freebsd-dev/stand/kboot/main.c
Warner Losh 7f3c360646 Parse /kboot.conf
If there's a kboot.conf, prase it after the command line args are
parsed. It's not always easy to get all the right command line args
depending on the environment. Allow an escape hatch. While we can't do
everything one might like in this file, we can do enough.

Sponsored by:		Netflix
2023-03-13 20:45:50 -06:00

536 lines
13 KiB
C

/*-
* Copyright (C) 2010-2014 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <sys/param.h>
#include <sys/boot.h>
#include <fdt_platform.h>
#include <machine/cpufunc.h>
#include <bootstrap.h>
#include "host_syscall.h"
#include "kboot.h"
#include "stand.h"
struct arch_switch archsw;
extern void *_end;
int kboot_getdev(void **vdev, const char *devspec, const char **path);
ssize_t kboot_copyin(const void *src, vm_offset_t dest, const size_t len);
ssize_t kboot_copyout(vm_offset_t src, void *dest, const size_t len);
ssize_t kboot_readin(readin_handle_t fd, vm_offset_t dest, const size_t len);
int kboot_autoload(void);
static void kboot_zfs_probe(void);
extern int command_fdt_internal(int argc, char *argv[]);
#define PA_INVAL (vm_offset_t)-1
static vm_offset_t pa_start = PA_INVAL;
static vm_offset_t padding;
static vm_offset_t offset;
static uint64_t commit_limit;
static uint64_t committed_as;
static uint64_t mem_avail;
static void
memory_limits(void)
{
int fd;
char buf[128];
/*
* To properly size the slabs, we need to find how much memory we can
* commit to using. commit_limit is the max, while commited_as is the
* current total. We can use these later to allocate the largetst amount
* of memory possible so we can support larger ram disks than we could
* by using fixed segment sizes. We also grab the memory available so
* we don't use more than 49% of that.
*/
fd = open("host:/proc/meminfo", O_RDONLY);
if (fd != -1) {
while (fgetstr(buf, sizeof(buf), fd) > 0) {
if (strncmp(buf, "MemAvailable:", 13) == 0) {
mem_avail = strtoll(buf + 13, NULL, 0);
mem_avail <<= 10; /* Units are kB */
} else if (strncmp(buf, "CommitLimit:", 12) == 0) {
commit_limit = strtoll(buf + 13, NULL, 0);
commit_limit <<= 10; /* Units are kB */
} else if (strncmp(buf, "Committed_AS:", 13) == 0) {
committed_as = strtoll(buf + 14, NULL, 0);
committed_as <<= 10; /* Units are kB */
}
}
} else {
/* Otherwise, on FreeBSD host, for testing 32GB host: */
mem_avail = 31ul << 30; /* 31GB free */
commit_limit = mem_avail * 9 / 10; /* 90% comittable */
committed_as = 20ul << 20; /* 20MB used */
}
printf("Commit limit: %lld Committed bytes %lld Available %lld\n",
(long long)commit_limit, (long long)committed_as,
(long long)mem_avail);
close(fd);
}
/*
* NB: getdev should likely be identical to this most places, except maybe
* we should move to storing the length of the platform devdesc.
*/
int
kboot_getdev(void **vdev, const char *devspec, const char **path)
{
struct devdesc **dev = (struct devdesc **)vdev;
int rv;
/*
* If it looks like this is just a path and no device, go with the
* current device.
*/
if (devspec == NULL || strchr(devspec, ':') == NULL) {
if (((rv = devparse(dev, getenv("currdev"), NULL)) == 0) &&
(path != NULL))
*path = devspec;
return (rv);
}
/*
* Try to parse the device name off the beginning of the devspec
*/
return (devparse(dev, devspec, path));
}
static int
parse_args(int argc, const char **argv)
{
int howto = 0;
/*
* When run as init, sometimes argv[0] is a EFI-ESP path, other times
* it's the name of the init program, and sometimes it's a placeholder
* string, so we exclude it here. For the other args, look for DOS-like
* and Unix-like absolte paths and exclude parsing it if we find that,
* otherwise parse it as a command arg (so looking for '-X', 'foo' or
* 'foo=bar'). This is a little different than EFI where it argv[0]
* often times is the first argument passed in. There are cases when
* linux-booting via EFI that we have the EFI path we used to run
* bootXXX.efi as the arguments to init, so we need to exclude the paths
* there as well.
*/
for (int i = 1; i < argc; i++) {
if (argv[i][0] != '\\' && argv[i][0] != '/') {
howto |= boot_parse_arg(argv[i]);
}
}
return (howto);
}
static vm_offset_t rsdp;
static vm_offset_t
kboot_rsdp_from_efi(void)
{
char buffer[512 + 1];
char *walker, *ep;
if (!file2str("/sys/firmware/efi/systab", buffer, sizeof(buffer)))
return (0); /* Not an EFI system */
ep = buffer + strlen(buffer);
walker = buffer;
while (walker < ep) {
if (strncmp("ACPI20=", walker, 7) == 0)
return((vm_offset_t)strtoull(walker + 7, NULL, 0));
if (strncmp("ACPI=", walker, 5) == 0)
return((vm_offset_t)strtoull(walker + 5, NULL, 0));
walker += strcspn(walker, "\n");
}
return (0);
}
static void
find_acpi(void)
{
rsdp = kboot_rsdp_from_efi();
#if 0 /* maybe for amd64 */
if (rsdp == 0)
rsdp = find_rsdp_arch();
#endif
}
vm_offset_t
acpi_rsdp(void)
{
return (rsdp);
}
bool
has_acpi(void)
{
return rsdp != 0;
}
static void
parse_file(const char *fn)
{
struct stat st;
int fd = -1;
char *env = NULL;
if (stat(fn, &st) != 0)
return;
fd = open(fn, O_RDONLY);
if (fd == -1)
return;
env = malloc(st.st_size + 1);
if (env == NULL)
goto out;
if (read(fd, env, st.st_size) != st.st_size)
goto out;
env[st.st_size] = '\0';
boot_parse_cmdline(env);
out:
free(env);
close(fd);
}
int
main(int argc, const char **argv)
{
void *heapbase;
const size_t heapsize = 64*1024*1024;
const char *bootdev;
archsw.arch_getdev = kboot_getdev;
archsw.arch_copyin = kboot_copyin;
archsw.arch_copyout = kboot_copyout;
archsw.arch_readin = kboot_readin;
archsw.arch_autoload = kboot_autoload;
archsw.arch_zfs_probe = kboot_zfs_probe;
/* Give us a sane world if we're running as init */
do_init();
/*
* Setup the heap, 64MB is minimum for ZFS booting
*/
heapbase = host_getmem(heapsize);
setheap(heapbase, heapbase + heapsize);
/* Parse the command line args -- ignoring for now the console selection */
parse_args(argc, argv);
parse_file("host:/kboot.conf");
/*
* Set up console.
*/
cons_probe();
/* Initialize all the devices */
devinit();
bootdev = getenv("bootdev");
if (bootdev == NULL)
bootdev = hostdisk_gen_probe();
hostfs_root = getenv("hostfs_root");
if (hostfs_root == NULL)
hostfs_root = "/";
#if defined(LOADER_ZFS_SUPPORT)
if (bootdev == NULL || strcmp(bootdev, "zfs:") == 0) {
/*
* Pseudo device that says go find the right ZFS pool. This will be
* the first pool that we find that passes the sanity checks (eg looks
* like it might be vbootable) and sets currdev to the right thing based
* on active BEs, etc
*/
if (hostdisk_zfs_find_default())
bootdev = getenv("currdev");
}
#endif
if (bootdev != NULL) {
/*
* Otherwise, honor what's on the command line. If we've been
* given a specific ZFS partition, then we'll honor it w/o BE
* processing that would otherwise pick a different snapshot to
* boot than the default one in the pool.
*/
set_currdev(bootdev);
} else {
panic("Bootdev is still NULL");
}
printf("Boot device: %s with hostfs_root %s\n", bootdev, hostfs_root);
printf("\n%s", bootprog_info);
setenv("LINES", "24", 1);
memory_limits();
enumerate_memory_arch();
/*
* Find acpi, if it exists
*/
find_acpi();
interact(); /* doesn't return */
return (0);
}
void
exit(int code)
{
host_exit(code);
__unreachable();
}
void
delay(int usecs)
{
struct host_timeval tvi, tv;
uint64_t ti, t;
host_gettimeofday(&tvi, NULL);
ti = tvi.tv_sec*1000000 + tvi.tv_usec;
do {
host_gettimeofday(&tv, NULL);
t = tv.tv_sec*1000000 + tv.tv_usec;
} while (t < ti + usecs);
}
time_t
getsecs(void)
{
struct host_timeval tv;
host_gettimeofday(&tv, NULL);
return (tv.tv_sec);
}
time_t
time(time_t *tloc)
{
time_t rv;
rv = getsecs();
if (tloc != NULL)
*tloc = rv;
return (rv);
}
struct host_kexec_segment loaded_segments[HOST_KEXEC_SEGMENT_MAX];
int nkexec_segments = 0;
#define SEGALIGN (1ul<<20)
static ssize_t
get_phys_buffer(vm_offset_t dest, const size_t len, void **buf)
{
int i = 0;
const size_t segsize = 64*1024*1024;
size_t sz, amt, l;
if (nkexec_segments == HOST_KEXEC_SEGMENT_MAX)
panic("Tried to load too many kexec segments");
for (i = 0; i < nkexec_segments; i++) {
if (dest >= (vm_offset_t)loaded_segments[i].mem &&
dest < (vm_offset_t)loaded_segments[i].mem +
loaded_segments[i].bufsz) /* Need to use bufsz since memsz is in use size */
goto out;
}
sz = segsize;
if (nkexec_segments == 0) {
/* how much space does this segment have */
sz = space_avail(dest);
/* Clip to 45% of available memory (need 2 copies) */
sz = MIN(sz, rounddown2(mem_avail * 45 / 100, SEGALIGN));
printf("limit to 45%% of mem_avail %zd\n", sz);
/* And only use 95% of what we can allocate */
sz = MIN(sz,
rounddown2((commit_limit - committed_as) * 95 / 100, SEGALIGN));
printf("Allocating %zd MB for first segment\n", sz >> 20);
}
loaded_segments[nkexec_segments].buf = host_getmem(sz);
loaded_segments[nkexec_segments].bufsz = sz;
loaded_segments[nkexec_segments].mem = (void *)rounddown2(dest,SEGALIGN);
loaded_segments[nkexec_segments].memsz = 0;
i = nkexec_segments;
nkexec_segments++;
out:
/*
* Keep track of the highest amount used in a segment
*/
amt = dest - (vm_offset_t)loaded_segments[i].mem;
l = min(len,loaded_segments[i].bufsz - amt);
*buf = loaded_segments[i].buf + amt;
if (amt + l > loaded_segments[i].memsz)
loaded_segments[i].memsz = amt + l;
return (l);
}
ssize_t
kboot_copyin(const void *src, vm_offset_t dest, const size_t len)
{
ssize_t segsize, remainder;
void *destbuf;
if (pa_start == PA_INVAL) {
pa_start = kboot_get_phys_load_segment();
// padding = 2 << 20; /* XXX amd64: revisit this when we make it work */
padding = 0;
offset = dest;
get_phys_buffer(pa_start, len, &destbuf);
}
remainder = len;
do {
segsize = get_phys_buffer(dest + pa_start + padding - offset, remainder, &destbuf);
bcopy(src, destbuf, segsize);
remainder -= segsize;
src += segsize;
dest += segsize;
} while (remainder > 0);
return (len);
}
ssize_t
kboot_copyout(vm_offset_t src, void *dest, const size_t len)
{
ssize_t segsize, remainder;
void *srcbuf;
remainder = len;
do {
segsize = get_phys_buffer(src + pa_start + padding - offset, remainder, &srcbuf);
bcopy(srcbuf, dest, segsize);
remainder -= segsize;
src += segsize;
dest += segsize;
} while (remainder > 0);
return (len);
}
ssize_t
kboot_readin(readin_handle_t fd, vm_offset_t dest, const size_t len)
{
void *buf;
size_t resid, chunk, get;
ssize_t got;
vm_offset_t p;
p = dest;
chunk = min(PAGE_SIZE, len);
buf = malloc(chunk);
if (buf == NULL) {
printf("kboot_readin: buf malloc failed\n");
return (0);
}
for (resid = len; resid > 0; resid -= got, p += got) {
get = min(chunk, resid);
got = VECTX_READ(fd, buf, get);
if (got <= 0) {
if (got < 0)
printf("kboot_readin: read failed\n");
break;
}
kboot_copyin(buf, p, got);
}
free (buf);
return (len - resid);
}
int
kboot_autoload(void)
{
return (0);
}
void
kboot_kseg_get(int *nseg, void **ptr)
{
printf("kseg_get: %d segments\n", nkexec_segments);
printf("VA SZ PA MEMSZ\n");
printf("---------------- -------- ---------------- -----\n");
for (int a = 0; a < nkexec_segments; a++) {
/*
* Truncate each segment to just what we've used in the segment,
* rounded up to the next page.
*/
loaded_segments[a].memsz = roundup2(loaded_segments[a].memsz,PAGE_SIZE);
loaded_segments[a].bufsz = loaded_segments[a].memsz;
printf("%016jx %08jx %016jx %08jx\n",
(uintmax_t)loaded_segments[a].buf,
(uintmax_t)loaded_segments[a].bufsz,
(uintmax_t)loaded_segments[a].mem,
(uintmax_t)loaded_segments[a].memsz);
}
*nseg = nkexec_segments;
*ptr = &loaded_segments[0];
}
static void
kboot_zfs_probe(void)
{
#if defined(LOADER_ZFS_SUPPORT)
/*
* Open all the disks and partitions we can find to see if there are ZFS
* pools on them.
*/
hostdisk_zfs_probe();
#endif
}
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);