878c9687ec
localtime/mktime/tmcomp and friends on ia64. Approved by: re
1751 lines
40 KiB
C
1751 lines
40 KiB
C
/*
|
|
** This file is in the public domain, so clarified as of
|
|
** June 5, 1996 by Arthur David Olson (arthur_david_olson@nih.gov).
|
|
*/
|
|
|
|
#ifndef lint
|
|
#ifndef NOID
|
|
static char elsieid[] = "@(#)localtime.c 7.57";
|
|
#endif /* !defined NOID */
|
|
#endif /* !defined lint */
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu).
|
|
** POSIX-style TZ environment variable handling from Guy Harris
|
|
** (guy@auspex.com).
|
|
*/
|
|
|
|
/*LINTLIBRARY*/
|
|
|
|
#include "namespace.h"
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <pthread.h>
|
|
#include "private.h"
|
|
#include "un-namespace.h"
|
|
|
|
#include "tzfile.h"
|
|
|
|
#include "libc_private.h"
|
|
|
|
#define _MUTEX_LOCK(x) if (__isthreaded) _pthread_mutex_lock(x)
|
|
#define _MUTEX_UNLOCK(x) if (__isthreaded) _pthread_mutex_unlock(x)
|
|
|
|
/*
|
|
** SunOS 4.1.1 headers lack O_BINARY.
|
|
*/
|
|
|
|
#ifdef O_BINARY
|
|
#define OPEN_MODE (O_RDONLY | O_BINARY)
|
|
#endif /* defined O_BINARY */
|
|
#ifndef O_BINARY
|
|
#define OPEN_MODE O_RDONLY
|
|
#endif /* !defined O_BINARY */
|
|
|
|
#ifndef WILDABBR
|
|
/*
|
|
** Someone might make incorrect use of a time zone abbreviation:
|
|
** 1. They might reference tzname[0] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 2. They might reference tzname[1] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 3. They might reference tzname[1] after setting to a time zone
|
|
** in which Daylight Saving Time is never observed.
|
|
** 4. They might reference tzname[0] after setting to a time zone
|
|
** in which Standard Time is never observed.
|
|
** 5. They might reference tm.TM_ZONE after calling offtime.
|
|
** What's best to do in the above cases is open to debate;
|
|
** for now, we just set things up so that in any of the five cases
|
|
** WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
** string "tzname[0] used before set", and similarly for the other cases.
|
|
** And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
** manual page of what this "time zone abbreviation" means (doing this so
|
|
** that tzname[0] has the "normal" length of three characters).
|
|
*/
|
|
#define WILDABBR " "
|
|
#endif /* !defined WILDABBR */
|
|
|
|
static char wildabbr[] = "WILDABBR";
|
|
|
|
static const char gmt[] = "GMT";
|
|
|
|
struct ttinfo { /* time type information */
|
|
long tt_gmtoff; /* GMT offset in seconds */
|
|
int tt_isdst; /* used to set tm_isdst */
|
|
int tt_abbrind; /* abbreviation list index */
|
|
int tt_ttisstd; /* TRUE if transition is std time */
|
|
int tt_ttisgmt; /* TRUE if transition is GMT */
|
|
};
|
|
|
|
struct lsinfo { /* leap second information */
|
|
time_t ls_trans; /* transition time */
|
|
long ls_corr; /* correction to apply */
|
|
};
|
|
|
|
#define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
|
|
|
|
#ifdef TZNAME_MAX
|
|
#define MY_TZNAME_MAX TZNAME_MAX
|
|
#endif /* defined TZNAME_MAX */
|
|
#ifndef TZNAME_MAX
|
|
#define MY_TZNAME_MAX 255
|
|
#endif /* !defined TZNAME_MAX */
|
|
|
|
struct state {
|
|
int leapcnt;
|
|
int timecnt;
|
|
int typecnt;
|
|
int charcnt;
|
|
time_t ats[TZ_MAX_TIMES];
|
|
unsigned char types[TZ_MAX_TIMES];
|
|
struct ttinfo ttis[TZ_MAX_TYPES];
|
|
char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
|
|
(2 * (MY_TZNAME_MAX + 1)))];
|
|
struct lsinfo lsis[TZ_MAX_LEAPS];
|
|
};
|
|
|
|
struct rule {
|
|
int r_type; /* type of rule--see below */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
long r_time; /* transition time of rule */
|
|
};
|
|
|
|
#define JULIAN_DAY 0 /* Jn - Julian day */
|
|
#define DAY_OF_YEAR 1 /* n - day of year */
|
|
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
|
|
|
|
/*
|
|
** Prototypes for static functions.
|
|
*/
|
|
|
|
static long detzcode(const char * codep);
|
|
static const char * getzname(const char * strp);
|
|
static const char * getnum(const char * strp, int * nump, int min,
|
|
int max);
|
|
static const char * getsecs(const char * strp, long * secsp);
|
|
static const char * getoffset(const char * strp, long * offsetp);
|
|
static const char * getrule(const char * strp, struct rule * rulep);
|
|
static void gmtload(struct state * sp);
|
|
static void gmtsub(const time_t * timep, long offset,
|
|
struct tm * tmp);
|
|
static void localsub(const time_t * timep, long offset,
|
|
struct tm * tmp);
|
|
static int increment_overflow(int * number, int delta);
|
|
static int normalize_overflow(int * tensptr, int * unitsptr,
|
|
int base);
|
|
static void settzname(void);
|
|
static time_t time1(struct tm * tmp,
|
|
void(*funcp) (const time_t *,
|
|
long, struct tm *),
|
|
long offset);
|
|
static time_t time2(struct tm *tmp,
|
|
void(*funcp) (const time_t *,
|
|
long, struct tm*),
|
|
long offset, int * okayp);
|
|
static void timesub(const time_t * timep, long offset,
|
|
const struct state * sp, struct tm * tmp);
|
|
static int tmcomp(const struct tm * atmp,
|
|
const struct tm * btmp);
|
|
static time_t transtime(time_t janfirst, int year,
|
|
const struct rule * rulep, long offset);
|
|
static int tzload(const char * name, struct state * sp);
|
|
static int tzparse(const char * name, struct state * sp,
|
|
int lastditch);
|
|
|
|
#ifdef ALL_STATE
|
|
static struct state * lclptr;
|
|
static struct state * gmtptr;
|
|
#endif /* defined ALL_STATE */
|
|
|
|
#ifndef ALL_STATE
|
|
static struct state lclmem;
|
|
static struct state gmtmem;
|
|
#define lclptr (&lclmem)
|
|
#define gmtptr (&gmtmem)
|
|
#endif /* State Farm */
|
|
|
|
#ifndef TZ_STRLEN_MAX
|
|
#define TZ_STRLEN_MAX 255
|
|
#endif /* !defined TZ_STRLEN_MAX */
|
|
|
|
static char lcl_TZname[TZ_STRLEN_MAX + 1];
|
|
static int lcl_is_set;
|
|
static int gmt_is_set;
|
|
static pthread_mutex_t lcl_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static pthread_mutex_t gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
char * tzname[2] = {
|
|
wildabbr,
|
|
wildabbr
|
|
};
|
|
|
|
/*
|
|
** Section 4.12.3 of X3.159-1989 requires that
|
|
** Except for the strftime function, these functions [asctime,
|
|
** ctime, gmtime, localtime] return values in one of two static
|
|
** objects: a broken-down time structure and an array of char.
|
|
** Thanks to Paul Eggert (eggert@twinsun.com) for noting this.
|
|
*/
|
|
|
|
static struct tm tm;
|
|
|
|
#ifdef USG_COMPAT
|
|
time_t timezone = 0;
|
|
int daylight = 0;
|
|
#endif /* defined USG_COMPAT */
|
|
|
|
#ifdef ALTZONE
|
|
time_t altzone = 0;
|
|
#endif /* defined ALTZONE */
|
|
|
|
static long
|
|
detzcode(codep)
|
|
const char * const codep;
|
|
{
|
|
long result;
|
|
int i;
|
|
|
|
result = (codep[0] & 0x80) ? ~0L : 0L;
|
|
for (i = 0; i < 4; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
settzname(void)
|
|
{
|
|
struct state * sp = lclptr;
|
|
int i;
|
|
|
|
tzname[0] = wildabbr;
|
|
tzname[1] = wildabbr;
|
|
#ifdef USG_COMPAT
|
|
daylight = 0;
|
|
timezone = 0;
|
|
#endif /* defined USG_COMPAT */
|
|
#ifdef ALTZONE
|
|
altzone = 0;
|
|
#endif /* defined ALTZONE */
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL) {
|
|
tzname[0] = tzname[1] = gmt;
|
|
return;
|
|
}
|
|
#endif /* defined ALL_STATE */
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
const struct ttinfo * const ttisp = &sp->ttis[i];
|
|
|
|
tzname[ttisp->tt_isdst] =
|
|
&sp->chars[ttisp->tt_abbrind];
|
|
#ifdef USG_COMPAT
|
|
if (ttisp->tt_isdst)
|
|
daylight = 1;
|
|
if (i == 0 || !ttisp->tt_isdst)
|
|
timezone = -(ttisp->tt_gmtoff);
|
|
#endif /* defined USG_COMPAT */
|
|
#ifdef ALTZONE
|
|
if (i == 0 || ttisp->tt_isdst)
|
|
altzone = -(ttisp->tt_gmtoff);
|
|
#endif /* defined ALTZONE */
|
|
}
|
|
/*
|
|
** And to get the latest zone names into tzname. . .
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
const struct ttinfo * const ttisp =
|
|
&sp->ttis[
|
|
sp->types[i]];
|
|
|
|
tzname[ttisp->tt_isdst] =
|
|
&sp->chars[ttisp->tt_abbrind];
|
|
}
|
|
}
|
|
|
|
static int
|
|
tzload(name, sp)
|
|
const char * name;
|
|
struct state * const sp;
|
|
{
|
|
const char * p;
|
|
int i;
|
|
int fid;
|
|
|
|
/* XXX The following is from OpenBSD, and I'm not sure it is correct */
|
|
if (name != NULL && issetugid() != 0)
|
|
if ((name[0] == ':' && name[1] == '/') ||
|
|
name[0] == '/' || strchr(name, '.'))
|
|
name = NULL;
|
|
if (name == NULL && (name = TZDEFAULT) == NULL)
|
|
return -1;
|
|
{
|
|
int doaccess;
|
|
struct stat stab;
|
|
/*
|
|
** Section 4.9.1 of the C standard says that
|
|
** "FILENAME_MAX expands to an integral constant expression
|
|
** that is the size needed for an array of char large enough
|
|
** to hold the longest file name string that the implementation
|
|
** guarantees can be opened."
|
|
*/
|
|
char fullname[FILENAME_MAX + 1];
|
|
|
|
if (name[0] == ':')
|
|
++name;
|
|
doaccess = name[0] == '/';
|
|
if (!doaccess) {
|
|
if ((p = TZDIR) == NULL)
|
|
return -1;
|
|
if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
|
|
return -1;
|
|
(void) strcpy(fullname, p);
|
|
(void) strcat(fullname, "/");
|
|
(void) strcat(fullname, name);
|
|
/*
|
|
** Set doaccess if '.' (as in "../") shows up in name.
|
|
*/
|
|
if (strchr(name, '.') != NULL)
|
|
doaccess = TRUE;
|
|
name = fullname;
|
|
}
|
|
if (doaccess && access(name, R_OK) != 0)
|
|
return -1;
|
|
if ((fid = _open(name, OPEN_MODE)) == -1)
|
|
return -1;
|
|
if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
|
|
_close(fid);
|
|
return -1;
|
|
}
|
|
}
|
|
{
|
|
struct tzhead * tzhp;
|
|
char buf[sizeof *sp + sizeof *tzhp];
|
|
int ttisstdcnt;
|
|
int ttisgmtcnt;
|
|
|
|
i = _read(fid, buf, sizeof buf);
|
|
if (_close(fid) != 0)
|
|
return -1;
|
|
p = buf;
|
|
p += (sizeof tzhp->tzh_magic) + (sizeof tzhp->tzh_reserved);
|
|
ttisstdcnt = (int) detzcode(p);
|
|
p += 4;
|
|
ttisgmtcnt = (int) detzcode(p);
|
|
p += 4;
|
|
sp->leapcnt = (int) detzcode(p);
|
|
p += 4;
|
|
sp->timecnt = (int) detzcode(p);
|
|
p += 4;
|
|
sp->typecnt = (int) detzcode(p);
|
|
p += 4;
|
|
sp->charcnt = (int) detzcode(p);
|
|
p += 4;
|
|
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
|
|
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
|
|
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
|
|
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
|
|
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
|
|
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
|
|
return -1;
|
|
if (i - (p - buf) < sp->timecnt * 4 + /* ats */
|
|
sp->timecnt + /* types */
|
|
sp->typecnt * (4 + 2) + /* ttinfos */
|
|
sp->charcnt + /* chars */
|
|
sp->leapcnt * (4 + 4) + /* lsinfos */
|
|
ttisstdcnt + /* ttisstds */
|
|
ttisgmtcnt) /* ttisgmts */
|
|
return -1;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
sp->ats[i] = detzcode(p);
|
|
p += 4;
|
|
}
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
sp->types[i] = (unsigned char) *p++;
|
|
if (sp->types[i] >= sp->typecnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_gmtoff = detzcode(p);
|
|
p += 4;
|
|
ttisp->tt_isdst = (unsigned char) *p++;
|
|
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
|
|
return -1;
|
|
ttisp->tt_abbrind = (unsigned char) *p++;
|
|
if (ttisp->tt_abbrind < 0 ||
|
|
ttisp->tt_abbrind > sp->charcnt)
|
|
return -1;
|
|
}
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
sp->chars[i] = *p++;
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */
|
|
for (i = 0; i < sp->leapcnt; ++i) {
|
|
struct lsinfo * lsisp;
|
|
|
|
lsisp = &sp->lsis[i];
|
|
lsisp->ls_trans = detzcode(p);
|
|
p += 4;
|
|
lsisp->ls_corr = detzcode(p);
|
|
p += 4;
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
ttisp->tt_ttisstd = FALSE;
|
|
else {
|
|
ttisp->tt_ttisstd = *p++;
|
|
if (ttisp->tt_ttisstd != TRUE &&
|
|
ttisp->tt_ttisstd != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisgmtcnt == 0)
|
|
ttisp->tt_ttisgmt = FALSE;
|
|
else {
|
|
ttisp->tt_ttisgmt = *p++;
|
|
if (ttisp->tt_ttisgmt != TRUE &&
|
|
ttisp->tt_ttisgmt != FALSE)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
|
|
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, scan until a character that is not
|
|
** a valid character in a zone name is found. Return a pointer to that
|
|
** character.
|
|
*/
|
|
|
|
static const char *
|
|
getzname(strp)
|
|
const char * strp;
|
|
{
|
|
char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
|
|
c != '+')
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a number from that string.
|
|
** Check that the number is within a specified range; if it is not, return
|
|
** NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
|
|
static const char *
|
|
getnum(strp, nump, min, max)
|
|
const char * strp;
|
|
int * const nump;
|
|
const int min;
|
|
const int max;
|
|
{
|
|
char c;
|
|
int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp))
|
|
return NULL;
|
|
num = 0;
|
|
do {
|
|
num = num * 10 + (c - '0');
|
|
if (num > max)
|
|
return NULL; /* illegal value */
|
|
c = *++strp;
|
|
} while (is_digit(c));
|
|
if (num < min)
|
|
return NULL; /* illegal value */
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a number of seconds,
|
|
** in hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number
|
|
** of seconds.
|
|
*/
|
|
|
|
static const char *
|
|
getsecs(strp, secsp)
|
|
const char * strp;
|
|
long * const secsp;
|
|
{
|
|
int num;
|
|
|
|
/*
|
|
** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
** "M10.4.6/26", which does not conform to Posix,
|
|
** but which specifies the equivalent of
|
|
** ``02:00 on the first Sunday on or after 23 Oct''.
|
|
*/
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp = num * (long) SECSPERHOUR;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
/* `SECSPERMIN' allows for leap seconds. */
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num;
|
|
}
|
|
}
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract an offset, in
|
|
** [+-]hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
|
|
static const char *
|
|
getoffset(strp, offsetp)
|
|
const char * strp;
|
|
long * const offsetp;
|
|
{
|
|
int neg = 0;
|
|
|
|
if (*strp == '-') {
|
|
neg = 1;
|
|
++strp;
|
|
} else if (*strp == '+')
|
|
++strp;
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
return NULL; /* illegal time */
|
|
if (neg)
|
|
*offsetp = -*offsetp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a time zone string, extract a rule in the form
|
|
** date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
** If a valid rule is not found, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
|
|
static const char *
|
|
getrule(strp, rulep)
|
|
const char * strp;
|
|
struct rule * const rulep;
|
|
{
|
|
if (*strp == 'J') {
|
|
/*
|
|
** Julian day.
|
|
*/
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
} else if (*strp == 'M') {
|
|
/*
|
|
** Month, week, day.
|
|
*/
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
} else if (is_digit(*strp)) {
|
|
/*
|
|
** Day of year.
|
|
*/
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
} else return NULL; /* invalid format */
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp == '/') {
|
|
/*
|
|
** Time specified.
|
|
*/
|
|
++strp;
|
|
strp = getsecs(strp, &rulep->r_time);
|
|
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
|
|
** year, a rule, and the offset from GMT at the time that rule takes effect,
|
|
** calculate the Epoch-relative time that rule takes effect.
|
|
*/
|
|
|
|
static time_t
|
|
transtime(janfirst, year, rulep, offset)
|
|
const time_t janfirst;
|
|
const int year;
|
|
const struct rule * const rulep;
|
|
const long offset;
|
|
{
|
|
int leapyear;
|
|
time_t value;
|
|
int i;
|
|
int d, m1, yy0, yy1, yy2, dow;
|
|
|
|
INITIALIZE(value);
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type) {
|
|
|
|
case JULIAN_DAY:
|
|
/*
|
|
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
** years.
|
|
** In non-leap years, or if the day number is 59 or less, just
|
|
** add SECSPERDAY times the day number-1 to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
/*
|
|
** n - day of year.
|
|
** Just add SECSPERDAY times the day number to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = janfirst + rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
/*
|
|
** Mm.n.d - nth "dth day" of month m.
|
|
*/
|
|
value = janfirst;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY;
|
|
|
|
/*
|
|
** Use Zeller's Congruence to get day-of-week of first day of
|
|
** month.
|
|
*/
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 +
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
dow += DAYSPERWEEK;
|
|
|
|
/*
|
|
** "dow" is the day-of-week of the first day of the month. Get
|
|
** the day-of-month (zero-origin) of the first "dow" day of the
|
|
** month.
|
|
*/
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
d += DAYSPERWEEK;
|
|
for (i = 1; i < rulep->r_week; ++i) {
|
|
if (d + DAYSPERWEEK >=
|
|
mon_lengths[leapyear][rulep->r_mon - 1])
|
|
break;
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/*
|
|
** "d" is the day-of-month (zero-origin) of the day we want.
|
|
*/
|
|
value += d * SECSPERDAY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
|
|
** question. To get the Epoch-relative time of the specified local
|
|
** time on that day, add the transition time and the current offset
|
|
** from GMT.
|
|
*/
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/*
|
|
** Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
** appropriate.
|
|
*/
|
|
|
|
static int
|
|
tzparse(name, sp, lastditch)
|
|
const char * name;
|
|
struct state * const sp;
|
|
const int lastditch;
|
|
{
|
|
const char * stdname;
|
|
const char * dstname;
|
|
size_t stdlen;
|
|
size_t dstlen;
|
|
long stdoffset;
|
|
long dstoffset;
|
|
time_t * atp;
|
|
unsigned char * typep;
|
|
char * cp;
|
|
int load_result;
|
|
|
|
INITIALIZE(dstname);
|
|
stdname = name;
|
|
if (lastditch) {
|
|
stdlen = strlen(name); /* length of standard zone name */
|
|
name += stdlen;
|
|
if (stdlen >= sizeof sp->chars)
|
|
stdlen = (sizeof sp->chars) - 1;
|
|
stdoffset = 0;
|
|
} else {
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
if (stdlen < 3)
|
|
return -1;
|
|
if (*name == '\0')
|
|
return -1; /* was "stdoffset = 0;" */
|
|
else {
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
}
|
|
}
|
|
load_result = tzload(TZDEFRULES, sp);
|
|
if (load_result != 0)
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
if (*name != '\0') {
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST zone name */
|
|
if (dstlen < 3)
|
|
return -1;
|
|
if (*name != '\0' && *name != ',' && *name != ';') {
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
return -1;
|
|
} else dstoffset = stdoffset - SECSPERHOUR;
|
|
if (*name == ',' || *name == ';') {
|
|
struct rule start;
|
|
struct rule end;
|
|
int year;
|
|
time_t janfirst;
|
|
time_t starttime;
|
|
time_t endtime;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
return -1;
|
|
if (*name++ != ',')
|
|
return -1;
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
return -1;
|
|
if (*name != '\0')
|
|
return -1;
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
/*
|
|
** Two transitions per year, from EPOCH_YEAR to 2037.
|
|
*/
|
|
sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
|
|
if (sp->timecnt > TZ_MAX_TIMES)
|
|
return -1;
|
|
sp->ttis[0].tt_gmtoff = -dstoffset;
|
|
sp->ttis[0].tt_isdst = 1;
|
|
sp->ttis[0].tt_abbrind = stdlen + 1;
|
|
sp->ttis[1].tt_gmtoff = -stdoffset;
|
|
sp->ttis[1].tt_isdst = 0;
|
|
sp->ttis[1].tt_abbrind = 0;
|
|
atp = sp->ats;
|
|
typep = sp->types;
|
|
janfirst = 0;
|
|
for (year = EPOCH_YEAR; year <= 2037; ++year) {
|
|
starttime = transtime(janfirst, year, &start,
|
|
stdoffset);
|
|
endtime = transtime(janfirst, year, &end,
|
|
dstoffset);
|
|
if (starttime > endtime) {
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
} else {
|
|
*atp++ = starttime;
|
|
*typep++ = 0; /* DST begins */
|
|
*atp++ = endtime;
|
|
*typep++ = 1; /* DST ends */
|
|
}
|
|
janfirst += year_lengths[isleap(year)] *
|
|
SECSPERDAY;
|
|
}
|
|
} else {
|
|
long theirstdoffset;
|
|
long theirdstoffset;
|
|
long theiroffset;
|
|
int isdst;
|
|
int i;
|
|
int j;
|
|
|
|
if (*name != '\0')
|
|
return -1;
|
|
if (load_result != 0)
|
|
return -1;
|
|
/*
|
|
** Initial values of theirstdoffset and theirdstoffset.
|
|
*/
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst) {
|
|
theirstdoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst) {
|
|
theirdstoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
** Initially we're assumed to be in standard time.
|
|
*/
|
|
isdst = FALSE;
|
|
theiroffset = theirstdoffset;
|
|
/*
|
|
** Now juggle transition times and types
|
|
** tracking offsets as you do.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisgmt) {
|
|
/* No adjustment to transition time */
|
|
} else {
|
|
/*
|
|
** If summer time is in effect, and the
|
|
** transition time was not specified as
|
|
** standard time, add the summer time
|
|
** offset to the transition time;
|
|
** otherwise, add the standard time
|
|
** offset to the transition time.
|
|
*/
|
|
/*
|
|
** Transitions from DST to DDST
|
|
** will effectively disappear since
|
|
** POSIX provides for only one DST
|
|
** offset.
|
|
*/
|
|
if (isdst && !sp->ttis[j].tt_ttisstd) {
|
|
sp->ats[i] += dstoffset -
|
|
theirdstoffset;
|
|
} else {
|
|
sp->ats[i] += stdoffset -
|
|
theirstdoffset;
|
|
}
|
|
}
|
|
theiroffset = -sp->ttis[j].tt_gmtoff;
|
|
if (sp->ttis[j].tt_isdst)
|
|
theirdstoffset = theiroffset;
|
|
else theirstdoffset = theiroffset;
|
|
}
|
|
/*
|
|
** Finally, fill in ttis.
|
|
** ttisstd and ttisgmt need not be handled.
|
|
*/
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = FALSE;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
sp->ttis[1].tt_gmtoff = -dstoffset;
|
|
sp->ttis[1].tt_isdst = TRUE;
|
|
sp->ttis[1].tt_abbrind = stdlen + 1;
|
|
}
|
|
} else {
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
sp->ttis[0].tt_gmtoff = -stdoffset;
|
|
sp->ttis[0].tt_isdst = 0;
|
|
sp->ttis[0].tt_abbrind = 0;
|
|
}
|
|
sp->charcnt = stdlen + 1;
|
|
if (dstlen != 0)
|
|
sp->charcnt += dstlen + 1;
|
|
if (sp->charcnt > sizeof sp->chars)
|
|
return -1;
|
|
cp = sp->chars;
|
|
(void) strncpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0) {
|
|
(void) strncpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gmtload(sp)
|
|
struct state * const sp;
|
|
{
|
|
if (tzload(gmt, sp) != 0)
|
|
(void) tzparse(gmt, sp, TRUE);
|
|
}
|
|
|
|
static void
|
|
tzsetwall_basic(void)
|
|
{
|
|
if (lcl_is_set < 0)
|
|
return;
|
|
lcl_is_set = -1;
|
|
|
|
#ifdef ALL_STATE
|
|
if (lclptr == NULL) {
|
|
lclptr = (struct state *) malloc(sizeof *lclptr);
|
|
if (lclptr == NULL) {
|
|
settzname(); /* all we can do */
|
|
return;
|
|
}
|
|
}
|
|
#endif /* defined ALL_STATE */
|
|
if (tzload((char *) NULL, lclptr) != 0)
|
|
gmtload(lclptr);
|
|
settzname();
|
|
}
|
|
|
|
void
|
|
tzsetwall(void)
|
|
{
|
|
_MUTEX_LOCK(&lcl_mutex);
|
|
tzsetwall_basic();
|
|
_MUTEX_UNLOCK(&lcl_mutex);
|
|
}
|
|
|
|
static void
|
|
tzset_basic(void)
|
|
{
|
|
const char * name;
|
|
|
|
name = getenv("TZ");
|
|
if (name == NULL) {
|
|
tzsetwall_basic();
|
|
return;
|
|
}
|
|
|
|
if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
|
|
return;
|
|
lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
|
|
if (lcl_is_set)
|
|
(void) strcpy(lcl_TZname, name);
|
|
|
|
#ifdef ALL_STATE
|
|
if (lclptr == NULL) {
|
|
lclptr = (struct state *) malloc(sizeof *lclptr);
|
|
if (lclptr == NULL) {
|
|
settzname(); /* all we can do */
|
|
return;
|
|
}
|
|
}
|
|
#endif /* defined ALL_STATE */
|
|
if (*name == '\0') {
|
|
/*
|
|
** User wants it fast rather than right.
|
|
*/
|
|
lclptr->leapcnt = 0; /* so, we're off a little */
|
|
lclptr->timecnt = 0;
|
|
lclptr->ttis[0].tt_gmtoff = 0;
|
|
lclptr->ttis[0].tt_abbrind = 0;
|
|
(void) strcpy(lclptr->chars, gmt);
|
|
} else if (tzload(name, lclptr) != 0)
|
|
if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
|
|
(void) gmtload(lclptr);
|
|
settzname();
|
|
}
|
|
|
|
void
|
|
tzset(void)
|
|
{
|
|
_MUTEX_LOCK(&lcl_mutex);
|
|
tzset_basic();
|
|
_MUTEX_UNLOCK(&lcl_mutex);
|
|
}
|
|
|
|
/*
|
|
** The easy way to behave "as if no library function calls" localtime
|
|
** is to not call it--so we drop its guts into "localsub", which can be
|
|
** freely called. (And no, the PANS doesn't require the above behavior--
|
|
** but it *is* desirable.)
|
|
**
|
|
** The unused offset argument is for the benefit of mktime variants.
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
localsub(timep, offset, tmp)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
struct tm * const tmp;
|
|
{
|
|
struct state * sp;
|
|
const struct ttinfo * ttisp;
|
|
int i;
|
|
const time_t t = *timep;
|
|
|
|
sp = lclptr;
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL) {
|
|
gmtsub(timep, offset, tmp);
|
|
return;
|
|
}
|
|
#endif /* defined ALL_STATE */
|
|
if (sp->timecnt == 0 || t < sp->ats[0]) {
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt) {
|
|
i = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (t < sp->ats[i])
|
|
break;
|
|
i = sp->types[i - 1];
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
/*
|
|
** To get (wrong) behavior that's compatible with System V Release 2.0
|
|
** you'd replace the statement below with
|
|
** t += ttisp->tt_gmtoff;
|
|
** timesub(&t, 0L, sp, tmp);
|
|
*/
|
|
timesub(&t, ttisp->tt_gmtoff, sp, tmp);
|
|
tmp->tm_isdst = ttisp->tt_isdst;
|
|
tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
|
|
#ifdef TM_ZONE
|
|
tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
|
|
#endif /* defined TM_ZONE */
|
|
}
|
|
|
|
struct tm *
|
|
localtime_r(timep, p_tm)
|
|
const time_t * const timep;
|
|
struct tm *p_tm;
|
|
{
|
|
_MUTEX_LOCK(&lcl_mutex);
|
|
tzset_basic();
|
|
localsub(timep, 0L, p_tm);
|
|
_MUTEX_UNLOCK(&lcl_mutex);
|
|
return(p_tm);
|
|
}
|
|
|
|
struct tm *
|
|
localtime(timep)
|
|
const time_t * const timep;
|
|
{
|
|
static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static pthread_key_t localtime_key = -1;
|
|
struct tm *p_tm;
|
|
|
|
if (__isthreaded != 0) {
|
|
_pthread_mutex_lock(&localtime_mutex);
|
|
if (localtime_key < 0) {
|
|
if (_pthread_key_create(&localtime_key, free) < 0) {
|
|
_pthread_mutex_unlock(&localtime_mutex);
|
|
return(NULL);
|
|
}
|
|
}
|
|
_pthread_mutex_unlock(&localtime_mutex);
|
|
p_tm = _pthread_getspecific(localtime_key);
|
|
if (p_tm == NULL) {
|
|
if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
|
|
== NULL)
|
|
return(NULL);
|
|
_pthread_setspecific(localtime_key, p_tm);
|
|
}
|
|
_pthread_mutex_lock(&lcl_mutex);
|
|
tzset_basic();
|
|
localsub(timep, 0L, p_tm);
|
|
_pthread_mutex_unlock(&lcl_mutex);
|
|
return(p_tm);
|
|
} else {
|
|
tzset_basic();
|
|
localsub(timep, 0L, &tm);
|
|
return(&tm);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** gmtsub is to gmtime as localsub is to localtime.
|
|
*/
|
|
|
|
static void
|
|
gmtsub(timep, offset, tmp)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
struct tm * const tmp;
|
|
{
|
|
_MUTEX_LOCK(&gmt_mutex);
|
|
if (!gmt_is_set) {
|
|
gmt_is_set = TRUE;
|
|
#ifdef ALL_STATE
|
|
gmtptr = (struct state *) malloc(sizeof *gmtptr);
|
|
if (gmtptr != NULL)
|
|
#endif /* defined ALL_STATE */
|
|
gmtload(gmtptr);
|
|
}
|
|
_MUTEX_UNLOCK(&gmt_mutex);
|
|
timesub(timep, offset, gmtptr, tmp);
|
|
#ifdef TM_ZONE
|
|
/*
|
|
** Could get fancy here and deliver something such as
|
|
** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
|
|
** but this is no time for a treasure hunt.
|
|
*/
|
|
if (offset != 0)
|
|
tmp->TM_ZONE = wildabbr;
|
|
else {
|
|
#ifdef ALL_STATE
|
|
if (gmtptr == NULL)
|
|
tmp->TM_ZONE = gmt;
|
|
else tmp->TM_ZONE = gmtptr->chars;
|
|
#endif /* defined ALL_STATE */
|
|
#ifndef ALL_STATE
|
|
tmp->TM_ZONE = gmtptr->chars;
|
|
#endif /* State Farm */
|
|
}
|
|
#endif /* defined TM_ZONE */
|
|
}
|
|
|
|
struct tm *
|
|
gmtime(timep)
|
|
const time_t * const timep;
|
|
{
|
|
static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static pthread_key_t gmtime_key = -1;
|
|
struct tm *p_tm;
|
|
|
|
if (__isthreaded != 0) {
|
|
_pthread_mutex_lock(&gmtime_mutex);
|
|
if (gmtime_key < 0) {
|
|
if (_pthread_key_create(&gmtime_key, free) < 0) {
|
|
_pthread_mutex_unlock(&gmtime_mutex);
|
|
return(NULL);
|
|
}
|
|
}
|
|
_pthread_mutex_unlock(&gmtime_mutex);
|
|
/*
|
|
* Changed to follow POSIX.1 threads standard, which
|
|
* is what BSD currently has.
|
|
*/
|
|
if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
|
|
if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
|
|
== NULL) {
|
|
return(NULL);
|
|
}
|
|
_pthread_setspecific(gmtime_key, p_tm);
|
|
}
|
|
gmtsub(timep, 0L, p_tm);
|
|
return(p_tm);
|
|
}
|
|
else {
|
|
gmtsub(timep, 0L, &tm);
|
|
return(&tm);
|
|
}
|
|
}
|
|
|
|
struct tm *
|
|
gmtime_r(const time_t * timep, struct tm * tm)
|
|
{
|
|
gmtsub(timep, 0L, tm);
|
|
return(tm);
|
|
}
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
struct tm *
|
|
offtime(timep, offset)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
{
|
|
gmtsub(timep, offset, &tm);
|
|
return &tm;
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|
|
|
|
static void
|
|
timesub(timep, offset, sp, tmp)
|
|
const time_t * const timep;
|
|
const long offset;
|
|
const struct state * const sp;
|
|
struct tm * const tmp;
|
|
{
|
|
const struct lsinfo * lp;
|
|
long days;
|
|
long rem;
|
|
long y;
|
|
int yleap;
|
|
const int * ip;
|
|
long corr;
|
|
int hit;
|
|
int i;
|
|
|
|
corr = 0;
|
|
hit = 0;
|
|
#ifdef ALL_STATE
|
|
i = (sp == NULL) ? 0 : sp->leapcnt;
|
|
#endif /* defined ALL_STATE */
|
|
#ifndef ALL_STATE
|
|
i = sp->leapcnt;
|
|
#endif /* State Farm */
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans) {
|
|
if (*timep == lp->ls_trans) {
|
|
hit = ((i == 0 && lp->ls_corr > 0) ||
|
|
lp->ls_corr > sp->lsis[i - 1].ls_corr);
|
|
if (hit)
|
|
while (i > 0 &&
|
|
sp->lsis[i].ls_trans ==
|
|
sp->lsis[i - 1].ls_trans + 1 &&
|
|
sp->lsis[i].ls_corr ==
|
|
sp->lsis[i - 1].ls_corr + 1) {
|
|
++hit;
|
|
--i;
|
|
}
|
|
}
|
|
corr = lp->ls_corr;
|
|
break;
|
|
}
|
|
}
|
|
days = *timep / SECSPERDAY;
|
|
rem = *timep % SECSPERDAY;
|
|
#ifdef mc68k
|
|
if (*timep == 0x80000000) {
|
|
/*
|
|
** A 3B1 muffs the division on the most negative number.
|
|
*/
|
|
days = -24855;
|
|
rem = -11648;
|
|
}
|
|
#endif /* defined mc68k */
|
|
rem += (offset - corr);
|
|
while (rem < 0) {
|
|
rem += SECSPERDAY;
|
|
--days;
|
|
}
|
|
while (rem >= SECSPERDAY) {
|
|
rem -= SECSPERDAY;
|
|
++days;
|
|
}
|
|
tmp->tm_hour = (int) (rem / SECSPERHOUR);
|
|
rem = rem % SECSPERHOUR;
|
|
tmp->tm_min = (int) (rem / SECSPERMIN);
|
|
/*
|
|
** A positive leap second requires a special
|
|
** representation. This uses "... ??:59:60" et seq.
|
|
*/
|
|
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
|
|
tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
|
|
if (tmp->tm_wday < 0)
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
y = EPOCH_YEAR;
|
|
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
|
|
while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
|
|
long newy;
|
|
|
|
newy = y + days / DAYSPERNYEAR;
|
|
if (days < 0)
|
|
--newy;
|
|
days -= (newy - y) * DAYSPERNYEAR +
|
|
LEAPS_THRU_END_OF(newy - 1) -
|
|
LEAPS_THRU_END_OF(y - 1);
|
|
y = newy;
|
|
}
|
|
tmp->tm_year = y - TM_YEAR_BASE;
|
|
tmp->tm_yday = (int) days;
|
|
ip = mon_lengths[yleap];
|
|
for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
|
|
days = days - (long) ip[tmp->tm_mon];
|
|
tmp->tm_mday = (int) (days + 1);
|
|
tmp->tm_isdst = 0;
|
|
#ifdef TM_GMTOFF
|
|
tmp->TM_GMTOFF = offset;
|
|
#endif /* defined TM_GMTOFF */
|
|
}
|
|
|
|
char *
|
|
ctime(timep)
|
|
const time_t * const timep;
|
|
{
|
|
/*
|
|
** Section 4.12.3.2 of X3.159-1989 requires that
|
|
** The ctime funciton converts the calendar time pointed to by timer
|
|
** to local time in the form of a string. It is equivalent to
|
|
** asctime(localtime(timer))
|
|
*/
|
|
return asctime(localtime(timep));
|
|
}
|
|
|
|
char *
|
|
ctime_r(timep, buf)
|
|
const time_t * const timep;
|
|
char *buf;
|
|
{
|
|
struct tm tm;
|
|
return asctime_r(localtime_r(timep, &tm), buf);
|
|
}
|
|
|
|
/*
|
|
** Adapted from code provided by Robert Elz, who writes:
|
|
** The "best" way to do mktime I think is based on an idea of Bob
|
|
** Kridle's (so its said...) from a long time ago.
|
|
** [kridle@xinet.com as of 1996-01-16.]
|
|
** It does a binary search of the time_t space. Since time_t's are
|
|
** just 32 bits, its a max of 32 iterations (even at 64 bits it
|
|
** would still be very reasonable).
|
|
*/
|
|
|
|
#ifndef WRONG
|
|
#define WRONG (-1)
|
|
#endif /* !defined WRONG */
|
|
|
|
/*
|
|
** Simplified normalize logic courtesy Paul Eggert (eggert@twinsun.com).
|
|
*/
|
|
|
|
static int
|
|
increment_overflow(number, delta)
|
|
int * number;
|
|
int delta;
|
|
{
|
|
int number0;
|
|
|
|
number0 = *number;
|
|
*number += delta;
|
|
return (*number < number0) != (delta < 0);
|
|
}
|
|
|
|
static int
|
|
normalize_overflow(tensptr, unitsptr, base)
|
|
int * const tensptr;
|
|
int * const unitsptr;
|
|
const int base;
|
|
{
|
|
int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) :
|
|
(-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow(tensptr, tensdelta);
|
|
}
|
|
|
|
static int
|
|
tmcomp(atmp, btmp)
|
|
const struct tm * const atmp;
|
|
const struct tm * const btmp;
|
|
{
|
|
int result;
|
|
|
|
if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
|
|
(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
|
|
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
|
|
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
|
|
(result = (atmp->tm_min - btmp->tm_min)) == 0)
|
|
result = atmp->tm_sec - btmp->tm_sec;
|
|
return result;
|
|
}
|
|
|
|
static time_t
|
|
time2(tmp, funcp, offset, okayp)
|
|
struct tm * const tmp;
|
|
void (* const funcp)(const time_t*, long, struct tm*);
|
|
const long offset;
|
|
int * const okayp;
|
|
{
|
|
const struct state * sp;
|
|
int dir;
|
|
int bits;
|
|
int i, j ;
|
|
int saved_seconds;
|
|
time_t newt;
|
|
time_t t;
|
|
struct tm yourtm, mytm;
|
|
|
|
*okayp = FALSE;
|
|
yourtm = *tmp;
|
|
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
|
|
return WRONG;
|
|
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
|
|
return WRONG;
|
|
if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
|
|
return WRONG;
|
|
/*
|
|
** Turn yourtm.tm_year into an actual year number for now.
|
|
** It is converted back to an offset from TM_YEAR_BASE later.
|
|
*/
|
|
if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
|
|
return WRONG;
|
|
while (yourtm.tm_mday <= 0) {
|
|
if (increment_overflow(&yourtm.tm_year, -1))
|
|
return WRONG;
|
|
i = yourtm.tm_year + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday += year_lengths[isleap(i)];
|
|
}
|
|
while (yourtm.tm_mday > DAYSPERLYEAR) {
|
|
i = yourtm.tm_year + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday -= year_lengths[isleap(i)];
|
|
if (increment_overflow(&yourtm.tm_year, 1))
|
|
return WRONG;
|
|
}
|
|
for ( ; ; ) {
|
|
i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
|
|
if (yourtm.tm_mday <= i)
|
|
break;
|
|
yourtm.tm_mday -= i;
|
|
if (++yourtm.tm_mon >= MONSPERYEAR) {
|
|
yourtm.tm_mon = 0;
|
|
if (increment_overflow(&yourtm.tm_year, 1))
|
|
return WRONG;
|
|
}
|
|
}
|
|
if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
|
|
return WRONG;
|
|
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
|
|
saved_seconds = 0;
|
|
else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
|
|
/*
|
|
** We can't set tm_sec to 0, because that might push the
|
|
** time below the minimum representable time.
|
|
** Set tm_sec to 59 instead.
|
|
** This assumes that the minimum representable time is
|
|
** not in the same minute that a leap second was deleted from,
|
|
** which is a safer assumption than using 58 would be.
|
|
*/
|
|
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
|
|
return WRONG;
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = SECSPERMIN - 1;
|
|
} else {
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = 0;
|
|
}
|
|
/*
|
|
** Divide the search space in half
|
|
** (this works whether time_t is signed or unsigned).
|
|
*/
|
|
bits = TYPE_BIT(time_t) - 1;
|
|
/*
|
|
** If we have more than this, we will overflow tm_year for tmcomp().
|
|
** We should really return an error if we cannot represent it.
|
|
*/
|
|
if (bits > 56)
|
|
bits = 56;
|
|
/*
|
|
** If time_t is signed, then 0 is just above the median,
|
|
** assuming two's complement arithmetic.
|
|
** If time_t is unsigned, then (1 << bits) is just above the median.
|
|
*/
|
|
t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
|
|
for ( ; ; ) {
|
|
(*funcp)(&t, offset, &mytm);
|
|
dir = tmcomp(&mytm, &yourtm);
|
|
if (dir != 0) {
|
|
if (bits-- < 0)
|
|
return WRONG;
|
|
if (bits < 0)
|
|
--t; /* may be needed if new t is minimal */
|
|
else if (dir > 0)
|
|
t -= ((time_t) 1) << bits;
|
|
else t += ((time_t) 1) << bits;
|
|
continue;
|
|
}
|
|
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
|
|
break;
|
|
/*
|
|
** Right time, wrong type.
|
|
** Hunt for right time, right type.
|
|
** It's okay to guess wrong since the guess
|
|
** gets checked.
|
|
*/
|
|
/*
|
|
** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
|
|
*/
|
|
sp = (const struct state *)
|
|
(((void *) funcp == (void *) localsub) ?
|
|
lclptr : gmtptr);
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL)
|
|
return WRONG;
|
|
#endif /* defined ALL_STATE */
|
|
for (i = sp->typecnt - 1; i >= 0; --i) {
|
|
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
for (j = sp->typecnt - 1; j >= 0; --j) {
|
|
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
|
|
continue;
|
|
newt = t + sp->ttis[j].tt_gmtoff -
|
|
sp->ttis[i].tt_gmtoff;
|
|
(*funcp)(&newt, offset, &mytm);
|
|
if (tmcomp(&mytm, &yourtm) != 0)
|
|
continue;
|
|
if (mytm.tm_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
/*
|
|
** We have a match.
|
|
*/
|
|
t = newt;
|
|
goto label;
|
|
}
|
|
}
|
|
return WRONG;
|
|
}
|
|
label:
|
|
newt = t + saved_seconds;
|
|
if ((newt < t) != (saved_seconds < 0))
|
|
return WRONG;
|
|
t = newt;
|
|
(*funcp)(&t, offset, tmp);
|
|
*okayp = TRUE;
|
|
return t;
|
|
}
|
|
|
|
static time_t
|
|
time1(tmp, funcp, offset)
|
|
struct tm * const tmp;
|
|
void (* const funcp)(const time_t *, long, struct tm *);
|
|
const long offset;
|
|
{
|
|
time_t t;
|
|
const struct state * sp;
|
|
int samei, otheri;
|
|
int okay;
|
|
|
|
if (tmp->tm_isdst > 1)
|
|
tmp->tm_isdst = 1;
|
|
t = time2(tmp, funcp, offset, &okay);
|
|
#ifdef PCTS
|
|
/*
|
|
** PCTS code courtesy Grant Sullivan (grant@osf.org).
|
|
*/
|
|
if (okay)
|
|
return t;
|
|
if (tmp->tm_isdst < 0)
|
|
tmp->tm_isdst = 0; /* reset to std and try again */
|
|
#endif /* defined PCTS */
|
|
#ifndef PCTS
|
|
if (okay || tmp->tm_isdst < 0)
|
|
return t;
|
|
#endif /* !defined PCTS */
|
|
/*
|
|
** We're supposed to assume that somebody took a time of one type
|
|
** and did some math on it that yielded a "struct tm" that's bad.
|
|
** We try to divine the type they started from and adjust to the
|
|
** type they need.
|
|
*/
|
|
/*
|
|
** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
|
|
*/
|
|
sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
|
|
lclptr : gmtptr);
|
|
#ifdef ALL_STATE
|
|
if (sp == NULL)
|
|
return WRONG;
|
|
#endif /* defined ALL_STATE */
|
|
for (samei = sp->typecnt - 1; samei >= 0; --samei) {
|
|
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
|
|
continue;
|
|
for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
|
|
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
|
|
continue;
|
|
tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
|
|
sp->ttis[samei].tt_gmtoff;
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
t = time2(tmp, funcp, offset, &okay);
|
|
if (okay)
|
|
return t;
|
|
tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
|
|
sp->ttis[samei].tt_gmtoff;
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
}
|
|
}
|
|
return WRONG;
|
|
}
|
|
|
|
time_t
|
|
mktime(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
time_t mktime_return_value;
|
|
_MUTEX_LOCK(&lcl_mutex);
|
|
tzset_basic();
|
|
mktime_return_value = time1(tmp, localsub, 0L);
|
|
_MUTEX_UNLOCK(&lcl_mutex);
|
|
return(mktime_return_value);
|
|
}
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
time_t
|
|
timelocal(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
tmp->tm_isdst = -1; /* in case it wasn't initialized */
|
|
return mktime(tmp);
|
|
}
|
|
|
|
time_t
|
|
timegm(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
tmp->tm_isdst = 0;
|
|
return time1(tmp, gmtsub, 0L);
|
|
}
|
|
|
|
time_t
|
|
timeoff(tmp, offset)
|
|
struct tm * const tmp;
|
|
const long offset;
|
|
{
|
|
tmp->tm_isdst = 0;
|
|
return time1(tmp, gmtsub, offset);
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|
|
|
|
#ifdef CMUCS
|
|
|
|
/*
|
|
** The following is supplied for compatibility with
|
|
** previous versions of the CMUCS runtime library.
|
|
*/
|
|
|
|
long
|
|
gtime(tmp)
|
|
struct tm * const tmp;
|
|
{
|
|
const time_t t = mktime(tmp);
|
|
|
|
if (t == WRONG)
|
|
return -1;
|
|
return t;
|
|
}
|
|
|
|
#endif /* defined CMUCS */
|
|
|
|
/*
|
|
** XXX--is the below the right way to conditionalize??
|
|
*/
|
|
|
|
#ifdef STD_INSPIRED
|
|
|
|
/*
|
|
** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
|
|
** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
|
|
** is not the case if we are accounting for leap seconds.
|
|
** So, we provide the following conversion routines for use
|
|
** when exchanging timestamps with POSIX conforming systems.
|
|
*/
|
|
|
|
static long
|
|
leapcorr(timep)
|
|
time_t * timep;
|
|
{
|
|
struct state * sp;
|
|
struct lsinfo * lp;
|
|
int i;
|
|
|
|
sp = lclptr;
|
|
i = sp->leapcnt;
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans)
|
|
return lp->ls_corr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
time_t
|
|
time2posix(t)
|
|
time_t t;
|
|
{
|
|
tzset();
|
|
return t - leapcorr(&t);
|
|
}
|
|
|
|
time_t
|
|
posix2time(t)
|
|
time_t t;
|
|
{
|
|
time_t x;
|
|
time_t y;
|
|
|
|
tzset();
|
|
/*
|
|
** For a positive leap second hit, the result
|
|
** is not unique. For a negative leap second
|
|
** hit, the corresponding time doesn't exist,
|
|
** so we return an adjacent second.
|
|
*/
|
|
x = t + leapcorr(&t);
|
|
y = x - leapcorr(&x);
|
|
if (y < t) {
|
|
do {
|
|
x++;
|
|
y = x - leapcorr(&x);
|
|
} while (y < t);
|
|
if (t != y)
|
|
return x - 1;
|
|
} else if (y > t) {
|
|
do {
|
|
--x;
|
|
y = x - leapcorr(&x);
|
|
} while (y > t);
|
|
if (t != y)
|
|
return x + 1;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
#endif /* defined STD_INSPIRED */
|