freebsd-dev/sys/dev/sfxge/common/efx_nic.c
Andrew Rybchenko aea82ebf8a sfxge(4): prevent access to the NIC config before probe
NIC config is initialized during NIC probe.

Submitted by:   Mark Spender <mspender at solarflare.com>
Sponsored by:   Solarflare Communications, Inc.
MFC after:      1 week
Differential Revision:  https://reviews.freebsd.org/D18263
2018-11-30 07:06:24 +00:00

1146 lines
29 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2007-2016 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
__checkReturn efx_rc_t
efx_family(
__in uint16_t venid,
__in uint16_t devid,
__out efx_family_t *efp,
__out unsigned int *membarp)
{
if (venid == EFX_PCI_VENID_SFC) {
switch (devid) {
#if EFSYS_OPT_SIENA
case EFX_PCI_DEVID_SIENA_F1_UNINIT:
/*
* Hardware default for PF0 of uninitialised Siena.
* manftest must be able to cope with this device id.
*/
case EFX_PCI_DEVID_BETHPAGE:
case EFX_PCI_DEVID_SIENA:
*efp = EFX_FAMILY_SIENA;
*membarp = EFX_MEM_BAR_SIENA;
return (0);
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
case EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT:
/*
* Hardware default for PF0 of uninitialised Huntington.
* manftest must be able to cope with this device id.
*/
case EFX_PCI_DEVID_FARMINGDALE:
case EFX_PCI_DEVID_GREENPORT:
*efp = EFX_FAMILY_HUNTINGTON;
*membarp = EFX_MEM_BAR_HUNTINGTON_PF;
return (0);
case EFX_PCI_DEVID_FARMINGDALE_VF:
case EFX_PCI_DEVID_GREENPORT_VF:
*efp = EFX_FAMILY_HUNTINGTON;
*membarp = EFX_MEM_BAR_HUNTINGTON_VF;
return (0);
#endif /* EFSYS_OPT_HUNTINGTON */
#if EFSYS_OPT_MEDFORD
case EFX_PCI_DEVID_MEDFORD_PF_UNINIT:
/*
* Hardware default for PF0 of uninitialised Medford.
* manftest must be able to cope with this device id.
*/
case EFX_PCI_DEVID_MEDFORD:
*efp = EFX_FAMILY_MEDFORD;
*membarp = EFX_MEM_BAR_MEDFORD_PF;
return (0);
case EFX_PCI_DEVID_MEDFORD_VF:
*efp = EFX_FAMILY_MEDFORD;
*membarp = EFX_MEM_BAR_MEDFORD_VF;
return (0);
#endif /* EFSYS_OPT_MEDFORD */
#if EFSYS_OPT_MEDFORD2
case EFX_PCI_DEVID_MEDFORD2_PF_UNINIT:
/*
* Hardware default for PF0 of uninitialised Medford2.
* manftest must be able to cope with this device id.
*/
case EFX_PCI_DEVID_MEDFORD2:
case EFX_PCI_DEVID_MEDFORD2_VF:
*efp = EFX_FAMILY_MEDFORD2;
*membarp = EFX_MEM_BAR_MEDFORD2;
return (0);
#endif /* EFSYS_OPT_MEDFORD2 */
case EFX_PCI_DEVID_FALCON: /* Obsolete, not supported */
default:
break;
}
}
*efp = EFX_FAMILY_INVALID;
return (ENOTSUP);
}
#if EFSYS_OPT_SIENA
static const efx_nic_ops_t __efx_nic_siena_ops = {
siena_nic_probe, /* eno_probe */
NULL, /* eno_board_cfg */
NULL, /* eno_set_drv_limits */
siena_nic_reset, /* eno_reset */
siena_nic_init, /* eno_init */
NULL, /* eno_get_vi_pool */
NULL, /* eno_get_bar_region */
NULL, /* eno_hw_unavailable */
NULL, /* eno_set_hw_unavailable */
#if EFSYS_OPT_DIAG
siena_nic_register_test, /* eno_register_test */
#endif /* EFSYS_OPT_DIAG */
siena_nic_fini, /* eno_fini */
siena_nic_unprobe, /* eno_unprobe */
};
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
static const efx_nic_ops_t __efx_nic_hunt_ops = {
ef10_nic_probe, /* eno_probe */
hunt_board_cfg, /* eno_board_cfg */
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
ef10_nic_reset, /* eno_reset */
ef10_nic_init, /* eno_init */
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
ef10_nic_get_bar_region, /* eno_get_bar_region */
ef10_nic_hw_unavailable, /* eno_hw_unavailable */
ef10_nic_set_hw_unavailable, /* eno_set_hw_unavailable */
#if EFSYS_OPT_DIAG
ef10_nic_register_test, /* eno_register_test */
#endif /* EFSYS_OPT_DIAG */
ef10_nic_fini, /* eno_fini */
ef10_nic_unprobe, /* eno_unprobe */
};
#endif /* EFSYS_OPT_HUNTINGTON */
#if EFSYS_OPT_MEDFORD
static const efx_nic_ops_t __efx_nic_medford_ops = {
ef10_nic_probe, /* eno_probe */
medford_board_cfg, /* eno_board_cfg */
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
ef10_nic_reset, /* eno_reset */
ef10_nic_init, /* eno_init */
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
ef10_nic_get_bar_region, /* eno_get_bar_region */
ef10_nic_hw_unavailable, /* eno_hw_unavailable */
ef10_nic_set_hw_unavailable, /* eno_set_hw_unavailable */
#if EFSYS_OPT_DIAG
ef10_nic_register_test, /* eno_register_test */
#endif /* EFSYS_OPT_DIAG */
ef10_nic_fini, /* eno_fini */
ef10_nic_unprobe, /* eno_unprobe */
};
#endif /* EFSYS_OPT_MEDFORD */
#if EFSYS_OPT_MEDFORD2
static const efx_nic_ops_t __efx_nic_medford2_ops = {
ef10_nic_probe, /* eno_probe */
medford2_board_cfg, /* eno_board_cfg */
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
ef10_nic_reset, /* eno_reset */
ef10_nic_init, /* eno_init */
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
ef10_nic_get_bar_region, /* eno_get_bar_region */
ef10_nic_hw_unavailable, /* eno_hw_unavailable */
ef10_nic_set_hw_unavailable, /* eno_set_hw_unavailable */
#if EFSYS_OPT_DIAG
ef10_nic_register_test, /* eno_register_test */
#endif /* EFSYS_OPT_DIAG */
ef10_nic_fini, /* eno_fini */
ef10_nic_unprobe, /* eno_unprobe */
};
#endif /* EFSYS_OPT_MEDFORD2 */
__checkReturn efx_rc_t
efx_nic_create(
__in efx_family_t family,
__in efsys_identifier_t *esip,
__in efsys_bar_t *esbp,
__in efsys_lock_t *eslp,
__deref_out efx_nic_t **enpp)
{
efx_nic_t *enp;
efx_rc_t rc;
EFSYS_ASSERT3U(family, >, EFX_FAMILY_INVALID);
EFSYS_ASSERT3U(family, <, EFX_FAMILY_NTYPES);
/* Allocate a NIC object */
EFSYS_KMEM_ALLOC(esip, sizeof (efx_nic_t), enp);
if (enp == NULL) {
rc = ENOMEM;
goto fail1;
}
enp->en_magic = EFX_NIC_MAGIC;
switch (family) {
#if EFSYS_OPT_SIENA
case EFX_FAMILY_SIENA:
enp->en_enop = &__efx_nic_siena_ops;
enp->en_features =
EFX_FEATURE_IPV6 |
EFX_FEATURE_LFSR_HASH_INSERT |
EFX_FEATURE_LINK_EVENTS |
EFX_FEATURE_PERIODIC_MAC_STATS |
EFX_FEATURE_MCDI |
EFX_FEATURE_LOOKAHEAD_SPLIT |
EFX_FEATURE_MAC_HEADER_FILTERS |
EFX_FEATURE_TX_SRC_FILTERS;
break;
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
case EFX_FAMILY_HUNTINGTON:
enp->en_enop = &__efx_nic_hunt_ops;
enp->en_features =
EFX_FEATURE_IPV6 |
EFX_FEATURE_LINK_EVENTS |
EFX_FEATURE_PERIODIC_MAC_STATS |
EFX_FEATURE_MCDI |
EFX_FEATURE_MAC_HEADER_FILTERS |
EFX_FEATURE_MCDI_DMA |
EFX_FEATURE_PIO_BUFFERS |
EFX_FEATURE_FW_ASSISTED_TSO |
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
EFX_FEATURE_PACKED_STREAM;
break;
#endif /* EFSYS_OPT_HUNTINGTON */
#if EFSYS_OPT_MEDFORD
case EFX_FAMILY_MEDFORD:
enp->en_enop = &__efx_nic_medford_ops;
/*
* FW_ASSISTED_TSO omitted as Medford only supports firmware
* assisted TSO version 2, not the v1 scheme used on Huntington.
*/
enp->en_features =
EFX_FEATURE_IPV6 |
EFX_FEATURE_LINK_EVENTS |
EFX_FEATURE_PERIODIC_MAC_STATS |
EFX_FEATURE_MCDI |
EFX_FEATURE_MAC_HEADER_FILTERS |
EFX_FEATURE_MCDI_DMA |
EFX_FEATURE_PIO_BUFFERS |
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
EFX_FEATURE_PACKED_STREAM;
break;
#endif /* EFSYS_OPT_MEDFORD */
#if EFSYS_OPT_MEDFORD2
case EFX_FAMILY_MEDFORD2:
enp->en_enop = &__efx_nic_medford2_ops;
enp->en_features =
EFX_FEATURE_IPV6 |
EFX_FEATURE_LINK_EVENTS |
EFX_FEATURE_PERIODIC_MAC_STATS |
EFX_FEATURE_MCDI |
EFX_FEATURE_MAC_HEADER_FILTERS |
EFX_FEATURE_MCDI_DMA |
EFX_FEATURE_PIO_BUFFERS |
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
EFX_FEATURE_PACKED_STREAM;
break;
#endif /* EFSYS_OPT_MEDFORD2 */
default:
rc = ENOTSUP;
goto fail2;
}
enp->en_family = family;
enp->en_esip = esip;
enp->en_esbp = esbp;
enp->en_eslp = eslp;
*enpp = enp;
return (0);
fail2:
EFSYS_PROBE(fail2);
enp->en_magic = 0;
/* Free the NIC object */
EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_nic_probe(
__in efx_nic_t *enp,
__in efx_fw_variant_t efv)
{
const efx_nic_ops_t *enop;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
#if EFSYS_OPT_MCDI
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
#endif /* EFSYS_OPT_MCDI */
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_PROBE));
/* Ensure FW variant codes match with MC_CMD_FW codes */
EFX_STATIC_ASSERT(EFX_FW_VARIANT_FULL_FEATURED ==
MC_CMD_FW_FULL_FEATURED);
EFX_STATIC_ASSERT(EFX_FW_VARIANT_LOW_LATENCY ==
MC_CMD_FW_LOW_LATENCY);
EFX_STATIC_ASSERT(EFX_FW_VARIANT_PACKED_STREAM ==
MC_CMD_FW_PACKED_STREAM);
EFX_STATIC_ASSERT(EFX_FW_VARIANT_HIGH_TX_RATE ==
MC_CMD_FW_HIGH_TX_RATE);
EFX_STATIC_ASSERT(EFX_FW_VARIANT_PACKED_STREAM_HASH_MODE_1 ==
MC_CMD_FW_PACKED_STREAM_HASH_MODE_1);
EFX_STATIC_ASSERT(EFX_FW_VARIANT_RULES_ENGINE ==
MC_CMD_FW_RULES_ENGINE);
EFX_STATIC_ASSERT(EFX_FW_VARIANT_DPDK ==
MC_CMD_FW_DPDK);
EFX_STATIC_ASSERT(EFX_FW_VARIANT_DONT_CARE ==
(int)MC_CMD_FW_DONT_CARE);
enop = enp->en_enop;
enp->efv = efv;
if ((rc = enop->eno_probe(enp)) != 0)
goto fail1;
if ((rc = efx_phy_probe(enp)) != 0)
goto fail2;
enp->en_mod_flags |= EFX_MOD_PROBE;
return (0);
fail2:
EFSYS_PROBE(fail2);
enop->eno_unprobe(enp);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_nic_set_drv_limits(
__inout efx_nic_t *enp,
__in efx_drv_limits_t *edlp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
if (enop->eno_set_drv_limits != NULL) {
if ((rc = enop->eno_set_drv_limits(enp, edlp)) != 0)
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_nic_get_bar_region(
__in efx_nic_t *enp,
__in efx_nic_region_t region,
__out uint32_t *offsetp,
__out size_t *sizep)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
if (enop->eno_get_bar_region == NULL) {
rc = ENOTSUP;
goto fail1;
}
if ((rc = (enop->eno_get_bar_region)(enp,
region, offsetp, sizep)) != 0) {
goto fail2;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_nic_get_vi_pool(
__in efx_nic_t *enp,
__out uint32_t *evq_countp,
__out uint32_t *rxq_countp,
__out uint32_t *txq_countp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
if (enop->eno_get_vi_pool != NULL) {
uint32_t vi_count = 0;
if ((rc = (enop->eno_get_vi_pool)(enp, &vi_count)) != 0)
goto fail1;
*evq_countp = vi_count;
*rxq_countp = vi_count;
*txq_countp = vi_count;
} else {
/* Use NIC limits as default value */
*evq_countp = encp->enc_evq_limit;
*rxq_countp = encp->enc_rxq_limit;
*txq_countp = encp->enc_txq_limit;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_nic_init(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
if (enp->en_mod_flags & EFX_MOD_NIC) {
rc = EINVAL;
goto fail1;
}
if ((rc = enop->eno_init(enp)) != 0)
goto fail2;
enp->en_mod_flags |= EFX_MOD_NIC;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
efx_nic_fini(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_NIC);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
enop->eno_fini(enp);
enp->en_mod_flags &= ~EFX_MOD_NIC;
}
void
efx_nic_unprobe(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
#if EFSYS_OPT_MCDI
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
#endif /* EFSYS_OPT_MCDI */
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
efx_phy_unprobe(enp);
enop->eno_unprobe(enp);
enp->en_mod_flags &= ~EFX_MOD_PROBE;
}
void
efx_nic_destroy(
__in efx_nic_t *enp)
{
efsys_identifier_t *esip = enp->en_esip;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
enp->en_family = EFX_FAMILY_INVALID;
enp->en_esip = NULL;
enp->en_esbp = NULL;
enp->en_eslp = NULL;
enp->en_enop = NULL;
enp->en_magic = 0;
/* Free the NIC object */
EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
}
__checkReturn efx_rc_t
efx_nic_reset(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
unsigned int mod_flags;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
/*
* All modules except the MCDI, PROBE, NVRAM, VPD, MON, TUNNEL
* (which we do not reset here) must have been shut down or never
* initialized.
*
* A rule of thumb here is: If the controller or MC reboots, is *any*
* state lost. If it's lost and needs reapplying, then the module
* *must* not be initialised during the reset.
*/
mod_flags = enp->en_mod_flags;
mod_flags &= ~(EFX_MOD_MCDI | EFX_MOD_PROBE | EFX_MOD_NVRAM |
EFX_MOD_VPD | EFX_MOD_MON);
#if EFSYS_OPT_TUNNEL
mod_flags &= ~EFX_MOD_TUNNEL;
#endif /* EFSYS_OPT_TUNNEL */
EFSYS_ASSERT3U(mod_flags, ==, 0);
if (mod_flags != 0) {
rc = EINVAL;
goto fail1;
}
if ((rc = enop->eno_reset(enp)) != 0)
goto fail2;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
const efx_nic_cfg_t *
efx_nic_cfg_get(
__in efx_nic_t *enp)
{
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
return (&(enp->en_nic_cfg));
}
__checkReturn efx_rc_t
efx_nic_get_fw_version(
__in efx_nic_t *enp,
__out efx_nic_fw_info_t *enfip)
{
uint16_t mc_fw_version[4];
efx_rc_t rc;
if (enfip == NULL) {
rc = EINVAL;
goto fail1;
}
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
/* Ensure RXDP_FW_ID codes match with MC_CMD_GET_CAPABILITIES codes */
EFX_STATIC_ASSERT(EFX_RXDP_FULL_FEATURED_FW_ID ==
MC_CMD_GET_CAPABILITIES_OUT_RXDP);
EFX_STATIC_ASSERT(EFX_RXDP_LOW_LATENCY_FW_ID ==
MC_CMD_GET_CAPABILITIES_OUT_RXDP_LOW_LATENCY);
EFX_STATIC_ASSERT(EFX_RXDP_PACKED_STREAM_FW_ID ==
MC_CMD_GET_CAPABILITIES_OUT_RXDP_PACKED_STREAM);
EFX_STATIC_ASSERT(EFX_RXDP_RULES_ENGINE_FW_ID ==
MC_CMD_GET_CAPABILITIES_OUT_RXDP_RULES_ENGINE);
EFX_STATIC_ASSERT(EFX_RXDP_DPDK_FW_ID ==
MC_CMD_GET_CAPABILITIES_OUT_RXDP_DPDK);
rc = efx_mcdi_version(enp, mc_fw_version, NULL, NULL);
if (rc != 0)
goto fail2;
rc = efx_mcdi_get_capabilities(enp, NULL,
&enfip->enfi_rx_dpcpu_fw_id,
&enfip->enfi_tx_dpcpu_fw_id,
NULL, NULL);
if (rc == 0) {
enfip->enfi_dpcpu_fw_ids_valid = B_TRUE;
} else if (rc == ENOTSUP) {
enfip->enfi_dpcpu_fw_ids_valid = B_FALSE;
enfip->enfi_rx_dpcpu_fw_id = 0;
enfip->enfi_tx_dpcpu_fw_id = 0;
} else {
goto fail3;
}
memcpy(enfip->enfi_mc_fw_version, mc_fw_version,
sizeof (mc_fw_version));
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn boolean_t
efx_nic_hw_unavailable(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
/* NOTE: can be used by MCDI before NIC probe */
if (enop->eno_hw_unavailable != NULL) {
if ((enop->eno_hw_unavailable)(enp) != B_FALSE)
goto unavail;
}
return (B_FALSE);
unavail:
return (B_TRUE);
}
void
efx_nic_set_hw_unavailable(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
if (enop->eno_set_hw_unavailable != NULL)
enop->eno_set_hw_unavailable(enp);
}
#if EFSYS_OPT_DIAG
__checkReturn efx_rc_t
efx_nic_register_test(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
if ((rc = enop->eno_register_test(enp)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
#if EFSYS_OPT_LOOPBACK
extern void
efx_loopback_mask(
__in efx_loopback_kind_t loopback_kind,
__out efx_qword_t *maskp)
{
efx_qword_t mask;
EFSYS_ASSERT3U(loopback_kind, <, EFX_LOOPBACK_NKINDS);
EFSYS_ASSERT(maskp != NULL);
/* Assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree */
#define LOOPBACK_CHECK(_mcdi, _efx) \
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_##_mcdi == EFX_LOOPBACK_##_efx)
LOOPBACK_CHECK(NONE, OFF);
LOOPBACK_CHECK(DATA, DATA);
LOOPBACK_CHECK(GMAC, GMAC);
LOOPBACK_CHECK(XGMII, XGMII);
LOOPBACK_CHECK(XGXS, XGXS);
LOOPBACK_CHECK(XAUI, XAUI);
LOOPBACK_CHECK(GMII, GMII);
LOOPBACK_CHECK(SGMII, SGMII);
LOOPBACK_CHECK(XGBR, XGBR);
LOOPBACK_CHECK(XFI, XFI);
LOOPBACK_CHECK(XAUI_FAR, XAUI_FAR);
LOOPBACK_CHECK(GMII_FAR, GMII_FAR);
LOOPBACK_CHECK(SGMII_FAR, SGMII_FAR);
LOOPBACK_CHECK(XFI_FAR, XFI_FAR);
LOOPBACK_CHECK(GPHY, GPHY);
LOOPBACK_CHECK(PHYXS, PHY_XS);
LOOPBACK_CHECK(PCS, PCS);
LOOPBACK_CHECK(PMAPMD, PMA_PMD);
LOOPBACK_CHECK(XPORT, XPORT);
LOOPBACK_CHECK(XGMII_WS, XGMII_WS);
LOOPBACK_CHECK(XAUI_WS, XAUI_WS);
LOOPBACK_CHECK(XAUI_WS_FAR, XAUI_WS_FAR);
LOOPBACK_CHECK(XAUI_WS_NEAR, XAUI_WS_NEAR);
LOOPBACK_CHECK(GMII_WS, GMII_WS);
LOOPBACK_CHECK(XFI_WS, XFI_WS);
LOOPBACK_CHECK(XFI_WS_FAR, XFI_WS_FAR);
LOOPBACK_CHECK(PHYXS_WS, PHYXS_WS);
LOOPBACK_CHECK(PMA_INT, PMA_INT);
LOOPBACK_CHECK(SD_NEAR, SD_NEAR);
LOOPBACK_CHECK(SD_FAR, SD_FAR);
LOOPBACK_CHECK(PMA_INT_WS, PMA_INT_WS);
LOOPBACK_CHECK(SD_FEP2_WS, SD_FEP2_WS);
LOOPBACK_CHECK(SD_FEP1_5_WS, SD_FEP1_5_WS);
LOOPBACK_CHECK(SD_FEP_WS, SD_FEP_WS);
LOOPBACK_CHECK(SD_FES_WS, SD_FES_WS);
LOOPBACK_CHECK(AOE_INT_NEAR, AOE_INT_NEAR);
LOOPBACK_CHECK(DATA_WS, DATA_WS);
LOOPBACK_CHECK(FORCE_EXT_LINK, FORCE_EXT_LINK);
#undef LOOPBACK_CHECK
/* Build bitmask of possible loopback types */
EFX_ZERO_QWORD(mask);
if ((loopback_kind == EFX_LOOPBACK_KIND_OFF) ||
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_OFF);
}
if ((loopback_kind == EFX_LOOPBACK_KIND_MAC) ||
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
/*
* The "MAC" grouping has historically been used by drivers to
* mean loopbacks supported by on-chip hardware. Keep that
* meaning here, and include on-chip PHY layer loopbacks.
*/
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_DATA);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMAC);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGMII);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGXS);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGBR);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI_FAR);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII_FAR);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII_FAR);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI_FAR);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_INT);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_NEAR);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_FAR);
}
if ((loopback_kind == EFX_LOOPBACK_KIND_PHY) ||
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
/*
* The "PHY" grouping has historically been used by drivers to
* mean loopbacks supported by off-chip hardware. Keep that
* meaning here.
*/
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GPHY);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PHY_XS);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PCS);
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_PMD);
}
*maskp = mask;
}
__checkReturn efx_rc_t
efx_mcdi_get_loopback_modes(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_LOOPBACK_MODES_IN_LEN,
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_LEN);
efx_qword_t mask;
efx_qword_t modes;
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_LOOPBACK_MODES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_LOOPBACK_MODES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_LOOPBACK_MODES_OUT_V2_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used <
MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_OFST +
MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_LEN) {
rc = EMSGSIZE;
goto fail2;
}
/*
* We assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree
* in efx_loopback_mask() and in siena_phy.c:siena_phy_get_link().
*/
efx_loopback_mask(EFX_LOOPBACK_KIND_ALL, &mask);
EFX_AND_QWORD(mask,
*MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_SUGGESTED));
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_100M);
EFX_AND_QWORD(modes, mask);
encp->enc_loopback_types[EFX_LINK_100FDX] = modes;
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_1G);
EFX_AND_QWORD(modes, mask);
encp->enc_loopback_types[EFX_LINK_1000FDX] = modes;
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_10G);
EFX_AND_QWORD(modes, mask);
encp->enc_loopback_types[EFX_LINK_10000FDX] = modes;
if (req.emr_out_length_used >=
MC_CMD_GET_LOOPBACK_MODES_OUT_40G_OFST +
MC_CMD_GET_LOOPBACK_MODES_OUT_40G_LEN) {
/* Response includes 40G loopback modes */
modes = *MCDI_OUT2(req, efx_qword_t,
GET_LOOPBACK_MODES_OUT_40G);
EFX_AND_QWORD(modes, mask);
encp->enc_loopback_types[EFX_LINK_40000FDX] = modes;
}
if (req.emr_out_length_used >=
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_25G_OFST +
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_25G_LEN) {
/* Response includes 25G loopback modes */
modes = *MCDI_OUT2(req, efx_qword_t,
GET_LOOPBACK_MODES_OUT_V2_25G);
EFX_AND_QWORD(modes, mask);
encp->enc_loopback_types[EFX_LINK_25000FDX] = modes;
}
if (req.emr_out_length_used >=
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_50G_OFST +
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_50G_LEN) {
/* Response includes 50G loopback modes */
modes = *MCDI_OUT2(req, efx_qword_t,
GET_LOOPBACK_MODES_OUT_V2_50G);
EFX_AND_QWORD(modes, mask);
encp->enc_loopback_types[EFX_LINK_50000FDX] = modes;
}
if (req.emr_out_length_used >=
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_100G_OFST +
MC_CMD_GET_LOOPBACK_MODES_OUT_V2_100G_LEN) {
/* Response includes 100G loopback modes */
modes = *MCDI_OUT2(req, efx_qword_t,
GET_LOOPBACK_MODES_OUT_V2_100G);
EFX_AND_QWORD(modes, mask);
encp->enc_loopback_types[EFX_LINK_100000FDX] = modes;
}
EFX_ZERO_QWORD(modes);
EFX_SET_QWORD_BIT(modes, EFX_LOOPBACK_OFF);
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_100FDX]);
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_1000FDX]);
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_10000FDX]);
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_40000FDX]);
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_25000FDX]);
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_50000FDX]);
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_100000FDX]);
encp->enc_loopback_types[EFX_LINK_UNKNOWN] = modes;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_LOOPBACK */
__checkReturn efx_rc_t
efx_nic_calculate_pcie_link_bandwidth(
__in uint32_t pcie_link_width,
__in uint32_t pcie_link_gen,
__out uint32_t *bandwidth_mbpsp)
{
uint32_t lane_bandwidth;
uint32_t total_bandwidth;
efx_rc_t rc;
if ((pcie_link_width == 0) || (pcie_link_width > 16) ||
!ISP2(pcie_link_width)) {
rc = EINVAL;
goto fail1;
}
switch (pcie_link_gen) {
case EFX_PCIE_LINK_SPEED_GEN1:
/* 2.5 Gb/s raw bandwidth with 8b/10b encoding */
lane_bandwidth = 2000;
break;
case EFX_PCIE_LINK_SPEED_GEN2:
/* 5.0 Gb/s raw bandwidth with 8b/10b encoding */
lane_bandwidth = 4000;
break;
case EFX_PCIE_LINK_SPEED_GEN3:
/* 8.0 Gb/s raw bandwidth with 128b/130b encoding */
lane_bandwidth = 7877;
break;
default:
rc = EINVAL;
goto fail2;
}
total_bandwidth = lane_bandwidth * pcie_link_width;
*bandwidth_mbpsp = total_bandwidth;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#if EFSYS_OPT_FW_SUBVARIANT_AWARE
__checkReturn efx_rc_t
efx_nic_get_fw_subvariant(
__in efx_nic_t *enp,
__out efx_nic_fw_subvariant_t *subvariantp)
{
efx_rc_t rc;
uint32_t value;
rc = efx_mcdi_get_nic_global(enp,
MC_CMD_SET_NIC_GLOBAL_IN_FIRMWARE_SUBVARIANT, &value);
if (rc != 0)
goto fail1;
/* Mapping is not required since values match MCDI */
EFX_STATIC_ASSERT(EFX_NIC_FW_SUBVARIANT_DEFAULT ==
MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_DEFAULT);
EFX_STATIC_ASSERT(EFX_NIC_FW_SUBVARIANT_NO_TX_CSUM ==
MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_NO_TX_CSUM);
switch (value) {
case MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_DEFAULT:
case MC_CMD_SET_NIC_GLOBAL_IN_FW_SUBVARIANT_NO_TX_CSUM:
*subvariantp = value;
break;
default:
rc = EINVAL;
goto fail2;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_nic_set_fw_subvariant(
__in efx_nic_t *enp,
__in efx_nic_fw_subvariant_t subvariant)
{
efx_rc_t rc;
switch (subvariant) {
case EFX_NIC_FW_SUBVARIANT_DEFAULT:
case EFX_NIC_FW_SUBVARIANT_NO_TX_CSUM:
/* Mapping is not required since values match MCDI */
break;
default:
rc = EINVAL;
goto fail1;
}
rc = efx_mcdi_set_nic_global(enp,
MC_CMD_SET_NIC_GLOBAL_IN_FIRMWARE_SUBVARIANT, subvariant);
if (rc != 0)
goto fail2;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_FW_SUBVARIANT_AWARE */
__checkReturn efx_rc_t
efx_nic_check_pcie_link_speed(
__in efx_nic_t *enp,
__in uint32_t pcie_link_width,
__in uint32_t pcie_link_gen,
__out efx_pcie_link_performance_t *resultp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t bandwidth;
efx_pcie_link_performance_t result;
efx_rc_t rc;
if ((encp->enc_required_pcie_bandwidth_mbps == 0) ||
(pcie_link_width == 0) || (pcie_link_width == 32) ||
(pcie_link_gen == 0)) {
/*
* No usable info on what is required and/or in use. In virtual
* machines, sometimes the PCIe link width is reported as 0 or
* 32, or the speed as 0.
*/
result = EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH;
goto out;
}
/* Calculate the available bandwidth in megabits per second */
rc = efx_nic_calculate_pcie_link_bandwidth(pcie_link_width,
pcie_link_gen, &bandwidth);
if (rc != 0)
goto fail1;
if (bandwidth < encp->enc_required_pcie_bandwidth_mbps) {
result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH;
} else if (pcie_link_gen < encp->enc_max_pcie_link_gen) {
/* The link provides enough bandwidth but not optimal latency */
result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY;
} else {
result = EFX_PCIE_LINK_PERFORMANCE_OPTIMAL;
}
out:
*resultp = result;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}