate_priority = CAM_PRIORITY_NONE;
periph->refcount = 0;
periph->sim = sim;
SLIST_INIT(&periph->ccb_list);
status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
if (status != CAM_REQ_CMP)
goto failure;
periph->path = path;
init_level++;
status = xpt_add_periph(periph);
if (status != CAM_REQ_CMP)
goto failure;
cur_periph = TAILQ_FIRST(&(*p_drv)->units);
while (cur_periph != NULL
&& cur_periph->unit_number < periph->unit_number)
cur_periph = TAILQ_NEXT(cur_periph, unit_links);
if (cur_periph != NULL)
TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
else {
TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
(*p_drv)->generation++;
}
init_level++;
status = periph_ctor(periph, arg);
if (status == CAM_REQ_CMP)
init_level++;
failure:
switch (init_level) {
case 4:
/* Initialized successfully */
break;
case 3:
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
xpt_remove_periph(periph);
/* FALLTHROUGH */
case 2:
xpt_free_path(periph->path);
/* FALLTHROUGH */
case 1:
free(periph, M_CAMPERIPH);
/* FALLTHROUGH */
case 0:
/* No cleanup to perform. */
break;
default:
panic("cam_periph_alloc: Unkown init level");
}
return(status);
}
/*
* Find a peripheral structure with the specified path, target, lun,
* and (optionally) type. If the name is NULL, this function will return
* the first peripheral driver that matches the specified path.
*/
struct cam_periph *
cam_periph_find(struct cam_path *path, char *name)
{
struct periph_driver **p_drv;
struct cam_periph *periph;
xpt_lock_buses();
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
continue;
TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
if (xpt_path_comp(periph->path, path) == 0) {
xpt_unlock_buses();
return(periph);
}
}
if (name != NULL) {
xpt_unlock_buses();
return(NULL);
}
}
xpt_unlock_buses();
return(NULL);
}
cam_status
cam_periph_acquire(struct cam_periph *periph)
{
if (periph == NULL)
return(CAM_REQ_CMP_ERR);
xpt_lock_buses();
periph->refcount++;
xpt_unlock_buses();
return(CAM_REQ_CMP);
}
void
cam_periph_release_locked(struct cam_periph *periph)
{
if (periph == NULL)
return;
xpt_lock_buses();
if ((--periph->refcount == 0)
&& (periph->flags & CAM_PERIPH_INVALID)) {
camperiphfree(periph);
}
xpt_unlock_buses();
}
void
cam_periph_release(struct cam_periph *periph)
{
struct cam_sim *sim;
if (periph == NULL)
return;
sim = periph->sim;
mtx_assert(sim->mtx, MA_NOTOWNED);
mtx_lock(sim->mtx);
cam_periph_release_locked(periph);
mtx_unlock(sim->mtx);
}
int
cam_periph_hold(struct cam_periph *periph, int priority)
{
int error;
/*
* Increment the reference count on the peripheral
* while we wait for our lock attempt to succeed
* to ensure the peripheral doesn't disappear out
* from user us while we sleep.
*/
if (cam_periph_acquire(periph) != CAM_REQ_CMP)
return (ENXIO);
mtx_assert(periph->sim->mtx, MA_OWNED);
while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
periph->flags |= CAM_PERIPH_LOCK_WANTED;
if ((error = mtx_sleep(periph, periph->sim->mtx, priority,
"caplck", 0)) != 0) {
cam_periph_release_locked(periph);
return (error);
}
}
periph->flags |= CAM_PERIPH_LOCKED;
return (0);
}
void
cam_periph_unhold(struct cam_periph *periph)
{
mtx_assert(periph->sim->mtx, MA_OWNED);
periph->flags &= ~CAM_PERIPH_LOCKED;
if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
wakeup(periph);
}
cam_periph_release_locked(periph);
}
/*
* Look for the next unit number that is not currently in use for this
* peripheral type starting at "newunit". Also exclude unit numbers that
* are reserved by for future "hardwiring" unless we already know that this
* is a potential wired device. Only assume that the device is "wired" the
* first time through the loop since after that we'll be looking at unit
* numbers that did not match a wiring entry.
*/
static u_int
camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
path_id_t pathid, target_id_t target, lun_id_t lun)
{
struct cam_periph *periph;
char *periph_name;
int i, val, dunit, r;
const char *dname, *strval;
periph_name = p_drv->driver_name;
for (;;newunit++) {
for (periph = TAILQ_FIRST(&p_drv->units);
periph != NULL && periph->unit_number != newunit;
periph = TAILQ_NEXT(periph, unit_links))
;
if (periph != NULL && periph->unit_number == newunit) {
if (wired != 0) {
xpt_print(periph->path, "Duplicate Wired "
"Device entry!\n");
xpt_print(periph->path, "Second device (%s "
"device at scbus%d target %d lun %d) will "
"not be wired\n", periph_name, pathid,
target, lun);
wired = 0;
}
continue;
}
if (wired)
break;
/*
* Don't match entries like "da 4" as a wired down
* device, but do match entries like "da 4 target 5"
* or even "da 4 scbus 1".
*/
i = 0;
dname = periph_name;
for (;;) {
r = resource_find_dev(&i, dname, &dunit, NULL, NULL);
if (r != 0)
break;
/* if no "target" and no specific scbus, skip */
if (resource_int_value(dname, dunit, "target", &val) &&
(resource_string_value(dname, dunit, "at",&strval)||
strcmp(strval, "scbus") == 0))
continue;
if (newunit == dunit)
break;
}
if (r != 0)
break;
}
return (newunit);
}
static u_int
camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
target_id_t target, lun_id_t lun)
{
u_int unit;
int wired, i, val, dunit;
const char *dname, *strval;
char pathbuf[32], *periph_name;
periph_name = p_drv->driver_name;
snprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
unit = 0;
i = 0;
dname = periph_name;
for (wired = 0; resource_find_dev(&i, dname, &dunit, NULL, NULL) == 0;
wired = 0) {
if (resource_string_value(dname, dunit, "at", &strval) == 0) {
if (strcmp(strval, pathbuf) != 0)
continue;
wired++;
}
if (resource_int_value(dname, dunit, "target", &val) == 0) {
if (val != target)
continue;
wired++;
}
if (resource_int_value(dname, dunit, "lun", &val) == 0) {
if (val != lun)
continue;
wired++;
}
if (wired != 0) {
unit = dunit;
break;
}
}
/*
* Either start from 0 looking for the next unit or from
* the unit number given in the resource config. This way,
* if we have wildcard matches, we don't return the same
* unit number twice.
*/
unit = camperiphnextunit(p_drv, unit, wired, pathid, target, lun);
return (unit);
}
void
cam_periph_invalidate(struct cam_periph *periph)
{
/*
* We only call this routine the first time a peripheral is
* invalidated.
*/
if (((periph->flags & CAM_PERIPH_INVALID) == 0)
&& (periph->periph_oninval != NULL))
periph->periph_oninval(periph);
periph->flags |= CAM_PERIPH_INVALID;
periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
xpt_lock_buses();
if (periph->refcount == 0)
camperiphfree(periph);
else if (periph->refcount < 0)
printf("cam_invalidate_periph: refcount < 0!!\n");
xpt_unlock_buses();
}
static void
camperiphfree(struct cam_periph *periph)
{
struct periph_driver **p_drv;
for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
break;
}
if (*p_drv == NULL) {
printf("camperiphfree: attempt to free non-existant periph\n");
return;
}
TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
(*p_drv)->generation++;
xpt_unlock_buses();
if (periph->periph_dtor != NULL)
periph->periph_dtor(periph);
xpt_remove_periph(periph);
if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
union ccb ccb;
void *arg;
switch (periph->deferred_ac) {
case AC_FOUND_DEVICE:
ccb.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
xpt_action(&ccb);
arg = &ccb;
break;
case AC_PATH_REGISTERED:
ccb.ccb_h.func_code = XPT_PATH_INQ;
xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
xpt_action(&ccb);
arg = &ccb;
break;
default:
arg = NULL;
break;
}
periph->deferred_callback(NULL, periph->deferred_ac,
periph->path, arg);
}
xpt_free_path(periph->path);
free(periph, M_CAMPERIPH);
xpt_lock_buses();
}
/*
* Map user virtual pointers into kernel virtual address space, so we can
* access the memory. This won't work on physical pointers, for now it's
* up to the caller to check for that. (XXX KDM -- should we do that here
* instead?) This also only works for up to MAXPHYS memory. Since we use
* buffers to map stuff in and out, we're limited to the buffer size.
*/
int
cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
{
int numbufs, i, j;
int flags[CAM_PERIPH_MAXMAPS];
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
u_int32_t lengths[CAM_PERIPH_MAXMAPS];
u_int32_t dirs[CAM_PERIPH_MAXMAPS];
/* Some controllers may not be able to handle more data. */
size_t maxmap = DFLTPHYS;
switch(ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
if (ccb->cdm.match_buf_len == 0) {
printf("cam_periph_mapmem: invalid match buffer "
"length 0\n");
return(EINVAL);
}
if (ccb->cdm.pattern_buf_len > 0) {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
lengths[0] = ccb->cdm.pattern_buf_len;
dirs[0] = CAM_DIR_OUT;
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
lengths[1] = ccb->cdm.match_buf_len;
dirs[1] = CAM_DIR_IN;
numbufs = 2;
} else {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
lengths[0] = ccb->cdm.match_buf_len;
dirs[0] = CAM_DIR_IN;
numbufs = 1;
}
/*
* This request will not go to the hardware, no reason
* to be so strict. vmapbuf() is able to map up to MAXPHYS.
*/
maxmap = MAXPHYS;
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
data_ptrs[0] = &ccb->csio.data_ptr;
lengths[0] = ccb->csio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
case XPT_ATA_IO:
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
return(0);
data_ptrs[0] = &ccb->ataio.data_ptr;
lengths[0] = ccb->ataio.dxfer_len;
dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
numbufs = 1;
break;
default:
return(EINVAL);
break; /* NOTREACHED */
}
/*
* Check the transfer length and permissions first, so we don't
* have to unmap any previously mapped buffers.
*/
for (i = 0; i < numbufs; i++) {
flags[i] = 0;
/*
* The userland data pointer passed in may not be page
* aligned. vmapbuf() truncates the address to a page
* boundary, so if the address isn't page aligned, we'll
* need enough space for the given transfer length, plus
* whatever extra space is necessary to make it to the page
* boundary.
*/
if ((lengths[i] +
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > maxmap){
printf("cam_periph_mapmem: attempt to map %lu bytes, "
"which is greater than %lu\n",
(long)(lengths[i] +
(((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
(u_long)maxmap);
return(E2BIG);
}
if (dirs[i] & CAM_DIR_OUT) {
flags[i] = BIO_WRITE;
}
if (dirs[i] & CAM_DIR_IN) {
flags[i] = BIO_READ;
}
}
/* this keeps the current process from getting swapped */
/*
* XXX KDM should I use P_NOSWAP instead?
*/
PHOLD(curproc);
for (i = 0; i < numbufs; i++) {
/*
* Get the buffer.
*/
mapinfo->bp[i] = getpbuf(NULL);
/* save the buffer's data address */
mapinfo->bp[i]->b_saveaddr = mapinfo->bp[i]->b_data;
/* put our pointer in the data slot */
mapinfo->bp[i]->b_data = *data_ptrs[i];
/* set the transfer length, we know it's < MAXPHYS */
mapinfo->bp[i]->b_bufsize = lengths[i];
/* set the direction */
mapinfo->bp[i]->b_iocmd = flags[i];
/*
* Map the buffer into kernel memory.
*
* Note that useracc() alone is not a sufficient test.
* vmapbuf() can still fail due to a smaller file mapped
* into a larger area of VM, or if userland races against
* vmapbuf() after the useracc() check.
*/
if (vmapbuf(mapinfo->bp[i]) < 0) {
for (j = 0; j < i; ++j) {
*data_ptrs[j] = mapinfo->bp[j]->b_saveaddr;
vunmapbuf(mapinfo->bp[j]);
relpbuf(mapinfo->bp[j], NULL);
}
relpbuf(mapinfo->bp[i], NULL);
PRELE(curproc);
return(EACCES);
}
/* set our pointer to the new mapped area */
*data_ptrs[i] = mapinfo->bp[i]->b_data;
mapinfo->num_bufs_used++;
}
/*
* Now that we've gotten this far, change ownership to the kernel
* of the buffers so that we don't run afoul of returning to user
* space with locks (on the buffer) held.
*/
for (i = 0; i < numbufs; i++) {
BUF_KERNPROC(mapinfo->bp[i]);
}
return(0);
}
/*
* Unmap memory segments mapped into kernel virtual address space by
* cam_periph_mapmem().
*/
void
cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
{
int numbufs, i;
u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
if (mapinfo->num_bufs_used <= 0) {
/* allow ourselves to be swapped once again */
PRELE(curproc);
return;
}
switch (ccb->ccb_h.func_code) {
case XPT_DEV_MATCH:
numbufs = min(mapinfo->num_bufs_used, 2);
if (numbufs == 1) {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
} else {
data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
}
break;
case XPT_SCSI_IO:
case XPT_CONT_TARGET_IO:
data_ptrs[0] = &ccb->csio.data_ptr;
numbufs = min(mapinfo->num_bufs_used, 1);
break;
case XPT_ATA_IO:
data_ptrs[0] = &ccb->ataio.data_ptr;
numbufs = min(mapinfo->num_bufs_used, 1);
break;
default:
/* allow ourselves to be swapped once again */
PRELE(curproc);
return;
break; /* NOTREACHED */
}
for (i = 0; i < numbufs; i++) {
/* Set the user's pointer back to the original value */
*data_ptrs[i] = mapinfo->bp[i]->b_saveaddr;
/* unmap the buffer */
vunmapbuf(mapinfo->bp[i]);
/* release the buffer */
relpbuf(mapinfo->bp[i], NULL);
}
/* allow ourselves to be swapped once again */
PRELE(curproc);
}
union ccb *
cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
{
struct ccb_hdr *ccb_h;
mtx_assert(periph->sim->mtx, MA_OWNED);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
while (SLIST_FIRST(&periph->ccb_list) == NULL) {
if (periph->immediate_priority > priority)
periph->immediate_priority = priority;
xpt_schedule(periph, priority);
if ((SLIST_FIRST(&periph->ccb_list) != NULL)
&& (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
break;
mtx_assert(periph->sim->mtx, MA_OWNED);
mtx_sleep(&periph->ccb_list, periph->sim->mtx, PRIBIO, "cgticb",
0);
}
ccb_h = SLIST_FIRST(&periph->ccb_list);
SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
return ((union ccb *)ccb_h);
}
void
cam_periph_ccbwait(union ccb *ccb)
{
struct cam_sim *sim;
sim = xpt_path_sim(ccb->ccb_h.path);
if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
mtx_sleep(&ccb->ccb_h.cbfcnp, sim->mtx, PRIBIO, "cbwait", 0);
}
int
cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags))
{
union ccb *ccb;
int error;
int found;
error = found = 0;
switch(cmd){
case CAMGETPASSTHRU:
ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL);
xpt_setup_ccb(&ccb->ccb_h,
ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
ccb->ccb_h.func_code = XPT_GDEVLIST;
/*
* Basically, the point of this is that we go through
* getting the list of devices, until we find a passthrough
* device. In the current version of the CAM code, the
* only way to determine what type of device we're dealing
* with is by its name.
*/
while (found == 0) {
ccb->cgdl.index = 0;
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
/* we want the next device in the list */
xpt_action(ccb);
if (strncmp(ccb->cgdl.periph_name,
"pass", 4) == 0){
found = 1;
break;
}
}
if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
(found == 0)) {
ccb->cgdl.periph_name[0] = '\0';
ccb->cgdl.unit_number = 0;
break;
}
}
/* copy the result back out */
bcopy(ccb, addr, sizeof(union ccb));
/* and release the ccb */
xpt_release_ccb(ccb);
break;
default:
error = ENOTTY;
break;
}
return(error);
}
int
cam_periph_runccb(union ccb *ccb,
int (*error_routine)(union ccb *ccb,
cam_flags camflags,
u_int32_t sense_flags),
cam_flags camflags, u_int32_t sense_flags,
struct devstat *ds)
{
struct cam_sim *sim;
int error;
error = 0;
sim = xpt_path_sim(ccb->ccb_h.path);
mtx_assert(sim->mtx, MA_OWNED);
/*
* If the user has supplied a stats structure, and if we understand
* this particular type of ccb, record the transaction start.
*/
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
devstat_start_transaction(ds, NULL);
xpt_action(ccb);
do {
cam_periph_ccbwait(ccb);
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
error = 0;
else if (error_routine != NULL)
error = (*error_routine)(ccb, camflags, sense_flags);
else
error = 0;
} while (error == ERESTART);
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(ccb->ccb_h.path,
/* relsim_flags */0,
/* openings */0,
/* timeout */0,
/* getcount_only */ FALSE);
if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
devstat_end_transaction(ds,
ccb->csio.dxfer_len,
ccb->csio.tag_action & 0xf,
((ccb->ccb_h.flags & CAM_DIR_MASK) ==
CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
(ccb->ccb_h.flags & CAM_DIR_OUT) ?
DEVSTAT_WRITE :
DEVSTAT_READ, NULL, NULL);
return(error);
}
void
cam_freeze_devq(struct cam_path *path)
{
struct ccb_hdr ccb_h;
xpt_setup_ccb(&ccb_h, path, CAM_PRIORITY_NORMAL);
ccb_h.func_code = XPT_NOOP;
ccb_h.flags = CAM_DEV_QFREEZE;
xpt_action((union ccb *)&ccb_h);
}
u_int32_t
cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
u_int32_t openings, u_int32_t timeout,
int getcount_only)
{
struct ccb_relsim crs;
xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
crs.ccb_h.func_code = XPT_REL_SIMQ;
crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
crs.release_flags = relsim_flags;
crs.openings = openings;
crs.release_timeout = timeout;
xpt_action((union ccb *)&crs);
return (crs.qfrozen_cnt);
}
#define saved_ccb_ptr ppriv_ptr0
static void
camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
{
union ccb *saved_ccb;
cam_status status;
int frozen;
int sense;
struct scsi_start_stop_unit *scsi_cmd;
u_int32_t relsim_flags, timeout;
u_int32_t qfrozen_cnt;
int xpt_done_ccb;
xpt_done_ccb = FALSE;
status = done_ccb->ccb_h.status;
frozen = (status & CAM_DEV_QFRZN) != 0;
sense = (status & CAM_AUTOSNS_VALID) != 0;
status &= CAM_STATUS_MASK;
timeout = 0;
relsim_flags = 0;
saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
/*
* Unfreeze the queue once if it is already frozen..
*/
if (frozen != 0) {
qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/0,
/*openings*/0,
/*timeout*/0,
/*getcount_only*/0);
}
switch (status) {
case CAM_REQ_CMP:
{
/*
* If we have successfully taken a device from the not
* ready to ready state, re-scan the device and re-get
* the inquiry information. Many devices (mostly disks)
* don't properly report their inquiry information unless
* they are spun up.
*
* If we manually retrieved sense into a CCB and got
* something other than "NO SENSE" send the updated CCB
* back to the client via xpt_done() to be processed via
* the error recovery code again.
*/
if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
scsi_cmd = (struct scsi_start_stop_unit *)
&done_ccb->csio.cdb_io.cdb_bytes;
if (scsi_cmd->opcode == START_STOP_UNIT)
xpt_async(AC_INQ_CHANGED,
done_ccb->ccb_h.path, NULL);
if (scsi_cmd->opcode == REQUEST_SENSE) {
u_int sense_key;
sense_key = saved_ccb->csio.sense_data.flags;
sense_key &= SSD_KEY;
if (sense_key != SSD_KEY_NO_SENSE) {
saved_ccb->ccb_h.status |=
CAM_AUTOSNS_VALID;
#if 0
xpt_print(saved_ccb->ccb_h.path,
"Recovered Sense\n");
scsi_sense_print(&saved_ccb->csio);
cam_error_print(saved_ccb, CAM_ESF_ALL,
CAM_EPF_ALL);
#endif
} else {
saved_ccb->ccb_h.status &=
~CAM_STATUS_MASK;
saved_ccb->ccb_h.status |=
CAM_AUTOSENSE_FAIL;
}
xpt_done_ccb = TRUE;
}
}
bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
sizeof(union ccb));
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
if (xpt_done_ccb == FALSE)
xpt_action(done_ccb);
break;
}
case CAM_SCSI_STATUS_ERROR:
scsi_cmd = (struct scsi_start_stop_unit *)
&done_ccb->csio.cdb_io.cdb_bytes;
if (sense != 0) {
struct ccb_getdev cgd;
struct scsi_sense_data *sense;
int error_code, sense_key, asc, ascq;
scsi_sense_action err_action;
sense = &done_ccb->csio.sense_data;
scsi_extract_sense(sense, &error_code,
&sense_key, &asc, &ascq);
/*
* Grab the inquiry data for this device.
*/
xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
err_action = scsi_error_action(&done_ccb->csio,
&cgd.inq_data, 0);
/*
* If the error is "invalid field in CDB",
* and the load/eject flag is set, turn the
* flag off and try again. This is just in
* case the drive in question barfs on the
* load eject flag. The CAM code should set
* the load/eject flag by default for
* removable media.
*/
/* XXX KDM
* Should we check to see what the specific
* scsi status is?? Or does it not matter
* since we already know that there was an
* error, and we know what the specific
* error code was, and we know what the
* opcode is..
*/
if ((scsi_cmd->opcode == START_STOP_UNIT) &&
((scsi_cmd->how & SSS_LOEJ) != 0) &&
(asc == 0x24) && (ascq == 0x00) &&
(done_ccb->ccb_h.retry_count > 0)) {
scsi_cmd->how &= ~SSS_LOEJ;
xpt_action(done_ccb);
} else if ((done_ccb->ccb_h.retry_count > 1)
&& ((err_action & SS_MASK) != SS_FAIL)) {
/*
* In this case, the error recovery
* command failed, but we've got
* some retries left on it. Give
* it another try unless this is an
* unretryable error.
*/
/* set the timeout to .5 sec */
relsim_flags =
RELSIM_RELEASE_AFTER_TIMEOUT;
timeout = 500;
xpt_action(done_ccb);
break;
} else {
/*
* Perform the final retry with the original
* CCB so that final error processing is
* performed by the owner of the CCB.
*/
bcopy(done_ccb->ccb_h.saved_ccb_ptr,
done_ccb, sizeof(union ccb));
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
xpt_action(done_ccb);
}
} else {
/*
* Eh?? The command failed, but we don't
* have any sense. What's up with that?
* Fire the CCB again to return it to the
* caller.
*/
bcopy(done_ccb->ccb_h.saved_ccb_ptr,
done_ccb, sizeof(union ccb));
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
xpt_action(done_ccb);
}
break;
default:
bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
sizeof(union ccb));
periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
xpt_action(done_ccb);
break;
}
/* decrement the retry count */
/*
* XXX This isn't appropriate in all cases. Restructure,
* so that the retry count is only decremented on an
* actual retry. Remeber that the orignal ccb had its
* retry count dropped before entering recovery, so
* doing it again is a bug.
*/
if (done_ccb->ccb_h.retry_count > 0)
done_ccb->ccb_h.retry_count--;
qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
/*relsim_flags*/relsim_flags,
/*openings*/0,
/*timeout*/timeout,
/*getcount_only*/0);
if (xpt_done_ccb == TRUE)
(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
}
/*
* Generic Async Event handler. Peripheral drivers usually
* filter out the events that require personal attention,
* and leave the rest to this function.
*/
void
cam_periph_async(struct cam_periph *periph, u_int32_t code,
struct cam_path *path, void *arg)
{
switch (code) {
case AC_LOST_DEVICE:
cam_periph_invalidate(periph);
break;
case AC_SENT_BDR:
case AC_BUS_RESET:
{
cam_periph_bus_settle(periph, scsi_delay);
break;
}
default:
break;
}
}
void
cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
{
struct ccb_getdevstats cgds;
xpt_setup_ccb(&cgds.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cgds.ccb_h.func_code = XPT_GDEV_STATS;
xpt_action((union ccb *)&cgds);
cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
}
void
cam_periph_freeze_after_event(struct cam_periph *periph,
struct timeval* event_time, u_int duration_ms)
{
struct timeval delta;
struct timeval duration_tv;
microtime(&delta);
timevalsub(&delta, event_time);
duration_tv.tv_sec = duration_ms / 1000;
duration_tv.tv_usec = (duration_ms % 1000) * 1000;
if (timevalcmp(&delta, &duration_tv, <)) {
timevalsub(&duration_tv, &delta);
duration_ms = duration_tv.tv_sec * 1000;
duration_ms += duration_tv.tv_usec / 1000;
cam_freeze_devq(periph->path);
cam_release_devq(periph->path,
RELSIM_RELEASE_AFTER_TIMEOUT,
/*reduction*/0,
/*timeout*/duration_ms,
/*getcount_only*/0);
}
}
static int
camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
u_int32_t sense_flags, union ccb *save_ccb,
int *openings, u_int32_t *relsim_flags,
u_int32_t *timeout)
{
int error;
switch (ccb->csio.scsi_status) {
case SCSI_STATUS_OK:
case SCSI_STATUS_COND_MET:
case SCSI_STATUS_INTERMED:
case SCSI_STATUS_INTERMED_COND_MET:
error = 0;
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
error = camperiphscsisenseerror(ccb,
camflags,
sense_flags,
save_ccb,
openings,
relsim_flags,
timeout);
break;
case SCSI_STATUS_QUEUE_FULL:
{
/* no decrement */
struct ccb_getdevstats cgds;
/*
* First off, find out what the current
* transaction counts are.
*/
xpt_setup_ccb(&cgds.ccb_h,
ccb->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgds.ccb_h.func_code = XPT_GDEV_STATS;
xpt_action((union ccb *)&cgds);
/*
* If we were the only transaction active, treat
* the QUEUE FULL as if it were a BUSY condition.
*/
if (cgds.dev_active != 0) {
int total_openings;
/*
* Reduce the number of openings to
* be 1 less than the amount it took
* to get a queue full bounded by the
* minimum allowed tag count for this
* device.
*/
total_openings = cgds.dev_active + cgds.dev_openings;
*openings = cgds.dev_active;
if (*openings < cgds.mintags)
*openings = cgds.mintags;
if (*openings < total_openings)
*relsim_flags = RELSIM_ADJUST_OPENINGS;
else {
/*
* Some devices report queue full for
* temporary resource shortages. For
* this reason, we allow a minimum
* tag count to be entered via a
* quirk entry to prevent the queue
* count on these devices from falling
* to a pessimisticly low value. We
* still wait for the next successful
* completion, however, before queueing
* more transactions to the device.
*/
*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
}
*timeout = 0;
error = ERESTART;
if (bootverbose) {
xpt_print(ccb->ccb_h.path, "Queue Full\n");
}
break;
}
/* FALLTHROUGH */
}
case SCSI_STATUS_BUSY:
/*
* Restart the queue after either another
* command completes or a 1 second timeout.
*/
if (bootverbose) {
xpt_print(ccb->ccb_h.path, "Device Busy\n");
}
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
| RELSIM_RELEASE_AFTER_CMDCMPLT;
*timeout = 1000;
} else {
error = EIO;
}
break;
case SCSI_STATUS_RESERV_CONFLICT:
xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
error = EIO;
break;
default:
xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
ccb->csio.scsi_status);
error = EIO;
break;
}
return (error);
}
static int
camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
u_int32_t sense_flags, union ccb *save_ccb,
int *openings, u_int32_t *relsim_flags,
u_int32_t *timeout)
{
struct cam_periph *periph;
int error;
periph = xpt_path_periph(ccb->ccb_h.path);
if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
/*
* If error recovery is already in progress, don't attempt
* to process this error, but requeue it unconditionally
* and attempt to process it once error recovery has
* completed. This failed command is probably related to
* the error that caused the currently active error recovery
* action so our current recovery efforts should also
* address this command. Be aware that the error recovery
* code assumes that only one recovery action is in progress
* on a particular peripheral instance at any given time
* (e.g. only one saved CCB for error recovery) so it is
* imperitive that we don't violate this assumption.
*/
error = ERESTART;
} else {
scsi_sense_action err_action;
struct ccb_getdev cgd;
const char *action_string;
union ccb* print_ccb;
/* A description of the error recovery action performed */
action_string = NULL;
/*
* The location of the orignal ccb
* for sense printing purposes.
*/
print_ccb = ccb;
/*
* Grab the inquiry data for this device.
*/
xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
err_action = scsi_error_action(&ccb->csio,
&cgd.inq_data,
sense_flags);
else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
err_action = SS_REQSENSE;
else
err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
error = err_action & SS_ERRMASK;
/*
* If the recovery action will consume a retry,
* make sure we actually have retries available.
*/
if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
if (ccb->ccb_h.retry_count > 0)
ccb->ccb_h.retry_count--;
else {
action_string = "Retries Exhausted";
goto sense_error_done;
}
}
if ((err_action & SS_MASK) >= SS_START) {
/*
* Do common portions of commands that
* use recovery CCBs.
*/
if (save_ccb == NULL) {
action_string = "No recovery CCB supplied";
goto sense_error_done;
}
bcopy(ccb, save_ccb, sizeof(*save_ccb));
print_ccb = save_ccb;
periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
}
switch (err_action & SS_MASK) {
case SS_NOP:
action_string = "No Recovery Action Needed";
error = 0;
break;
case SS_RETRY:
action_string = "Retrying Command (per Sense Data)";
error = ERESTART;
break;
case SS_FAIL:
action_string = "Unretryable error";
break;
case SS_START:
{
int le;
/*
* Send a start unit command to the device, and
* then retry the command.
*/
action_string = "Attempting to Start Unit";
/*
* Check for removable media and set
* load/eject flag appropriately.
*/
if (SID_IS_REMOVABLE(&cgd.inq_data))
le = TRUE;
else
le = FALSE;
scsi_start_stop(&ccb->csio,
/*retries*/1,
camperiphdone,
MSG_SIMPLE_Q_TAG,
/*start*/TRUE,
/*load/eject*/le,
/*immediate*/FALSE,
SSD_FULL_SIZE,
/*timeout*/50000);
break;
}
case SS_TUR:
{
/*
* Send a Test Unit Ready to the device.
* If the 'many' flag is set, we send 120
* test unit ready commands, one every half
* second. Otherwise, we just send one TUR.
* We only want to do this if the retry
* count has not been exhausted.
*/
int retries;
if ((err_action & SSQ_MANY) != 0) {
action_string = "Polling device for readiness";
retries = 120;
} else {
action_string = "Testing device for readiness";
retries = 1;
}
scsi_test_unit_ready(&ccb->csio,
retries,
camperiphdone,
MSG_SIMPLE_Q_TAG,
SSD_FULL_SIZE,
/*timeout*/5000);
/*
* Accomplish our 500ms delay by deferring
* the release of our device queue appropriately.
*/
*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
*timeout = 500;
break;
}
case SS_REQSENSE:
{
/*
* Send a Request Sense to the device. We
* assume that we are in a contingent allegiance
* condition so we do not tag this request.
*/
scsi_request_sense(&ccb->csio, /*retries*/1,
camperiphdone,
&save_ccb->csio.sense_data,
sizeof(save_ccb->csio.sense_data),
CAM_TAG_ACTION_NONE,
/*sense_len*/SSD_FULL_SIZE,
/*timeout*/5000);
break;
}
default:
panic("Unhandled error action %x", err_action);
}
if ((err_action & SS_MASK) >= SS_START) {
/*
* Drop the priority, so that the recovery
* CCB is the first to execute. Freeze the queue
* after this command is sent so that we can
* restore the old csio and have it queued in
* the proper order before we release normal
* transactions to the device.
*/
ccb->ccb_h.pinfo.priority = CAM_PRIORITY_DEV;
ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
ccb->ccb_h.saved_ccb_ptr = save_ccb;
error = ERESTART;
}
sense_error_done:
if ((err_action & SSQ_PRINT_SENSE) != 0
&& (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
xpt_print_path(ccb->ccb_h.path);
if (bootverbose)
scsi_sense_print(&print_ccb->csio);
printf("%s\n", action_string);
}
}
return (error);
}
/*
* Generic error handler. Peripheral drivers usually filter
* out the errors that they handle in a unique mannor, then
* call this function.
*/
int
cam_periph_error(union ccb *ccb, cam_flags camflags,
u_int32_t sense_flags, union ccb *save_ccb)
{
const char *action_string;
cam_status status;
int frozen;
int error, printed = 0;
int openings;
u_int32_t relsim_flags;
u_int32_t timeout = 0;
action_string = NULL;
status = ccb->ccb_h.status;
frozen = (status & CAM_DEV_QFRZN) != 0;
status &= CAM_STATUS_MASK;
openings = relsim_flags = 0;
switch (status) {
case CAM_REQ_CMP:
error = 0;
break;
case CAM_SCSI_STATUS_ERROR:
error = camperiphscsistatuserror(ccb,
camflags,
sense_flags,
save_ccb,
&openings,
&relsim_flags,
&timeout);
break;
case CAM_AUTOSENSE_FAIL:
xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
error = EIO; /* we have to kill the command */
break;
case CAM_ATA_STATUS_ERROR:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path,
"Request completed with CAM_ATA_STATUS_ERROR\n");
printed++;
}
/* FALLTHROUGH */
case CAM_REQ_CMP_ERR:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path,
"Request completed with CAM_REQ_CMP_ERR\n");
printed++;
}
/* FALLTHROUGH */
case CAM_CMD_TIMEOUT:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Command timed out\n");
printed++;
}
/* FALLTHROUGH */
case CAM_UNEXP_BUSFREE:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
printed++;
}
/* FALLTHROUGH */
case CAM_UNCOR_PARITY:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path,
"Uncorrected Parity Error\n");
printed++;
}
/* FALLTHROUGH */
case CAM_DATA_RUN_ERR:
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Data Overrun\n");
printed++;
}
error = EIO; /* we have to kill the command */
/* decrement the number of retries */
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
} else {
action_string = "Retries Exhausted";
error = EIO;
}
break;
case CAM_UA_ABORT:
case CAM_UA_TERMIO:
case CAM_MSG_REJECT_REC:
/* XXX Don't know that these are correct */
error = EIO;
break;
case CAM_SEL_TIMEOUT:
{
struct cam_path *newpath;
if ((camflags & CAM_RETRY_SELTO) != 0) {
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path,
"Selection Timeout\n");
printed++;
}
/*
* Wait a bit to give the device
* time to recover before we try again.
*/
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
timeout = periph_selto_delay;
break;
}
}
error = ENXIO;
/* Should we do more if we can't create the path?? */
if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
CAM_LUN_WILDCARD) != CAM_REQ_CMP)
break;
/*
* Let peripheral drivers know that this device has gone
* away.
*/
xpt_async(AC_LOST_DEVICE, newpath, NULL);
xpt_free_path(newpath);
break;
}
case CAM_REQ_INVALID:
case CAM_PATH_INVALID:
case CAM_DEV_NOT_THERE:
case CAM_NO_HBA:
case CAM_PROVIDE_FAIL:
case CAM_REQ_TOO_BIG:
case CAM_LUN_INVALID:
case CAM_TID_INVALID:
error = EINVAL;
break;
case CAM_SCSI_BUS_RESET:
case CAM_BDR_SENT:
/*
* Commands that repeatedly timeout and cause these
* kinds of error recovery actions, should return
* CAM_CMD_TIMEOUT, which allows us to safely assume
* that this command was an innocent bystander to
* these events and should be unconditionally
* retried.
*/
if (bootverbose && printed == 0) {
xpt_print_path(ccb->ccb_h.path);
if (status == CAM_BDR_SENT)
printf("Bus Device Reset sent\n");
else
printf("Bus Reset issued\n");
printed++;
}
/* FALLTHROUGH */
case CAM_REQUEUE_REQ:
/* Unconditional requeue */
error = ERESTART;
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "Request Requeued\n");
printed++;
}
break;
case CAM_RESRC_UNAVAIL:
/* Wait a bit for the resource shortage to abate. */
timeout = periph_noresrc_delay;
/* FALLTHROUGH */
case CAM_BUSY:
if (timeout == 0) {
/* Wait a bit for the busy condition to abate. */
timeout = periph_busy_delay;
}
relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
/* FALLTHROUGH */
default:
/* decrement the number of retries */
if (ccb->ccb_h.retry_count > 0) {
ccb->ccb_h.retry_count--;
error = ERESTART;
if (bootverbose && printed == 0) {
xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
status);
printed++;
}
} else {
error = EIO;
action_string = "Retries Exhausted";
}
break;
}
/* Attempt a retry */
if (error == ERESTART || error == 0) {
if (frozen != 0)
ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
if (error == ERESTART) {
action_string = "Retrying Command";
xpt_action(ccb);
}
if (frozen != 0)
cam_release_devq(ccb->ccb_h.path,
relsim_flags,
openings,
timeout,
/*getcount_only*/0);
}
/*
* If we have and error and are booting verbosely, whine
* *unless* this was a non-retryable selection timeout.
*/
if (error != 0 && bootverbose &&
!(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
if (action_string == NULL)
action_string = "Unretryable Error";
if (error != ERESTART) {
xpt_print(ccb->ccb_h.path, "error %d\n", error);
}
xpt_print(ccb->ccb_h.path, "%s\n", action_string);
}
return (error);
}