11351 lines
346 KiB
C
11351 lines
346 KiB
C
/* Process declarations and variables for C++ compiler.
|
||
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* Process declarations and symbol lookup for C++ front end.
|
||
Also constructs types; the standard scalar types at initialization,
|
||
and structure, union, array and enum types when they are declared. */
|
||
|
||
/* ??? not all decl nodes are given the most useful possible
|
||
line numbers. For example, the CONST_DECLs for enum values. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "expr.h"
|
||
#include "flags.h"
|
||
#include "cp-tree.h"
|
||
#include "tree-inline.h"
|
||
#include "decl.h"
|
||
#include "lex.h"
|
||
#include "output.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "hashtab.h"
|
||
#include "tm_p.h"
|
||
#include "target.h"
|
||
#include "c-common.h"
|
||
#include "c-pragma.h"
|
||
#include "diagnostic.h"
|
||
#include "debug.h"
|
||
#include "timevar.h"
|
||
|
||
static tree grokparms (tree, tree *);
|
||
static const char *redeclaration_error_message (tree, tree);
|
||
|
||
static int decl_jump_unsafe (tree);
|
||
static void require_complete_types_for_parms (tree);
|
||
static int ambi_op_p (enum tree_code);
|
||
static int unary_op_p (enum tree_code);
|
||
static void push_local_name (tree);
|
||
static tree grok_reference_init (tree, tree, tree, tree *);
|
||
static tree grokfndecl (tree, tree, tree, tree, tree, int,
|
||
enum overload_flags, tree,
|
||
tree, int, int, int, int, int, int, tree);
|
||
static tree grokvardecl (tree, tree, RID_BIT_TYPE *, int, int, tree);
|
||
static void record_unknown_type (tree, const char *);
|
||
static tree builtin_function_1 (const char *, tree, tree, int,
|
||
enum built_in_class, const char *,
|
||
tree);
|
||
static tree build_library_fn_1 (tree, enum tree_code, tree);
|
||
static int member_function_or_else (tree, tree, enum overload_flags);
|
||
static void bad_specifiers (tree, const char *, int, int, int, int,
|
||
int);
|
||
static void check_for_uninitialized_const_var (tree);
|
||
static hashval_t typename_hash (const void *);
|
||
static int typename_compare (const void *, const void *);
|
||
static tree local_variable_p_walkfn (tree *, int *, void *);
|
||
static tree record_builtin_java_type (const char *, int);
|
||
static const char *tag_name (enum tag_types code);
|
||
static int walk_namespaces_r (tree, walk_namespaces_fn, void *);
|
||
static int walk_globals_r (tree, void*);
|
||
static int walk_vtables_r (tree, void*);
|
||
static tree make_label_decl (tree, int);
|
||
static void use_label (tree);
|
||
static void check_previous_goto_1 (tree, struct cp_binding_level *, tree,
|
||
const location_t *);
|
||
static void check_previous_goto (struct named_label_use_list *);
|
||
static void check_switch_goto (struct cp_binding_level *);
|
||
static void check_previous_gotos (tree);
|
||
static void pop_label (tree, tree);
|
||
static void pop_labels (tree);
|
||
static void maybe_deduce_size_from_array_init (tree, tree);
|
||
static void layout_var_decl (tree);
|
||
static void maybe_commonize_var (tree);
|
||
static tree check_initializer (tree, tree, int, tree *);
|
||
static void make_rtl_for_nonlocal_decl (tree, tree, const char *);
|
||
static void save_function_data (tree);
|
||
static void check_function_type (tree, tree);
|
||
static void begin_constructor_body (void);
|
||
static void finish_constructor_body (void);
|
||
static void begin_destructor_body (void);
|
||
static void finish_destructor_body (void);
|
||
static tree create_array_type_for_decl (tree, tree, tree);
|
||
static tree get_atexit_node (void);
|
||
static tree get_dso_handle_node (void);
|
||
static tree start_cleanup_fn (void);
|
||
static void end_cleanup_fn (void);
|
||
static tree cp_make_fname_decl (tree, int);
|
||
static void initialize_predefined_identifiers (void);
|
||
static tree check_special_function_return_type
|
||
(special_function_kind, tree, tree);
|
||
static tree push_cp_library_fn (enum tree_code, tree);
|
||
static tree build_cp_library_fn (tree, enum tree_code, tree);
|
||
static void store_parm_decls (tree);
|
||
static int cp_missing_noreturn_ok_p (tree);
|
||
static void initialize_local_var (tree, tree);
|
||
static void expand_static_init (tree, tree);
|
||
static tree next_initializable_field (tree);
|
||
static tree reshape_init (tree, tree *);
|
||
static bool reshape_init_array (tree, tree, tree *, tree);
|
||
static tree build_typename_type (tree, tree, tree);
|
||
|
||
/* Erroneous argument lists can use this *IFF* they do not modify it. */
|
||
tree error_mark_list;
|
||
|
||
/* The following symbols are subsumed in the cp_global_trees array, and
|
||
listed here individually for documentation purposes.
|
||
|
||
C++ extensions
|
||
tree wchar_decl_node;
|
||
|
||
tree vtable_entry_type;
|
||
tree delta_type_node;
|
||
tree __t_desc_type_node;
|
||
tree ti_desc_type_node;
|
||
tree bltn_desc_type_node, ptr_desc_type_node;
|
||
tree ary_desc_type_node, func_desc_type_node, enum_desc_type_node;
|
||
tree class_desc_type_node, si_class_desc_type_node, vmi_class_desc_type_node;
|
||
tree ptm_desc_type_node;
|
||
tree base_desc_type_node;
|
||
|
||
tree class_type_node;
|
||
tree unknown_type_node;
|
||
|
||
Array type `vtable_entry_type[]'
|
||
|
||
tree vtbl_type_node;
|
||
tree vtbl_ptr_type_node;
|
||
|
||
Namespaces,
|
||
|
||
tree std_node;
|
||
tree abi_node;
|
||
|
||
A FUNCTION_DECL which can call `abort'. Not necessarily the
|
||
one that the user will declare, but sufficient to be called
|
||
by routines that want to abort the program.
|
||
|
||
tree abort_fndecl;
|
||
|
||
The FUNCTION_DECL for the default `::operator delete'.
|
||
|
||
tree global_delete_fndecl;
|
||
|
||
Used by RTTI
|
||
tree type_info_type_node, tinfo_decl_id, tinfo_decl_type;
|
||
tree tinfo_var_id;
|
||
|
||
*/
|
||
|
||
tree cp_global_trees[CPTI_MAX];
|
||
|
||
/* Indicates that there is a type value in some namespace, although
|
||
that is not necessarily in scope at the moment. */
|
||
|
||
tree global_type_node;
|
||
|
||
/* The node that holds the "name" of the global scope. */
|
||
tree global_scope_name;
|
||
|
||
/* Used only for jumps to as-yet undefined labels, since jumps to
|
||
defined labels can have their validity checked immediately. */
|
||
|
||
struct named_label_use_list GTY(())
|
||
{
|
||
struct cp_binding_level *binding_level;
|
||
tree names_in_scope;
|
||
tree label_decl;
|
||
location_t o_goto_locus;
|
||
struct named_label_use_list *next;
|
||
};
|
||
|
||
#define named_label_uses cp_function_chain->x_named_label_uses
|
||
|
||
#define local_names cp_function_chain->x_local_names
|
||
|
||
/* A list of objects which have constructors or destructors
|
||
which reside in the global scope. The decl is stored in
|
||
the TREE_VALUE slot and the initializer is stored
|
||
in the TREE_PURPOSE slot. */
|
||
tree static_aggregates;
|
||
|
||
/* -- end of C++ */
|
||
|
||
/* A node for the integer constants 2, and 3. */
|
||
|
||
tree integer_two_node, integer_three_node;
|
||
|
||
/* A list of all LABEL_DECLs in the function that have names. Here so
|
||
we can clear out their names' definitions at the end of the
|
||
function, and so we can check the validity of jumps to these labels. */
|
||
|
||
struct named_label_list GTY(())
|
||
{
|
||
struct cp_binding_level *binding_level;
|
||
tree names_in_scope;
|
||
tree old_value;
|
||
tree label_decl;
|
||
tree bad_decls;
|
||
struct named_label_list *next;
|
||
unsigned int in_try_scope : 1;
|
||
unsigned int in_catch_scope : 1;
|
||
};
|
||
|
||
#define named_labels cp_function_chain->x_named_labels
|
||
|
||
/* The number of function bodies which we are currently processing.
|
||
(Zero if we are at namespace scope, one inside the body of a
|
||
function, two inside the body of a function in a local class, etc.) */
|
||
int function_depth;
|
||
|
||
/* States indicating how grokdeclarator() should handle declspecs marked
|
||
with __attribute__((deprecated)). An object declared as
|
||
__attribute__((deprecated)) suppresses warnings of uses of other
|
||
deprecated items. */
|
||
|
||
enum deprecated_states {
|
||
DEPRECATED_NORMAL,
|
||
DEPRECATED_SUPPRESS
|
||
};
|
||
|
||
static enum deprecated_states deprecated_state = DEPRECATED_NORMAL;
|
||
|
||
/* Set by add_implicitly_declared_members() to keep those members from
|
||
being flagged as deprecated or reported as using deprecated
|
||
types. */
|
||
int adding_implicit_members = 0;
|
||
|
||
/* True if a declaration with an `extern' linkage specifier is being
|
||
processed. */
|
||
bool have_extern_spec;
|
||
|
||
|
||
/* A TREE_LIST of VAR_DECLs. The TREE_PURPOSE is a RECORD_TYPE or
|
||
UNION_TYPE; the TREE_VALUE is a VAR_DECL with that type. At the
|
||
time the VAR_DECL was declared, the type was incomplete. */
|
||
|
||
static GTY(()) tree incomplete_vars;
|
||
|
||
/* Returns the kind of template specialization we are currently
|
||
processing, given that it's declaration contained N_CLASS_SCOPES
|
||
explicit scope qualifications. */
|
||
|
||
tmpl_spec_kind
|
||
current_tmpl_spec_kind (int n_class_scopes)
|
||
{
|
||
int n_template_parm_scopes = 0;
|
||
int seen_specialization_p = 0;
|
||
int innermost_specialization_p = 0;
|
||
struct cp_binding_level *b;
|
||
|
||
/* Scan through the template parameter scopes. */
|
||
for (b = current_binding_level;
|
||
b->kind == sk_template_parms;
|
||
b = b->level_chain)
|
||
{
|
||
/* If we see a specialization scope inside a parameter scope,
|
||
then something is wrong. That corresponds to a declaration
|
||
like:
|
||
|
||
template <class T> template <> ...
|
||
|
||
which is always invalid since [temp.expl.spec] forbids the
|
||
specialization of a class member template if the enclosing
|
||
class templates are not explicitly specialized as well. */
|
||
if (b->explicit_spec_p)
|
||
{
|
||
if (n_template_parm_scopes == 0)
|
||
innermost_specialization_p = 1;
|
||
else
|
||
seen_specialization_p = 1;
|
||
}
|
||
else if (seen_specialization_p == 1)
|
||
return tsk_invalid_member_spec;
|
||
|
||
++n_template_parm_scopes;
|
||
}
|
||
|
||
/* Handle explicit instantiations. */
|
||
if (processing_explicit_instantiation)
|
||
{
|
||
if (n_template_parm_scopes != 0)
|
||
/* We've seen a template parameter list during an explicit
|
||
instantiation. For example:
|
||
|
||
template <class T> template void f(int);
|
||
|
||
This is erroneous. */
|
||
return tsk_invalid_expl_inst;
|
||
else
|
||
return tsk_expl_inst;
|
||
}
|
||
|
||
if (n_template_parm_scopes < n_class_scopes)
|
||
/* We've not seen enough template headers to match all the
|
||
specialized classes present. For example:
|
||
|
||
template <class T> void R<T>::S<T>::f(int);
|
||
|
||
This is invalid; there needs to be one set of template
|
||
parameters for each class. */
|
||
return tsk_insufficient_parms;
|
||
else if (n_template_parm_scopes == n_class_scopes)
|
||
/* We're processing a non-template declaration (even though it may
|
||
be a member of a template class.) For example:
|
||
|
||
template <class T> void S<T>::f(int);
|
||
|
||
The `class T' maches the `S<T>', leaving no template headers
|
||
corresponding to the `f'. */
|
||
return tsk_none;
|
||
else if (n_template_parm_scopes > n_class_scopes + 1)
|
||
/* We've got too many template headers. For example:
|
||
|
||
template <> template <class T> void f (T);
|
||
|
||
There need to be more enclosing classes. */
|
||
return tsk_excessive_parms;
|
||
else
|
||
/* This must be a template. It's of the form:
|
||
|
||
template <class T> template <class U> void S<T>::f(U);
|
||
|
||
This is a specialization if the innermost level was a
|
||
specialization; otherwise it's just a definition of the
|
||
template. */
|
||
return innermost_specialization_p ? tsk_expl_spec : tsk_template;
|
||
}
|
||
|
||
/* Exit the current scope. */
|
||
|
||
void
|
||
finish_scope (void)
|
||
{
|
||
poplevel (0, 0, 0);
|
||
}
|
||
|
||
/* When a label goes out of scope, check to see if that label was used
|
||
in a valid manner, and issue any appropriate warnings or errors. */
|
||
|
||
static void
|
||
pop_label (tree label, tree old_value)
|
||
{
|
||
if (!processing_template_decl)
|
||
{
|
||
if (DECL_INITIAL (label) == NULL_TREE)
|
||
{
|
||
location_t location;
|
||
|
||
cp_error_at ("label `%D' used but not defined", label);
|
||
location.file = input_filename;
|
||
location.line = 0;
|
||
/* Avoid crashing later. */
|
||
define_label (location, DECL_NAME (label));
|
||
}
|
||
else if (warn_unused_label && !TREE_USED (label))
|
||
cp_warning_at ("label `%D' defined but not used", label);
|
||
}
|
||
|
||
SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (label), old_value);
|
||
}
|
||
|
||
/* At the end of a function, all labels declared within the function
|
||
go out of scope. BLOCK is the top-level block for the
|
||
function. */
|
||
|
||
static void
|
||
pop_labels (tree block)
|
||
{
|
||
struct named_label_list *link;
|
||
|
||
/* Clear out the definitions of all label names, since their scopes
|
||
end here. */
|
||
for (link = named_labels; link; link = link->next)
|
||
{
|
||
pop_label (link->label_decl, link->old_value);
|
||
/* Put the labels into the "variables" of the top-level block,
|
||
so debugger can see them. */
|
||
TREE_CHAIN (link->label_decl) = BLOCK_VARS (block);
|
||
BLOCK_VARS (block) = link->label_decl;
|
||
}
|
||
|
||
named_labels = NULL;
|
||
}
|
||
|
||
/* Exit a binding level.
|
||
Pop the level off, and restore the state of the identifier-decl mappings
|
||
that were in effect when this level was entered.
|
||
|
||
If KEEP == 1, this level had explicit declarations, so
|
||
and create a "block" (a BLOCK node) for the level
|
||
to record its declarations and subblocks for symbol table output.
|
||
|
||
If FUNCTIONBODY is nonzero, this level is the body of a function,
|
||
so create a block as if KEEP were set and also clear out all
|
||
label names.
|
||
|
||
If REVERSE is nonzero, reverse the order of decls before putting
|
||
them into the BLOCK. */
|
||
|
||
tree
|
||
poplevel (int keep, int reverse, int functionbody)
|
||
{
|
||
tree link;
|
||
/* The chain of decls was accumulated in reverse order.
|
||
Put it into forward order, just for cleanliness. */
|
||
tree decls;
|
||
int tmp = functionbody;
|
||
int real_functionbody;
|
||
tree subblocks;
|
||
tree block = NULL_TREE;
|
||
tree decl;
|
||
int leaving_for_scope;
|
||
scope_kind kind;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
my_friendly_assert (current_binding_level->kind != sk_class, 19990916);
|
||
|
||
real_functionbody = (current_binding_level->kind == sk_cleanup
|
||
? ((functionbody = 0), tmp) : functionbody);
|
||
subblocks = functionbody >= 0 ? current_binding_level->blocks : 0;
|
||
|
||
my_friendly_assert (!current_binding_level->class_shadowed,
|
||
19990414);
|
||
|
||
/* We used to use KEEP == 2 to indicate that the new block should go
|
||
at the beginning of the list of blocks at this binding level,
|
||
rather than the end. This hack is no longer used. */
|
||
my_friendly_assert (keep == 0 || keep == 1, 0);
|
||
|
||
if (current_binding_level->keep)
|
||
keep = 1;
|
||
|
||
/* Any uses of undefined labels, and any defined labels, now operate
|
||
under constraints of next binding contour. */
|
||
if (cfun && !functionbody)
|
||
{
|
||
struct cp_binding_level *level_chain;
|
||
level_chain = current_binding_level->level_chain;
|
||
if (level_chain)
|
||
{
|
||
struct named_label_use_list *uses;
|
||
struct named_label_list *labels;
|
||
for (labels = named_labels; labels; labels = labels->next)
|
||
if (labels->binding_level == current_binding_level)
|
||
{
|
||
tree decl;
|
||
if (current_binding_level->kind == sk_try)
|
||
labels->in_try_scope = 1;
|
||
if (current_binding_level->kind == sk_catch)
|
||
labels->in_catch_scope = 1;
|
||
for (decl = labels->names_in_scope; decl;
|
||
decl = TREE_CHAIN (decl))
|
||
if (decl_jump_unsafe (decl))
|
||
labels->bad_decls = tree_cons (NULL_TREE, decl,
|
||
labels->bad_decls);
|
||
labels->binding_level = level_chain;
|
||
labels->names_in_scope = level_chain->names;
|
||
}
|
||
|
||
for (uses = named_label_uses; uses; uses = uses->next)
|
||
if (uses->binding_level == current_binding_level)
|
||
{
|
||
uses->binding_level = level_chain;
|
||
uses->names_in_scope = level_chain->names;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Get the decls in the order they were written.
|
||
Usually current_binding_level->names is in reverse order.
|
||
But parameter decls were previously put in forward order. */
|
||
|
||
if (reverse)
|
||
current_binding_level->names
|
||
= decls = nreverse (current_binding_level->names);
|
||
else
|
||
decls = current_binding_level->names;
|
||
|
||
/* Output any nested inline functions within this block
|
||
if they weren't already output. */
|
||
for (decl = decls; decl; decl = TREE_CHAIN (decl))
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& ! TREE_ASM_WRITTEN (decl)
|
||
&& DECL_INITIAL (decl) != NULL_TREE
|
||
&& TREE_ADDRESSABLE (decl)
|
||
&& decl_function_context (decl) == current_function_decl)
|
||
{
|
||
/* If this decl was copied from a file-scope decl
|
||
on account of a block-scope extern decl,
|
||
propagate TREE_ADDRESSABLE to the file-scope decl. */
|
||
if (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE)
|
||
TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (decl)) = 1;
|
||
else
|
||
{
|
||
push_function_context ();
|
||
output_inline_function (decl);
|
||
pop_function_context ();
|
||
}
|
||
}
|
||
|
||
/* When not in function-at-a-time mode, expand_end_bindings will
|
||
warn about unused variables. But, in function-at-a-time mode
|
||
expand_end_bindings is not passed the list of variables in the
|
||
current scope, and therefore no warning is emitted. So, we
|
||
explicitly warn here. */
|
||
if (!processing_template_decl)
|
||
warn_about_unused_variables (getdecls ());
|
||
|
||
/* If there were any declarations or structure tags in that level,
|
||
or if this level is a function body,
|
||
create a BLOCK to record them for the life of this function. */
|
||
block = NULL_TREE;
|
||
if (keep == 1 || functionbody)
|
||
block = make_node (BLOCK);
|
||
if (block != NULL_TREE)
|
||
{
|
||
BLOCK_VARS (block) = decls;
|
||
BLOCK_SUBBLOCKS (block) = subblocks;
|
||
}
|
||
|
||
/* In each subblock, record that this is its superior. */
|
||
if (keep >= 0)
|
||
for (link = subblocks; link; link = TREE_CHAIN (link))
|
||
BLOCK_SUPERCONTEXT (link) = block;
|
||
|
||
/* We still support the old for-scope rules, whereby the variables
|
||
in a for-init statement were in scope after the for-statement
|
||
ended. We only use the new rules if flag_new_for_scope is
|
||
nonzero. */
|
||
leaving_for_scope
|
||
= current_binding_level->kind == sk_for && flag_new_for_scope == 1;
|
||
|
||
/* Remove declarations for all the DECLs in this level. */
|
||
for (link = decls; link; link = TREE_CHAIN (link))
|
||
{
|
||
if (leaving_for_scope && TREE_CODE (link) == VAR_DECL
|
||
&& DECL_NAME (link))
|
||
{
|
||
cxx_binding *outer_binding
|
||
= IDENTIFIER_BINDING (DECL_NAME (link))->previous;
|
||
tree ns_binding;
|
||
|
||
if (!outer_binding)
|
||
ns_binding = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (link));
|
||
else
|
||
ns_binding = NULL_TREE;
|
||
|
||
if (outer_binding
|
||
&& outer_binding->scope == current_binding_level->level_chain)
|
||
/* We have something like:
|
||
|
||
int i;
|
||
for (int i; ;);
|
||
|
||
and we are leaving the `for' scope. There's no reason to
|
||
keep the binding of the inner `i' in this case. */
|
||
pop_binding (DECL_NAME (link), link);
|
||
else if ((outer_binding
|
||
&& (TREE_CODE (outer_binding->value) == TYPE_DECL))
|
||
|| (ns_binding && TREE_CODE (ns_binding) == TYPE_DECL))
|
||
/* Here, we have something like:
|
||
|
||
typedef int I;
|
||
|
||
void f () {
|
||
for (int I; ;);
|
||
}
|
||
|
||
We must pop the for-scope binding so we know what's a
|
||
type and what isn't. */
|
||
pop_binding (DECL_NAME (link), link);
|
||
else
|
||
{
|
||
/* Mark this VAR_DECL as dead so that we can tell we left it
|
||
there only for backward compatibility. */
|
||
DECL_DEAD_FOR_LOCAL (link) = 1;
|
||
|
||
/* Keep track of what should have happened when we
|
||
popped the binding. */
|
||
if (outer_binding && outer_binding->value)
|
||
DECL_SHADOWED_FOR_VAR (link) = outer_binding->value;
|
||
|
||
/* Add it to the list of dead variables in the next
|
||
outermost binding to that we can remove these when we
|
||
leave that binding. */
|
||
current_binding_level->level_chain->dead_vars_from_for
|
||
= tree_cons (NULL_TREE, link,
|
||
current_binding_level->level_chain->
|
||
dead_vars_from_for);
|
||
|
||
/* Although we don't pop the cxx_binding, we do clear
|
||
its SCOPE since the scope is going away now. */
|
||
IDENTIFIER_BINDING (DECL_NAME (link))->scope = NULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Remove the binding. */
|
||
decl = link;
|
||
if (TREE_CODE (decl) == TREE_LIST)
|
||
decl = TREE_VALUE (decl);
|
||
if (DECL_P (decl))
|
||
pop_binding (DECL_NAME (decl), decl);
|
||
else if (TREE_CODE (decl) == OVERLOAD)
|
||
pop_binding (DECL_NAME (OVL_FUNCTION (decl)), decl);
|
||
else
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Remove declarations for any `for' variables from inner scopes
|
||
that we kept around. */
|
||
for (link = current_binding_level->dead_vars_from_for;
|
||
link; link = TREE_CHAIN (link))
|
||
pop_binding (DECL_NAME (TREE_VALUE (link)), TREE_VALUE (link));
|
||
|
||
/* Restore the IDENTIFIER_TYPE_VALUEs. */
|
||
for (link = current_binding_level->type_shadowed;
|
||
link; link = TREE_CHAIN (link))
|
||
SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link), TREE_VALUE (link));
|
||
|
||
/* Restore the IDENTIFIER_LABEL_VALUEs for local labels. */
|
||
for (link = current_binding_level->shadowed_labels;
|
||
link;
|
||
link = TREE_CHAIN (link))
|
||
pop_label (TREE_VALUE (link), TREE_PURPOSE (link));
|
||
|
||
/* There may be OVERLOADs (wrapped in TREE_LISTs) on the BLOCK_VARs
|
||
list if a `using' declaration put them there. The debugging
|
||
back-ends won't understand OVERLOAD, so we remove them here.
|
||
Because the BLOCK_VARS are (temporarily) shared with
|
||
CURRENT_BINDING_LEVEL->NAMES we must do this fixup after we have
|
||
popped all the bindings. */
|
||
if (block)
|
||
{
|
||
tree* d;
|
||
|
||
for (d = &BLOCK_VARS (block); *d; )
|
||
{
|
||
if (TREE_CODE (*d) == TREE_LIST)
|
||
*d = TREE_CHAIN (*d);
|
||
else
|
||
d = &TREE_CHAIN (*d);
|
||
}
|
||
}
|
||
|
||
/* If the level being exited is the top level of a function,
|
||
check over all the labels. */
|
||
if (functionbody)
|
||
{
|
||
/* Since this is the top level block of a function, the vars are
|
||
the function's parameters. Don't leave them in the BLOCK
|
||
because they are found in the FUNCTION_DECL instead. */
|
||
BLOCK_VARS (block) = 0;
|
||
pop_labels (block);
|
||
}
|
||
|
||
kind = current_binding_level->kind;
|
||
|
||
leave_scope ();
|
||
if (functionbody)
|
||
DECL_INITIAL (current_function_decl) = block;
|
||
else if (block)
|
||
current_binding_level->blocks
|
||
= chainon (current_binding_level->blocks, block);
|
||
|
||
/* If we did not make a block for the level just exited,
|
||
any blocks made for inner levels
|
||
(since they cannot be recorded as subblocks in that level)
|
||
must be carried forward so they will later become subblocks
|
||
of something else. */
|
||
else if (subblocks)
|
||
current_binding_level->blocks
|
||
= chainon (current_binding_level->blocks, subblocks);
|
||
|
||
/* Each and every BLOCK node created here in `poplevel' is important
|
||
(e.g. for proper debugging information) so if we created one
|
||
earlier, mark it as "used". */
|
||
if (block)
|
||
TREE_USED (block) = 1;
|
||
|
||
/* Take care of compiler's internal binding structures. */
|
||
if (kind == sk_cleanup)
|
||
{
|
||
tree scope_stmts;
|
||
|
||
scope_stmts
|
||
= add_scope_stmt (/*begin_p=*/0, /*partial_p=*/1);
|
||
if (block)
|
||
{
|
||
SCOPE_STMT_BLOCK (TREE_PURPOSE (scope_stmts)) = block;
|
||
SCOPE_STMT_BLOCK (TREE_VALUE (scope_stmts)) = block;
|
||
}
|
||
|
||
block = poplevel (keep, reverse, functionbody);
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, block);
|
||
}
|
||
|
||
/* Delete the node BLOCK from the current binding level.
|
||
This is used for the block inside a stmt expr ({...})
|
||
so that the block can be reinserted where appropriate. */
|
||
|
||
void
|
||
delete_block (tree block)
|
||
{
|
||
tree t;
|
||
if (current_binding_level->blocks == block)
|
||
current_binding_level->blocks = TREE_CHAIN (block);
|
||
for (t = current_binding_level->blocks; t;)
|
||
{
|
||
if (TREE_CHAIN (t) == block)
|
||
TREE_CHAIN (t) = TREE_CHAIN (block);
|
||
else
|
||
t = TREE_CHAIN (t);
|
||
}
|
||
TREE_CHAIN (block) = NULL_TREE;
|
||
/* Clear TREE_USED which is always set by poplevel.
|
||
The flag is set again if insert_block is called. */
|
||
TREE_USED (block) = 0;
|
||
}
|
||
|
||
/* Insert BLOCK at the end of the list of subblocks of the
|
||
current binding level. This is used when a BIND_EXPR is expanded,
|
||
to handle the BLOCK node inside the BIND_EXPR. */
|
||
|
||
void
|
||
insert_block (tree block)
|
||
{
|
||
TREE_USED (block) = 1;
|
||
current_binding_level->blocks
|
||
= chainon (current_binding_level->blocks, block);
|
||
}
|
||
|
||
/* Set the BLOCK node for the innermost scope
|
||
(the one we are currently in). */
|
||
|
||
void
|
||
set_block (tree block ATTRIBUTE_UNUSED )
|
||
{
|
||
/* The RTL expansion machinery requires us to provide this callback,
|
||
but it is not applicable in function-at-a-time mode. */
|
||
}
|
||
|
||
/* Returns nonzero if T is a virtual function table. */
|
||
|
||
int
|
||
vtable_decl_p (tree t, void* data ATTRIBUTE_UNUSED )
|
||
{
|
||
return (TREE_CODE (t) == VAR_DECL && DECL_VIRTUAL_P (t));
|
||
}
|
||
|
||
/* Returns nonzero if T is a TYPE_DECL for a type with virtual
|
||
functions. */
|
||
|
||
int
|
||
vtype_decl_p (tree t, void *data ATTRIBUTE_UNUSED )
|
||
{
|
||
return (TREE_CODE (t) == TYPE_DECL
|
||
&& TREE_CODE (TREE_TYPE (t)) == RECORD_TYPE
|
||
&& TYPE_POLYMORPHIC_P (TREE_TYPE (t)));
|
||
}
|
||
|
||
struct walk_globals_data {
|
||
walk_globals_pred p;
|
||
walk_globals_fn f;
|
||
void *data;
|
||
};
|
||
|
||
/* Walk the vtable declarations in NAMESPACE. Whenever one is found
|
||
for which P returns nonzero, call F with its address. If any call
|
||
to F returns a nonzero value, return a nonzero value. */
|
||
|
||
static int
|
||
walk_vtables_r (tree namespace, void* data)
|
||
{
|
||
struct walk_globals_data* wgd = (struct walk_globals_data *) data;
|
||
walk_globals_fn f = wgd->f;
|
||
void *d = wgd->data;
|
||
tree decl = NAMESPACE_LEVEL (namespace)->vtables;
|
||
int result = 0;
|
||
|
||
for (; decl ; decl = TREE_CHAIN (decl))
|
||
result |= (*f) (&decl, d);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Walk the vtable declarations. Whenever one is found for which P
|
||
returns nonzero, call F with its address. If any call to F
|
||
returns a nonzero value, return a nonzero value. */
|
||
bool
|
||
walk_vtables (walk_globals_pred p, walk_globals_fn f, void *data)
|
||
{
|
||
struct walk_globals_data wgd;
|
||
wgd.p = p;
|
||
wgd.f = f;
|
||
wgd.data = data;
|
||
|
||
return walk_namespaces (walk_vtables_r, &wgd);
|
||
}
|
||
|
||
/* Walk all the namespaces contained NAMESPACE, including NAMESPACE
|
||
itself, calling F for each. The DATA is passed to F as well. */
|
||
|
||
static int
|
||
walk_namespaces_r (tree namespace, walk_namespaces_fn f, void* data)
|
||
{
|
||
int result = 0;
|
||
tree current = NAMESPACE_LEVEL (namespace)->namespaces;
|
||
|
||
result |= (*f) (namespace, data);
|
||
|
||
for (; current; current = TREE_CHAIN (current))
|
||
result |= walk_namespaces_r (current, f, data);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Walk all the namespaces, calling F for each. The DATA is passed to
|
||
F as well. */
|
||
|
||
int
|
||
walk_namespaces (walk_namespaces_fn f, void* data)
|
||
{
|
||
return walk_namespaces_r (global_namespace, f, data);
|
||
}
|
||
|
||
/* Walk the global declarations in NAMESPACE. Whenever one is found
|
||
for which P returns nonzero, call F with its address. If any call
|
||
to F returns a nonzero value, return a nonzero value. */
|
||
|
||
static int
|
||
walk_globals_r (tree namespace, void* data)
|
||
{
|
||
struct walk_globals_data* wgd = (struct walk_globals_data *) data;
|
||
walk_globals_pred p = wgd->p;
|
||
walk_globals_fn f = wgd->f;
|
||
void *d = wgd->data;
|
||
tree *t;
|
||
int result = 0;
|
||
|
||
t = &NAMESPACE_LEVEL (namespace)->names;
|
||
|
||
while (*t)
|
||
{
|
||
tree glbl = *t;
|
||
|
||
if ((*p) (glbl, d))
|
||
result |= (*f) (t, d);
|
||
|
||
/* If F changed *T, then *T still points at the next item to
|
||
examine. */
|
||
if (*t == glbl)
|
||
t = &TREE_CHAIN (*t);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Walk the global declarations. Whenever one is found for which P
|
||
returns true, call F with its address. If any call to F
|
||
returns true, return true. */
|
||
|
||
bool
|
||
walk_globals (walk_globals_pred p, walk_globals_fn f, void *data)
|
||
{
|
||
struct walk_globals_data wgd;
|
||
wgd.p = p;
|
||
wgd.f = f;
|
||
wgd.data = data;
|
||
|
||
return walk_namespaces (walk_globals_r, &wgd);
|
||
}
|
||
|
||
/* Call wrapup_globals_declarations for the globals in NAMESPACE. If
|
||
DATA is non-NULL, this is the last time we will call
|
||
wrapup_global_declarations for this NAMESPACE. */
|
||
|
||
int
|
||
wrapup_globals_for_namespace (tree namespace, void* data)
|
||
{
|
||
struct cp_binding_level *level = NAMESPACE_LEVEL (namespace);
|
||
varray_type statics = level->static_decls;
|
||
tree *vec = &VARRAY_TREE (statics, 0);
|
||
int len = VARRAY_ACTIVE_SIZE (statics);
|
||
int last_time = (data != 0);
|
||
|
||
if (last_time)
|
||
{
|
||
check_global_declarations (vec, len);
|
||
return 0;
|
||
}
|
||
|
||
/* Write out any globals that need to be output. */
|
||
return wrapup_global_declarations (vec, len);
|
||
}
|
||
|
||
|
||
/* In C++, you don't have to write `struct S' to refer to `S'; you
|
||
can just use `S'. We accomplish this by creating a TYPE_DECL as
|
||
if the user had written `typedef struct S S'. Create and return
|
||
the TYPE_DECL for TYPE. */
|
||
|
||
tree
|
||
create_implicit_typedef (tree name, tree type)
|
||
{
|
||
tree decl;
|
||
|
||
decl = build_decl (TYPE_DECL, name, type);
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
/* There are other implicit type declarations, like the one *within*
|
||
a class that allows you to write `S::S'. We must distinguish
|
||
amongst these. */
|
||
SET_DECL_IMPLICIT_TYPEDEF_P (decl);
|
||
TYPE_NAME (type) = decl;
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Remember a local name for name-mangling purposes. */
|
||
|
||
static void
|
||
push_local_name (tree decl)
|
||
{
|
||
size_t i, nelts;
|
||
tree t, name;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
if (!local_names)
|
||
VARRAY_TREE_INIT (local_names, 8, "local_names");
|
||
|
||
name = DECL_NAME (decl);
|
||
|
||
nelts = VARRAY_ACTIVE_SIZE (local_names);
|
||
for (i = 0; i < nelts; i++)
|
||
{
|
||
t = VARRAY_TREE (local_names, i);
|
||
if (DECL_NAME (t) == name)
|
||
{
|
||
if (!DECL_LANG_SPECIFIC (decl))
|
||
retrofit_lang_decl (decl);
|
||
DECL_LANG_SPECIFIC (decl)->decl_flags.u2sel = 1;
|
||
if (DECL_LANG_SPECIFIC (t))
|
||
DECL_DISCRIMINATOR (decl) = DECL_DISCRIMINATOR (t) + 1;
|
||
else
|
||
DECL_DISCRIMINATOR (decl) = 1;
|
||
|
||
VARRAY_TREE (local_names, i) = decl;
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
return;
|
||
}
|
||
}
|
||
|
||
VARRAY_PUSH_TREE (local_names, decl);
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
}
|
||
|
||
/* Subroutine of duplicate_decls: return truthvalue of whether
|
||
or not types of these decls match.
|
||
|
||
For C++, we must compare the parameter list so that `int' can match
|
||
`int&' in a parameter position, but `int&' is not confused with
|
||
`const int&'. */
|
||
|
||
int
|
||
decls_match (tree newdecl, tree olddecl)
|
||
{
|
||
int types_match;
|
||
|
||
if (newdecl == olddecl)
|
||
return 1;
|
||
|
||
if (TREE_CODE (newdecl) != TREE_CODE (olddecl))
|
||
/* If the two DECLs are not even the same kind of thing, we're not
|
||
interested in their types. */
|
||
return 0;
|
||
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
tree f1 = TREE_TYPE (newdecl);
|
||
tree f2 = TREE_TYPE (olddecl);
|
||
tree p1 = TYPE_ARG_TYPES (f1);
|
||
tree p2 = TYPE_ARG_TYPES (f2);
|
||
|
||
if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)
|
||
&& ! (DECL_EXTERN_C_P (newdecl)
|
||
&& DECL_EXTERN_C_P (olddecl)))
|
||
return 0;
|
||
|
||
if (TREE_CODE (f1) != TREE_CODE (f2))
|
||
return 0;
|
||
|
||
if (same_type_p (TREE_TYPE (f1), TREE_TYPE (f2)))
|
||
{
|
||
if (p2 == NULL_TREE && DECL_EXTERN_C_P (olddecl)
|
||
&& (DECL_BUILT_IN (olddecl)
|
||
#ifndef NO_IMPLICIT_EXTERN_C
|
||
|| (DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl))
|
||
|| (DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl))
|
||
#endif
|
||
))
|
||
{
|
||
types_match = self_promoting_args_p (p1);
|
||
if (p1 == void_list_node)
|
||
TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
|
||
}
|
||
#ifndef NO_IMPLICIT_EXTERN_C
|
||
else if (p1 == NULL_TREE
|
||
&& (DECL_EXTERN_C_P (olddecl)
|
||
&& DECL_IN_SYSTEM_HEADER (olddecl)
|
||
&& !DECL_CLASS_SCOPE_P (olddecl))
|
||
&& (DECL_EXTERN_C_P (newdecl)
|
||
&& DECL_IN_SYSTEM_HEADER (newdecl)
|
||
&& !DECL_CLASS_SCOPE_P (newdecl)))
|
||
{
|
||
types_match = self_promoting_args_p (p2);
|
||
TREE_TYPE (newdecl) = TREE_TYPE (olddecl);
|
||
}
|
||
#endif
|
||
else
|
||
types_match = compparms (p1, p2);
|
||
}
|
||
else
|
||
types_match = 0;
|
||
}
|
||
else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
|
||
{
|
||
if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl))
|
||
!= TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)))
|
||
return 0;
|
||
|
||
if (!comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
|
||
DECL_TEMPLATE_PARMS (olddecl)))
|
||
return 0;
|
||
|
||
if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
|
||
types_match = same_type_p (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl)),
|
||
TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl)));
|
||
else
|
||
types_match = decls_match (DECL_TEMPLATE_RESULT (olddecl),
|
||
DECL_TEMPLATE_RESULT (newdecl));
|
||
}
|
||
else
|
||
{
|
||
/* Need to check scope for variable declaration (VAR_DECL).
|
||
For typedef (TYPE_DECL), scope is ignored. */
|
||
if (TREE_CODE (newdecl) == VAR_DECL
|
||
&& CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl))
|
||
return 0;
|
||
|
||
if (TREE_TYPE (newdecl) == error_mark_node)
|
||
types_match = TREE_TYPE (olddecl) == error_mark_node;
|
||
else if (TREE_TYPE (olddecl) == NULL_TREE)
|
||
types_match = TREE_TYPE (newdecl) == NULL_TREE;
|
||
else if (TREE_TYPE (newdecl) == NULL_TREE)
|
||
types_match = 0;
|
||
else
|
||
types_match = comptypes (TREE_TYPE (newdecl),
|
||
TREE_TYPE (olddecl),
|
||
COMPARE_REDECLARATION);
|
||
}
|
||
|
||
return types_match;
|
||
}
|
||
|
||
/* If NEWDECL is `static' and an `extern' was seen previously,
|
||
warn about it. OLDDECL is the previous declaration.
|
||
|
||
Note that this does not apply to the C++ case of declaring
|
||
a variable `extern const' and then later `const'.
|
||
|
||
Don't complain about built-in functions, since they are beyond
|
||
the user's control. */
|
||
|
||
void
|
||
warn_extern_redeclared_static (tree newdecl, tree olddecl)
|
||
{
|
||
static const char *const explicit_extern_static_warning
|
||
= "`%D' was declared `extern' and later `static'";
|
||
static const char *const implicit_extern_static_warning
|
||
= "`%D' was declared implicitly `extern' and later `static'";
|
||
|
||
tree name;
|
||
|
||
if (TREE_CODE (newdecl) == TYPE_DECL
|
||
|| TREE_CODE (newdecl) == TEMPLATE_DECL
|
||
|| TREE_CODE (newdecl) == CONST_DECL
|
||
|| TREE_CODE (newdecl) == NAMESPACE_DECL)
|
||
return;
|
||
|
||
/* Don't get confused by static member functions; that's a different
|
||
use of `static'. */
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& DECL_STATIC_FUNCTION_P (newdecl))
|
||
return;
|
||
|
||
/* If the old declaration was `static', or the new one isn't, then
|
||
then everything is OK. */
|
||
if (DECL_THIS_STATIC (olddecl) || !DECL_THIS_STATIC (newdecl))
|
||
return;
|
||
|
||
/* It's OK to declare a builtin function as `static'. */
|
||
if (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_ARTIFICIAL (olddecl))
|
||
return;
|
||
|
||
name = DECL_ASSEMBLER_NAME (newdecl);
|
||
pedwarn (IDENTIFIER_IMPLICIT_DECL (name)
|
||
? implicit_extern_static_warning
|
||
: explicit_extern_static_warning, newdecl);
|
||
cp_pedwarn_at ("previous declaration of `%D'", olddecl);
|
||
}
|
||
|
||
/* If NEWDECL is a redeclaration of OLDDECL, merge the declarations.
|
||
If the redeclaration is invalid, a diagnostic is issued, and the
|
||
error_mark_node is returned. Otherwise, OLDDECL is returned.
|
||
|
||
If NEWDECL is not a redeclaration of OLDDECL, NULL_TREE is
|
||
returned. */
|
||
|
||
tree
|
||
duplicate_decls (tree newdecl, tree olddecl)
|
||
{
|
||
unsigned olddecl_uid = DECL_UID (olddecl);
|
||
int olddecl_friend = 0, types_match = 0;
|
||
int new_defines_function = 0;
|
||
|
||
if (newdecl == olddecl)
|
||
return olddecl;
|
||
|
||
types_match = decls_match (newdecl, olddecl);
|
||
|
||
/* If either the type of the new decl or the type of the old decl is an
|
||
error_mark_node, then that implies that we have already issued an
|
||
error (earlier) for some bogus type specification, and in that case,
|
||
it is rather pointless to harass the user with yet more error message
|
||
about the same declaration, so just pretend the types match here. */
|
||
if (TREE_TYPE (newdecl) == error_mark_node
|
||
|| TREE_TYPE (olddecl) == error_mark_node)
|
||
types_match = 1;
|
||
|
||
if (DECL_P (olddecl)
|
||
&& TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl)))
|
||
{
|
||
if (DECL_DECLARED_INLINE_P (newdecl)
|
||
&& DECL_UNINLINABLE (newdecl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
|
||
/* Already warned elsewhere. */;
|
||
else if (DECL_DECLARED_INLINE_P (olddecl)
|
||
&& DECL_UNINLINABLE (olddecl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
|
||
/* Already warned. */;
|
||
else if (DECL_DECLARED_INLINE_P (newdecl)
|
||
&& DECL_UNINLINABLE (olddecl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
|
||
{
|
||
warning ("%Jfunction '%D' redeclared as inline", newdecl, newdecl);
|
||
warning ("%Jprevious declaration of '%D' with attribute noinline",
|
||
olddecl, olddecl);
|
||
}
|
||
else if (DECL_DECLARED_INLINE_P (olddecl)
|
||
&& DECL_UNINLINABLE (newdecl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
|
||
{
|
||
warning ("%Jfunction '%D' redeclared with attribute noinline",
|
||
newdecl, newdecl);
|
||
warning ("%Jprevious declaration of '%D' was inline",
|
||
olddecl, olddecl);
|
||
}
|
||
}
|
||
|
||
/* Check for redeclaration and other discrepancies. */
|
||
if (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_ARTIFICIAL (olddecl))
|
||
{
|
||
if (TREE_CODE (newdecl) != FUNCTION_DECL)
|
||
{
|
||
/* Avoid warnings redeclaring anticipated built-ins. */
|
||
if (DECL_ANTICIPATED (olddecl))
|
||
return NULL_TREE;
|
||
|
||
/* If you declare a built-in or predefined function name as static,
|
||
the old definition is overridden, but optionally warn this was a
|
||
bad choice of name. */
|
||
if (! TREE_PUBLIC (newdecl))
|
||
{
|
||
if (warn_shadow)
|
||
warning ("shadowing %s function `%#D'",
|
||
DECL_BUILT_IN (olddecl) ? "built-in" : "library",
|
||
olddecl);
|
||
/* Discard the old built-in function. */
|
||
return NULL_TREE;
|
||
}
|
||
/* If the built-in is not ansi, then programs can override
|
||
it even globally without an error. */
|
||
else if (! DECL_BUILT_IN (olddecl))
|
||
warning ("library function `%#D' redeclared as non-function `%#D'",
|
||
olddecl, newdecl);
|
||
else
|
||
{
|
||
error ("declaration of `%#D'", newdecl);
|
||
error ("conflicts with built-in declaration `%#D'",
|
||
olddecl);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
else if (!types_match)
|
||
{
|
||
/* Avoid warnings redeclaring anticipated built-ins. */
|
||
if (DECL_ANTICIPATED (olddecl))
|
||
; /* Do nothing yet. */
|
||
else if ((DECL_EXTERN_C_P (newdecl)
|
||
&& DECL_EXTERN_C_P (olddecl))
|
||
|| compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
|
||
TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
|
||
{
|
||
/* A near match; override the builtin. */
|
||
|
||
if (TREE_PUBLIC (newdecl))
|
||
{
|
||
warning ("new declaration `%#D'", newdecl);
|
||
warning ("ambiguates built-in declaration `%#D'",
|
||
olddecl);
|
||
}
|
||
else if (warn_shadow)
|
||
warning ("shadowing %s function `%#D'",
|
||
DECL_BUILT_IN (olddecl) ? "built-in" : "library",
|
||
olddecl);
|
||
}
|
||
else
|
||
/* Discard the old built-in function. */
|
||
return NULL_TREE;
|
||
|
||
/* Replace the old RTL to avoid problems with inlining. */
|
||
SET_DECL_RTL (olddecl, DECL_RTL (newdecl));
|
||
}
|
||
/* Even if the types match, prefer the new declarations type
|
||
for anticipated built-ins, for exception lists, etc... */
|
||
else if (DECL_ANTICIPATED (olddecl))
|
||
{
|
||
tree type = TREE_TYPE (newdecl);
|
||
tree attribs = (*targetm.merge_type_attributes)
|
||
(TREE_TYPE (olddecl), type);
|
||
|
||
type = cp_build_type_attribute_variant (type, attribs);
|
||
TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = type;
|
||
}
|
||
|
||
/* Whether or not the builtin can throw exceptions has no
|
||
bearing on this declarator. */
|
||
TREE_NOTHROW (olddecl) = 0;
|
||
|
||
if (DECL_THIS_STATIC (newdecl) && !DECL_THIS_STATIC (olddecl))
|
||
{
|
||
/* If a builtin function is redeclared as `static', merge
|
||
the declarations, but make the original one static. */
|
||
DECL_THIS_STATIC (olddecl) = 1;
|
||
TREE_PUBLIC (olddecl) = 0;
|
||
|
||
/* Make the old declaration consistent with the new one so
|
||
that all remnants of the builtin-ness of this function
|
||
will be banished. */
|
||
SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
|
||
SET_DECL_RTL (olddecl, DECL_RTL (newdecl));
|
||
}
|
||
}
|
||
else if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
|
||
{
|
||
if ((TREE_CODE (olddecl) == TYPE_DECL && DECL_ARTIFICIAL (olddecl)
|
||
&& TREE_CODE (newdecl) != TYPE_DECL
|
||
&& ! (TREE_CODE (newdecl) == TEMPLATE_DECL
|
||
&& TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL))
|
||
|| (TREE_CODE (newdecl) == TYPE_DECL && DECL_ARTIFICIAL (newdecl)
|
||
&& TREE_CODE (olddecl) != TYPE_DECL
|
||
&& ! (TREE_CODE (olddecl) == TEMPLATE_DECL
|
||
&& (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl))
|
||
== TYPE_DECL))))
|
||
{
|
||
/* We do nothing special here, because C++ does such nasty
|
||
things with TYPE_DECLs. Instead, just let the TYPE_DECL
|
||
get shadowed, and know that if we need to find a TYPE_DECL
|
||
for a given name, we can look in the IDENTIFIER_TYPE_VALUE
|
||
slot of the identifier. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if ((TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& DECL_FUNCTION_TEMPLATE_P (olddecl))
|
||
|| (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_FUNCTION_TEMPLATE_P (newdecl)))
|
||
return NULL_TREE;
|
||
|
||
error ("`%#D' redeclared as different kind of symbol", newdecl);
|
||
if (TREE_CODE (olddecl) == TREE_LIST)
|
||
olddecl = TREE_VALUE (olddecl);
|
||
cp_error_at ("previous declaration of `%#D'", olddecl);
|
||
|
||
/* New decl is completely inconsistent with the old one =>
|
||
tell caller to replace the old one. */
|
||
|
||
return NULL_TREE;
|
||
}
|
||
else if (!types_match)
|
||
{
|
||
if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl))
|
||
/* These are certainly not duplicate declarations; they're
|
||
from different scopes. */
|
||
return NULL_TREE;
|
||
|
||
if (TREE_CODE (newdecl) == TEMPLATE_DECL)
|
||
{
|
||
/* The name of a class template may not be declared to refer to
|
||
any other template, class, function, object, namespace, value,
|
||
or type in the same scope. */
|
||
if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == TYPE_DECL
|
||
|| TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
|
||
{
|
||
error ("declaration of template `%#D'", newdecl);
|
||
cp_error_at ("conflicts with previous declaration `%#D'",
|
||
olddecl);
|
||
}
|
||
else if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == FUNCTION_DECL
|
||
&& TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL
|
||
&& compparms (TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl))),
|
||
TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl))))
|
||
&& comp_template_parms (DECL_TEMPLATE_PARMS (newdecl),
|
||
DECL_TEMPLATE_PARMS (olddecl))
|
||
/* Template functions can be disambiguated by
|
||
return type. */
|
||
&& same_type_p (TREE_TYPE (TREE_TYPE (newdecl)),
|
||
TREE_TYPE (TREE_TYPE (olddecl))))
|
||
{
|
||
error ("new declaration `%#D'", newdecl);
|
||
cp_error_at ("ambiguates old declaration `%#D'", olddecl);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
if (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl))
|
||
{
|
||
error ("declaration of C function `%#D' conflicts with",
|
||
newdecl);
|
||
cp_error_at ("previous declaration `%#D' here", olddecl);
|
||
}
|
||
else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)),
|
||
TYPE_ARG_TYPES (TREE_TYPE (olddecl))))
|
||
{
|
||
error ("new declaration `%#D'", newdecl);
|
||
cp_error_at ("ambiguates old declaration `%#D'", olddecl);
|
||
}
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Already complained about this, so don't do so again. */
|
||
else if (current_class_type == NULL_TREE
|
||
|| IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (newdecl)) != current_class_type)
|
||
{
|
||
error ("conflicting declaration '%#D'", newdecl);
|
||
cp_error_at ("'%D' has a previous declaration as `%#D'",
|
||
olddecl, olddecl);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
else if (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& ((DECL_TEMPLATE_SPECIALIZATION (olddecl)
|
||
&& (!DECL_TEMPLATE_INFO (newdecl)
|
||
|| (DECL_TI_TEMPLATE (newdecl)
|
||
!= DECL_TI_TEMPLATE (olddecl))))
|
||
|| (DECL_TEMPLATE_SPECIALIZATION (newdecl)
|
||
&& (!DECL_TEMPLATE_INFO (olddecl)
|
||
|| (DECL_TI_TEMPLATE (olddecl)
|
||
!= DECL_TI_TEMPLATE (newdecl))))))
|
||
/* It's OK to have a template specialization and a non-template
|
||
with the same type, or to have specializations of two
|
||
different templates with the same type. Note that if one is a
|
||
specialization, and the other is an instantiation of the same
|
||
template, that we do not exit at this point. That situation
|
||
can occur if we instantiate a template class, and then
|
||
specialize one of its methods. This situation is valid, but
|
||
the declarations must be merged in the usual way. */
|
||
return NULL_TREE;
|
||
else if (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& ((DECL_TEMPLATE_INSTANTIATION (olddecl)
|
||
&& !DECL_USE_TEMPLATE (newdecl))
|
||
|| (DECL_TEMPLATE_INSTANTIATION (newdecl)
|
||
&& !DECL_USE_TEMPLATE (olddecl))))
|
||
/* One of the declarations is a template instantiation, and the
|
||
other is not a template at all. That's OK. */
|
||
return NULL_TREE;
|
||
else if (TREE_CODE (newdecl) == NAMESPACE_DECL)
|
||
{
|
||
/* In [namespace.alias] we have:
|
||
|
||
In a declarative region, a namespace-alias-definition can be
|
||
used to redefine a namespace-alias declared in that declarative
|
||
region to refer only to the namespace to which it already
|
||
refers.
|
||
|
||
Therefore, if we encounter a second alias directive for the same
|
||
alias, we can just ignore the second directive. */
|
||
if (DECL_NAMESPACE_ALIAS (newdecl)
|
||
&& (DECL_NAMESPACE_ALIAS (newdecl)
|
||
== DECL_NAMESPACE_ALIAS (olddecl)))
|
||
return olddecl;
|
||
/* [namespace.alias]
|
||
|
||
A namespace-name or namespace-alias shall not be declared as
|
||
the name of any other entity in the same declarative region.
|
||
A namespace-name defined at global scope shall not be
|
||
declared as the name of any other entity in any glogal scope
|
||
of the program. */
|
||
error ("declaration of `namespace %D' conflicts with", newdecl);
|
||
cp_error_at ("previous declaration of `namespace %D' here", olddecl);
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
const char *errmsg = redeclaration_error_message (newdecl, olddecl);
|
||
if (errmsg)
|
||
{
|
||
error (errmsg, newdecl);
|
||
if (DECL_NAME (olddecl) != NULL_TREE)
|
||
cp_error_at ((DECL_INITIAL (olddecl)
|
||
&& namespace_bindings_p ())
|
||
? "`%#D' previously defined here"
|
||
: "`%#D' previously declared here", olddecl);
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_INITIAL (olddecl) != NULL_TREE
|
||
&& TYPE_ARG_TYPES (TREE_TYPE (olddecl)) == NULL_TREE
|
||
&& TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != NULL_TREE)
|
||
{
|
||
/* Prototype decl follows defn w/o prototype. */
|
||
cp_warning_at ("prototype for `%#D'", newdecl);
|
||
warning ("%Jfollows non-prototype definition here", olddecl);
|
||
}
|
||
else if (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
&& DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl))
|
||
{
|
||
/* extern "C" int foo ();
|
||
int foo () { bar (); }
|
||
is OK. */
|
||
if (current_lang_depth () == 0)
|
||
SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
|
||
else
|
||
{
|
||
cp_error_at ("previous declaration of `%#D' with %L linkage",
|
||
olddecl, DECL_LANGUAGE (olddecl));
|
||
error ("conflicts with new declaration with %L linkage",
|
||
DECL_LANGUAGE (newdecl));
|
||
}
|
||
}
|
||
|
||
if (DECL_LANG_SPECIFIC (olddecl) && DECL_USE_TEMPLATE (olddecl))
|
||
;
|
||
else if (TREE_CODE (olddecl) == FUNCTION_DECL)
|
||
{
|
||
tree t1 = TYPE_ARG_TYPES (TREE_TYPE (olddecl));
|
||
tree t2 = TYPE_ARG_TYPES (TREE_TYPE (newdecl));
|
||
int i = 1;
|
||
|
||
if (TREE_CODE (TREE_TYPE (newdecl)) == METHOD_TYPE)
|
||
t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2);
|
||
|
||
for (; t1 && t1 != void_list_node;
|
||
t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2), i++)
|
||
if (TREE_PURPOSE (t1) && TREE_PURPOSE (t2))
|
||
{
|
||
if (1 == simple_cst_equal (TREE_PURPOSE (t1),
|
||
TREE_PURPOSE (t2)))
|
||
{
|
||
pedwarn ("default argument given for parameter %d of `%#D'",
|
||
i, newdecl);
|
||
cp_pedwarn_at ("after previous specification in `%#D'",
|
||
olddecl);
|
||
}
|
||
else
|
||
{
|
||
error ("default argument given for parameter %d of `%#D'",
|
||
i, newdecl);
|
||
cp_error_at ("after previous specification in `%#D'",
|
||
olddecl);
|
||
}
|
||
}
|
||
|
||
if (DECL_DECLARED_INLINE_P (newdecl)
|
||
&& ! DECL_DECLARED_INLINE_P (olddecl)
|
||
&& TREE_ADDRESSABLE (olddecl) && warn_inline)
|
||
{
|
||
warning ("`%#D' was used before it was declared inline", newdecl);
|
||
warning ("%Jprevious non-inline declaration here", olddecl);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Do not merge an implicit typedef with an explicit one. In:
|
||
|
||
class A;
|
||
...
|
||
typedef class A A __attribute__ ((foo));
|
||
|
||
the attribute should apply only to the typedef. */
|
||
if (TREE_CODE (olddecl) == TYPE_DECL
|
||
&& (DECL_IMPLICIT_TYPEDEF_P (olddecl)
|
||
|| DECL_IMPLICIT_TYPEDEF_P (newdecl)))
|
||
return NULL_TREE;
|
||
|
||
/* If new decl is `static' and an `extern' was seen previously,
|
||
warn about it. */
|
||
warn_extern_redeclared_static (newdecl, olddecl);
|
||
|
||
/* We have committed to returning 1 at this point. */
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
/* Now that functions must hold information normally held
|
||
by field decls, there is extra work to do so that
|
||
declaration information does not get destroyed during
|
||
definition. */
|
||
if (DECL_VINDEX (olddecl))
|
||
DECL_VINDEX (newdecl) = DECL_VINDEX (olddecl);
|
||
if (DECL_CONTEXT (olddecl))
|
||
DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
|
||
DECL_STATIC_CONSTRUCTOR (newdecl) |= DECL_STATIC_CONSTRUCTOR (olddecl);
|
||
DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
|
||
DECL_PURE_VIRTUAL_P (newdecl) |= DECL_PURE_VIRTUAL_P (olddecl);
|
||
DECL_VIRTUAL_P (newdecl) |= DECL_VIRTUAL_P (olddecl);
|
||
DECL_NEEDS_FINAL_OVERRIDER_P (newdecl) |= DECL_NEEDS_FINAL_OVERRIDER_P (olddecl);
|
||
DECL_THIS_STATIC (newdecl) |= DECL_THIS_STATIC (olddecl);
|
||
if (DECL_OVERLOADED_OPERATOR_P (olddecl) != ERROR_MARK)
|
||
SET_OVERLOADED_OPERATOR_CODE
|
||
(newdecl, DECL_OVERLOADED_OPERATOR_P (olddecl));
|
||
new_defines_function = DECL_INITIAL (newdecl) != NULL_TREE;
|
||
|
||
/* Optionally warn about more than one declaration for the same
|
||
name, but don't warn about a function declaration followed by a
|
||
definition. */
|
||
if (warn_redundant_decls && ! DECL_ARTIFICIAL (olddecl)
|
||
&& !(new_defines_function && DECL_INITIAL (olddecl) == NULL_TREE)
|
||
/* Don't warn about extern decl followed by definition. */
|
||
&& !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl))
|
||
/* Don't warn about friends, let add_friend take care of it. */
|
||
&& ! (DECL_FRIEND_P (newdecl) || DECL_FRIEND_P (olddecl)))
|
||
{
|
||
warning ("redundant redeclaration of `%D' in same scope", newdecl);
|
||
cp_warning_at ("previous declaration of `%D'", olddecl);
|
||
}
|
||
}
|
||
|
||
/* Deal with C++: must preserve virtual function table size. */
|
||
if (TREE_CODE (olddecl) == TYPE_DECL)
|
||
{
|
||
tree newtype = TREE_TYPE (newdecl);
|
||
tree oldtype = TREE_TYPE (olddecl);
|
||
|
||
if (newtype != error_mark_node && oldtype != error_mark_node
|
||
&& TYPE_LANG_SPECIFIC (newtype) && TYPE_LANG_SPECIFIC (oldtype))
|
||
CLASSTYPE_FRIEND_CLASSES (newtype)
|
||
= CLASSTYPE_FRIEND_CLASSES (oldtype);
|
||
|
||
DECL_ORIGINAL_TYPE (newdecl) = DECL_ORIGINAL_TYPE (olddecl);
|
||
}
|
||
|
||
/* Copy all the DECL_... slots specified in the new decl
|
||
except for any that we copy here from the old type. */
|
||
DECL_ATTRIBUTES (newdecl)
|
||
= (*targetm.merge_decl_attributes) (olddecl, newdecl);
|
||
|
||
if (TREE_CODE (newdecl) == TEMPLATE_DECL)
|
||
{
|
||
TREE_TYPE (olddecl) = TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl));
|
||
DECL_TEMPLATE_SPECIALIZATIONS (olddecl)
|
||
= chainon (DECL_TEMPLATE_SPECIALIZATIONS (olddecl),
|
||
DECL_TEMPLATE_SPECIALIZATIONS (newdecl));
|
||
|
||
/* If the new declaration is a definition, update the file and
|
||
line information on the declaration. */
|
||
if (DECL_INITIAL (DECL_TEMPLATE_RESULT (olddecl)) == NULL_TREE
|
||
&& DECL_INITIAL (DECL_TEMPLATE_RESULT (newdecl)) != NULL_TREE)
|
||
{
|
||
DECL_SOURCE_LOCATION (olddecl)
|
||
= DECL_SOURCE_LOCATION (DECL_TEMPLATE_RESULT (olddecl))
|
||
= DECL_SOURCE_LOCATION (newdecl);
|
||
if (DECL_FUNCTION_TEMPLATE_P (newdecl))
|
||
DECL_ARGUMENTS (DECL_TEMPLATE_RESULT (olddecl))
|
||
= DECL_ARGUMENTS (DECL_TEMPLATE_RESULT (newdecl));
|
||
}
|
||
|
||
if (DECL_FUNCTION_TEMPLATE_P (newdecl))
|
||
{
|
||
DECL_INLINE (DECL_TEMPLATE_RESULT (olddecl))
|
||
|= DECL_INLINE (DECL_TEMPLATE_RESULT (newdecl));
|
||
DECL_DECLARED_INLINE_P (DECL_TEMPLATE_RESULT (olddecl))
|
||
|= DECL_DECLARED_INLINE_P (DECL_TEMPLATE_RESULT (newdecl));
|
||
}
|
||
|
||
return olddecl;
|
||
}
|
||
|
||
if (types_match)
|
||
{
|
||
/* Automatically handles default parameters. */
|
||
tree oldtype = TREE_TYPE (olddecl);
|
||
tree newtype;
|
||
|
||
/* Merge the data types specified in the two decls. */
|
||
newtype = merge_types (TREE_TYPE (newdecl), TREE_TYPE (olddecl));
|
||
|
||
/* If merge_types produces a non-typedef type, just use the old type. */
|
||
if (TREE_CODE (newdecl) == TYPE_DECL
|
||
&& newtype == DECL_ORIGINAL_TYPE (newdecl))
|
||
newtype = oldtype;
|
||
|
||
if (TREE_CODE (newdecl) == VAR_DECL)
|
||
{
|
||
DECL_THIS_EXTERN (newdecl) |= DECL_THIS_EXTERN (olddecl);
|
||
DECL_INITIALIZED_P (newdecl) |= DECL_INITIALIZED_P (olddecl);
|
||
DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (newdecl)
|
||
|= DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (olddecl);
|
||
}
|
||
|
||
/* Do this after calling `merge_types' so that default
|
||
parameters don't confuse us. */
|
||
else if (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
&& (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl))
|
||
!= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (olddecl))))
|
||
{
|
||
TREE_TYPE (newdecl) = build_exception_variant (newtype,
|
||
TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl)));
|
||
TREE_TYPE (olddecl) = build_exception_variant (newtype,
|
||
TYPE_RAISES_EXCEPTIONS (oldtype));
|
||
|
||
if ((pedantic || ! DECL_IN_SYSTEM_HEADER (olddecl))
|
||
&& DECL_SOURCE_LINE (olddecl) != 0
|
||
&& flag_exceptions
|
||
&& !comp_except_specs (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl)),
|
||
TYPE_RAISES_EXCEPTIONS (TREE_TYPE (olddecl)), 1))
|
||
{
|
||
error ("declaration of `%F' throws different exceptions",
|
||
newdecl);
|
||
cp_error_at ("than previous declaration `%F'", olddecl);
|
||
}
|
||
}
|
||
TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = newtype;
|
||
|
||
/* Lay the type out, unless already done. */
|
||
if (! same_type_p (newtype, oldtype)
|
||
&& TREE_TYPE (newdecl) != error_mark_node
|
||
&& !(processing_template_decl && uses_template_parms (newdecl)))
|
||
layout_type (TREE_TYPE (newdecl));
|
||
|
||
if ((TREE_CODE (newdecl) == VAR_DECL
|
||
|| TREE_CODE (newdecl) == PARM_DECL
|
||
|| TREE_CODE (newdecl) == RESULT_DECL
|
||
|| TREE_CODE (newdecl) == FIELD_DECL
|
||
|| TREE_CODE (newdecl) == TYPE_DECL)
|
||
&& !(processing_template_decl && uses_template_parms (newdecl)))
|
||
layout_decl (newdecl, 0);
|
||
|
||
/* Merge the type qualifiers. */
|
||
if (TREE_READONLY (newdecl))
|
||
TREE_READONLY (olddecl) = 1;
|
||
if (TREE_THIS_VOLATILE (newdecl))
|
||
TREE_THIS_VOLATILE (olddecl) = 1;
|
||
|
||
/* Merge the initialization information. */
|
||
if (DECL_INITIAL (newdecl) == NULL_TREE
|
||
&& DECL_INITIAL (olddecl) != NULL_TREE)
|
||
{
|
||
DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
|
||
DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl);
|
||
if (CAN_HAVE_FULL_LANG_DECL_P (newdecl)
|
||
&& DECL_LANG_SPECIFIC (newdecl)
|
||
&& DECL_LANG_SPECIFIC (olddecl))
|
||
{
|
||
DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
|
||
DECL_SAVED_INSNS (newdecl) = DECL_SAVED_INSNS (olddecl);
|
||
}
|
||
}
|
||
|
||
/* Merge the section attribute.
|
||
We want to issue an error if the sections conflict but that must be
|
||
done later in decl_attributes since we are called before attributes
|
||
are assigned. */
|
||
if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
|
||
DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);
|
||
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
|
||
|= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
|
||
DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl);
|
||
TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
|
||
TREE_READONLY (newdecl) |= TREE_READONLY (olddecl);
|
||
TREE_NOTHROW (newdecl) |= TREE_NOTHROW (olddecl);
|
||
DECL_IS_MALLOC (newdecl) |= DECL_IS_MALLOC (olddecl);
|
||
DECL_IS_PURE (newdecl) |= DECL_IS_PURE (olddecl);
|
||
/* Keep the old RTL. */
|
||
COPY_DECL_RTL (olddecl, newdecl);
|
||
}
|
||
else if (TREE_CODE (newdecl) == VAR_DECL
|
||
&& (DECL_SIZE (olddecl) || !DECL_SIZE (newdecl)))
|
||
{
|
||
/* Keep the old RTL. We cannot keep the old RTL if the old
|
||
declaration was for an incomplete object and the new
|
||
declaration is not since many attributes of the RTL will
|
||
change. */
|
||
COPY_DECL_RTL (olddecl, newdecl);
|
||
}
|
||
}
|
||
/* If cannot merge, then use the new type and qualifiers,
|
||
and don't preserve the old rtl. */
|
||
else
|
||
{
|
||
/* Clean out any memory we had of the old declaration. */
|
||
tree oldstatic = value_member (olddecl, static_aggregates);
|
||
if (oldstatic)
|
||
TREE_VALUE (oldstatic) = error_mark_node;
|
||
|
||
TREE_TYPE (olddecl) = TREE_TYPE (newdecl);
|
||
TREE_READONLY (olddecl) = TREE_READONLY (newdecl);
|
||
TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl);
|
||
TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl);
|
||
}
|
||
|
||
/* Merge the storage class information. */
|
||
merge_weak (newdecl, olddecl);
|
||
|
||
DECL_ONE_ONLY (newdecl) |= DECL_ONE_ONLY (olddecl);
|
||
DECL_DEFER_OUTPUT (newdecl) |= DECL_DEFER_OUTPUT (olddecl);
|
||
TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
|
||
TREE_STATIC (olddecl) = TREE_STATIC (newdecl) |= TREE_STATIC (olddecl);
|
||
if (! DECL_EXTERNAL (olddecl))
|
||
DECL_EXTERNAL (newdecl) = 0;
|
||
|
||
if (DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl))
|
||
{
|
||
DECL_INTERFACE_KNOWN (newdecl) |= DECL_INTERFACE_KNOWN (olddecl);
|
||
DECL_NOT_REALLY_EXTERN (newdecl) |= DECL_NOT_REALLY_EXTERN (olddecl);
|
||
DECL_COMDAT (newdecl) |= DECL_COMDAT (olddecl);
|
||
DECL_TEMPLATE_INSTANTIATED (newdecl)
|
||
|= DECL_TEMPLATE_INSTANTIATED (olddecl);
|
||
/* Don't really know how much of the language-specific
|
||
values we should copy from old to new. */
|
||
DECL_IN_AGGR_P (newdecl) = DECL_IN_AGGR_P (olddecl);
|
||
DECL_LANG_SPECIFIC (newdecl)->decl_flags.u2 =
|
||
DECL_LANG_SPECIFIC (olddecl)->decl_flags.u2;
|
||
DECL_NONCONVERTING_P (newdecl) = DECL_NONCONVERTING_P (olddecl);
|
||
DECL_TEMPLATE_INFO (newdecl) = DECL_TEMPLATE_INFO (olddecl);
|
||
DECL_INITIALIZED_IN_CLASS_P (newdecl)
|
||
|= DECL_INITIALIZED_IN_CLASS_P (olddecl);
|
||
olddecl_friend = DECL_FRIEND_P (olddecl);
|
||
|
||
/* Only functions have DECL_BEFRIENDING_CLASSES. */
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL
|
||
|| DECL_FUNCTION_TEMPLATE_P (newdecl))
|
||
{
|
||
DECL_BEFRIENDING_CLASSES (newdecl)
|
||
= chainon (DECL_BEFRIENDING_CLASSES (newdecl),
|
||
DECL_BEFRIENDING_CLASSES (olddecl));
|
||
/* DECL_THUNKS is only valid for virtual functions,
|
||
otherwise it is a DECL_FRIEND_CONTEXT. */
|
||
if (DECL_VIRTUAL_P (newdecl))
|
||
DECL_THUNKS (newdecl) = DECL_THUNKS (olddecl);
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
if (DECL_TEMPLATE_INSTANTIATION (olddecl)
|
||
&& !DECL_TEMPLATE_INSTANTIATION (newdecl))
|
||
{
|
||
/* If newdecl is not a specialization, then it is not a
|
||
template-related function at all. And that means that we
|
||
should have exited above, returning 0. */
|
||
my_friendly_assert (DECL_TEMPLATE_SPECIALIZATION (newdecl),
|
||
0);
|
||
|
||
if (TREE_USED (olddecl))
|
||
/* From [temp.expl.spec]:
|
||
|
||
If a template, a member template or the member of a class
|
||
template is explicitly specialized then that
|
||
specialization shall be declared before the first use of
|
||
that specialization that would cause an implicit
|
||
instantiation to take place, in every translation unit in
|
||
which such a use occurs. */
|
||
error ("explicit specialization of %D after first use",
|
||
olddecl);
|
||
|
||
SET_DECL_TEMPLATE_SPECIALIZATION (olddecl);
|
||
|
||
/* [temp.expl.spec/14] We don't inline explicit specialization
|
||
just because the primary template says so. */
|
||
}
|
||
else
|
||
{
|
||
if (DECL_PENDING_INLINE_INFO (newdecl) == 0)
|
||
DECL_PENDING_INLINE_INFO (newdecl) = DECL_PENDING_INLINE_INFO (olddecl);
|
||
|
||
DECL_DECLARED_INLINE_P (newdecl) |= DECL_DECLARED_INLINE_P (olddecl);
|
||
|
||
/* If either decl says `inline', this fn is inline, unless
|
||
its definition was passed already. */
|
||
if (DECL_INLINE (newdecl) && DECL_INITIAL (olddecl) == NULL_TREE)
|
||
DECL_INLINE (olddecl) = 1;
|
||
DECL_INLINE (newdecl) = DECL_INLINE (olddecl);
|
||
|
||
DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
|
||
= (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
|
||
}
|
||
|
||
/* Preserve abstractness on cloned [cd]tors. */
|
||
DECL_ABSTRACT (newdecl) = DECL_ABSTRACT (olddecl);
|
||
|
||
if (! types_match)
|
||
{
|
||
SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl));
|
||
COPY_DECL_ASSEMBLER_NAME (newdecl, olddecl);
|
||
SET_DECL_RTL (olddecl, DECL_RTL (newdecl));
|
||
}
|
||
if (! types_match || new_defines_function)
|
||
{
|
||
/* These need to be copied so that the names are available.
|
||
Note that if the types do match, we'll preserve inline
|
||
info and other bits, but if not, we won't. */
|
||
DECL_ARGUMENTS (olddecl) = DECL_ARGUMENTS (newdecl);
|
||
DECL_RESULT (olddecl) = DECL_RESULT (newdecl);
|
||
}
|
||
if (new_defines_function)
|
||
/* If defining a function declared with other language
|
||
linkage, use the previously declared language linkage. */
|
||
SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl));
|
||
else if (types_match)
|
||
{
|
||
/* If redeclaring a builtin function, and not a definition,
|
||
it stays built in. */
|
||
if (DECL_BUILT_IN (olddecl))
|
||
{
|
||
DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
|
||
DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
|
||
/* If we're keeping the built-in definition, keep the rtl,
|
||
regardless of declaration matches. */
|
||
SET_DECL_RTL (newdecl, DECL_RTL (olddecl));
|
||
}
|
||
|
||
DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
|
||
/* Don't clear out the arguments if we're redefining a function. */
|
||
if (DECL_ARGUMENTS (olddecl))
|
||
DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
|
||
}
|
||
}
|
||
else if (TREE_CODE (newdecl) == NAMESPACE_DECL)
|
||
NAMESPACE_LEVEL (newdecl) = NAMESPACE_LEVEL (olddecl);
|
||
|
||
/* Now preserve various other info from the definition. */
|
||
TREE_ADDRESSABLE (newdecl) = TREE_ADDRESSABLE (olddecl);
|
||
TREE_ASM_WRITTEN (newdecl) = TREE_ASM_WRITTEN (olddecl);
|
||
DECL_COMMON (newdecl) = DECL_COMMON (olddecl);
|
||
COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);
|
||
|
||
/* If either declaration has a nondefault visibility, use it. */
|
||
if (DECL_VISIBILITY (olddecl) != VISIBILITY_DEFAULT)
|
||
{
|
||
if (DECL_VISIBILITY (newdecl) != VISIBILITY_DEFAULT
|
||
&& DECL_VISIBILITY (newdecl) != DECL_VISIBILITY (olddecl))
|
||
{
|
||
warning ("%J'%D': visibility attribute ignored because it",
|
||
newdecl, newdecl);
|
||
warning ("%Jconflicts with previous declaration here", olddecl);
|
||
}
|
||
DECL_VISIBILITY (newdecl) = DECL_VISIBILITY (olddecl);
|
||
}
|
||
|
||
if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
int function_size;
|
||
|
||
function_size = sizeof (struct tree_decl);
|
||
|
||
memcpy ((char *) olddecl + sizeof (struct tree_common),
|
||
(char *) newdecl + sizeof (struct tree_common),
|
||
function_size - sizeof (struct tree_common));
|
||
|
||
if (DECL_TEMPLATE_INSTANTIATION (newdecl))
|
||
/* If newdecl is a template instantiation, it is possible that
|
||
the following sequence of events has occurred:
|
||
|
||
o A friend function was declared in a class template. The
|
||
class template was instantiated.
|
||
|
||
o The instantiation of the friend declaration was
|
||
recorded on the instantiation list, and is newdecl.
|
||
|
||
o Later, however, instantiate_class_template called pushdecl
|
||
on the newdecl to perform name injection. But, pushdecl in
|
||
turn called duplicate_decls when it discovered that another
|
||
declaration of a global function with the same name already
|
||
existed.
|
||
|
||
o Here, in duplicate_decls, we decided to clobber newdecl.
|
||
|
||
If we're going to do that, we'd better make sure that
|
||
olddecl, and not newdecl, is on the list of
|
||
instantiations so that if we try to do the instantiation
|
||
again we won't get the clobbered declaration. */
|
||
reregister_specialization (newdecl,
|
||
DECL_TI_TEMPLATE (newdecl),
|
||
olddecl);
|
||
}
|
||
else
|
||
{
|
||
memcpy ((char *) olddecl + sizeof (struct tree_common),
|
||
(char *) newdecl + sizeof (struct tree_common),
|
||
sizeof (struct tree_decl) - sizeof (struct tree_common)
|
||
+ TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *));
|
||
}
|
||
|
||
DECL_UID (olddecl) = olddecl_uid;
|
||
if (olddecl_friend)
|
||
DECL_FRIEND_P (olddecl) = 1;
|
||
|
||
/* NEWDECL contains the merged attribute lists.
|
||
Update OLDDECL to be the same. */
|
||
DECL_ATTRIBUTES (olddecl) = DECL_ATTRIBUTES (newdecl);
|
||
|
||
/* If OLDDECL had its DECL_RTL instantiated, re-invoke make_decl_rtl
|
||
so that encode_section_info has a chance to look at the new decl
|
||
flags and attributes. */
|
||
if (DECL_RTL_SET_P (olddecl)
|
||
&& (TREE_CODE (olddecl) == FUNCTION_DECL
|
||
|| (TREE_CODE (olddecl) == VAR_DECL
|
||
&& TREE_STATIC (olddecl))))
|
||
make_decl_rtl (olddecl, NULL);
|
||
|
||
return olddecl;
|
||
}
|
||
|
||
/* Generate an implicit declaration for identifier FUNCTIONID
|
||
as a function of type int (). Print a warning if appropriate. */
|
||
|
||
tree
|
||
implicitly_declare (tree functionid)
|
||
{
|
||
tree decl;
|
||
|
||
/* We used to reuse an old implicit decl here,
|
||
but this loses with inline functions because it can clobber
|
||
the saved decl chains. */
|
||
decl = build_lang_decl (FUNCTION_DECL, functionid, default_function_type);
|
||
|
||
DECL_EXTERNAL (decl) = 1;
|
||
TREE_PUBLIC (decl) = 1;
|
||
|
||
/* ISO standard says implicit declarations are in the innermost block.
|
||
So we record the decl in the standard fashion. */
|
||
pushdecl (decl);
|
||
rest_of_decl_compilation (decl, NULL, 0, 0);
|
||
|
||
if (warn_implicit
|
||
/* Only one warning per identifier. */
|
||
&& IDENTIFIER_IMPLICIT_DECL (functionid) == NULL_TREE)
|
||
{
|
||
pedwarn ("implicit declaration of function `%#D'", decl);
|
||
}
|
||
|
||
SET_IDENTIFIER_IMPLICIT_DECL (functionid, decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Return zero if the declaration NEWDECL is valid
|
||
when the declaration OLDDECL (assumed to be for the same name)
|
||
has already been seen.
|
||
Otherwise return an error message format string with a %s
|
||
where the identifier should go. */
|
||
|
||
static const char *
|
||
redeclaration_error_message (tree newdecl, tree olddecl)
|
||
{
|
||
if (TREE_CODE (newdecl) == TYPE_DECL)
|
||
{
|
||
/* Because C++ can put things into name space for free,
|
||
constructs like "typedef struct foo { ... } foo"
|
||
would look like an erroneous redeclaration. */
|
||
if (same_type_p (TREE_TYPE (newdecl), TREE_TYPE (olddecl)))
|
||
return 0;
|
||
else
|
||
return "redefinition of `%#D'";
|
||
}
|
||
else if (TREE_CODE (newdecl) == FUNCTION_DECL)
|
||
{
|
||
/* If this is a pure function, its olddecl will actually be
|
||
the original initialization to `0' (which we force to call
|
||
abort()). Don't complain about redefinition in this case. */
|
||
if (DECL_LANG_SPECIFIC (olddecl) && DECL_PURE_VIRTUAL_P (olddecl))
|
||
return 0;
|
||
|
||
/* If both functions come from different namespaces, this is not
|
||
a redeclaration - this is a conflict with a used function. */
|
||
if (DECL_NAMESPACE_SCOPE_P (olddecl)
|
||
&& DECL_CONTEXT (olddecl) != DECL_CONTEXT (newdecl)
|
||
&& ! decls_match (olddecl, newdecl))
|
||
return "`%D' conflicts with used function";
|
||
|
||
/* We'll complain about linkage mismatches in
|
||
warn_extern_redeclared_static. */
|
||
|
||
/* Defining the same name twice is no good. */
|
||
if (DECL_INITIAL (olddecl) != NULL_TREE
|
||
&& DECL_INITIAL (newdecl) != NULL_TREE)
|
||
{
|
||
if (DECL_NAME (olddecl) == NULL_TREE)
|
||
return "`%#D' not declared in class";
|
||
else
|
||
return "redefinition of `%#D'";
|
||
}
|
||
return 0;
|
||
}
|
||
else if (TREE_CODE (newdecl) == TEMPLATE_DECL)
|
||
{
|
||
tree nt, ot;
|
||
|
||
if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)
|
||
{
|
||
if (COMPLETE_TYPE_P (TREE_TYPE (newdecl))
|
||
&& COMPLETE_TYPE_P (TREE_TYPE (olddecl)))
|
||
return "redefinition of `%#D'";
|
||
return NULL;
|
||
}
|
||
|
||
if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != FUNCTION_DECL
|
||
|| (DECL_TEMPLATE_RESULT (newdecl)
|
||
== DECL_TEMPLATE_RESULT (olddecl)))
|
||
return NULL;
|
||
|
||
nt = DECL_TEMPLATE_RESULT (newdecl);
|
||
if (DECL_TEMPLATE_INFO (nt))
|
||
nt = DECL_TEMPLATE_RESULT (template_for_substitution (nt));
|
||
ot = DECL_TEMPLATE_RESULT (olddecl);
|
||
if (DECL_TEMPLATE_INFO (ot))
|
||
ot = DECL_TEMPLATE_RESULT (template_for_substitution (ot));
|
||
if (DECL_INITIAL (nt) && DECL_INITIAL (ot))
|
||
return "redefinition of `%#D'";
|
||
|
||
return NULL;
|
||
}
|
||
else if (toplevel_bindings_p () || DECL_NAMESPACE_SCOPE_P (newdecl))
|
||
{
|
||
/* Objects declared at top level: */
|
||
/* If at least one is a reference, it's ok. */
|
||
if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl))
|
||
return 0;
|
||
/* Reject two definitions. */
|
||
return "redefinition of `%#D'";
|
||
}
|
||
else
|
||
{
|
||
/* Objects declared with block scope: */
|
||
/* Reject two definitions, and reject a definition
|
||
together with an external reference. */
|
||
if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl)))
|
||
return "redeclaration of `%#D'";
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Create a new label, named ID. */
|
||
|
||
static tree
|
||
make_label_decl (tree id, int local_p)
|
||
{
|
||
tree decl;
|
||
|
||
decl = build_decl (LABEL_DECL, id, void_type_node);
|
||
|
||
DECL_CONTEXT (decl) = current_function_decl;
|
||
DECL_MODE (decl) = VOIDmode;
|
||
C_DECLARED_LABEL_FLAG (decl) = local_p;
|
||
|
||
/* Say where one reference is to the label, for the sake of the
|
||
error if it is not defined. */
|
||
DECL_SOURCE_LOCATION (decl) = input_location;
|
||
|
||
/* Record the fact that this identifier is bound to this label. */
|
||
SET_IDENTIFIER_LABEL_VALUE (id, decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Record this label on the list of used labels so that we can check
|
||
at the end of the function to see whether or not the label was
|
||
actually defined, and so we can check when the label is defined whether
|
||
this use is valid. */
|
||
|
||
static void
|
||
use_label (tree decl)
|
||
{
|
||
if (named_label_uses == NULL
|
||
|| named_label_uses->names_in_scope != current_binding_level->names
|
||
|| named_label_uses->label_decl != decl)
|
||
{
|
||
struct named_label_use_list *new_ent;
|
||
new_ent = ggc_alloc (sizeof (struct named_label_use_list));
|
||
new_ent->label_decl = decl;
|
||
new_ent->names_in_scope = current_binding_level->names;
|
||
new_ent->binding_level = current_binding_level;
|
||
new_ent->o_goto_locus = input_location;
|
||
new_ent->next = named_label_uses;
|
||
named_label_uses = new_ent;
|
||
}
|
||
}
|
||
|
||
/* Look for a label named ID in the current function. If one cannot
|
||
be found, create one. (We keep track of used, but undefined,
|
||
labels, and complain about them at the end of a function.) */
|
||
|
||
tree
|
||
lookup_label (tree id)
|
||
{
|
||
tree decl;
|
||
struct named_label_list *ent;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
/* You can't use labels at global scope. */
|
||
if (current_function_decl == NULL_TREE)
|
||
{
|
||
error ("label `%s' referenced outside of any function",
|
||
IDENTIFIER_POINTER (id));
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE);
|
||
}
|
||
|
||
/* See if we've already got this label. */
|
||
decl = IDENTIFIER_LABEL_VALUE (id);
|
||
if (decl != NULL_TREE && DECL_CONTEXT (decl) == current_function_decl)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
|
||
/* Record this label on the list of labels used in this function.
|
||
We do this before calling make_label_decl so that we get the
|
||
IDENTIFIER_LABEL_VALUE before the new label is declared. */
|
||
ent = ggc_alloc_cleared (sizeof (struct named_label_list));
|
||
ent->old_value = IDENTIFIER_LABEL_VALUE (id);
|
||
ent->next = named_labels;
|
||
named_labels = ent;
|
||
|
||
/* We need a new label. */
|
||
decl = make_label_decl (id, /*local_p=*/0);
|
||
|
||
/* Now fill in the information we didn't have before. */
|
||
ent->label_decl = decl;
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl);
|
||
}
|
||
|
||
/* Declare a local label named ID. */
|
||
|
||
tree
|
||
declare_local_label (tree id)
|
||
{
|
||
tree decl;
|
||
|
||
/* Add a new entry to the SHADOWED_LABELS list so that when we leave
|
||
this scope we can restore the old value of
|
||
IDENTIFIER_TYPE_VALUE. */
|
||
current_binding_level->shadowed_labels
|
||
= tree_cons (IDENTIFIER_LABEL_VALUE (id), NULL_TREE,
|
||
current_binding_level->shadowed_labels);
|
||
/* Look for the label. */
|
||
decl = make_label_decl (id, /*local_p=*/1);
|
||
/* Now fill in the information we didn't have before. */
|
||
TREE_VALUE (current_binding_level->shadowed_labels) = decl;
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Returns nonzero if it is ill-formed to jump past the declaration of
|
||
DECL. Returns 2 if it's also a real problem. */
|
||
|
||
static int
|
||
decl_jump_unsafe (tree decl)
|
||
{
|
||
if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl))
|
||
return 0;
|
||
|
||
if (DECL_INITIAL (decl) == NULL_TREE
|
||
&& pod_type_p (TREE_TYPE (decl)))
|
||
return 0;
|
||
|
||
/* This is really only important if we're crossing an initialization.
|
||
The POD stuff is just pedantry; why should it matter if the class
|
||
contains a field of pointer to member type? */
|
||
if (DECL_INITIAL (decl)
|
||
|| (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))))
|
||
return 2;
|
||
return 1;
|
||
}
|
||
|
||
/* Check that a single previously seen jump to a newly defined label
|
||
is OK. DECL is the LABEL_DECL or 0; LEVEL is the binding_level for
|
||
the jump context; NAMES are the names in scope in LEVEL at the jump
|
||
context; FILE and LINE are the source position of the jump or 0. */
|
||
|
||
static void
|
||
check_previous_goto_1 (tree decl,
|
||
struct cp_binding_level* level,
|
||
tree names, const location_t *locus)
|
||
{
|
||
int identified = 0;
|
||
int saw_eh = 0;
|
||
struct cp_binding_level *b = current_binding_level;
|
||
for (; b; b = b->level_chain)
|
||
{
|
||
tree new_decls = b->names;
|
||
tree old_decls = (b == level ? names : NULL_TREE);
|
||
for (; new_decls != old_decls;
|
||
new_decls = TREE_CHAIN (new_decls))
|
||
{
|
||
int problem = decl_jump_unsafe (new_decls);
|
||
if (! problem)
|
||
continue;
|
||
|
||
if (! identified)
|
||
{
|
||
if (decl)
|
||
pedwarn ("jump to label `%D'", decl);
|
||
else
|
||
pedwarn ("jump to case label");
|
||
|
||
if (locus)
|
||
pedwarn ("%H from here", locus);
|
||
identified = 1;
|
||
}
|
||
|
||
if (problem > 1)
|
||
cp_error_at (" crosses initialization of `%#D'",
|
||
new_decls);
|
||
else
|
||
cp_pedwarn_at (" enters scope of non-POD `%#D'",
|
||
new_decls);
|
||
}
|
||
|
||
if (b == level)
|
||
break;
|
||
if ((b->kind == sk_try || b->kind == sk_catch) && ! saw_eh)
|
||
{
|
||
if (! identified)
|
||
{
|
||
if (decl)
|
||
pedwarn ("jump to label `%D'", decl);
|
||
else
|
||
pedwarn ("jump to case label");
|
||
|
||
if (locus)
|
||
pedwarn ("%H from here", locus);
|
||
identified = 1;
|
||
}
|
||
if (b->kind == sk_try)
|
||
error (" enters try block");
|
||
else
|
||
error (" enters catch block");
|
||
saw_eh = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
check_previous_goto (struct named_label_use_list* use)
|
||
{
|
||
check_previous_goto_1 (use->label_decl, use->binding_level,
|
||
use->names_in_scope, &use->o_goto_locus);
|
||
}
|
||
|
||
static void
|
||
check_switch_goto (struct cp_binding_level* level)
|
||
{
|
||
check_previous_goto_1 (NULL_TREE, level, level->names, NULL);
|
||
}
|
||
|
||
/* Check that any previously seen jumps to a newly defined label DECL
|
||
are OK. Called by define_label. */
|
||
|
||
static void
|
||
check_previous_gotos (tree decl)
|
||
{
|
||
struct named_label_use_list **usep;
|
||
|
||
if (! TREE_USED (decl))
|
||
return;
|
||
|
||
for (usep = &named_label_uses; *usep; )
|
||
{
|
||
struct named_label_use_list *use = *usep;
|
||
if (use->label_decl == decl)
|
||
{
|
||
check_previous_goto (use);
|
||
*usep = use->next;
|
||
}
|
||
else
|
||
usep = &(use->next);
|
||
}
|
||
}
|
||
|
||
/* Check that a new jump to a label DECL is OK. Called by
|
||
finish_goto_stmt. */
|
||
|
||
void
|
||
check_goto (tree decl)
|
||
{
|
||
int identified = 0;
|
||
tree bad;
|
||
struct named_label_list *lab;
|
||
|
||
/* We can't know where a computed goto is jumping. So we assume
|
||
that it's OK. */
|
||
if (! DECL_P (decl))
|
||
return;
|
||
|
||
/* If the label hasn't been defined yet, defer checking. */
|
||
if (! DECL_INITIAL (decl))
|
||
{
|
||
use_label (decl);
|
||
return;
|
||
}
|
||
|
||
for (lab = named_labels; lab; lab = lab->next)
|
||
if (decl == lab->label_decl)
|
||
break;
|
||
|
||
/* If the label is not on named_labels it's a gcc local label, so
|
||
it must be in an outer scope, so jumping to it is always OK. */
|
||
if (lab == 0)
|
||
return;
|
||
|
||
if ((lab->in_try_scope || lab->in_catch_scope || lab->bad_decls)
|
||
&& !identified)
|
||
{
|
||
cp_pedwarn_at ("jump to label `%D'", decl);
|
||
pedwarn (" from here");
|
||
identified = 1;
|
||
}
|
||
|
||
for (bad = lab->bad_decls; bad; bad = TREE_CHAIN (bad))
|
||
{
|
||
tree b = TREE_VALUE (bad);
|
||
int u = decl_jump_unsafe (b);
|
||
|
||
if (u > 1 && DECL_ARTIFICIAL (b))
|
||
/* Can't skip init of __exception_info. */
|
||
error ("%J enters catch block", b);
|
||
else if (u > 1)
|
||
cp_error_at (" skips initialization of `%#D'", b);
|
||
else
|
||
cp_pedwarn_at (" enters scope of non-POD `%#D'", b);
|
||
}
|
||
|
||
if (lab->in_try_scope)
|
||
error (" enters try block");
|
||
else if (lab->in_catch_scope)
|
||
error (" enters catch block");
|
||
}
|
||
|
||
/* Define a label, specifying the location in the source file.
|
||
Return the LABEL_DECL node for the label. */
|
||
|
||
tree
|
||
define_label (location_t location, tree name)
|
||
{
|
||
tree decl = lookup_label (name);
|
||
struct named_label_list *ent;
|
||
struct cp_binding_level *p;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
for (ent = named_labels; ent; ent = ent->next)
|
||
if (ent->label_decl == decl)
|
||
break;
|
||
|
||
/* After labels, make any new cleanups in the function go into their
|
||
own new (temporary) binding contour. */
|
||
for (p = current_binding_level;
|
||
p->kind != sk_function_parms;
|
||
p = p->level_chain)
|
||
p->more_cleanups_ok = 0;
|
||
|
||
if (name == get_identifier ("wchar_t"))
|
||
pedwarn ("label named wchar_t");
|
||
|
||
if (DECL_INITIAL (decl) != NULL_TREE)
|
||
error ("duplicate label `%D'", decl);
|
||
else
|
||
{
|
||
/* Mark label as having been defined. */
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
/* Say where in the source. */
|
||
DECL_SOURCE_LOCATION (decl) = location;
|
||
if (ent)
|
||
{
|
||
ent->names_in_scope = current_binding_level->names;
|
||
ent->binding_level = current_binding_level;
|
||
}
|
||
check_previous_gotos (decl);
|
||
}
|
||
|
||
timevar_pop (TV_NAME_LOOKUP);
|
||
return decl;
|
||
}
|
||
|
||
struct cp_switch
|
||
{
|
||
struct cp_binding_level *level;
|
||
struct cp_switch *next;
|
||
/* The SWITCH_STMT being built. */
|
||
tree switch_stmt;
|
||
/* A splay-tree mapping the low element of a case range to the high
|
||
element, or NULL_TREE if there is no high element. Used to
|
||
determine whether or not a new case label duplicates an old case
|
||
label. We need a tree, rather than simply a hash table, because
|
||
of the GNU case range extension. */
|
||
splay_tree cases;
|
||
};
|
||
|
||
/* A stack of the currently active switch statements. The innermost
|
||
switch statement is on the top of the stack. There is no need to
|
||
mark the stack for garbage collection because it is only active
|
||
during the processing of the body of a function, and we never
|
||
collect at that point. */
|
||
|
||
static struct cp_switch *switch_stack;
|
||
|
||
/* Called right after a switch-statement condition is parsed.
|
||
SWITCH_STMT is the switch statement being parsed. */
|
||
|
||
void
|
||
push_switch (tree switch_stmt)
|
||
{
|
||
struct cp_switch *p = xmalloc (sizeof (struct cp_switch));
|
||
p->level = current_binding_level;
|
||
p->next = switch_stack;
|
||
p->switch_stmt = switch_stmt;
|
||
p->cases = splay_tree_new (case_compare, NULL, NULL);
|
||
switch_stack = p;
|
||
}
|
||
|
||
void
|
||
pop_switch (void)
|
||
{
|
||
struct cp_switch *cs;
|
||
|
||
cs = switch_stack;
|
||
splay_tree_delete (cs->cases);
|
||
switch_stack = switch_stack->next;
|
||
free (cs);
|
||
}
|
||
|
||
/* Note that we've seen a definition of a case label, and complain if this
|
||
is a bad place for one. */
|
||
|
||
tree
|
||
finish_case_label (tree low_value, tree high_value)
|
||
{
|
||
tree cond, r;
|
||
struct cp_binding_level *p;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
tree label;
|
||
|
||
/* For templates, just add the case label; we'll do semantic
|
||
analysis at instantiation-time. */
|
||
label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
|
||
return add_stmt (build_case_label (low_value, high_value, label));
|
||
}
|
||
|
||
/* Find the condition on which this switch statement depends. */
|
||
cond = SWITCH_COND (switch_stack->switch_stmt);
|
||
if (cond && TREE_CODE (cond) == TREE_LIST)
|
||
cond = TREE_VALUE (cond);
|
||
|
||
r = c_add_case_label (switch_stack->cases, cond, low_value, high_value);
|
||
|
||
check_switch_goto (switch_stack->level);
|
||
|
||
/* After labels, make any new cleanups in the function go into their
|
||
own new (temporary) binding contour. */
|
||
for (p = current_binding_level;
|
||
p->kind != sk_function_parms;
|
||
p = p->level_chain)
|
||
p->more_cleanups_ok = 0;
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Hash a TYPENAME_TYPE. K is really of type `tree'. */
|
||
|
||
static hashval_t
|
||
typename_hash (const void* k)
|
||
{
|
||
hashval_t hash;
|
||
tree t = (tree) k;
|
||
|
||
hash = (htab_hash_pointer (TYPE_CONTEXT (t))
|
||
^ htab_hash_pointer (DECL_NAME (TYPE_NAME (t))));
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Compare two TYPENAME_TYPEs. K1 and K2 are really of type `tree'. */
|
||
|
||
static int
|
||
typename_compare (const void * k1, const void * k2)
|
||
{
|
||
tree t1;
|
||
tree t2;
|
||
tree d1;
|
||
tree d2;
|
||
|
||
t1 = (tree) k1;
|
||
t2 = (tree) k2;
|
||
d1 = TYPE_NAME (t1);
|
||
d2 = TYPE_NAME (t2);
|
||
|
||
return (DECL_NAME (d1) == DECL_NAME (d2)
|
||
&& TYPE_CONTEXT (t1) == TYPE_CONTEXT (t2)
|
||
&& ((TREE_TYPE (t1) != NULL_TREE)
|
||
== (TREE_TYPE (t2) != NULL_TREE))
|
||
&& same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
|
||
&& TYPENAME_TYPE_FULLNAME (t1) == TYPENAME_TYPE_FULLNAME (t2));
|
||
}
|
||
|
||
/* Build a TYPENAME_TYPE. If the type is `typename T::t', CONTEXT is
|
||
the type of `T', NAME is the IDENTIFIER_NODE for `t'. If BASE_TYPE
|
||
is non-NULL, this type is being created by the implicit typename
|
||
extension, and BASE_TYPE is a type named `t' in some base class of
|
||
`T' which depends on template parameters.
|
||
|
||
Returns the new TYPENAME_TYPE. */
|
||
|
||
static GTY ((param_is (union tree_node))) htab_t typename_htab;
|
||
|
||
static tree
|
||
build_typename_type (tree context, tree name, tree fullname)
|
||
{
|
||
tree t;
|
||
tree d;
|
||
void **e;
|
||
|
||
if (typename_htab == NULL)
|
||
{
|
||
typename_htab = htab_create_ggc (61, &typename_hash,
|
||
&typename_compare, NULL);
|
||
}
|
||
|
||
/* Build the TYPENAME_TYPE. */
|
||
t = make_aggr_type (TYPENAME_TYPE);
|
||
TYPE_CONTEXT (t) = FROB_CONTEXT (context);
|
||
TYPENAME_TYPE_FULLNAME (t) = fullname;
|
||
|
||
/* Build the corresponding TYPE_DECL. */
|
||
d = build_decl (TYPE_DECL, name, t);
|
||
TYPE_NAME (TREE_TYPE (d)) = d;
|
||
TYPE_STUB_DECL (TREE_TYPE (d)) = d;
|
||
DECL_CONTEXT (d) = FROB_CONTEXT (context);
|
||
DECL_ARTIFICIAL (d) = 1;
|
||
|
||
/* See if we already have this type. */
|
||
e = htab_find_slot (typename_htab, t, INSERT);
|
||
if (*e)
|
||
t = (tree) *e;
|
||
else
|
||
*e = t;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Resolve `typename CONTEXT::NAME'. Returns an appropriate type,
|
||
unless an error occurs, in which case error_mark_node is returned.
|
||
If we locate a non-artificial TYPE_DECL and TF_KEEP_TYPE_DECL is
|
||
set, we return that, rather than the _TYPE it corresponds to, in
|
||
other cases we look through the type decl. If TF_ERROR is set,
|
||
complain about errors, otherwise be quiet. */
|
||
|
||
tree
|
||
make_typename_type (tree context, tree name, tsubst_flags_t complain)
|
||
{
|
||
tree fullname;
|
||
|
||
if (name == error_mark_node
|
||
|| context == NULL_TREE
|
||
|| context == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TYPE_P (name))
|
||
{
|
||
if (!(TYPE_LANG_SPECIFIC (name)
|
||
&& (CLASSTYPE_IS_TEMPLATE (name)
|
||
|| CLASSTYPE_USE_TEMPLATE (name))))
|
||
name = TYPE_IDENTIFIER (name);
|
||
else
|
||
/* Create a TEMPLATE_ID_EXPR for the type. */
|
||
name = build_nt (TEMPLATE_ID_EXPR,
|
||
CLASSTYPE_TI_TEMPLATE (name),
|
||
CLASSTYPE_TI_ARGS (name));
|
||
}
|
||
else if (TREE_CODE (name) == TYPE_DECL)
|
||
name = DECL_NAME (name);
|
||
|
||
fullname = name;
|
||
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
||
{
|
||
name = TREE_OPERAND (name, 0);
|
||
if (TREE_CODE (name) == TEMPLATE_DECL)
|
||
name = TREE_OPERAND (fullname, 0) = DECL_NAME (name);
|
||
}
|
||
if (TREE_CODE (name) == TEMPLATE_DECL)
|
||
{
|
||
error ("`%D' used without template parameters", name);
|
||
return error_mark_node;
|
||
}
|
||
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030802);
|
||
|
||
if (TREE_CODE (context) == NAMESPACE_DECL)
|
||
{
|
||
/* We can get here from typename_sub0 in the explicit_template_type
|
||
expansion. Just fail. */
|
||
if (complain & tf_error)
|
||
error ("no class template named `%#T' in `%#T'",
|
||
name, context);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (!dependent_type_p (context)
|
||
|| currently_open_class (context))
|
||
{
|
||
if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR)
|
||
{
|
||
tree tmpl = NULL_TREE;
|
||
if (IS_AGGR_TYPE (context))
|
||
tmpl = lookup_field (context, name, 0, false);
|
||
if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
|
||
{
|
||
if (complain & tf_error)
|
||
error ("no class template named `%#T' in `%#T'",
|
||
name, context);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (complain & tf_error)
|
||
perform_or_defer_access_check (TYPE_BINFO (context), tmpl);
|
||
|
||
return lookup_template_class (tmpl,
|
||
TREE_OPERAND (fullname, 1),
|
||
NULL_TREE, context,
|
||
/*entering_scope=*/0,
|
||
tf_error | tf_warning | tf_user);
|
||
}
|
||
else
|
||
{
|
||
tree t;
|
||
|
||
if (!IS_AGGR_TYPE (context))
|
||
{
|
||
if (complain & tf_error)
|
||
error ("no type named `%#T' in `%#T'", name, context);
|
||
return error_mark_node;
|
||
}
|
||
|
||
t = lookup_field (context, name, 0, true);
|
||
if (t)
|
||
{
|
||
if (TREE_CODE (t) != TYPE_DECL)
|
||
{
|
||
if (complain & tf_error)
|
||
error ("no type named `%#T' in `%#T'", name, context);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (complain & tf_error)
|
||
perform_or_defer_access_check (TYPE_BINFO (context), t);
|
||
|
||
if (DECL_ARTIFICIAL (t) || !(complain & tf_keep_type_decl))
|
||
t = TREE_TYPE (t);
|
||
|
||
return t;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the CONTEXT is not a template type, then either the field is
|
||
there now or its never going to be. */
|
||
if (!dependent_type_p (context))
|
||
{
|
||
if (complain & tf_error)
|
||
error ("no type named `%#T' in `%#T'", name, context);
|
||
return error_mark_node;
|
||
}
|
||
|
||
return build_typename_type (context, name, fullname);
|
||
}
|
||
|
||
/* Resolve `CONTEXT::template NAME'. Returns an appropriate type,
|
||
unless an error occurs, in which case error_mark_node is returned.
|
||
If we locate a TYPE_DECL, we return that, rather than the _TYPE it
|
||
corresponds to. If COMPLAIN zero, don't complain about any errors
|
||
that occur. */
|
||
|
||
tree
|
||
make_unbound_class_template (tree context, tree name, tsubst_flags_t complain)
|
||
{
|
||
tree t;
|
||
tree d;
|
||
|
||
if (TYPE_P (name))
|
||
name = TYPE_IDENTIFIER (name);
|
||
else if (DECL_P (name))
|
||
name = DECL_NAME (name);
|
||
if (TREE_CODE (name) != IDENTIFIER_NODE)
|
||
abort ();
|
||
|
||
if (!dependent_type_p (context)
|
||
|| currently_open_class (context))
|
||
{
|
||
tree tmpl = NULL_TREE;
|
||
|
||
if (IS_AGGR_TYPE (context))
|
||
tmpl = lookup_field (context, name, 0, false);
|
||
|
||
if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
|
||
{
|
||
if (complain & tf_error)
|
||
error ("no class template named `%#T' in `%#T'", name, context);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (complain & tf_error)
|
||
perform_or_defer_access_check (TYPE_BINFO (context), tmpl);
|
||
|
||
return tmpl;
|
||
}
|
||
|
||
/* Build the UNBOUND_CLASS_TEMPLATE. */
|
||
t = make_aggr_type (UNBOUND_CLASS_TEMPLATE);
|
||
TYPE_CONTEXT (t) = FROB_CONTEXT (context);
|
||
TREE_TYPE (t) = NULL_TREE;
|
||
|
||
/* Build the corresponding TEMPLATE_DECL. */
|
||
d = build_decl (TEMPLATE_DECL, name, t);
|
||
TYPE_NAME (TREE_TYPE (d)) = d;
|
||
TYPE_STUB_DECL (TREE_TYPE (d)) = d;
|
||
DECL_CONTEXT (d) = FROB_CONTEXT (context);
|
||
DECL_ARTIFICIAL (d) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
|
||
/* A chain of TYPE_DECLs for the builtin types. */
|
||
|
||
static GTY(()) tree builtin_type_decls;
|
||
|
||
/* Return a chain of TYPE_DECLs for the builtin types. */
|
||
|
||
tree
|
||
cxx_builtin_type_decls (void)
|
||
{
|
||
return builtin_type_decls;
|
||
}
|
||
|
||
/* Push the declarations of builtin types into the namespace.
|
||
RID_INDEX is the index of the builtin type in the array
|
||
RID_POINTERS. NAME is the name used when looking up the builtin
|
||
type. TYPE is the _TYPE node for the builtin type. */
|
||
|
||
void
|
||
record_builtin_type (enum rid rid_index,
|
||
const char* name,
|
||
tree type)
|
||
{
|
||
tree rname = NULL_TREE, tname = NULL_TREE;
|
||
tree tdecl = NULL_TREE;
|
||
|
||
if ((int) rid_index < (int) RID_MAX)
|
||
rname = ridpointers[(int) rid_index];
|
||
if (name)
|
||
tname = get_identifier (name);
|
||
|
||
/* The calls to SET_IDENTIFIER_GLOBAL_VALUE below should be
|
||
eliminated. Built-in types should not be looked up name; their
|
||
names are keywords that the parser can recognize. However, there
|
||
is code in c-common.c that uses identifier_global_value to look
|
||
up built-in types by name. */
|
||
if (tname)
|
||
{
|
||
tdecl = build_decl (TYPE_DECL, tname, type);
|
||
DECL_ARTIFICIAL (tdecl) = 1;
|
||
SET_IDENTIFIER_GLOBAL_VALUE (tname, tdecl);
|
||
}
|
||
if (rname)
|
||
{
|
||
if (!tdecl)
|
||
{
|
||
tdecl = build_decl (TYPE_DECL, rname, type);
|
||
DECL_ARTIFICIAL (tdecl) = 1;
|
||
}
|
||
SET_IDENTIFIER_GLOBAL_VALUE (rname, tdecl);
|
||
}
|
||
|
||
if (!TYPE_NAME (type))
|
||
TYPE_NAME (type) = tdecl;
|
||
|
||
if (tdecl)
|
||
{
|
||
TREE_CHAIN (tdecl) = builtin_type_decls;
|
||
builtin_type_decls = tdecl;
|
||
}
|
||
}
|
||
|
||
/* Record one of the standard Java types.
|
||
* Declare it as having the given NAME.
|
||
* If SIZE > 0, it is the size of one of the integral types;
|
||
* otherwise it is the negative of the size of one of the other types. */
|
||
|
||
static tree
|
||
record_builtin_java_type (const char* name, int size)
|
||
{
|
||
tree type, decl;
|
||
if (size > 0)
|
||
type = make_signed_type (size);
|
||
else if (size > -32)
|
||
{ /* "__java_char" or ""__java_boolean". */
|
||
type = make_unsigned_type (-size);
|
||
/*if (size == -1) TREE_SET_CODE (type, BOOLEAN_TYPE);*/
|
||
}
|
||
else
|
||
{ /* "__java_float" or ""__java_double". */
|
||
type = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (type) = - size;
|
||
layout_type (type);
|
||
}
|
||
record_builtin_type (RID_MAX, name, type);
|
||
decl = TYPE_NAME (type);
|
||
|
||
/* Suppress generate debug symbol entries for these types,
|
||
since for normal C++ they are just clutter.
|
||
However, push_lang_context undoes this if extern "Java" is seen. */
|
||
DECL_IGNORED_P (decl) = 1;
|
||
|
||
TYPE_FOR_JAVA (type) = 1;
|
||
return type;
|
||
}
|
||
|
||
/* Push a type into the namespace so that the back-ends ignore it. */
|
||
|
||
static void
|
||
record_unknown_type (tree type, const char* name)
|
||
{
|
||
tree decl = pushdecl (build_decl (TYPE_DECL, get_identifier (name), type));
|
||
/* Make sure the "unknown type" typedecl gets ignored for debug info. */
|
||
DECL_IGNORED_P (decl) = 1;
|
||
TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;
|
||
TYPE_SIZE (type) = TYPE_SIZE (void_type_node);
|
||
TYPE_ALIGN (type) = 1;
|
||
TYPE_USER_ALIGN (type) = 0;
|
||
TYPE_MODE (type) = TYPE_MODE (void_type_node);
|
||
}
|
||
|
||
/* An string for which we should create an IDENTIFIER_NODE at
|
||
startup. */
|
||
|
||
typedef struct predefined_identifier
|
||
{
|
||
/* The name of the identifier. */
|
||
const char *const name;
|
||
/* The place where the IDENTIFIER_NODE should be stored. */
|
||
tree *const node;
|
||
/* Nonzero if this is the name of a constructor or destructor. */
|
||
const int ctor_or_dtor_p;
|
||
} predefined_identifier;
|
||
|
||
/* Create all the predefined identifiers. */
|
||
|
||
static void
|
||
initialize_predefined_identifiers (void)
|
||
{
|
||
const predefined_identifier *pid;
|
||
|
||
/* A table of identifiers to create at startup. */
|
||
static const predefined_identifier predefined_identifiers[] = {
|
||
{ "C++", &lang_name_cplusplus, 0 },
|
||
{ "C", &lang_name_c, 0 },
|
||
{ "Java", &lang_name_java, 0 },
|
||
{ CTOR_NAME, &ctor_identifier, 1 },
|
||
{ "__base_ctor", &base_ctor_identifier, 1 },
|
||
{ "__comp_ctor", &complete_ctor_identifier, 1 },
|
||
{ DTOR_NAME, &dtor_identifier, 1 },
|
||
{ "__comp_dtor", &complete_dtor_identifier, 1 },
|
||
{ "__base_dtor", &base_dtor_identifier, 1 },
|
||
{ "__deleting_dtor", &deleting_dtor_identifier, 1 },
|
||
{ IN_CHARGE_NAME, &in_charge_identifier, 0 },
|
||
{ "nelts", &nelts_identifier, 0 },
|
||
{ THIS_NAME, &this_identifier, 0 },
|
||
{ VTABLE_DELTA_NAME, &delta_identifier, 0 },
|
||
{ VTABLE_PFN_NAME, &pfn_identifier, 0 },
|
||
{ "_vptr", &vptr_identifier, 0 },
|
||
{ "__vtt_parm", &vtt_parm_identifier, 0 },
|
||
{ "::", &global_scope_name, 0 },
|
||
{ "std", &std_identifier, 0 },
|
||
{ NULL, NULL, 0 }
|
||
};
|
||
|
||
for (pid = predefined_identifiers; pid->name; ++pid)
|
||
{
|
||
*pid->node = get_identifier (pid->name);
|
||
if (pid->ctor_or_dtor_p)
|
||
IDENTIFIER_CTOR_OR_DTOR_P (*pid->node) = 1;
|
||
}
|
||
}
|
||
|
||
/* Create the predefined scalar types of C,
|
||
and some nodes representing standard constants (0, 1, (void *)0).
|
||
Initialize the global binding level.
|
||
Make definitions for built-in primitive functions. */
|
||
|
||
void
|
||
cxx_init_decl_processing (void)
|
||
{
|
||
tree void_ftype;
|
||
tree void_ftype_ptr;
|
||
|
||
/* Create all the identifiers we need. */
|
||
initialize_predefined_identifiers ();
|
||
|
||
/* Fill in back-end hooks. */
|
||
lang_missing_noreturn_ok_p = &cp_missing_noreturn_ok_p;
|
||
|
||
/* Create the global variables. */
|
||
push_to_top_level ();
|
||
|
||
current_function_decl = NULL_TREE;
|
||
current_binding_level = NULL;
|
||
/* Enter the global namespace. */
|
||
my_friendly_assert (global_namespace == NULL_TREE, 375);
|
||
global_namespace = build_lang_decl (NAMESPACE_DECL, global_scope_name,
|
||
void_type_node);
|
||
begin_scope (sk_namespace, global_namespace);
|
||
|
||
current_lang_name = NULL_TREE;
|
||
|
||
/* Adjust various flags based on command-line settings. */
|
||
if (!flag_permissive)
|
||
flag_pedantic_errors = 1;
|
||
if (!flag_no_inline)
|
||
{
|
||
flag_inline_trees = 1;
|
||
flag_no_inline = 1;
|
||
}
|
||
if (flag_inline_functions)
|
||
{
|
||
flag_inline_trees = 2;
|
||
flag_inline_functions = 0;
|
||
}
|
||
|
||
/* Force minimum function alignment if using the least significant
|
||
bit of function pointers to store the virtual bit. */
|
||
if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn
|
||
&& force_align_functions_log < 1)
|
||
force_align_functions_log = 1;
|
||
|
||
/* Initially, C. */
|
||
current_lang_name = lang_name_c;
|
||
|
||
build_common_tree_nodes (flag_signed_char);
|
||
|
||
error_mark_list = build_tree_list (error_mark_node, error_mark_node);
|
||
TREE_TYPE (error_mark_list) = error_mark_node;
|
||
|
||
/* Create the `std' namespace. */
|
||
push_namespace (std_identifier);
|
||
std_node = current_namespace;
|
||
pop_namespace ();
|
||
|
||
c_common_nodes_and_builtins ();
|
||
|
||
java_byte_type_node = record_builtin_java_type ("__java_byte", 8);
|
||
java_short_type_node = record_builtin_java_type ("__java_short", 16);
|
||
java_int_type_node = record_builtin_java_type ("__java_int", 32);
|
||
java_long_type_node = record_builtin_java_type ("__java_long", 64);
|
||
java_float_type_node = record_builtin_java_type ("__java_float", -32);
|
||
java_double_type_node = record_builtin_java_type ("__java_double", -64);
|
||
java_char_type_node = record_builtin_java_type ("__java_char", -16);
|
||
java_boolean_type_node = record_builtin_java_type ("__java_boolean", -1);
|
||
|
||
integer_two_node = build_int_2 (2, 0);
|
||
TREE_TYPE (integer_two_node) = integer_type_node;
|
||
integer_three_node = build_int_2 (3, 0);
|
||
TREE_TYPE (integer_three_node) = integer_type_node;
|
||
|
||
record_builtin_type (RID_BOOL, "bool", boolean_type_node);
|
||
truthvalue_type_node = boolean_type_node;
|
||
truthvalue_false_node = boolean_false_node;
|
||
truthvalue_true_node = boolean_true_node;
|
||
|
||
empty_except_spec = build_tree_list (NULL_TREE, NULL_TREE);
|
||
|
||
#if 0
|
||
record_builtin_type (RID_MAX, NULL, string_type_node);
|
||
#endif
|
||
|
||
delta_type_node = ptrdiff_type_node;
|
||
vtable_index_type = ptrdiff_type_node;
|
||
|
||
vtt_parm_type = build_pointer_type (const_ptr_type_node);
|
||
void_ftype = build_function_type (void_type_node, void_list_node);
|
||
void_ftype_ptr = build_function_type (void_type_node,
|
||
tree_cons (NULL_TREE,
|
||
ptr_type_node,
|
||
void_list_node));
|
||
void_ftype_ptr
|
||
= build_exception_variant (void_ftype_ptr, empty_except_spec);
|
||
|
||
/* C++ extensions */
|
||
|
||
unknown_type_node = make_node (UNKNOWN_TYPE);
|
||
record_unknown_type (unknown_type_node, "unknown type");
|
||
|
||
/* Indirecting an UNKNOWN_TYPE node yields an UNKNOWN_TYPE node. */
|
||
TREE_TYPE (unknown_type_node) = unknown_type_node;
|
||
|
||
/* Looking up TYPE_POINTER_TO and TYPE_REFERENCE_TO yield the same
|
||
result. */
|
||
TYPE_POINTER_TO (unknown_type_node) = unknown_type_node;
|
||
TYPE_REFERENCE_TO (unknown_type_node) = unknown_type_node;
|
||
|
||
{
|
||
/* Make sure we get a unique function type, so we can give
|
||
its pointer type a name. (This wins for gdb.) */
|
||
tree vfunc_type = make_node (FUNCTION_TYPE);
|
||
TREE_TYPE (vfunc_type) = integer_type_node;
|
||
TYPE_ARG_TYPES (vfunc_type) = NULL_TREE;
|
||
layout_type (vfunc_type);
|
||
|
||
vtable_entry_type = build_pointer_type (vfunc_type);
|
||
}
|
||
record_builtin_type (RID_MAX, VTBL_PTR_TYPE, vtable_entry_type);
|
||
|
||
vtbl_type_node
|
||
= build_cplus_array_type (vtable_entry_type, NULL_TREE);
|
||
layout_type (vtbl_type_node);
|
||
vtbl_type_node = build_qualified_type (vtbl_type_node, TYPE_QUAL_CONST);
|
||
record_builtin_type (RID_MAX, NULL, vtbl_type_node);
|
||
vtbl_ptr_type_node = build_pointer_type (vtable_entry_type);
|
||
layout_type (vtbl_ptr_type_node);
|
||
record_builtin_type (RID_MAX, NULL, vtbl_ptr_type_node);
|
||
|
||
push_namespace (get_identifier ("__cxxabiv1"));
|
||
abi_node = current_namespace;
|
||
pop_namespace ();
|
||
|
||
global_type_node = make_node (LANG_TYPE);
|
||
record_unknown_type (global_type_node, "global type");
|
||
|
||
/* Now, C++. */
|
||
current_lang_name = lang_name_cplusplus;
|
||
|
||
{
|
||
tree bad_alloc_id;
|
||
tree bad_alloc_type_node;
|
||
tree bad_alloc_decl;
|
||
tree newtype, deltype;
|
||
tree ptr_ftype_sizetype;
|
||
|
||
push_namespace (std_identifier);
|
||
bad_alloc_id = get_identifier ("bad_alloc");
|
||
bad_alloc_type_node = make_aggr_type (RECORD_TYPE);
|
||
TYPE_CONTEXT (bad_alloc_type_node) = current_namespace;
|
||
bad_alloc_decl
|
||
= create_implicit_typedef (bad_alloc_id, bad_alloc_type_node);
|
||
DECL_CONTEXT (bad_alloc_decl) = current_namespace;
|
||
TYPE_STUB_DECL (bad_alloc_type_node) = bad_alloc_decl;
|
||
pop_namespace ();
|
||
|
||
ptr_ftype_sizetype
|
||
= build_function_type (ptr_type_node,
|
||
tree_cons (NULL_TREE,
|
||
size_type_node,
|
||
void_list_node));
|
||
newtype = build_exception_variant
|
||
(ptr_ftype_sizetype, add_exception_specifier
|
||
(NULL_TREE, bad_alloc_type_node, -1));
|
||
deltype = build_exception_variant (void_ftype_ptr, empty_except_spec);
|
||
push_cp_library_fn (NEW_EXPR, newtype);
|
||
push_cp_library_fn (VEC_NEW_EXPR, newtype);
|
||
global_delete_fndecl = push_cp_library_fn (DELETE_EXPR, deltype);
|
||
push_cp_library_fn (VEC_DELETE_EXPR, deltype);
|
||
}
|
||
|
||
abort_fndecl
|
||
= build_library_fn_ptr ("__cxa_pure_virtual", void_ftype);
|
||
|
||
/* Perform other language dependent initializations. */
|
||
init_class_processing ();
|
||
init_search_processing ();
|
||
init_rtti_processing ();
|
||
|
||
if (flag_exceptions)
|
||
init_exception_processing ();
|
||
|
||
if (! supports_one_only ())
|
||
flag_weak = 0;
|
||
|
||
make_fname_decl = cp_make_fname_decl;
|
||
start_fname_decls ();
|
||
|
||
/* Show we use EH for cleanups. */
|
||
using_eh_for_cleanups ();
|
||
|
||
/* Maintain consistency. Perhaps we should just complain if they
|
||
say -fwritable-strings? */
|
||
if (flag_writable_strings)
|
||
flag_const_strings = 0;
|
||
}
|
||
|
||
/* Generate an initializer for a function naming variable from
|
||
NAME. NAME may be NULL, to indicate a dependent name. TYPE_P is
|
||
filled in with the type of the init. */
|
||
|
||
tree
|
||
cp_fname_init (const char* name, tree *type_p)
|
||
{
|
||
tree domain = NULL_TREE;
|
||
tree type;
|
||
tree init = NULL_TREE;
|
||
size_t length = 0;
|
||
|
||
if (name)
|
||
{
|
||
length = strlen (name);
|
||
domain = build_index_type (size_int (length));
|
||
init = build_string (length + 1, name);
|
||
}
|
||
|
||
type = build_qualified_type (char_type_node, TYPE_QUAL_CONST);
|
||
type = build_cplus_array_type (type, domain);
|
||
|
||
*type_p = type;
|
||
|
||
if (init)
|
||
TREE_TYPE (init) = type;
|
||
else
|
||
init = error_mark_node;
|
||
|
||
return init;
|
||
}
|
||
|
||
/* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the
|
||
decl, NAME is the initialization string and TYPE_DEP indicates whether
|
||
NAME depended on the type of the function. We make use of that to detect
|
||
__PRETTY_FUNCTION__ inside a template fn. This is being done
|
||
lazily at the point of first use, so we musn't push the decl now. */
|
||
|
||
static tree
|
||
cp_make_fname_decl (tree id, int type_dep)
|
||
{
|
||
const char *const name = (type_dep && processing_template_decl
|
||
? NULL : fname_as_string (type_dep));
|
||
tree type;
|
||
tree init = cp_fname_init (name, &type);
|
||
tree decl = build_decl (VAR_DECL, id, type);
|
||
|
||
/* As we're using pushdecl_with_scope, we must set the context. */
|
||
DECL_CONTEXT (decl) = current_function_decl;
|
||
DECL_PRETTY_FUNCTION_P (decl) = type_dep;
|
||
|
||
TREE_STATIC (decl) = 1;
|
||
TREE_READONLY (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_INITIAL (decl) = init;
|
||
|
||
TREE_USED (decl) = 1;
|
||
|
||
if (current_function_decl)
|
||
{
|
||
struct cp_binding_level *b = current_binding_level;
|
||
while (b->level_chain->kind != sk_function_parms)
|
||
b = b->level_chain;
|
||
pushdecl_with_scope (decl, b);
|
||
cp_finish_decl (decl, init, NULL_TREE, LOOKUP_ONLYCONVERTING);
|
||
}
|
||
else
|
||
pushdecl_top_level_and_finish (decl, init);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Make a definition for a builtin function named NAME in the current
|
||
namespace, whose data type is TYPE and whose context is CONTEXT.
|
||
TYPE should be a function type with argument types.
|
||
|
||
CLASS and CODE tell later passes how to compile calls to this function.
|
||
See tree.h for possible values.
|
||
|
||
If LIBNAME is nonzero, use that for DECL_ASSEMBLER_NAME,
|
||
the name to be called if we can't opencode the function.
|
||
If ATTRS is nonzero, use that for the function's attribute
|
||
list. */
|
||
|
||
static tree
|
||
builtin_function_1 (const char* name,
|
||
tree type,
|
||
tree context,
|
||
int code,
|
||
enum built_in_class class,
|
||
const char* libname,
|
||
tree attrs)
|
||
{
|
||
tree decl = build_library_fn_1 (get_identifier (name), ERROR_MARK, type);
|
||
DECL_BUILT_IN_CLASS (decl) = class;
|
||
DECL_FUNCTION_CODE (decl) = code;
|
||
DECL_CONTEXT (decl) = context;
|
||
|
||
pushdecl (decl);
|
||
|
||
/* Since `pushdecl' relies on DECL_ASSEMBLER_NAME instead of DECL_NAME,
|
||
we cannot change DECL_ASSEMBLER_NAME until we have installed this
|
||
function in the namespace. */
|
||
if (libname)
|
||
SET_DECL_ASSEMBLER_NAME (decl, get_identifier (libname));
|
||
make_decl_rtl (decl, NULL);
|
||
|
||
/* Warn if a function in the namespace for users
|
||
is used without an occasion to consider it declared. */
|
||
if (name[0] != '_' || name[1] != '_')
|
||
DECL_ANTICIPATED (decl) = 1;
|
||
|
||
/* Possibly apply some default attributes to this built-in function. */
|
||
if (attrs)
|
||
decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
|
||
else
|
||
decl_attributes (&decl, NULL_TREE, 0);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Entry point for the benefit of c_common_nodes_and_builtins.
|
||
|
||
Make a definition for a builtin function named NAME and whose data type
|
||
is TYPE. TYPE should be a function type with argument types. This
|
||
function places the anticipated declaration in the global namespace
|
||
and additionally in the std namespace if appropriate.
|
||
|
||
CLASS and CODE tell later passes how to compile calls to this function.
|
||
See tree.h for possible values.
|
||
|
||
If LIBNAME is nonzero, use that for DECL_ASSEMBLER_NAME,
|
||
the name to be called if we can't opencode the function.
|
||
|
||
If ATTRS is nonzero, use that for the function's attribute
|
||
list. */
|
||
|
||
tree
|
||
builtin_function (const char* name,
|
||
tree type,
|
||
int code,
|
||
enum built_in_class class,
|
||
const char* libname,
|
||
tree attrs)
|
||
{
|
||
/* All builtins that don't begin with an '_' should additionally
|
||
go in the 'std' namespace. */
|
||
if (name[0] != '_')
|
||
{
|
||
push_namespace (std_identifier);
|
||
builtin_function_1 (name, type, std_node, code, class, libname, attrs);
|
||
pop_namespace ();
|
||
}
|
||
|
||
return builtin_function_1 (name, type, NULL_TREE, code,
|
||
class, libname, attrs);
|
||
}
|
||
|
||
/* Generate a FUNCTION_DECL with the typical flags for a runtime library
|
||
function. Not called directly. */
|
||
|
||
static tree
|
||
build_library_fn_1 (tree name, enum tree_code operator_code, tree type)
|
||
{
|
||
tree fn = build_lang_decl (FUNCTION_DECL, name, type);
|
||
DECL_EXTERNAL (fn) = 1;
|
||
TREE_PUBLIC (fn) = 1;
|
||
DECL_ARTIFICIAL (fn) = 1;
|
||
TREE_NOTHROW (fn) = 1;
|
||
SET_OVERLOADED_OPERATOR_CODE (fn, operator_code);
|
||
SET_DECL_LANGUAGE (fn, lang_c);
|
||
return fn;
|
||
}
|
||
|
||
/* Returns the _DECL for a library function with C linkage.
|
||
We assume that such functions never throw; if this is incorrect,
|
||
callers should unset TREE_NOTHROW. */
|
||
|
||
tree
|
||
build_library_fn (tree name, tree type)
|
||
{
|
||
return build_library_fn_1 (name, ERROR_MARK, type);
|
||
}
|
||
|
||
/* Returns the _DECL for a library function with C++ linkage. */
|
||
|
||
static tree
|
||
build_cp_library_fn (tree name, enum tree_code operator_code, tree type)
|
||
{
|
||
tree fn = build_library_fn_1 (name, operator_code, type);
|
||
TREE_NOTHROW (fn) = TYPE_NOTHROW_P (type);
|
||
DECL_CONTEXT (fn) = FROB_CONTEXT (current_namespace);
|
||
SET_DECL_LANGUAGE (fn, lang_cplusplus);
|
||
set_mangled_name_for_decl (fn);
|
||
return fn;
|
||
}
|
||
|
||
/* Like build_library_fn, but takes a C string instead of an
|
||
IDENTIFIER_NODE. */
|
||
|
||
tree
|
||
build_library_fn_ptr (const char* name, tree type)
|
||
{
|
||
return build_library_fn (get_identifier (name), type);
|
||
}
|
||
|
||
/* Like build_cp_library_fn, but takes a C string instead of an
|
||
IDENTIFIER_NODE. */
|
||
|
||
tree
|
||
build_cp_library_fn_ptr (const char* name, tree type)
|
||
{
|
||
return build_cp_library_fn (get_identifier (name), ERROR_MARK, type);
|
||
}
|
||
|
||
/* Like build_library_fn, but also pushes the function so that we will
|
||
be able to find it via IDENTIFIER_GLOBAL_VALUE. */
|
||
|
||
tree
|
||
push_library_fn (tree name, tree type)
|
||
{
|
||
tree fn = build_library_fn (name, type);
|
||
pushdecl_top_level (fn);
|
||
return fn;
|
||
}
|
||
|
||
/* Like build_cp_library_fn, but also pushes the function so that it
|
||
will be found by normal lookup. */
|
||
|
||
static tree
|
||
push_cp_library_fn (enum tree_code operator_code, tree type)
|
||
{
|
||
tree fn = build_cp_library_fn (ansi_opname (operator_code),
|
||
operator_code,
|
||
type);
|
||
pushdecl (fn);
|
||
return fn;
|
||
}
|
||
|
||
/* Like push_library_fn, but takes a TREE_LIST of parm types rather than
|
||
a FUNCTION_TYPE. */
|
||
|
||
tree
|
||
push_void_library_fn (tree name, tree parmtypes)
|
||
{
|
||
tree type = build_function_type (void_type_node, parmtypes);
|
||
return push_library_fn (name, type);
|
||
}
|
||
|
||
/* Like push_library_fn, but also note that this function throws
|
||
and does not return. Used for __throw_foo and the like. */
|
||
|
||
tree
|
||
push_throw_library_fn (tree name, tree type)
|
||
{
|
||
tree fn = push_library_fn (name, type);
|
||
TREE_THIS_VOLATILE (fn) = 1;
|
||
TREE_NOTHROW (fn) = 0;
|
||
return fn;
|
||
}
|
||
|
||
/* When we call finish_struct for an anonymous union, we create
|
||
default copy constructors and such. But, an anonymous union
|
||
shouldn't have such things; this function undoes the damage to the
|
||
anonymous union type T.
|
||
|
||
(The reason that we create the synthesized methods is that we don't
|
||
distinguish `union { int i; }' from `typedef union { int i; } U'.
|
||
The first is an anonymous union; the second is just an ordinary
|
||
union type.) */
|
||
|
||
void
|
||
fixup_anonymous_aggr (tree t)
|
||
{
|
||
tree *q;
|
||
|
||
/* Wipe out memory of synthesized methods. */
|
||
TYPE_HAS_CONSTRUCTOR (t) = 0;
|
||
TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0;
|
||
TYPE_HAS_INIT_REF (t) = 0;
|
||
TYPE_HAS_CONST_INIT_REF (t) = 0;
|
||
TYPE_HAS_ASSIGN_REF (t) = 0;
|
||
TYPE_HAS_CONST_ASSIGN_REF (t) = 0;
|
||
|
||
/* Splice the implicitly generated functions out of the TYPE_METHODS
|
||
list. */
|
||
q = &TYPE_METHODS (t);
|
||
while (*q)
|
||
{
|
||
if (DECL_ARTIFICIAL (*q))
|
||
*q = TREE_CHAIN (*q);
|
||
else
|
||
q = &TREE_CHAIN (*q);
|
||
}
|
||
|
||
/* ISO C++ 9.5.3. Anonymous unions may not have function members. */
|
||
if (TYPE_METHODS (t))
|
||
error ("%Jan anonymous union cannot have function members",
|
||
TYPE_MAIN_DECL (t));
|
||
|
||
/* Anonymous aggregates cannot have fields with ctors, dtors or complex
|
||
assignment operators (because they cannot have these methods themselves).
|
||
For anonymous unions this is already checked because they are not allowed
|
||
in any union, otherwise we have to check it. */
|
||
if (TREE_CODE (t) != UNION_TYPE)
|
||
{
|
||
tree field, type;
|
||
|
||
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
type = TREE_TYPE (field);
|
||
if (CLASS_TYPE_P (type))
|
||
{
|
||
if (TYPE_NEEDS_CONSTRUCTING (type))
|
||
cp_error_at ("member %#D' with constructor not allowed in anonymous aggregate",
|
||
field);
|
||
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
||
cp_error_at ("member %#D' with destructor not allowed in anonymous aggregate",
|
||
field);
|
||
if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
|
||
cp_error_at ("member %#D' with copy assignment operator not allowed in anonymous aggregate",
|
||
field);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Make sure that a declaration with no declarator is well-formed, i.e.
|
||
just declares a tagged type or anonymous union.
|
||
|
||
Returns the type declared; or NULL_TREE if none. */
|
||
|
||
tree
|
||
check_tag_decl (tree declspecs)
|
||
{
|
||
int found_type = 0;
|
||
int saw_friend = 0;
|
||
int saw_typedef = 0;
|
||
tree ob_modifier = NULL_TREE;
|
||
tree link;
|
||
/* If a class, struct, or enum type is declared by the DECLSPECS
|
||
(i.e, if a class-specifier, enum-specifier, or non-typename
|
||
elaborated-type-specifier appears in the DECLSPECS),
|
||
DECLARED_TYPE is set to the corresponding type. */
|
||
tree declared_type = NULL_TREE;
|
||
bool error_p = false;
|
||
|
||
for (link = declspecs; link; link = TREE_CHAIN (link))
|
||
{
|
||
tree value = TREE_VALUE (link);
|
||
|
||
if (TYPE_P (value) || TREE_CODE (value) == TYPE_DECL
|
||
|| (TREE_CODE (value) == IDENTIFIER_NODE
|
||
&& is_typename_at_global_scope (value)))
|
||
{
|
||
++found_type;
|
||
|
||
if (found_type == 2 && TREE_CODE (value) == IDENTIFIER_NODE)
|
||
{
|
||
if (! in_system_header)
|
||
pedwarn ("redeclaration of C++ built-in type `%T'", value);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TYPE_P (value)
|
||
&& ((TREE_CODE (value) != TYPENAME_TYPE && IS_AGGR_TYPE (value))
|
||
|| TREE_CODE (value) == ENUMERAL_TYPE))
|
||
{
|
||
my_friendly_assert (TYPE_MAIN_DECL (value) != NULL_TREE, 261);
|
||
declared_type = value;
|
||
}
|
||
}
|
||
else if (value == ridpointers[(int) RID_TYPEDEF])
|
||
saw_typedef = 1;
|
||
else if (value == ridpointers[(int) RID_FRIEND])
|
||
{
|
||
if (current_class_type == NULL_TREE
|
||
|| current_scope () != current_class_type)
|
||
ob_modifier = value;
|
||
else
|
||
saw_friend = 1;
|
||
}
|
||
else if (value == ridpointers[(int) RID_STATIC]
|
||
|| value == ridpointers[(int) RID_EXTERN]
|
||
|| value == ridpointers[(int) RID_AUTO]
|
||
|| value == ridpointers[(int) RID_REGISTER]
|
||
|| value == ridpointers[(int) RID_INLINE]
|
||
|| value == ridpointers[(int) RID_VIRTUAL]
|
||
|| value == ridpointers[(int) RID_CONST]
|
||
|| value == ridpointers[(int) RID_VOLATILE]
|
||
|| value == ridpointers[(int) RID_EXPLICIT]
|
||
|| value == ridpointers[(int) RID_THREAD])
|
||
ob_modifier = value;
|
||
else if (value == error_mark_node)
|
||
error_p = true;
|
||
}
|
||
|
||
if (found_type > 1)
|
||
error ("multiple types in one declaration");
|
||
|
||
if (declared_type == NULL_TREE && ! saw_friend && !error_p)
|
||
pedwarn ("declaration does not declare anything");
|
||
/* Check for an anonymous union. */
|
||
else if (declared_type && IS_AGGR_TYPE_CODE (TREE_CODE (declared_type))
|
||
&& TYPE_ANONYMOUS_P (declared_type))
|
||
{
|
||
/* 7/3 In a simple-declaration, the optional init-declarator-list
|
||
can be omitted only when declaring a class (clause 9) or
|
||
enumeration (7.2), that is, when the decl-specifier-seq contains
|
||
either a class-specifier, an elaborated-type-specifier with
|
||
a class-key (9.1), or an enum-specifier. In these cases and
|
||
whenever a class-specifier or enum-specifier is present in the
|
||
decl-specifier-seq, the identifiers in these specifiers are among
|
||
the names being declared by the declaration (as class-name,
|
||
enum-names, or enumerators, depending on the syntax). In such
|
||
cases, and except for the declaration of an unnamed bit-field (9.6),
|
||
the decl-specifier-seq shall introduce one or more names into the
|
||
program, or shall redeclare a name introduced by a previous
|
||
declaration. [Example:
|
||
enum { }; // ill-formed
|
||
typedef class { }; // ill-formed
|
||
--end example] */
|
||
if (saw_typedef)
|
||
{
|
||
error ("missing type-name in typedef-declaration");
|
||
return NULL_TREE;
|
||
}
|
||
/* Anonymous unions are objects, so they can have specifiers. */;
|
||
SET_ANON_AGGR_TYPE_P (declared_type);
|
||
|
||
if (TREE_CODE (declared_type) != UNION_TYPE && pedantic
|
||
&& !in_system_header)
|
||
pedwarn ("ISO C++ prohibits anonymous structs");
|
||
}
|
||
|
||
else if (ob_modifier)
|
||
{
|
||
if (ob_modifier == ridpointers[(int) RID_INLINE]
|
||
|| ob_modifier == ridpointers[(int) RID_VIRTUAL])
|
||
error ("`%D' can only be specified for functions", ob_modifier);
|
||
else if (ob_modifier == ridpointers[(int) RID_FRIEND])
|
||
error ("`%D' can only be specified inside a class", ob_modifier);
|
||
else if (ob_modifier == ridpointers[(int) RID_EXPLICIT])
|
||
error ("`%D' can only be specified for constructors",
|
||
ob_modifier);
|
||
else
|
||
error ("`%D' can only be specified for objects and functions",
|
||
ob_modifier);
|
||
}
|
||
|
||
return declared_type;
|
||
}
|
||
|
||
/* Called when a declaration is seen that contains no names to declare.
|
||
If its type is a reference to a structure, union or enum inherited
|
||
from a containing scope, shadow that tag name for the current scope
|
||
with a forward reference.
|
||
If its type defines a new named structure or union
|
||
or defines an enum, it is valid but we need not do anything here.
|
||
Otherwise, it is an error.
|
||
|
||
C++: may have to grok the declspecs to learn about static,
|
||
complain for anonymous unions.
|
||
|
||
Returns the TYPE declared -- or NULL_TREE if none. */
|
||
|
||
tree
|
||
shadow_tag (tree declspecs)
|
||
{
|
||
tree t = check_tag_decl (declspecs);
|
||
|
||
if (!t)
|
||
return NULL_TREE;
|
||
|
||
maybe_process_partial_specialization (t);
|
||
|
||
/* This is where the variables in an anonymous union are
|
||
declared. An anonymous union declaration looks like:
|
||
union { ... } ;
|
||
because there is no declarator after the union, the parser
|
||
sends that declaration here. */
|
||
if (ANON_AGGR_TYPE_P (t))
|
||
{
|
||
fixup_anonymous_aggr (t);
|
||
|
||
if (TYPE_FIELDS (t))
|
||
{
|
||
tree decl = grokdeclarator (NULL_TREE, declspecs, NORMAL, 0,
|
||
NULL);
|
||
finish_anon_union (decl);
|
||
}
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Decode a "typename", such as "int **", returning a ..._TYPE node. */
|
||
|
||
tree
|
||
groktypename (tree typename)
|
||
{
|
||
tree specs, attrs;
|
||
tree type;
|
||
if (TREE_CODE (typename) != TREE_LIST)
|
||
return typename;
|
||
split_specs_attrs (TREE_PURPOSE (typename), &specs, &attrs);
|
||
type = grokdeclarator (TREE_VALUE (typename), specs,
|
||
TYPENAME, 0, &attrs);
|
||
if (attrs)
|
||
cplus_decl_attributes (&type, attrs, 0);
|
||
return type;
|
||
}
|
||
|
||
/* Decode a declarator in an ordinary declaration or data definition.
|
||
This is called as soon as the type information and variable name
|
||
have been parsed, before parsing the initializer if any.
|
||
Here we create the ..._DECL node, fill in its type,
|
||
and put it on the list of decls for the current context.
|
||
The ..._DECL node is returned as the value.
|
||
|
||
Exception: for arrays where the length is not specified,
|
||
the type is left null, to be filled in by `cp_finish_decl'.
|
||
|
||
Function definitions do not come here; they go to start_function
|
||
instead. However, external and forward declarations of functions
|
||
do go through here. Structure field declarations are done by
|
||
grokfield and not through here. */
|
||
|
||
tree
|
||
start_decl (tree declarator,
|
||
tree declspecs,
|
||
int initialized,
|
||
tree attributes,
|
||
tree prefix_attributes)
|
||
{
|
||
tree decl;
|
||
tree type, tem;
|
||
tree context;
|
||
|
||
/* This should only be done once on the top most decl. */
|
||
if (have_extern_spec)
|
||
{
|
||
declspecs = tree_cons (NULL_TREE, get_identifier ("extern"),
|
||
declspecs);
|
||
have_extern_spec = false;
|
||
}
|
||
|
||
/* An object declared as __attribute__((deprecated)) suppresses
|
||
warnings of uses of other deprecated items. */
|
||
if (lookup_attribute ("deprecated", attributes))
|
||
deprecated_state = DEPRECATED_SUPPRESS;
|
||
|
||
attributes = chainon (attributes, prefix_attributes);
|
||
|
||
decl = grokdeclarator (declarator, declspecs, NORMAL, initialized,
|
||
&attributes);
|
||
|
||
deprecated_state = DEPRECATED_NORMAL;
|
||
|
||
if (decl == NULL_TREE || TREE_CODE (decl) == VOID_TYPE)
|
||
return error_mark_node;
|
||
|
||
type = TREE_TYPE (decl);
|
||
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
context = DECL_CONTEXT (decl);
|
||
|
||
if (initialized && context && TREE_CODE (context) == NAMESPACE_DECL
|
||
&& context != current_namespace && TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
/* When parsing the initializer, lookup should use the object's
|
||
namespace. */
|
||
push_decl_namespace (context);
|
||
}
|
||
|
||
/* We are only interested in class contexts, later. */
|
||
if (context && TREE_CODE (context) == NAMESPACE_DECL)
|
||
context = NULL_TREE;
|
||
|
||
if (initialized)
|
||
/* Is it valid for this decl to have an initializer at all?
|
||
If not, set INITIALIZED to zero, which will indirectly
|
||
tell `cp_finish_decl' to ignore the initializer once it is parsed. */
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case TYPE_DECL:
|
||
error ("typedef `%D' is initialized (use __typeof__ instead)", decl);
|
||
initialized = 0;
|
||
break;
|
||
|
||
case FUNCTION_DECL:
|
||
error ("function `%#D' is initialized like a variable", decl);
|
||
initialized = 0;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (initialized)
|
||
{
|
||
if (! toplevel_bindings_p ()
|
||
&& DECL_EXTERNAL (decl))
|
||
warning ("declaration of `%#D' has `extern' and is initialized",
|
||
decl);
|
||
DECL_EXTERNAL (decl) = 0;
|
||
if (toplevel_bindings_p ())
|
||
TREE_STATIC (decl) = 1;
|
||
|
||
/* Tell `pushdecl' this is an initialized decl
|
||
even though we don't yet have the initializer expression.
|
||
Also tell `cp_finish_decl' it may store the real initializer. */
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
}
|
||
|
||
/* Set attributes here so if duplicate decl, will have proper attributes. */
|
||
cplus_decl_attributes (&decl, attributes, 0);
|
||
|
||
/* If #pragma weak was used, mark the decl weak now. */
|
||
if (global_scope_p (current_binding_level))
|
||
maybe_apply_pragma_weak (decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& DECL_DECLARED_INLINE_P (decl)
|
||
&& DECL_UNINLINABLE (decl)
|
||
&& lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
|
||
warning ("%Jinline function '%D' given attribute noinline", decl, decl);
|
||
|
||
if (context && COMPLETE_TYPE_P (complete_type (context)))
|
||
{
|
||
push_nested_class (context);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
tree field = lookup_field (context, DECL_NAME (decl), 0, false);
|
||
if (field == NULL_TREE || TREE_CODE (field) != VAR_DECL)
|
||
error ("`%#D' is not a static member of `%#T'", decl, context);
|
||
else
|
||
{
|
||
if (DECL_CONTEXT (field) != context)
|
||
{
|
||
if (!same_type_p (DECL_CONTEXT (field), context))
|
||
pedwarn ("ISO C++ does not permit `%T::%D' to be defined as `%T::%D'",
|
||
DECL_CONTEXT (field), DECL_NAME (decl),
|
||
context, DECL_NAME (decl));
|
||
DECL_CONTEXT (decl) = DECL_CONTEXT (field);
|
||
}
|
||
/* Static data member are tricky; an in-class initialization
|
||
still doesn't provide a definition, so the in-class
|
||
declaration will have DECL_EXTERNAL set, but will have an
|
||
initialization. Thus, duplicate_decls won't warn
|
||
about this situation, and so we check here. */
|
||
if (DECL_INITIAL (decl) && DECL_INITIAL (field))
|
||
error ("duplicate initialization of %D", decl);
|
||
if (duplicate_decls (decl, field))
|
||
decl = field;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree field = check_classfn (context, decl,
|
||
processing_template_decl
|
||
> template_class_depth (context));
|
||
if (field && duplicate_decls (decl, field))
|
||
decl = field;
|
||
}
|
||
|
||
/* cp_finish_decl sets DECL_EXTERNAL if DECL_IN_AGGR_P is set. */
|
||
DECL_IN_AGGR_P (decl) = 0;
|
||
if ((DECL_LANG_SPECIFIC (decl) && DECL_USE_TEMPLATE (decl))
|
||
|| CLASSTYPE_TEMPLATE_INSTANTIATION (context))
|
||
{
|
||
SET_DECL_TEMPLATE_SPECIALIZATION (decl);
|
||
/* [temp.expl.spec] An explicit specialization of a static data
|
||
member of a template is a definition if the declaration
|
||
includes an initializer; otherwise, it is a declaration.
|
||
|
||
We check for processing_specialization so this only applies
|
||
to the new specialization syntax. */
|
||
if (DECL_INITIAL (decl) == NULL_TREE && processing_specialization)
|
||
DECL_EXTERNAL (decl) = 1;
|
||
}
|
||
|
||
if (DECL_EXTERNAL (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl))
|
||
pedwarn ("declaration of `%#D' outside of class is not definition",
|
||
decl);
|
||
}
|
||
|
||
/* Enter this declaration into the symbol table. */
|
||
tem = maybe_push_decl (decl);
|
||
|
||
if (processing_template_decl)
|
||
tem = push_template_decl (tem);
|
||
if (tem == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
#if ! defined (ASM_OUTPUT_BSS) && ! defined (ASM_OUTPUT_ALIGNED_BSS)
|
||
/* Tell the back-end to use or not use .common as appropriate. If we say
|
||
-fconserve-space, we want this to save .data space, at the expense of
|
||
wrong semantics. If we say -fno-conserve-space, we want this to
|
||
produce errors about redefs; to do this we force variables into the
|
||
data segment. */
|
||
DECL_COMMON (tem) = ((TREE_CODE (tem) != VAR_DECL
|
||
|| !DECL_THREAD_LOCAL (tem))
|
||
&& (flag_conserve_space || ! TREE_PUBLIC (tem)));
|
||
#endif
|
||
|
||
if (! processing_template_decl)
|
||
start_decl_1 (tem);
|
||
|
||
return tem;
|
||
}
|
||
|
||
void
|
||
start_decl_1 (tree decl)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
int initialized = (DECL_INITIAL (decl) != NULL_TREE);
|
||
|
||
if (type == error_mark_node)
|
||
return;
|
||
|
||
if (initialized)
|
||
/* Is it valid for this decl to have an initializer at all?
|
||
If not, set INITIALIZED to zero, which will indirectly
|
||
tell `cp_finish_decl' to ignore the initializer once it is parsed. */
|
||
{
|
||
/* Don't allow initializations for incomplete types except for
|
||
arrays which might be completed by the initialization. */
|
||
if (COMPLETE_TYPE_P (complete_type (type)))
|
||
; /* A complete type is ok. */
|
||
else if (TREE_CODE (type) != ARRAY_TYPE)
|
||
{
|
||
error ("variable `%#D' has initializer but incomplete type",
|
||
decl);
|
||
initialized = 0;
|
||
type = TREE_TYPE (decl) = error_mark_node;
|
||
}
|
||
else if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (type))))
|
||
{
|
||
if (DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl))
|
||
error ("elements of array `%#D' have incomplete type", decl);
|
||
/* else we already gave an error in start_decl. */
|
||
initialized = 0;
|
||
}
|
||
}
|
||
|
||
if (!initialized
|
||
&& TREE_CODE (decl) != TYPE_DECL
|
||
&& TREE_CODE (decl) != TEMPLATE_DECL
|
||
&& type != error_mark_node
|
||
&& IS_AGGR_TYPE (type)
|
||
&& ! DECL_EXTERNAL (decl))
|
||
{
|
||
if ((! processing_template_decl || ! uses_template_parms (type))
|
||
&& !COMPLETE_TYPE_P (complete_type (type)))
|
||
{
|
||
error ("aggregate `%#D' has incomplete type and cannot be defined",
|
||
decl);
|
||
/* Change the type so that assemble_variable will give
|
||
DECL an rtl we can live with: (mem (const_int 0)). */
|
||
type = TREE_TYPE (decl) = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
/* If any base type in the hierarchy of TYPE needs a constructor,
|
||
then we set initialized to 1. This way any nodes which are
|
||
created for the purposes of initializing this aggregate
|
||
will live as long as it does. This is necessary for global
|
||
aggregates which do not have their initializers processed until
|
||
the end of the file. */
|
||
initialized = TYPE_NEEDS_CONSTRUCTING (type);
|
||
}
|
||
}
|
||
|
||
if (! initialized)
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
|
||
/* Create a new scope to hold this declaration if necessary.
|
||
Whether or not a new scope is necessary cannot be determined
|
||
until after the type has been completed; if the type is a
|
||
specialization of a class template it is not until after
|
||
instantiation has occurred that TYPE_HAS_NONTRIVIAL_DESTRUCTOR
|
||
will be set correctly. */
|
||
maybe_push_cleanup_level (type);
|
||
}
|
||
|
||
/* Handle initialization of references. DECL, TYPE, and INIT have the
|
||
same meaning as in cp_finish_decl. *CLEANUP must be NULL on entry,
|
||
but will be set to a new CLEANUP_STMT if a temporary is created
|
||
that must be destroyed subsequently.
|
||
|
||
Returns an initializer expression to use to initialize DECL, or
|
||
NULL if the initialization can be performed statically.
|
||
|
||
Quotes on semantics can be found in ARM 8.4.3. */
|
||
|
||
static tree
|
||
grok_reference_init (tree decl, tree type, tree init, tree *cleanup)
|
||
{
|
||
tree tmp;
|
||
|
||
if (init == NULL_TREE)
|
||
{
|
||
if ((DECL_LANG_SPECIFIC (decl) == 0
|
||
|| DECL_IN_AGGR_P (decl) == 0)
|
||
&& ! DECL_THIS_EXTERN (decl))
|
||
error ("`%D' declared as reference but not initialized", decl);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (init) == CONSTRUCTOR)
|
||
{
|
||
error ("ISO C++ forbids use of initializer list to initialize reference `%D'", decl);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (init) == TREE_LIST)
|
||
init = build_x_compound_expr_from_list (init, "initializer");
|
||
|
||
if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE)
|
||
init = convert_from_reference (init);
|
||
|
||
if (TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE
|
||
&& TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE)
|
||
/* Note: default conversion is only called in very special cases. */
|
||
init = decay_conversion (init);
|
||
|
||
/* Convert INIT to the reference type TYPE. This may involve the
|
||
creation of a temporary, whose lifetime must be the same as that
|
||
of the reference. If so, a DECL_STMT for the temporary will be
|
||
added just after the DECL_STMT for DECL. That's why we don't set
|
||
DECL_INITIAL for local references (instead assigning to them
|
||
explicitly); we need to allow the temporary to be initialized
|
||
first. */
|
||
tmp = initialize_reference (type, init, decl, cleanup);
|
||
|
||
if (tmp == error_mark_node)
|
||
return NULL_TREE;
|
||
else if (tmp == NULL_TREE)
|
||
{
|
||
error ("cannot initialize `%T' from `%T'", type, TREE_TYPE (init));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_STATIC (decl) && !TREE_CONSTANT (tmp))
|
||
return tmp;
|
||
|
||
DECL_INITIAL (decl) = tmp;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* When parsing `int a[] = {1, 2};' we don't know the size of the
|
||
array until we finish parsing the initializer. If that's the
|
||
situation we're in, update DECL accordingly. */
|
||
|
||
static void
|
||
maybe_deduce_size_from_array_init (tree decl, tree init)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (type) == NULL_TREE
|
||
&& TREE_CODE (decl) != TYPE_DECL)
|
||
{
|
||
/* do_default is really a C-ism to deal with tentative definitions.
|
||
But let's leave it here to ease the eventual merge. */
|
||
int do_default = !DECL_EXTERNAL (decl);
|
||
tree initializer = init ? init : DECL_INITIAL (decl);
|
||
int failure = complete_array_type (type, initializer, do_default);
|
||
|
||
if (failure == 1)
|
||
error ("initializer fails to determine size of `%D'", decl);
|
||
|
||
if (failure == 2)
|
||
{
|
||
if (do_default)
|
||
error ("array size missing in `%D'", decl);
|
||
/* If a `static' var's size isn't known, make it extern as
|
||
well as static, so it does not get allocated. If it's not
|
||
`static', then don't mark it extern; finish_incomplete_decl
|
||
will give it a default size and it will get allocated. */
|
||
else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl))
|
||
DECL_EXTERNAL (decl) = 1;
|
||
}
|
||
|
||
if (pedantic && TYPE_DOMAIN (type) != NULL_TREE
|
||
&& tree_int_cst_lt (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
|
||
integer_zero_node))
|
||
error ("zero-size array `%D'", decl);
|
||
|
||
layout_decl (decl, 0);
|
||
}
|
||
}
|
||
|
||
/* Set DECL_SIZE, DECL_ALIGN, etc. for DECL (a VAR_DECL), and issue
|
||
any appropriate error messages regarding the layout. */
|
||
|
||
static void
|
||
layout_var_decl (tree decl)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
#if 0
|
||
tree ttype = target_type (type);
|
||
#endif
|
||
|
||
/* If we haven't already layed out this declaration, do so now.
|
||
Note that we must not call complete type for an external object
|
||
because it's type might involve templates that we are not
|
||
supposed to instantiate yet. (And it's perfectly valid to say
|
||
`extern X x' for some incomplete type `X'.) */
|
||
if (!DECL_EXTERNAL (decl))
|
||
complete_type (type);
|
||
if (!DECL_SIZE (decl)
|
||
&& TREE_TYPE (decl) != error_mark_node
|
||
&& (COMPLETE_TYPE_P (type)
|
||
|| (TREE_CODE (type) == ARRAY_TYPE
|
||
&& !TYPE_DOMAIN (type)
|
||
&& COMPLETE_TYPE_P (TREE_TYPE (type)))))
|
||
layout_decl (decl, 0);
|
||
|
||
if (!DECL_EXTERNAL (decl) && DECL_SIZE (decl) == NULL_TREE)
|
||
{
|
||
/* An automatic variable with an incomplete type: that is an error.
|
||
Don't talk about array types here, since we took care of that
|
||
message in grokdeclarator. */
|
||
error ("storage size of `%D' isn't known", decl);
|
||
TREE_TYPE (decl) = error_mark_node;
|
||
}
|
||
#if 0
|
||
/* Keep this code around in case we later want to control debug info
|
||
based on whether a type is "used". (jason 1999-11-11) */
|
||
|
||
else if (!DECL_EXTERNAL (decl) && IS_AGGR_TYPE (ttype))
|
||
/* Let debugger know it should output info for this type. */
|
||
note_debug_info_needed (ttype);
|
||
|
||
if (TREE_STATIC (decl) && DECL_CLASS_SCOPE_P (decl))
|
||
note_debug_info_needed (DECL_CONTEXT (decl));
|
||
#endif
|
||
|
||
if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
|
||
&& DECL_SIZE (decl) != NULL_TREE
|
||
&& ! TREE_CONSTANT (DECL_SIZE (decl)))
|
||
{
|
||
if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
|
||
constant_expression_warning (DECL_SIZE (decl));
|
||
else
|
||
error ("storage size of `%D' isn't constant", decl);
|
||
}
|
||
|
||
if (TREE_STATIC (decl)
|
||
&& !DECL_ARTIFICIAL (decl)
|
||
&& current_function_decl
|
||
&& DECL_CONTEXT (decl) == current_function_decl)
|
||
push_local_name (decl);
|
||
}
|
||
|
||
/* If a local static variable is declared in an inline function, or if
|
||
we have a weak definition, we must endeavor to create only one
|
||
instance of the variable at link-time. */
|
||
|
||
static void
|
||
maybe_commonize_var (tree decl)
|
||
{
|
||
/* Static data in a function with comdat linkage also has comdat
|
||
linkage. */
|
||
if (TREE_STATIC (decl)
|
||
/* Don't mess with __FUNCTION__. */
|
||
&& ! DECL_ARTIFICIAL (decl)
|
||
&& DECL_FUNCTION_SCOPE_P (decl)
|
||
/* Unfortunately, import_export_decl has not always been called
|
||
before the function is processed, so we cannot simply check
|
||
DECL_COMDAT. */
|
||
&& (DECL_COMDAT (DECL_CONTEXT (decl))
|
||
|| ((DECL_DECLARED_INLINE_P (DECL_CONTEXT (decl))
|
||
|| DECL_TEMPLATE_INSTANTIATION (DECL_CONTEXT (decl)))
|
||
&& TREE_PUBLIC (DECL_CONTEXT (decl)))))
|
||
{
|
||
if (flag_weak)
|
||
{
|
||
/* With weak symbols, we simply make the variable COMDAT;
|
||
that will cause copies in multiple translations units to
|
||
be merged. */
|
||
comdat_linkage (decl);
|
||
}
|
||
else
|
||
{
|
||
if (DECL_INITIAL (decl) == NULL_TREE
|
||
|| DECL_INITIAL (decl) == error_mark_node)
|
||
{
|
||
/* Without weak symbols, we can use COMMON to merge
|
||
uninitialized variables. */
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_COMMON (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
/* While for initialized variables, we must use internal
|
||
linkage -- which means that multiple copies will not
|
||
be merged. */
|
||
TREE_PUBLIC (decl) = 0;
|
||
DECL_COMMON (decl) = 0;
|
||
cp_warning_at ("sorry: semantics of inline function static data `%#D' are wrong (you'll wind up with multiple copies)", decl);
|
||
warning ("%J you can work around this by removing the initializer",
|
||
decl);
|
||
}
|
||
}
|
||
}
|
||
else if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
|
||
/* Set it up again; we might have set DECL_INITIAL since the last
|
||
time. */
|
||
comdat_linkage (decl);
|
||
}
|
||
|
||
/* Issue an error message if DECL is an uninitialized const variable. */
|
||
|
||
static void
|
||
check_for_uninitialized_const_var (tree decl)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
/* ``Unless explicitly declared extern, a const object does not have
|
||
external linkage and must be initialized. ($8.4; $12.1)'' ARM
|
||
7.1.6 */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& TREE_CODE (type) != REFERENCE_TYPE
|
||
&& CP_TYPE_CONST_P (type)
|
||
&& !TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& !DECL_INITIAL (decl))
|
||
error ("uninitialized const `%D'", decl);
|
||
}
|
||
|
||
/* FIELD is a FIELD_DECL or NULL. In the former case, the value
|
||
returned is the next FIELD_DECL (possibly FIELD itself) that can be
|
||
initialized. If there are no more such fields, the return value
|
||
will be NULL. */
|
||
|
||
static tree
|
||
next_initializable_field (tree field)
|
||
{
|
||
while (field
|
||
&& (TREE_CODE (field) != FIELD_DECL
|
||
|| (DECL_C_BIT_FIELD (field) && !DECL_NAME (field))
|
||
|| DECL_ARTIFICIAL (field)))
|
||
field = TREE_CHAIN (field);
|
||
|
||
return field;
|
||
}
|
||
|
||
/* Subroutine of reshape_init. Reshape the constructor for an array. INITP
|
||
is the pointer to the old constructor list (to the CONSTRUCTOR_ELTS of
|
||
the CONSTRUCTOR we are processing), while NEW_INIT is the CONSTRUCTOR we
|
||
are building.
|
||
ELT_TYPE is the element type of the array. MAX_INDEX is an INTEGER_CST
|
||
representing the size of the array minus one (the maximum index), or
|
||
NULL_TREE if the array was declared without specifying the size. */
|
||
|
||
static bool
|
||
reshape_init_array (tree elt_type, tree max_index,
|
||
tree *initp, tree new_init)
|
||
{
|
||
bool sized_array_p = (max_index != NULL_TREE);
|
||
unsigned HOST_WIDE_INT max_index_cst = 0;
|
||
unsigned HOST_WIDE_INT index;
|
||
|
||
if (sized_array_p)
|
||
{
|
||
if (host_integerp (max_index, 1))
|
||
max_index_cst = tree_low_cst (max_index, 1);
|
||
/* sizetype is sign extended, not zero extended. */
|
||
else
|
||
max_index_cst = tree_low_cst (convert (size_type_node, max_index), 1);
|
||
}
|
||
|
||
/* Loop until there are no more initializers. */
|
||
for (index = 0;
|
||
*initp && (!sized_array_p || index <= max_index_cst);
|
||
++index)
|
||
{
|
||
tree element_init;
|
||
tree designated_index;
|
||
|
||
element_init = reshape_init (elt_type, initp);
|
||
if (element_init == error_mark_node)
|
||
return false;
|
||
TREE_CHAIN (element_init) = CONSTRUCTOR_ELTS (new_init);
|
||
CONSTRUCTOR_ELTS (new_init) = element_init;
|
||
designated_index = TREE_PURPOSE (element_init);
|
||
if (designated_index)
|
||
{
|
||
/* Handle array designated initializers (GNU extension). */
|
||
if (TREE_CODE (designated_index) == IDENTIFIER_NODE)
|
||
{
|
||
error ("name `%D' used in a GNU-style designated "
|
||
"initializer for an array", designated_index);
|
||
TREE_PURPOSE (element_init) = NULL_TREE;
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Undo the brace-elision allowed by [dcl.init.aggr] in a
|
||
brace-enclosed aggregate initializer.
|
||
|
||
*INITP is one of a list of initializers describing a brace-enclosed
|
||
initializer for an entity of the indicated aggregate TYPE. It may
|
||
not presently match the shape of the TYPE; for example:
|
||
|
||
struct S { int a; int b; };
|
||
struct S a[] = { 1, 2, 3, 4 };
|
||
|
||
Here *INITP will point to TREE_LIST of four elements, rather than a
|
||
list of two elements, each itself a list of two elements. This
|
||
routine transforms INIT from the former form into the latter. The
|
||
revised initializer is returned. */
|
||
|
||
static tree
|
||
reshape_init (tree type, tree *initp)
|
||
{
|
||
tree inits;
|
||
tree old_init;
|
||
tree old_init_value;
|
||
tree new_init;
|
||
bool brace_enclosed_p;
|
||
bool string_init_p;
|
||
|
||
old_init = *initp;
|
||
old_init_value = (TREE_CODE (*initp) == TREE_LIST
|
||
? TREE_VALUE (*initp) : old_init);
|
||
|
||
my_friendly_assert (old_init_value, 20030723);
|
||
|
||
/* If the initializer is brace-enclosed, pull initializers from the
|
||
enclosed elements. Advance past the brace-enclosed initializer
|
||
now. */
|
||
if (TREE_CODE (old_init_value) == CONSTRUCTOR
|
||
&& TREE_TYPE (old_init_value) == NULL_TREE
|
||
&& TREE_HAS_CONSTRUCTOR (old_init_value))
|
||
{
|
||
*initp = TREE_CHAIN (old_init);
|
||
TREE_CHAIN (old_init) = NULL_TREE;
|
||
inits = CONSTRUCTOR_ELTS (old_init_value);
|
||
initp = &inits;
|
||
brace_enclosed_p = true;
|
||
}
|
||
else
|
||
{
|
||
inits = NULL_TREE;
|
||
brace_enclosed_p = false;
|
||
}
|
||
|
||
/* A non-aggregate type is always initialized with a single
|
||
initializer. */
|
||
if (!CP_AGGREGATE_TYPE_P (type))
|
||
{
|
||
*initp = TREE_CHAIN (old_init);
|
||
TREE_CHAIN (old_init) = NULL_TREE;
|
||
/* It is invalid to initialize a non-aggregate type with a
|
||
brace-enclosed initializer. */
|
||
if (brace_enclosed_p)
|
||
{
|
||
error ("brace-enclosed initializer used to initialize `%T'",
|
||
type);
|
||
if (TREE_CODE (old_init) == TREE_LIST)
|
||
TREE_VALUE (old_init) = error_mark_node;
|
||
else
|
||
old_init = error_mark_node;
|
||
}
|
||
|
||
return old_init;
|
||
}
|
||
|
||
/* [dcl.init.aggr]
|
||
|
||
All implicit type conversions (clause _conv_) are considered when
|
||
initializing the aggregate member with an initializer from an
|
||
initializer-list. If the initializer can initialize a member,
|
||
the member is initialized. Otherwise, if the member is itself a
|
||
non-empty subaggregate, brace elision is assumed and the
|
||
initializer is considered for the initialization of the first
|
||
member of the subaggregate. */
|
||
if (!brace_enclosed_p
|
||
&& can_convert_arg (type, TREE_TYPE (old_init_value), old_init_value))
|
||
{
|
||
*initp = TREE_CHAIN (old_init);
|
||
TREE_CHAIN (old_init) = NULL_TREE;
|
||
return old_init;
|
||
}
|
||
|
||
string_init_p = false;
|
||
if (TREE_CODE (old_init_value) == STRING_CST
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type))))
|
||
{
|
||
/* [dcl.init.string]
|
||
|
||
A char array (whether plain char, signed char, or unsigned char)
|
||
can be initialized by a string-literal (optionally enclosed in
|
||
braces); a wchar_t array can be initialized by a wide
|
||
string-literal (optionally enclosed in braces). */
|
||
new_init = old_init;
|
||
/* Move past the initializer. */
|
||
*initp = TREE_CHAIN (old_init);
|
||
TREE_CHAIN (old_init) = NULL_TREE;
|
||
string_init_p = true;
|
||
}
|
||
else
|
||
{
|
||
/* Build a CONSTRUCTOR to hold the contents of the aggregate. */
|
||
new_init = build_constructor (type, NULL_TREE);
|
||
TREE_HAS_CONSTRUCTOR (new_init) = 1;
|
||
|
||
if (CLASS_TYPE_P (type))
|
||
{
|
||
tree field;
|
||
|
||
field = next_initializable_field (TYPE_FIELDS (type));
|
||
|
||
if (!field)
|
||
{
|
||
/* [dcl.init.aggr]
|
||
|
||
An initializer for an aggregate member that is an
|
||
empty class shall have the form of an empty
|
||
initializer-list {}. */
|
||
if (!brace_enclosed_p)
|
||
{
|
||
error ("initializer for `%T' must be brace-enclosed",
|
||
type);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Loop through the initializable fields, gathering
|
||
initializers. */
|
||
while (*initp)
|
||
{
|
||
tree field_init;
|
||
|
||
/* Handle designated initializers, as an extension. */
|
||
if (TREE_PURPOSE (*initp))
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("ISO C++ does not allow designated initializers");
|
||
field = lookup_field_1 (type, TREE_PURPOSE (*initp),
|
||
/*want_type=*/false);
|
||
if (!field || TREE_CODE (field) != FIELD_DECL)
|
||
error ("`%T' has no non-static data member named `%D'",
|
||
type, TREE_PURPOSE (*initp));
|
||
}
|
||
if (!field)
|
||
break;
|
||
|
||
field_init = reshape_init (TREE_TYPE (field), initp);
|
||
if (field_init == error_mark_node)
|
||
return error_mark_node;
|
||
TREE_CHAIN (field_init) = CONSTRUCTOR_ELTS (new_init);
|
||
CONSTRUCTOR_ELTS (new_init) = field_init;
|
||
/* [dcl.init.aggr]
|
||
|
||
When a union is initialized with a brace-enclosed
|
||
initializer, the braces shall only contain an
|
||
initializer for the first member of the union. */
|
||
if (TREE_CODE (type) == UNION_TYPE)
|
||
break;
|
||
field = next_initializable_field (TREE_CHAIN (field));
|
||
}
|
||
}
|
||
}
|
||
else if ((TREE_CODE (type) == ARRAY_TYPE)|| (TREE_CODE (type) == VECTOR_TYPE))
|
||
{
|
||
tree max_index;
|
||
|
||
/* If the bound of the array is known, take no more initializers
|
||
than are allowed. */
|
||
max_index = ((TYPE_DOMAIN (type) && (TREE_CODE (type) == ARRAY_TYPE))
|
||
? array_type_nelts (type) : NULL_TREE);
|
||
if (!reshape_init_array (TREE_TYPE (type), max_index,
|
||
initp, new_init))
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* The initializers were placed in reverse order in the
|
||
CONSTRUCTOR. */
|
||
CONSTRUCTOR_ELTS (new_init) = nreverse (CONSTRUCTOR_ELTS (new_init));
|
||
|
||
if (TREE_CODE (old_init) == TREE_LIST)
|
||
new_init = build_tree_list (TREE_PURPOSE (old_init), new_init);
|
||
}
|
||
|
||
/* If there are more initializers than necessary, issue a
|
||
diagnostic. */
|
||
if (*initp)
|
||
{
|
||
if (brace_enclosed_p)
|
||
error ("too many initializers for `%T'", type);
|
||
else if (warn_missing_braces && !string_init_p)
|
||
warning ("missing braces around initializer");
|
||
}
|
||
|
||
return new_init;
|
||
}
|
||
|
||
/* Verify INIT (the initializer for DECL), and record the
|
||
initialization in DECL_INITIAL, if appropriate. CLEANUP is as for
|
||
grok_reference_init.
|
||
|
||
If the return value is non-NULL, it is an expression that must be
|
||
evaluated dynamically to initialize DECL. */
|
||
|
||
static tree
|
||
check_initializer (tree decl, tree init, int flags, tree *cleanup)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
tree init_code = NULL;
|
||
|
||
/* If `start_decl' didn't like having an initialization, ignore it now. */
|
||
if (init != NULL_TREE && DECL_INITIAL (decl) == NULL_TREE)
|
||
init = NULL_TREE;
|
||
|
||
/* If an initializer is present, DECL_INITIAL has been
|
||
error_mark_node, to indicate that an as-of-yet unevaluated
|
||
initialization will occur. From now on, DECL_INITIAL reflects
|
||
the static initialization -- if any -- of DECL. */
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
|
||
/* Things that are going to be initialized need to have complete
|
||
type. */
|
||
TREE_TYPE (decl) = type = complete_type (TREE_TYPE (decl));
|
||
|
||
if (type == error_mark_node)
|
||
/* We will have already complained. */
|
||
init = NULL_TREE;
|
||
else if (init && COMPLETE_TYPE_P (type)
|
||
&& !TREE_CONSTANT (TYPE_SIZE (type)))
|
||
{
|
||
error ("variable-sized object `%D' may not be initialized", decl);
|
||
init = NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& !COMPLETE_TYPE_P (complete_type (TREE_TYPE (type))))
|
||
{
|
||
error ("elements of array `%#D' have incomplete type", decl);
|
||
init = NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (type) != ARRAY_TYPE && !COMPLETE_TYPE_P (type))
|
||
{
|
||
error ("`%D' has incomplete type", decl);
|
||
TREE_TYPE (decl) = error_mark_node;
|
||
init = NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (decl) == CONST_DECL)
|
||
{
|
||
my_friendly_assert (TREE_CODE (decl) != REFERENCE_TYPE, 148);
|
||
|
||
DECL_INITIAL (decl) = init;
|
||
|
||
my_friendly_assert (init != NULL_TREE, 149);
|
||
init = NULL_TREE;
|
||
}
|
||
else if (!DECL_EXTERNAL (decl) && TREE_CODE (type) == REFERENCE_TYPE)
|
||
init = grok_reference_init (decl, type, init, cleanup);
|
||
else if (init)
|
||
{
|
||
if (TREE_CODE (init) == CONSTRUCTOR && TREE_HAS_CONSTRUCTOR (init))
|
||
{
|
||
/* [dcl.init] paragraph 13,
|
||
If T is a scalar type, then a declaration of the form
|
||
T x = { a };
|
||
is equivalent to
|
||
T x = a;
|
||
|
||
reshape_init will complain about the extra braces,
|
||
and doesn't do anything useful in the case where TYPE is
|
||
scalar, so just don't call it. */
|
||
if (CP_AGGREGATE_TYPE_P (type))
|
||
init = reshape_init (type, &init);
|
||
|
||
if ((*targetm.vector_opaque_p) (type))
|
||
{
|
||
error ("opaque vector types cannot be initialized");
|
||
init = error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* If DECL has an array type without a specific bound, deduce the
|
||
array size from the initializer. */
|
||
maybe_deduce_size_from_array_init (decl, init);
|
||
type = TREE_TYPE (decl);
|
||
if (TREE_CODE (init) == CONSTRUCTOR && TREE_HAS_CONSTRUCTOR (init))
|
||
TREE_TYPE (init) = type;
|
||
|
||
if (TYPE_HAS_CONSTRUCTOR (type) || TYPE_NEEDS_CONSTRUCTING (type))
|
||
{
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
goto initialize_aggr;
|
||
else if (TREE_CODE (init) == CONSTRUCTOR
|
||
&& TREE_HAS_CONSTRUCTOR (init))
|
||
{
|
||
if (TYPE_NON_AGGREGATE_CLASS (type))
|
||
{
|
||
error ("`%D' must be initialized by constructor, not by `{...}'",
|
||
decl);
|
||
init = error_mark_node;
|
||
}
|
||
else
|
||
goto dont_use_constructor;
|
||
}
|
||
else
|
||
{
|
||
int saved_stmts_are_full_exprs_p;
|
||
|
||
initialize_aggr:
|
||
saved_stmts_are_full_exprs_p = 0;
|
||
if (building_stmt_tree ())
|
||
{
|
||
saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
||
}
|
||
init = build_aggr_init (decl, init, flags);
|
||
if (building_stmt_tree ())
|
||
current_stmt_tree ()->stmts_are_full_exprs_p =
|
||
saved_stmts_are_full_exprs_p;
|
||
return init;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
dont_use_constructor:
|
||
if (TREE_CODE (init) != TREE_VEC)
|
||
{
|
||
init_code = store_init_value (decl, init);
|
||
init = NULL;
|
||
}
|
||
}
|
||
}
|
||
else if (DECL_EXTERNAL (decl))
|
||
;
|
||
else if (TYPE_P (type) && TYPE_NEEDS_CONSTRUCTING (type))
|
||
goto initialize_aggr;
|
||
else if (IS_AGGR_TYPE (type))
|
||
{
|
||
tree core_type = strip_array_types (type);
|
||
|
||
if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type))
|
||
error ("structure `%D' with uninitialized const members", decl);
|
||
if (CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))
|
||
error ("structure `%D' with uninitialized reference members",
|
||
decl);
|
||
|
||
check_for_uninitialized_const_var (decl);
|
||
}
|
||
else
|
||
check_for_uninitialized_const_var (decl);
|
||
|
||
if (init && init != error_mark_node)
|
||
init_code = build (INIT_EXPR, type, decl, init);
|
||
|
||
return init_code;
|
||
}
|
||
|
||
/* If DECL is not a local variable, give it RTL. */
|
||
|
||
static void
|
||
make_rtl_for_nonlocal_decl (tree decl, tree init, const char* asmspec)
|
||
{
|
||
int toplev = toplevel_bindings_p ();
|
||
int defer_p;
|
||
|
||
/* Handle non-variables up front. */
|
||
if (TREE_CODE (decl) != VAR_DECL)
|
||
{
|
||
rest_of_decl_compilation (decl, asmspec, toplev, at_eof);
|
||
return;
|
||
}
|
||
|
||
/* If we see a class member here, it should be a static data
|
||
member. */
|
||
if (DECL_LANG_SPECIFIC (decl) && DECL_IN_AGGR_P (decl))
|
||
{
|
||
my_friendly_assert (TREE_STATIC (decl), 19990828);
|
||
/* An in-class declaration of a static data member should be
|
||
external; it is only a declaration, and not a definition. */
|
||
if (init == NULL_TREE)
|
||
my_friendly_assert (DECL_EXTERNAL (decl), 20000723);
|
||
}
|
||
|
||
/* Set the DECL_ASSEMBLER_NAME for the variable. */
|
||
if (asmspec)
|
||
{
|
||
change_decl_assembler_name (decl, get_identifier (asmspec));
|
||
/* The `register' keyword, when used together with an
|
||
asm-specification, indicates that the variable should be
|
||
placed in a particular register. */
|
||
if (DECL_REGISTER (decl))
|
||
DECL_C_HARD_REGISTER (decl) = 1;
|
||
}
|
||
|
||
/* We don't create any RTL for local variables. */
|
||
if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl))
|
||
return;
|
||
|
||
/* We defer emission of local statics until the corresponding
|
||
DECL_STMT is expanded. */
|
||
defer_p = DECL_FUNCTION_SCOPE_P (decl) || DECL_VIRTUAL_P (decl);
|
||
|
||
/* We try to defer namespace-scope static constants so that they are
|
||
not emitted into the object file unnecessarily. */
|
||
if (!DECL_VIRTUAL_P (decl)
|
||
&& TREE_READONLY (decl)
|
||
&& DECL_INITIAL (decl) != NULL_TREE
|
||
&& DECL_INITIAL (decl) != error_mark_node
|
||
&& ! EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl))
|
||
&& toplev
|
||
&& !TREE_PUBLIC (decl))
|
||
{
|
||
/* Fool with the linkage of static consts according to #pragma
|
||
interface. */
|
||
if (!interface_unknown && !TREE_PUBLIC (decl))
|
||
{
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_EXTERNAL (decl) = interface_only;
|
||
}
|
||
|
||
defer_p = 1;
|
||
}
|
||
/* Likewise for template instantiations. */
|
||
else if (DECL_COMDAT (decl))
|
||
defer_p = 1;
|
||
|
||
/* If we're deferring the variable, we only need to make RTL if
|
||
there's an ASMSPEC. Otherwise, we'll lazily create it later when
|
||
we need it. (There's no way to lazily create RTL for things that
|
||
have assembly specs because the information about the specifier
|
||
isn't stored in the tree, yet) */
|
||
if (defer_p && asmspec)
|
||
make_decl_rtl (decl, asmspec);
|
||
/* If we're not deferring, go ahead and assemble the variable. */
|
||
else if (!defer_p)
|
||
rest_of_decl_compilation (decl, asmspec, toplev, at_eof);
|
||
}
|
||
|
||
/* Generate code to initialize DECL (a local variable). */
|
||
|
||
static void
|
||
initialize_local_var (tree decl, tree init)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
tree cleanup;
|
||
|
||
my_friendly_assert (TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == RESULT_DECL,
|
||
20021010);
|
||
my_friendly_assert (!TREE_STATIC (decl), 20021010);
|
||
|
||
if (DECL_SIZE (decl) == NULL_TREE)
|
||
{
|
||
/* If we used it already as memory, it must stay in memory. */
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
TREE_ADDRESSABLE (decl) = TREE_USED (decl);
|
||
}
|
||
|
||
if (DECL_SIZE (decl) && type != error_mark_node)
|
||
{
|
||
int already_used;
|
||
|
||
/* Compute and store the initial value. */
|
||
already_used = TREE_USED (decl) || TREE_USED (type);
|
||
|
||
/* Perform the initialization. */
|
||
if (init)
|
||
{
|
||
int saved_stmts_are_full_exprs_p;
|
||
|
||
my_friendly_assert (building_stmt_tree (), 20000906);
|
||
saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p ();
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
||
finish_expr_stmt (init);
|
||
current_stmt_tree ()->stmts_are_full_exprs_p =
|
||
saved_stmts_are_full_exprs_p;
|
||
}
|
||
|
||
/* Set this to 0 so we can tell whether an aggregate which was
|
||
initialized was ever used. Don't do this if it has a
|
||
destructor, so we don't complain about the 'resource
|
||
allocation is initialization' idiom. Now set
|
||
attribute((unused)) on types so decls of that type will be
|
||
marked used. (see TREE_USED, above.) */
|
||
if (TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& ! already_used
|
||
&& TYPE_HAS_TRIVIAL_DESTRUCTOR (type)
|
||
&& DECL_NAME (decl))
|
||
TREE_USED (decl) = 0;
|
||
else if (already_used)
|
||
TREE_USED (decl) = 1;
|
||
}
|
||
|
||
/* Generate a cleanup, if necessary. */
|
||
cleanup = cxx_maybe_build_cleanup (decl);
|
||
if (DECL_SIZE (decl) && cleanup)
|
||
finish_decl_cleanup (decl, cleanup);
|
||
}
|
||
|
||
/* Finish processing of a declaration;
|
||
install its line number and initial value.
|
||
If the length of an array type is not known before,
|
||
it must be determined now, from the initial value, or it is an error.
|
||
|
||
INIT holds the value of an initializer that should be allowed to escape
|
||
the normal rules.
|
||
|
||
FLAGS is LOOKUP_ONLYCONVERTING if the = init syntax was used, else 0
|
||
if the (init) syntax was used. */
|
||
|
||
void
|
||
cp_finish_decl (tree decl, tree init, tree asmspec_tree, int flags)
|
||
{
|
||
tree type;
|
||
tree ttype = NULL_TREE;
|
||
tree cleanup;
|
||
const char *asmspec = NULL;
|
||
int was_readonly = 0;
|
||
bool var_definition_p = false;
|
||
|
||
if (decl == error_mark_node)
|
||
return;
|
||
else if (! decl)
|
||
{
|
||
if (init)
|
||
error ("assignment (not initialization) in declaration");
|
||
return;
|
||
}
|
||
|
||
my_friendly_assert (TREE_CODE (decl) != RESULT_DECL, 20030619);
|
||
|
||
/* Assume no cleanup is required. */
|
||
cleanup = NULL_TREE;
|
||
|
||
/* If a name was specified, get the string. */
|
||
if (global_scope_p (current_binding_level))
|
||
asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
|
||
if (asmspec_tree)
|
||
asmspec = TREE_STRING_POINTER (asmspec_tree);
|
||
|
||
if (init && TREE_CODE (init) == NAMESPACE_DECL)
|
||
{
|
||
error ("cannot initialize `%D' to namespace `%D'",
|
||
decl, init);
|
||
init = NULL_TREE;
|
||
}
|
||
|
||
if (current_class_type
|
||
&& CP_DECL_CONTEXT (decl) == current_class_type
|
||
&& TYPE_BEING_DEFINED (current_class_type)
|
||
&& (DECL_INITIAL (decl) || init))
|
||
DECL_INITIALIZED_IN_CLASS_P (decl) = 1;
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& DECL_CONTEXT (decl)
|
||
&& TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL
|
||
&& DECL_CONTEXT (decl) != current_namespace
|
||
&& init)
|
||
{
|
||
/* Leave the namespace of the object. */
|
||
pop_decl_namespace ();
|
||
}
|
||
|
||
type = TREE_TYPE (decl);
|
||
|
||
if (type == error_mark_node)
|
||
goto finish_end0;
|
||
|
||
if (TYPE_HAS_MUTABLE_P (type))
|
||
TREE_READONLY (decl) = 0;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
/* Add this declaration to the statement-tree. */
|
||
if (at_function_scope_p ())
|
||
add_decl_stmt (decl);
|
||
|
||
if (init && DECL_INITIAL (decl))
|
||
DECL_INITIAL (decl) = init;
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& !DECL_PRETTY_FUNCTION_P (decl)
|
||
&& !dependent_type_p (TREE_TYPE (decl)))
|
||
maybe_deduce_size_from_array_init (decl, init);
|
||
goto finish_end0;
|
||
}
|
||
|
||
/* Parameters are handled by store_parm_decls, not cp_finish_decl. */
|
||
my_friendly_assert (TREE_CODE (decl) != PARM_DECL, 19990828);
|
||
|
||
/* Take care of TYPE_DECLs up front. */
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
if (type != error_mark_node
|
||
&& IS_AGGR_TYPE (type) && DECL_NAME (decl))
|
||
{
|
||
if (TREE_TYPE (DECL_NAME (decl)) && TREE_TYPE (decl) != type)
|
||
warning ("shadowing previous type declaration of `%#D'", decl);
|
||
set_identifier_type_value (DECL_NAME (decl), decl);
|
||
}
|
||
|
||
/* If we have installed this as the canonical typedef for this
|
||
type, and that type has not been defined yet, delay emitting
|
||
the debug information for it, as we will emit it later. */
|
||
if (TYPE_MAIN_DECL (TREE_TYPE (decl)) == decl
|
||
&& !COMPLETE_TYPE_P (TREE_TYPE (decl)))
|
||
TYPE_DECL_SUPPRESS_DEBUG (decl) = 1;
|
||
|
||
rest_of_decl_compilation (decl, NULL,
|
||
DECL_CONTEXT (decl) == NULL_TREE, at_eof);
|
||
goto finish_end;
|
||
}
|
||
|
||
if (TREE_CODE (decl) != FUNCTION_DECL)
|
||
ttype = target_type (type);
|
||
|
||
|
||
/* Currently, GNU C++ puts constants in text space, making them
|
||
impossible to initialize. In the future, one would hope for
|
||
an operating system which understood the difference between
|
||
initialization and the running of a program. */
|
||
if (! DECL_EXTERNAL (decl) && TREE_READONLY (decl))
|
||
{
|
||
was_readonly = 1;
|
||
if (TYPE_NEEDS_CONSTRUCTING (type)
|
||
|| TREE_CODE (type) == REFERENCE_TYPE)
|
||
TREE_READONLY (decl) = 0;
|
||
}
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
/* Only PODs can have thread-local storage. Other types may require
|
||
various kinds of non-trivial initialization. */
|
||
if (DECL_THREAD_LOCAL (decl) && !pod_type_p (TREE_TYPE (decl)))
|
||
error ("`%D' cannot be thread-local because it has non-POD type `%T'",
|
||
decl, TREE_TYPE (decl));
|
||
/* Convert the initializer to the type of DECL, if we have not
|
||
already initialized DECL. */
|
||
if (!DECL_INITIALIZED_P (decl)
|
||
/* If !DECL_EXTERNAL then DECL is being defined. In the
|
||
case of a static data member initialized inside the
|
||
class-specifier, there can be an initializer even if DECL
|
||
is *not* defined. */
|
||
&& (!DECL_EXTERNAL (decl) || init))
|
||
{
|
||
init = check_initializer (decl, init, flags, &cleanup);
|
||
/* Thread-local storage cannot be dynamically initialized. */
|
||
if (DECL_THREAD_LOCAL (decl) && init)
|
||
{
|
||
error ("`%D' is thread-local and so cannot be dynamically "
|
||
"initialized", decl);
|
||
init = NULL_TREE;
|
||
}
|
||
/* Handle:
|
||
|
||
[dcl.init]
|
||
|
||
The memory occupied by any object of static storage
|
||
duration is zero-initialized at program startup before
|
||
any other initialization takes place.
|
||
|
||
We cannot create an appropriate initializer until after
|
||
the type of DECL is finalized. If DECL_INITIAL is set,
|
||
then the DECL is statically initialized, and any
|
||
necessary zero-initialization has already been performed. */
|
||
if (TREE_STATIC (decl) && !DECL_INITIAL (decl))
|
||
DECL_INITIAL (decl) = build_zero_init (TREE_TYPE (decl),
|
||
/*nelts=*/NULL_TREE,
|
||
/*static_storage_p=*/true);
|
||
/* Remember that the initialization for this variable has
|
||
taken place. */
|
||
DECL_INITIALIZED_P (decl) = 1;
|
||
/* This declaration is the definition of this variable,
|
||
unless we are initializing a static data member within
|
||
the class specifier. */
|
||
if (!DECL_EXTERNAL (decl))
|
||
var_definition_p = true;
|
||
}
|
||
/* If the variable has an array type, lay out the type, even if
|
||
there is no initializer. It is valid to index through the
|
||
array, and we must get TYPE_ALIGN set correctly on the array
|
||
type. */
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
layout_type (type);
|
||
}
|
||
|
||
/* Add this declaration to the statement-tree. This needs to happen
|
||
after the call to check_initializer so that the DECL_STMT for a
|
||
reference temp is added before the DECL_STMT for the reference itself. */
|
||
if (at_function_scope_p ())
|
||
add_decl_stmt (decl);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
layout_var_decl (decl);
|
||
|
||
/* Output the assembler code and/or RTL code for variables and functions,
|
||
unless the type is an undefined structure or union.
|
||
If not, it will get done when the type is completed. */
|
||
if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
maybe_commonize_var (decl);
|
||
|
||
make_rtl_for_nonlocal_decl (decl, init, asmspec);
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE)
|
||
abstract_virtuals_error (decl,
|
||
strip_array_types (TREE_TYPE (type)));
|
||
else if (POINTER_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* If it's either a pointer or an array type, strip through all
|
||
of them but the last one. If the last is an array type, issue
|
||
an error if the element type is abstract. */
|
||
while (POINTER_TYPE_P (TREE_TYPE (type))
|
||
|| TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
abstract_virtuals_error (decl, TREE_TYPE (type));
|
||
}
|
||
else
|
||
abstract_virtuals_error (decl, type);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_TYPE (decl) == error_mark_node)
|
||
/* No initialization required. */
|
||
;
|
||
else if (DECL_EXTERNAL (decl)
|
||
&& ! (DECL_LANG_SPECIFIC (decl)
|
||
&& DECL_NOT_REALLY_EXTERN (decl)))
|
||
{
|
||
if (init)
|
||
DECL_INITIAL (decl) = init;
|
||
}
|
||
else
|
||
{
|
||
/* A variable definition. */
|
||
if (DECL_FUNCTION_SCOPE_P (decl))
|
||
{
|
||
/* This is a local declaration. */
|
||
maybe_inject_for_scope_var (decl);
|
||
/* Initialize the local variable. */
|
||
if (processing_template_decl)
|
||
{
|
||
if (init || DECL_INITIAL (decl) == error_mark_node)
|
||
DECL_INITIAL (decl) = init;
|
||
}
|
||
else if (!TREE_STATIC (decl))
|
||
initialize_local_var (decl, init);
|
||
}
|
||
|
||
/* If a variable is defined, and then a subsequent
|
||
definintion with external linkage is encountered, we will
|
||
get here twice for the same variable. We want to avoid
|
||
calling expand_static_init more than once. For variables
|
||
that are not static data members, we can call
|
||
expand_static_init only when we actually process the
|
||
initializer. It is not legal to redeclare a static data
|
||
member, so this issue does not arise in that case. */
|
||
if (var_definition_p && TREE_STATIC (decl))
|
||
expand_static_init (decl, init);
|
||
}
|
||
finish_end0:
|
||
|
||
/* Undo call to `pushclass' that was done in `start_decl'
|
||
due to initialization of qualified member variable.
|
||
I.e., Foo::x = 10; */
|
||
{
|
||
tree context = CP_DECL_CONTEXT (decl);
|
||
if (context
|
||
&& TYPE_P (context)
|
||
&& (TREE_CODE (decl) == VAR_DECL
|
||
/* We also have a pushclass done that we need to undo here
|
||
if we're at top level and declare a method. */
|
||
|| TREE_CODE (decl) == FUNCTION_DECL)
|
||
/* If size hasn't been set, we're still defining it,
|
||
and therefore inside the class body; don't pop
|
||
the binding level.. */
|
||
&& COMPLETE_TYPE_P (context)
|
||
&& context == current_class_type)
|
||
pop_nested_class ();
|
||
}
|
||
}
|
||
|
||
/* If a CLEANUP_STMT was created to destroy a temporary bound to a
|
||
reference, insert it in the statement-tree now. */
|
||
if (cleanup)
|
||
add_stmt (cleanup);
|
||
|
||
finish_end:
|
||
|
||
if (was_readonly)
|
||
TREE_READONLY (decl) = 1;
|
||
|
||
/* If this was marked 'used', be sure it will be output. */
|
||
if (lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
|
||
mark_referenced (DECL_ASSEMBLER_NAME (decl));
|
||
}
|
||
|
||
/* This is here for a midend callback from c-common.c. */
|
||
|
||
void
|
||
finish_decl (tree decl, tree init, tree asmspec_tree)
|
||
{
|
||
cp_finish_decl (decl, init, asmspec_tree, 0);
|
||
}
|
||
|
||
/* Returns a declaration for a VAR_DECL as if:
|
||
|
||
extern "C" TYPE NAME;
|
||
|
||
had been seen. Used to create compiler-generated global
|
||
variables. */
|
||
|
||
tree
|
||
declare_global_var (tree name, tree type)
|
||
{
|
||
tree decl;
|
||
|
||
push_to_top_level ();
|
||
decl = build_decl (VAR_DECL, name, type);
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
pushdecl (decl);
|
||
cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0);
|
||
pop_from_top_level ();
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Returns a pointer to the `atexit' function. Note that if
|
||
FLAG_USE_CXA_ATEXIT is nonzero, then this will actually be the new
|
||
`__cxa_atexit' function specified in the IA64 C++ ABI. */
|
||
|
||
static tree
|
||
get_atexit_node (void)
|
||
{
|
||
tree atexit_fndecl;
|
||
tree arg_types;
|
||
tree fn_type;
|
||
tree fn_ptr_type;
|
||
const char *name;
|
||
|
||
if (atexit_node)
|
||
return atexit_node;
|
||
|
||
if (flag_use_cxa_atexit)
|
||
{
|
||
/* The declaration for `__cxa_atexit' is:
|
||
|
||
int __cxa_atexit (void (*)(void *), void *, void *)
|
||
|
||
We build up the argument types and then then function type
|
||
itself. */
|
||
|
||
/* First, build the pointer-to-function type for the first
|
||
argument. */
|
||
arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
|
||
fn_type = build_function_type (void_type_node, arg_types);
|
||
fn_ptr_type = build_pointer_type (fn_type);
|
||
/* Then, build the rest of the argument types. */
|
||
arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
|
||
arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types);
|
||
arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types);
|
||
/* And the final __cxa_atexit type. */
|
||
fn_type = build_function_type (integer_type_node, arg_types);
|
||
fn_ptr_type = build_pointer_type (fn_type);
|
||
name = "__cxa_atexit";
|
||
}
|
||
else
|
||
{
|
||
/* The declaration for `atexit' is:
|
||
|
||
int atexit (void (*)());
|
||
|
||
We build up the argument types and then then function type
|
||
itself. */
|
||
fn_type = build_function_type (void_type_node, void_list_node);
|
||
fn_ptr_type = build_pointer_type (fn_type);
|
||
arg_types = tree_cons (NULL_TREE, fn_ptr_type, void_list_node);
|
||
/* Build the final atexit type. */
|
||
fn_type = build_function_type (integer_type_node, arg_types);
|
||
name = "atexit";
|
||
}
|
||
|
||
/* Now, build the function declaration. */
|
||
push_lang_context (lang_name_c);
|
||
atexit_fndecl = build_library_fn_ptr (name, fn_type);
|
||
mark_used (atexit_fndecl);
|
||
pop_lang_context ();
|
||
atexit_node = decay_conversion (atexit_fndecl);
|
||
|
||
return atexit_node;
|
||
}
|
||
|
||
/* Returns the __dso_handle VAR_DECL. */
|
||
|
||
static tree
|
||
get_dso_handle_node (void)
|
||
{
|
||
if (dso_handle_node)
|
||
return dso_handle_node;
|
||
|
||
/* Declare the variable. */
|
||
dso_handle_node = declare_global_var (get_identifier ("__dso_handle"),
|
||
ptr_type_node);
|
||
|
||
return dso_handle_node;
|
||
}
|
||
|
||
/* Begin a new function with internal linkage whose job will be simply
|
||
to destroy some particular variable. */
|
||
|
||
static GTY(()) int start_cleanup_cnt;
|
||
|
||
static tree
|
||
start_cleanup_fn (void)
|
||
{
|
||
int old_interface_only = interface_only;
|
||
int old_interface_unknown = interface_unknown;
|
||
char name[32];
|
||
tree parmtypes;
|
||
tree fntype;
|
||
tree fndecl;
|
||
|
||
push_to_top_level ();
|
||
|
||
/* No need to mangle this. */
|
||
push_lang_context (lang_name_c);
|
||
|
||
interface_only = 0;
|
||
interface_unknown = 1;
|
||
|
||
/* Build the parameter-types. */
|
||
parmtypes = void_list_node;
|
||
/* Functions passed to __cxa_atexit take an additional parameter.
|
||
We'll just ignore it. After we implement the new calling
|
||
convention for destructors, we can eliminate the use of
|
||
additional cleanup functions entirely in the -fnew-abi case. */
|
||
if (flag_use_cxa_atexit)
|
||
parmtypes = tree_cons (NULL_TREE, ptr_type_node, parmtypes);
|
||
/* Build the function type itself. */
|
||
fntype = build_function_type (void_type_node, parmtypes);
|
||
/* Build the name of the function. */
|
||
sprintf (name, "__tcf_%d", start_cleanup_cnt++);
|
||
/* Build the function declaration. */
|
||
fndecl = build_lang_decl (FUNCTION_DECL, get_identifier (name), fntype);
|
||
/* It's a function with internal linkage, generated by the
|
||
compiler. */
|
||
TREE_PUBLIC (fndecl) = 0;
|
||
DECL_ARTIFICIAL (fndecl) = 1;
|
||
/* Make the function `inline' so that it is only emitted if it is
|
||
actually needed. It is unlikely that it will be inlined, since
|
||
it is only called via a function pointer, but we avoid unnecessary
|
||
emissions this way. */
|
||
DECL_INLINE (fndecl) = 1;
|
||
DECL_DECLARED_INLINE_P (fndecl) = 1;
|
||
DECL_INTERFACE_KNOWN (fndecl) = 1;
|
||
/* Build the parameter. */
|
||
if (flag_use_cxa_atexit)
|
||
{
|
||
tree parmdecl;
|
||
|
||
parmdecl = cp_build_parm_decl (NULL_TREE, ptr_type_node);
|
||
DECL_CONTEXT (parmdecl) = fndecl;
|
||
TREE_USED (parmdecl) = 1;
|
||
DECL_ARGUMENTS (fndecl) = parmdecl;
|
||
}
|
||
|
||
pushdecl (fndecl);
|
||
start_function (/*specs=*/NULL_TREE, fndecl, NULL_TREE, SF_PRE_PARSED);
|
||
|
||
interface_unknown = old_interface_unknown;
|
||
interface_only = old_interface_only;
|
||
|
||
pop_lang_context ();
|
||
|
||
return current_function_decl;
|
||
}
|
||
|
||
/* Finish the cleanup function begun by start_cleanup_fn. */
|
||
|
||
static void
|
||
end_cleanup_fn (void)
|
||
{
|
||
expand_or_defer_fn (finish_function (0));
|
||
|
||
pop_from_top_level ();
|
||
}
|
||
|
||
/* Generate code to handle the destruction of DECL, an object with
|
||
static storage duration. */
|
||
|
||
void
|
||
register_dtor_fn (tree decl)
|
||
{
|
||
tree cleanup;
|
||
tree compound_stmt;
|
||
tree args;
|
||
tree fcall;
|
||
|
||
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
|
||
return;
|
||
|
||
/* Call build_cleanup before we enter the anonymous function so that
|
||
any access checks will be done relative to the current scope,
|
||
rather than the scope of the anonymous function. */
|
||
build_cleanup (decl);
|
||
|
||
/* Now start the function. */
|
||
cleanup = start_cleanup_fn ();
|
||
|
||
/* Now, recompute the cleanup. It may contain SAVE_EXPRs that refer
|
||
to the original function, rather than the anonymous one. That
|
||
will make the back-end think that nested functions are in use,
|
||
which causes confusion. */
|
||
|
||
push_deferring_access_checks (dk_no_check);
|
||
fcall = build_cleanup (decl);
|
||
pop_deferring_access_checks ();
|
||
|
||
/* Create the body of the anonymous function. */
|
||
compound_stmt = begin_compound_stmt (/*has_no_scope=*/false);
|
||
finish_expr_stmt (fcall);
|
||
finish_compound_stmt (compound_stmt);
|
||
end_cleanup_fn ();
|
||
|
||
/* Call atexit with the cleanup function. */
|
||
cxx_mark_addressable (cleanup);
|
||
mark_used (cleanup);
|
||
cleanup = build_unary_op (ADDR_EXPR, cleanup, 0);
|
||
if (flag_use_cxa_atexit)
|
||
{
|
||
args = tree_cons (NULL_TREE,
|
||
build_unary_op (ADDR_EXPR, get_dso_handle_node (), 0),
|
||
NULL_TREE);
|
||
args = tree_cons (NULL_TREE, null_pointer_node, args);
|
||
args = tree_cons (NULL_TREE, cleanup, args);
|
||
}
|
||
else
|
||
args = tree_cons (NULL_TREE, cleanup, NULL_TREE);
|
||
finish_expr_stmt (build_function_call (get_atexit_node (), args));
|
||
}
|
||
|
||
/* DECL is a VAR_DECL with static storage duration. INIT, if present,
|
||
is its initializer. Generate code to handle the construction
|
||
and destruction of DECL. */
|
||
|
||
static void
|
||
expand_static_init (tree decl, tree init)
|
||
{
|
||
my_friendly_assert (TREE_CODE (decl) == VAR_DECL, 20021010);
|
||
my_friendly_assert (TREE_STATIC (decl), 20021010);
|
||
|
||
/* Some variables require no initialization. */
|
||
if (!init
|
||
&& !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))
|
||
&& TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
|
||
return;
|
||
|
||
if (! toplevel_bindings_p ())
|
||
{
|
||
/* Emit code to perform this initialization but once. */
|
||
tree if_stmt;
|
||
tree then_clause;
|
||
tree assignment;
|
||
tree guard;
|
||
tree guard_init;
|
||
|
||
/* Emit code to perform this initialization but once. This code
|
||
looks like:
|
||
|
||
static int guard = 0;
|
||
if (!guard) {
|
||
// Do initialization.
|
||
guard = 1;
|
||
// Register variable for destruction at end of program.
|
||
}
|
||
|
||
Note that the `temp' variable is only set to 1 *after* the
|
||
initialization is complete. This ensures that an exception,
|
||
thrown during the construction, will cause the variable to
|
||
reinitialized when we pass through this code again, as per:
|
||
|
||
[stmt.dcl]
|
||
|
||
If the initialization exits by throwing an exception, the
|
||
initialization is not complete, so it will be tried again
|
||
the next time control enters the declaration.
|
||
|
||
In theory, this process should be thread-safe, too; multiple
|
||
threads should not be able to initialize the variable more
|
||
than once. We don't yet attempt to ensure thread-safety. */
|
||
|
||
/* Create the guard variable. */
|
||
guard = get_guard (decl);
|
||
|
||
/* Begin the conditional initialization. */
|
||
if_stmt = begin_if_stmt ();
|
||
finish_if_stmt_cond (get_guard_cond (guard), if_stmt);
|
||
then_clause = begin_compound_stmt (/*has_no_scope=*/false);
|
||
|
||
/* Do the initialization itself. */
|
||
assignment = init ? init : NULL_TREE;
|
||
|
||
/* Once the assignment is complete, set TEMP to 1. Since the
|
||
construction of the static object is complete at this point,
|
||
we want to make sure TEMP is set to 1 even if a temporary
|
||
constructed during the initialization throws an exception
|
||
when it is destroyed. So, we combine the initialization and
|
||
the assignment to TEMP into a single expression, ensuring
|
||
that when we call finish_expr_stmt the cleanups will not be
|
||
run until after TEMP is set to 1. */
|
||
guard_init = set_guard (guard);
|
||
if (assignment)
|
||
assignment = build_compound_expr (assignment, guard_init);
|
||
else
|
||
assignment = guard_init;
|
||
finish_expr_stmt (assignment);
|
||
|
||
/* Use atexit to register a function for destroying this static
|
||
variable. */
|
||
register_dtor_fn (decl);
|
||
|
||
finish_compound_stmt (then_clause);
|
||
finish_then_clause (if_stmt);
|
||
finish_if_stmt ();
|
||
}
|
||
else
|
||
static_aggregates = tree_cons (init, decl, static_aggregates);
|
||
}
|
||
|
||
/* Finish the declaration of a catch-parameter. */
|
||
|
||
tree
|
||
start_handler_parms (tree declspecs, tree declarator)
|
||
{
|
||
tree decl;
|
||
if (declspecs)
|
||
{
|
||
decl = grokdeclarator (declarator, declspecs, CATCHPARM,
|
||
1, NULL);
|
||
if (decl == NULL_TREE)
|
||
error ("invalid catch parameter");
|
||
}
|
||
else
|
||
decl = NULL_TREE;
|
||
|
||
return decl;
|
||
}
|
||
|
||
|
||
/* Make TYPE a complete type based on INITIAL_VALUE.
|
||
Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
|
||
2 if there was no information (in which case assume 0 if DO_DEFAULT). */
|
||
|
||
int
|
||
complete_array_type (tree type, tree initial_value, int do_default)
|
||
{
|
||
tree maxindex = NULL_TREE;
|
||
int value = 0;
|
||
|
||
if (initial_value)
|
||
{
|
||
/* An array of character type can be initialized from a
|
||
brace-enclosed string constant. */
|
||
if (char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type)))
|
||
&& TREE_CODE (initial_value) == CONSTRUCTOR
|
||
&& CONSTRUCTOR_ELTS (initial_value)
|
||
&& (TREE_CODE (TREE_VALUE (CONSTRUCTOR_ELTS (initial_value)))
|
||
== STRING_CST)
|
||
&& TREE_CHAIN (CONSTRUCTOR_ELTS (initial_value)) == NULL_TREE)
|
||
initial_value = TREE_VALUE (CONSTRUCTOR_ELTS (initial_value));
|
||
|
||
/* Note MAXINDEX is really the maximum index, one less than the
|
||
size. */
|
||
if (TREE_CODE (initial_value) == STRING_CST)
|
||
{
|
||
int eltsize
|
||
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
|
||
maxindex = build_int_2 ((TREE_STRING_LENGTH (initial_value)
|
||
/ eltsize) - 1, 0);
|
||
}
|
||
else if (TREE_CODE (initial_value) == CONSTRUCTOR)
|
||
{
|
||
tree elts = CONSTRUCTOR_ELTS (initial_value);
|
||
|
||
maxindex = ssize_int (-1);
|
||
for (; elts; elts = TREE_CHAIN (elts))
|
||
{
|
||
if (TREE_PURPOSE (elts))
|
||
maxindex = TREE_PURPOSE (elts);
|
||
else
|
||
maxindex = size_binop (PLUS_EXPR, maxindex, ssize_int (1));
|
||
}
|
||
maxindex = copy_node (maxindex);
|
||
}
|
||
else
|
||
{
|
||
/* Make an error message unless that happened already. */
|
||
if (initial_value != error_mark_node)
|
||
value = 1;
|
||
else
|
||
initial_value = NULL_TREE;
|
||
|
||
/* Prevent further error messages. */
|
||
maxindex = build_int_2 (0, 0);
|
||
}
|
||
}
|
||
|
||
if (!maxindex)
|
||
{
|
||
if (do_default)
|
||
maxindex = build_int_2 (0, 0);
|
||
value = 2;
|
||
}
|
||
|
||
if (maxindex)
|
||
{
|
||
tree itype;
|
||
tree domain;
|
||
|
||
domain = build_index_type (maxindex);
|
||
TYPE_DOMAIN (type) = domain;
|
||
|
||
if (! TREE_TYPE (maxindex))
|
||
TREE_TYPE (maxindex) = domain;
|
||
if (initial_value)
|
||
itype = TREE_TYPE (initial_value);
|
||
else
|
||
itype = NULL;
|
||
if (itype && !TYPE_DOMAIN (itype))
|
||
TYPE_DOMAIN (itype) = domain;
|
||
/* The type of the main variant should never be used for arrays
|
||
of different sizes. It should only ever be completed with the
|
||
size of the array. */
|
||
if (! TYPE_DOMAIN (TYPE_MAIN_VARIANT (type)))
|
||
TYPE_DOMAIN (TYPE_MAIN_VARIANT (type)) = domain;
|
||
}
|
||
|
||
/* Lay out the type now that we can get the real answer. */
|
||
|
||
layout_type (type);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Return zero if something is declared to be a member of type
|
||
CTYPE when in the context of CUR_TYPE. STRING is the error
|
||
message to print in that case. Otherwise, quietly return 1. */
|
||
|
||
static int
|
||
member_function_or_else (tree ctype, tree cur_type, enum overload_flags flags)
|
||
{
|
||
if (ctype && ctype != cur_type)
|
||
{
|
||
if (flags == DTOR_FLAG)
|
||
error ("destructor for alien class `%T' cannot be a member",
|
||
ctype);
|
||
else
|
||
error ("constructor for alien class `%T' cannot be a member",
|
||
ctype);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of `grokdeclarator'. */
|
||
|
||
/* Generate errors possibly applicable for a given set of specifiers.
|
||
This is for ARM $7.1.2. */
|
||
|
||
static void
|
||
bad_specifiers (tree object,
|
||
const char* type,
|
||
int virtualp,
|
||
int quals,
|
||
int inlinep,
|
||
int friendp,
|
||
int raises)
|
||
{
|
||
if (virtualp)
|
||
error ("`%D' declared as a `virtual' %s", object, type);
|
||
if (inlinep)
|
||
error ("`%D' declared as an `inline' %s", object, type);
|
||
if (quals)
|
||
error ("`const' and `volatile' function specifiers on `%D' invalid in %s declaration",
|
||
object, type);
|
||
if (friendp)
|
||
cp_error_at ("`%D' declared as a friend", object);
|
||
if (raises
|
||
&& (TREE_CODE (object) == TYPE_DECL
|
||
|| (!TYPE_PTRFN_P (TREE_TYPE (object))
|
||
&& !TYPE_REFFN_P (TREE_TYPE (object))
|
||
&& !TYPE_PTRMEMFUNC_P (TREE_TYPE (object)))))
|
||
cp_error_at ("`%D' declared with an exception specification", object);
|
||
}
|
||
|
||
/* CTYPE is class type, or null if non-class.
|
||
TYPE is type this FUNCTION_DECL should have, either FUNCTION_TYPE
|
||
or METHOD_TYPE.
|
||
DECLARATOR is the function's name.
|
||
PARMS is a chain of PARM_DECLs for the function.
|
||
VIRTUALP is truthvalue of whether the function is virtual or not.
|
||
FLAGS are to be passed through to `grokclassfn'.
|
||
QUALS are qualifiers indicating whether the function is `const'
|
||
or `volatile'.
|
||
RAISES is a list of exceptions that this function can raise.
|
||
CHECK is 1 if we must find this method in CTYPE, 0 if we should
|
||
not look, and -1 if we should not call `grokclassfn' at all.
|
||
|
||
Returns `NULL_TREE' if something goes wrong, after issuing
|
||
applicable error messages. */
|
||
|
||
static tree
|
||
grokfndecl (tree ctype,
|
||
tree type,
|
||
tree declarator,
|
||
tree parms,
|
||
tree orig_declarator,
|
||
int virtualp,
|
||
enum overload_flags flags,
|
||
tree quals,
|
||
tree raises,
|
||
int check,
|
||
int friendp,
|
||
int publicp,
|
||
int inlinep,
|
||
int funcdef_flag,
|
||
int template_count,
|
||
tree in_namespace)
|
||
{
|
||
tree decl;
|
||
int staticp = ctype && TREE_CODE (type) == FUNCTION_TYPE;
|
||
int has_default_arg = 0;
|
||
tree t;
|
||
|
||
if (raises)
|
||
type = build_exception_variant (type, raises);
|
||
|
||
decl = build_lang_decl (FUNCTION_DECL, declarator, type);
|
||
DECL_ARGUMENTS (decl) = parms;
|
||
/* Propagate volatile out from type to decl. */
|
||
if (TYPE_VOLATILE (type))
|
||
TREE_THIS_VOLATILE (decl) = 1;
|
||
|
||
/* If this decl has namespace scope, set that up. */
|
||
if (in_namespace)
|
||
set_decl_namespace (decl, in_namespace, friendp);
|
||
else if (!ctype)
|
||
DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
|
||
|
||
/* `main' and builtins have implicit 'C' linkage. */
|
||
if ((MAIN_NAME_P (declarator)
|
||
|| (IDENTIFIER_LENGTH (declarator) > 10
|
||
&& IDENTIFIER_POINTER (declarator)[0] == '_'
|
||
&& IDENTIFIER_POINTER (declarator)[1] == '_'
|
||
&& strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0))
|
||
&& current_lang_name == lang_name_cplusplus
|
||
&& ctype == NULL_TREE
|
||
/* NULL_TREE means global namespace. */
|
||
&& DECL_CONTEXT (decl) == NULL_TREE)
|
||
SET_DECL_LANGUAGE (decl, lang_c);
|
||
|
||
/* Should probably propagate const out from type to decl I bet (mrs). */
|
||
if (staticp)
|
||
{
|
||
DECL_STATIC_FUNCTION_P (decl) = 1;
|
||
DECL_CONTEXT (decl) = ctype;
|
||
}
|
||
|
||
if (ctype)
|
||
DECL_CONTEXT (decl) = ctype;
|
||
|
||
if (ctype == NULL_TREE && DECL_MAIN_P (decl))
|
||
{
|
||
if (processing_template_decl)
|
||
error ("cannot declare `::main' to be a template");
|
||
if (inlinep)
|
||
error ("cannot declare `::main' to be inline");
|
||
if (!publicp)
|
||
error ("cannot declare `::main' to be static");
|
||
if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)),
|
||
integer_type_node))
|
||
error ("`main' must return `int'");
|
||
inlinep = 0;
|
||
publicp = 1;
|
||
}
|
||
|
||
/* Members of anonymous types and local classes have no linkage; make
|
||
them internal. */
|
||
/* FIXME what if it gets a name from typedef? */
|
||
if (ctype && (TYPE_ANONYMOUS_P (ctype)
|
||
|| decl_function_context (TYPE_MAIN_DECL (ctype))))
|
||
publicp = 0;
|
||
|
||
if (publicp)
|
||
{
|
||
/* [basic.link]: A name with no linkage (notably, the name of a class
|
||
or enumeration declared in a local scope) shall not be used to
|
||
declare an entity with linkage.
|
||
|
||
Only check this for public decls for now. See core 319, 389. */
|
||
t = no_linkage_check (TREE_TYPE (decl));
|
||
if (t)
|
||
{
|
||
if (TYPE_ANONYMOUS_P (t))
|
||
{
|
||
if (DECL_EXTERN_C_P (decl))
|
||
/* Allow this; it's pretty common in C. */;
|
||
else
|
||
{
|
||
pedwarn ("non-local function `%#D' uses anonymous type",
|
||
decl);
|
||
if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
|
||
cp_pedwarn_at ("\
|
||
`%#D' does not refer to the unqualified type, so it is not used for linkage",
|
||
TYPE_NAME (t));
|
||
}
|
||
}
|
||
else
|
||
pedwarn ("non-local function `%#D' uses local type `%T'",
|
||
decl, t);
|
||
}
|
||
}
|
||
|
||
TREE_PUBLIC (decl) = publicp;
|
||
if (! publicp)
|
||
{
|
||
DECL_INTERFACE_KNOWN (decl) = 1;
|
||
DECL_NOT_REALLY_EXTERN (decl) = 1;
|
||
}
|
||
|
||
/* If the declaration was declared inline, mark it as such. */
|
||
if (inlinep)
|
||
DECL_DECLARED_INLINE_P (decl) = 1;
|
||
/* We inline functions that are explicitly declared inline, or, when
|
||
the user explicitly asks us to, all functions. */
|
||
if (DECL_DECLARED_INLINE_P (decl)
|
||
|| (flag_inline_trees == 2 && !DECL_INLINE (decl) && funcdef_flag))
|
||
DECL_INLINE (decl) = 1;
|
||
|
||
DECL_EXTERNAL (decl) = 1;
|
||
if (quals != NULL_TREE && TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("%smember function `%D' cannot have `%T' method qualifier",
|
||
(ctype ? "static " : "non-"), decl, TREE_VALUE (quals));
|
||
quals = NULL_TREE;
|
||
}
|
||
|
||
if (IDENTIFIER_OPNAME_P (DECL_NAME (decl)))
|
||
grok_op_properties (decl, friendp, /*complain=*/true);
|
||
|
||
if (ctype && decl_function_context (decl))
|
||
DECL_NO_STATIC_CHAIN (decl) = 1;
|
||
|
||
for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
|
||
if (TREE_PURPOSE (t)
|
||
&& TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG)
|
||
{
|
||
has_default_arg = 1;
|
||
break;
|
||
}
|
||
|
||
if (friendp
|
||
&& TREE_CODE (orig_declarator) == TEMPLATE_ID_EXPR)
|
||
{
|
||
if (funcdef_flag)
|
||
error
|
||
("defining explicit specialization `%D' in friend declaration",
|
||
orig_declarator);
|
||
else
|
||
{
|
||
tree fns = TREE_OPERAND (orig_declarator, 0);
|
||
tree args = TREE_OPERAND (orig_declarator, 1);
|
||
|
||
if (PROCESSING_REAL_TEMPLATE_DECL_P ())
|
||
{
|
||
/* Something like `template <class T> friend void f<T>()'. */
|
||
error ("invalid use of template-id `%D' in declaration of primary template",
|
||
orig_declarator);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* A friend declaration of the form friend void f<>(). Record
|
||
the information in the TEMPLATE_ID_EXPR. */
|
||
SET_DECL_IMPLICIT_INSTANTIATION (decl);
|
||
|
||
if (TREE_CODE (fns) == COMPONENT_REF)
|
||
{
|
||
/* Due to bison parser ickiness, we will have already looked
|
||
up an operator_name or PFUNCNAME within the current class
|
||
(see template_id in parse.y). If the current class contains
|
||
such a name, we'll get a COMPONENT_REF here. Undo that. */
|
||
|
||
my_friendly_assert (TREE_TYPE (TREE_OPERAND (fns, 0))
|
||
== current_class_type, 20001120);
|
||
fns = TREE_OPERAND (fns, 1);
|
||
}
|
||
my_friendly_assert (TREE_CODE (fns) == IDENTIFIER_NODE
|
||
|| TREE_CODE (fns) == OVERLOAD, 20001120);
|
||
DECL_TEMPLATE_INFO (decl) = tree_cons (fns, args, NULL_TREE);
|
||
|
||
if (has_default_arg)
|
||
{
|
||
error ("default arguments are not allowed in declaration of friend template specialization `%D'",
|
||
decl);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (inlinep)
|
||
{
|
||
error ("`inline' is not allowed in declaration of friend template specialization `%D'",
|
||
decl);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (funcdef_flag)
|
||
/* Make the init_value nonzero so pushdecl knows this is not
|
||
tentative. error_mark_node is replaced later with the BLOCK. */
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
|
||
if (TYPE_NOTHROW_P (type) || nothrow_libfn_p (decl))
|
||
TREE_NOTHROW (decl) = 1;
|
||
|
||
/* Caller will do the rest of this. */
|
||
if (check < 0)
|
||
return decl;
|
||
|
||
if (flags == NO_SPECIAL && ctype && constructor_name_p (declarator, ctype))
|
||
DECL_CONSTRUCTOR_P (decl) = 1;
|
||
|
||
/* Function gets the ugly name, field gets the nice one. This call
|
||
may change the type of the function (because of default
|
||
parameters)! */
|
||
if (ctype != NULL_TREE)
|
||
grokclassfn (ctype, decl, flags, quals);
|
||
|
||
decl = check_explicit_specialization (orig_declarator, decl,
|
||
template_count,
|
||
2 * (funcdef_flag != 0) +
|
||
4 * (friendp != 0));
|
||
if (decl == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (ctype != NULL_TREE
|
||
&& (! TYPE_FOR_JAVA (ctype) || check_java_method (decl))
|
||
&& check)
|
||
{
|
||
tree old_decl;
|
||
|
||
old_decl = check_classfn (ctype, decl,
|
||
processing_template_decl
|
||
> template_class_depth (ctype));
|
||
|
||
if (old_decl && TREE_CODE (old_decl) == TEMPLATE_DECL)
|
||
/* Because grokfndecl is always supposed to return a
|
||
FUNCTION_DECL, we pull out the DECL_TEMPLATE_RESULT
|
||
here. We depend on our callers to figure out that its
|
||
really a template that's being returned. */
|
||
old_decl = DECL_TEMPLATE_RESULT (old_decl);
|
||
|
||
if (old_decl && DECL_STATIC_FUNCTION_P (old_decl)
|
||
&& TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE)
|
||
/* Remove the `this' parm added by grokclassfn.
|
||
XXX Isn't this done in start_function, too? */
|
||
revert_static_member_fn (decl);
|
||
if (old_decl && DECL_ARTIFICIAL (old_decl))
|
||
error ("definition of implicitly-declared `%D'", old_decl);
|
||
|
||
if (old_decl)
|
||
{
|
||
tree ok;
|
||
bool pop_p;
|
||
|
||
/* Since we've smashed OLD_DECL to its
|
||
DECL_TEMPLATE_RESULT, we must do the same to DECL. */
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
decl = DECL_TEMPLATE_RESULT (decl);
|
||
|
||
/* Attempt to merge the declarations. This can fail, in
|
||
the case of some invalid specialization declarations. */
|
||
pop_p = push_scope (ctype);
|
||
ok = duplicate_decls (decl, old_decl);
|
||
if (pop_p)
|
||
pop_scope (ctype);
|
||
if (!ok)
|
||
{
|
||
error ("no `%#D' member function declared in class `%T'",
|
||
decl, ctype);
|
||
return NULL_TREE;
|
||
}
|
||
return old_decl;
|
||
}
|
||
}
|
||
|
||
if (DECL_CONSTRUCTOR_P (decl) && !grok_ctor_properties (ctype, decl))
|
||
return NULL_TREE;
|
||
|
||
if (ctype == NULL_TREE || check)
|
||
return decl;
|
||
|
||
if (virtualp)
|
||
DECL_VIRTUAL_P (decl) = 1;
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Create a VAR_DECL named NAME with the indicated TYPE.
|
||
|
||
If SCOPE is non-NULL, it is the class type or namespace containing
|
||
the variable. If SCOPE is NULL, the variable should is created in
|
||
the innermost enclosings scope. */
|
||
|
||
static tree
|
||
grokvardecl (tree type,
|
||
tree name,
|
||
RID_BIT_TYPE * specbits_in,
|
||
int initialized,
|
||
int constp,
|
||
tree scope)
|
||
{
|
||
tree decl;
|
||
RID_BIT_TYPE specbits;
|
||
|
||
my_friendly_assert (!name || TREE_CODE (name) == IDENTIFIER_NODE,
|
||
20020808);
|
||
|
||
specbits = *specbits_in;
|
||
|
||
/* Compute the scope in which to place the variable. */
|
||
if (!scope)
|
||
{
|
||
/* An explicit "extern" specifier indicates a namespace-scope
|
||
variable. */
|
||
if (RIDBIT_SETP (RID_EXTERN, specbits))
|
||
scope = current_namespace;
|
||
else if (!at_function_scope_p ())
|
||
{
|
||
scope = current_scope ();
|
||
if (!scope)
|
||
scope = current_namespace;
|
||
}
|
||
}
|
||
|
||
if (scope
|
||
&& (/* If the variable is a namespace-scope variable declared in a
|
||
template, we need DECL_LANG_SPECIFIC. */
|
||
(TREE_CODE (scope) == NAMESPACE_DECL && processing_template_decl)
|
||
/* Similarly for namespace-scope variables with language linkage
|
||
other than C++. */
|
||
|| (TREE_CODE (scope) == NAMESPACE_DECL
|
||
&& current_lang_name != lang_name_cplusplus)
|
||
/* Similarly for static data members. */
|
||
|| TYPE_P (scope)))
|
||
decl = build_lang_decl (VAR_DECL, name, type);
|
||
else
|
||
decl = build_decl (VAR_DECL, name, type);
|
||
|
||
if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
|
||
set_decl_namespace (decl, scope, 0);
|
||
else
|
||
DECL_CONTEXT (decl) = scope;
|
||
|
||
if (name && scope && current_lang_name != lang_name_c)
|
||
/* We can't mangle lazily here because we don't have any
|
||
way to recover whether or not a variable was `extern
|
||
"C"' later. */
|
||
mangle_decl (decl);
|
||
|
||
if (RIDBIT_SETP (RID_EXTERN, specbits))
|
||
{
|
||
DECL_THIS_EXTERN (decl) = 1;
|
||
DECL_EXTERNAL (decl) = !initialized;
|
||
}
|
||
|
||
/* In class context, static means one per class,
|
||
public access, and static storage. */
|
||
if (DECL_CLASS_SCOPE_P (decl))
|
||
{
|
||
TREE_PUBLIC (decl) = 1;
|
||
TREE_STATIC (decl) = 1;
|
||
DECL_EXTERNAL (decl) = 0;
|
||
}
|
||
/* At top level, either `static' or no s.c. makes a definition
|
||
(perhaps tentative), and absence of `static' makes it public. */
|
||
else if (toplevel_bindings_p ())
|
||
{
|
||
TREE_PUBLIC (decl) = (RIDBIT_NOTSETP (RID_STATIC, specbits)
|
||
&& (DECL_THIS_EXTERN (decl) || ! constp));
|
||
TREE_STATIC (decl) = ! DECL_EXTERNAL (decl);
|
||
}
|
||
/* Not at top level, only `static' makes a static definition. */
|
||
else
|
||
{
|
||
TREE_STATIC (decl) = !! RIDBIT_SETP (RID_STATIC, specbits);
|
||
TREE_PUBLIC (decl) = DECL_EXTERNAL (decl);
|
||
}
|
||
|
||
if (RIDBIT_SETP (RID_THREAD, specbits))
|
||
{
|
||
if (targetm.have_tls)
|
||
DECL_THREAD_LOCAL (decl) = 1;
|
||
else
|
||
/* A mere warning is sure to result in improper semantics
|
||
at runtime. Don't bother to allow this to compile. */
|
||
error ("thread-local storage not supported for this target");
|
||
}
|
||
|
||
if (TREE_PUBLIC (decl))
|
||
{
|
||
/* [basic.link]: A name with no linkage (notably, the name of a class
|
||
or enumeration declared in a local scope) shall not be used to
|
||
declare an entity with linkage.
|
||
|
||
Only check this for public decls for now. */
|
||
tree t = no_linkage_check (TREE_TYPE (decl));
|
||
if (t)
|
||
{
|
||
if (TYPE_ANONYMOUS_P (t))
|
||
/* Ignore for now; `enum { foo } e' is pretty common. */;
|
||
else
|
||
pedwarn ("non-local variable `%#D' uses local type `%T'",
|
||
decl, t);
|
||
}
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Create and return a canonical pointer to member function type, for
|
||
TYPE, which is a POINTER_TYPE to a METHOD_TYPE. */
|
||
|
||
tree
|
||
build_ptrmemfunc_type (tree type)
|
||
{
|
||
tree field, fields;
|
||
tree t;
|
||
tree unqualified_variant = NULL_TREE;
|
||
|
||
if (type == error_mark_node)
|
||
return type;
|
||
|
||
/* If a canonical type already exists for this type, use it. We use
|
||
this method instead of type_hash_canon, because it only does a
|
||
simple equality check on the list of field members. */
|
||
|
||
if ((t = TYPE_GET_PTRMEMFUNC_TYPE (type)))
|
||
return t;
|
||
|
||
/* Make sure that we always have the unqualified pointer-to-member
|
||
type first. */
|
||
if (cp_type_quals (type) != TYPE_UNQUALIFIED)
|
||
unqualified_variant
|
||
= build_ptrmemfunc_type (TYPE_MAIN_VARIANT (type));
|
||
|
||
t = make_aggr_type (RECORD_TYPE);
|
||
/* Let the front-end know this is a pointer to member function... */
|
||
TYPE_PTRMEMFUNC_FLAG (t) = 1;
|
||
/* ... and not really an aggregate. */
|
||
SET_IS_AGGR_TYPE (t, 0);
|
||
|
||
field = build_decl (FIELD_DECL, pfn_identifier, type);
|
||
fields = field;
|
||
|
||
field = build_decl (FIELD_DECL, delta_identifier, delta_type_node);
|
||
TREE_CHAIN (field) = fields;
|
||
fields = field;
|
||
|
||
finish_builtin_struct (t, "__ptrmemfunc_type", fields, ptr_type_node);
|
||
|
||
/* Zap out the name so that the back-end will give us the debugging
|
||
information for this anonymous RECORD_TYPE. */
|
||
TYPE_NAME (t) = NULL_TREE;
|
||
|
||
/* If this is not the unqualified form of this pointer-to-member
|
||
type, set the TYPE_MAIN_VARIANT for this type to be the
|
||
unqualified type. Since they are actually RECORD_TYPEs that are
|
||
not variants of each other, we must do this manually. */
|
||
if (cp_type_quals (type) != TYPE_UNQUALIFIED)
|
||
{
|
||
t = build_qualified_type (t, cp_type_quals (type));
|
||
TYPE_MAIN_VARIANT (t) = unqualified_variant;
|
||
TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (unqualified_variant);
|
||
TYPE_NEXT_VARIANT (unqualified_variant) = t;
|
||
}
|
||
|
||
/* Cache this pointer-to-member type so that we can find it again
|
||
later. */
|
||
TYPE_SET_PTRMEMFUNC_TYPE (type, t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create and return a pointer to data member type. */
|
||
|
||
tree
|
||
build_ptrmem_type (tree class_type, tree member_type)
|
||
{
|
||
if (TREE_CODE (member_type) == METHOD_TYPE)
|
||
{
|
||
tree arg_types;
|
||
|
||
arg_types = TYPE_ARG_TYPES (member_type);
|
||
class_type = (cp_build_qualified_type
|
||
(class_type,
|
||
cp_type_quals (TREE_TYPE (TREE_VALUE (arg_types)))));
|
||
member_type
|
||
= build_method_type_directly (class_type,
|
||
TREE_TYPE (member_type),
|
||
TREE_CHAIN (arg_types));
|
||
return build_ptrmemfunc_type (build_pointer_type (member_type));
|
||
}
|
||
else
|
||
{
|
||
my_friendly_assert (TREE_CODE (member_type) != FUNCTION_TYPE,
|
||
20030716);
|
||
return build_offset_type (class_type, member_type);
|
||
}
|
||
}
|
||
|
||
/* DECL is a VAR_DECL defined in-class, whose TYPE is also given.
|
||
Check to see that the definition is valid. Issue appropriate error
|
||
messages. Return 1 if the definition is particularly bad, or 0
|
||
otherwise. */
|
||
|
||
int
|
||
check_static_variable_definition (tree decl, tree type)
|
||
{
|
||
/* Motion 10 at San Diego: If a static const integral data member is
|
||
initialized with an integral constant expression, the initializer
|
||
may appear either in the declaration (within the class), or in
|
||
the definition, but not both. If it appears in the class, the
|
||
member is a member constant. The file-scope definition is always
|
||
required. */
|
||
if (!ARITHMETIC_TYPE_P (type) && TREE_CODE (type) != ENUMERAL_TYPE)
|
||
{
|
||
error ("invalid in-class initialization of static data member of non-integral type `%T'",
|
||
type);
|
||
/* If we just return the declaration, crashes will sometimes
|
||
occur. We therefore return void_type_node, as if this was a
|
||
friend declaration, to cause callers to completely ignore
|
||
this declaration. */
|
||
return 1;
|
||
}
|
||
else if (!CP_TYPE_CONST_P (type))
|
||
error ("ISO C++ forbids in-class initialization of non-const static member `%D'",
|
||
decl);
|
||
else if (pedantic && !INTEGRAL_TYPE_P (type))
|
||
pedwarn ("ISO C++ forbids initialization of member constant `%D' of non-integral type `%T'", decl, type);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Given the SIZE (i.e., number of elements) in an array, compute an
|
||
appropriate index type for the array. If non-NULL, NAME is the
|
||
name of the thing being declared. */
|
||
|
||
tree
|
||
compute_array_index_type (tree name, tree size)
|
||
{
|
||
tree type = TREE_TYPE (size);
|
||
tree itype;
|
||
|
||
/* The array bound must be an integer type. */
|
||
if (!dependent_type_p (type) && !INTEGRAL_TYPE_P (type))
|
||
{
|
||
if (name)
|
||
error ("size of array `%D' has non-integral type `%T'", name, type);
|
||
else
|
||
error ("size of array has non-integral type `%T'", type);
|
||
size = integer_one_node;
|
||
type = TREE_TYPE (size);
|
||
}
|
||
|
||
if (abi_version_at_least (2)
|
||
/* We should only handle value dependent expressions specially. */
|
||
? value_dependent_expression_p (size)
|
||
/* But for abi-1, we handled all instances in templates. This
|
||
effects the manglings produced. */
|
||
: processing_template_decl)
|
||
return build_index_type (build_min (MINUS_EXPR, sizetype,
|
||
size, integer_one_node));
|
||
|
||
/* The size might be the result of a cast. */
|
||
STRIP_TYPE_NOPS (size);
|
||
|
||
/* It might be a const variable or enumeration constant. */
|
||
size = decl_constant_value (size);
|
||
|
||
/* Normally, the array-bound will be a constant. */
|
||
if (TREE_CODE (size) == INTEGER_CST)
|
||
{
|
||
/* Check to see if the array bound overflowed. Make that an
|
||
error, no matter how generous we're being. */
|
||
int old_flag_pedantic_errors = flag_pedantic_errors;
|
||
int old_pedantic = pedantic;
|
||
pedantic = flag_pedantic_errors = 1;
|
||
constant_expression_warning (size);
|
||
pedantic = old_pedantic;
|
||
flag_pedantic_errors = old_flag_pedantic_errors;
|
||
|
||
/* An array must have a positive number of elements. */
|
||
if (INT_CST_LT (size, integer_zero_node))
|
||
{
|
||
if (name)
|
||
error ("size of array `%D' is negative", name);
|
||
else
|
||
error ("size of array is negative");
|
||
size = integer_one_node;
|
||
}
|
||
/* As an extension we allow zero-sized arrays. We always allow
|
||
them in system headers because glibc uses them. */
|
||
else if (integer_zerop (size) && pedantic && !in_system_header)
|
||
{
|
||
if (name)
|
||
pedwarn ("ISO C++ forbids zero-size array `%D'", name);
|
||
else
|
||
pedwarn ("ISO C++ forbids zero-size array");
|
||
}
|
||
}
|
||
else if (TREE_CONSTANT (size))
|
||
{
|
||
/* `(int) &fn' is not a valid array bound. */
|
||
if (name)
|
||
error ("size of array `%D' is not an integral constant-expression",
|
||
name);
|
||
else
|
||
error ("size of array is not an integral constant-expression");
|
||
}
|
||
else if (pedantic)
|
||
{
|
||
if (name)
|
||
pedwarn ("ISO C++ forbids variable-size array `%D'", name);
|
||
else
|
||
pedwarn ("ISO C++ forbids variable-size array");
|
||
}
|
||
|
||
if (processing_template_decl && !TREE_CONSTANT (size))
|
||
/* A variable sized array. */
|
||
itype = build_min (MINUS_EXPR, sizetype, size, integer_one_node);
|
||
else
|
||
{
|
||
/* Compute the index of the largest element in the array. It is
|
||
one less than the number of elements in the array. */
|
||
itype
|
||
= fold (cp_build_binary_op (MINUS_EXPR,
|
||
cp_convert (ssizetype, size),
|
||
cp_convert (ssizetype, integer_one_node)));
|
||
if (!TREE_CONSTANT (itype))
|
||
/* A variable sized array. */
|
||
itype = variable_size (itype);
|
||
/* Make sure that there was no overflow when creating to a signed
|
||
index type. (For example, on a 32-bit machine, an array with
|
||
size 2^32 - 1 is too big.) */
|
||
else if (TREE_OVERFLOW (itype))
|
||
{
|
||
error ("overflow in array dimension");
|
||
TREE_OVERFLOW (itype) = 0;
|
||
}
|
||
}
|
||
|
||
/* Create and return the appropriate index type. */
|
||
return build_index_type (itype);
|
||
}
|
||
|
||
/* Returns the scope (if any) in which the entity declared by
|
||
DECLARATOR will be located. If the entity was declared with an
|
||
unqualified name, NULL_TREE is returned. */
|
||
|
||
tree
|
||
get_scope_of_declarator (tree declarator)
|
||
{
|
||
if (!declarator)
|
||
return NULL_TREE;
|
||
|
||
switch (TREE_CODE (declarator))
|
||
{
|
||
case CALL_EXPR:
|
||
case ARRAY_REF:
|
||
case INDIRECT_REF:
|
||
case ADDR_EXPR:
|
||
/* For any of these, the main declarator is the first operand. */
|
||
return get_scope_of_declarator (TREE_OPERAND
|
||
(declarator, 0));
|
||
|
||
case SCOPE_REF:
|
||
/* For a pointer-to-member, continue descending. */
|
||
if (TREE_CODE (TREE_OPERAND (declarator, 1))
|
||
== INDIRECT_REF)
|
||
return get_scope_of_declarator (TREE_OPERAND
|
||
(declarator, 1));
|
||
/* Otherwise, if the declarator-id is a SCOPE_REF, the scope in
|
||
which the declaration occurs is the first operand. */
|
||
return TREE_OPERAND (declarator, 0);
|
||
|
||
case TREE_LIST:
|
||
/* Attributes to be applied. The declarator is TREE_VALUE. */
|
||
return get_scope_of_declarator (TREE_VALUE (declarator));
|
||
|
||
default:
|
||
/* Otherwise, we have a declarator-id which is not a qualified
|
||
name; the entity will be declared in the current scope. */
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Returns an ARRAY_TYPE for an array with SIZE elements of the
|
||
indicated TYPE. If non-NULL, NAME is the NAME of the declaration
|
||
with this type. */
|
||
|
||
static tree
|
||
create_array_type_for_decl (tree name, tree type, tree size)
|
||
{
|
||
tree itype = NULL_TREE;
|
||
const char* error_msg;
|
||
|
||
/* If things have already gone awry, bail now. */
|
||
if (type == error_mark_node || size == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Assume that everything will go OK. */
|
||
error_msg = NULL;
|
||
|
||
/* There are some types which cannot be array elements. */
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case VOID_TYPE:
|
||
error_msg = "array of void";
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
error_msg = "array of functions";
|
||
break;
|
||
|
||
case REFERENCE_TYPE:
|
||
error_msg = "array of references";
|
||
break;
|
||
|
||
case METHOD_TYPE:
|
||
error_msg = "array of function members";
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If something went wrong, issue an error-message and return. */
|
||
if (error_msg)
|
||
{
|
||
if (name)
|
||
error ("declaration of `%D' as %s", name, error_msg);
|
||
else
|
||
error ("creating %s", error_msg);
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* [dcl.array]
|
||
|
||
The constant expressions that specify the bounds of the arrays
|
||
can be omitted only for the first member of the sequence. */
|
||
if (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type))
|
||
{
|
||
if (name)
|
||
error ("declaration of `%D' as multidimensional array must have bounds for all dimensions except the first",
|
||
name);
|
||
else
|
||
error ("multidimensional array must have bounds for all dimensions except the first");
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Figure out the index type for the array. */
|
||
if (size)
|
||
itype = compute_array_index_type (name, size);
|
||
|
||
return build_cplus_array_type (type, itype);
|
||
}
|
||
|
||
/* Check that it's OK to declare a function with the indicated TYPE.
|
||
SFK indicates the kind of special function (if any) that this
|
||
function is. OPTYPE is the type given in a conversion operator
|
||
declaration. Returns the actual return type of the function; that
|
||
may be different than TYPE if an error occurs, or for certain
|
||
special functions. */
|
||
|
||
static tree
|
||
check_special_function_return_type (special_function_kind sfk,
|
||
tree type,
|
||
tree optype)
|
||
{
|
||
switch (sfk)
|
||
{
|
||
case sfk_constructor:
|
||
if (type)
|
||
error ("return type specification for constructor invalid");
|
||
|
||
type = void_type_node;
|
||
break;
|
||
|
||
case sfk_destructor:
|
||
if (type)
|
||
error ("return type specification for destructor invalid");
|
||
type = void_type_node;
|
||
break;
|
||
|
||
case sfk_conversion:
|
||
if (type && !same_type_p (type, optype))
|
||
error ("operator `%T' declared to return `%T'", optype, type);
|
||
else if (type)
|
||
pedwarn ("return type specified for `operator %T'", optype);
|
||
type = optype;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* A variable or data member (whose unqualified name is IDENTIFIER)
|
||
has been declared with the indicated TYPE. If the TYPE is not
|
||
acceptable, issue an error message and return a type to use for
|
||
error-recovery purposes. */
|
||
|
||
tree
|
||
check_var_type (tree identifier, tree type)
|
||
{
|
||
if (VOID_TYPE_P (type))
|
||
{
|
||
if (!identifier)
|
||
error ("unnamed variable or field declared void");
|
||
else if (TREE_CODE (identifier) == IDENTIFIER_NODE)
|
||
{
|
||
if (IDENTIFIER_OPNAME_P (identifier))
|
||
abort ();
|
||
error ("variable or field `%E' declared void", identifier);
|
||
}
|
||
else
|
||
error ("variable or field declared void");
|
||
type = integer_type_node;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Given declspecs and a declarator (abstract or otherwise), determine
|
||
the name and type of the object declared and construct a DECL node
|
||
for it.
|
||
|
||
DECLSPECS is a chain of tree_list nodes whose value fields
|
||
are the storage classes and type specifiers.
|
||
|
||
DECL_CONTEXT says which syntactic context this declaration is in:
|
||
NORMAL for most contexts. Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
|
||
FUNCDEF for a function definition. Like NORMAL but a few different
|
||
error messages in each case. Return value may be zero meaning
|
||
this definition is too screwy to try to parse.
|
||
MEMFUNCDEF for a function definition. Like FUNCDEF but prepares to
|
||
handle member functions (which have FIELD context).
|
||
Return value may be zero meaning this definition is too screwy to
|
||
try to parse.
|
||
PARM for a parameter declaration (either within a function prototype
|
||
or before a function body). Make a PARM_DECL, or return void_type_node.
|
||
CATCHPARM for a parameter declaration before a catch clause.
|
||
TYPENAME if for a typename (in a cast or sizeof).
|
||
Don't make a DECL node; just return the ..._TYPE node.
|
||
FIELD for a struct or union field; make a FIELD_DECL.
|
||
BITFIELD for a field with specified width.
|
||
INITIALIZED is 1 if the decl has an initializer.
|
||
|
||
ATTRLIST is a pointer to the list of attributes, which may be NULL
|
||
if there are none; *ATTRLIST may be modified if attributes from inside
|
||
the declarator should be applied to the declaration.
|
||
|
||
When this function is called, scoping variables (such as
|
||
CURRENT_CLASS_TYPE) should reflect the scope in which the
|
||
declaration occurs, not the scope in which the new declaration will
|
||
be placed. For example, on:
|
||
|
||
void S::f() { ... }
|
||
|
||
when grokdeclarator is called for `S::f', the CURRENT_CLASS_TYPE
|
||
should not be `S'. */
|
||
|
||
tree
|
||
grokdeclarator (tree declarator,
|
||
tree declspecs,
|
||
enum decl_context decl_context,
|
||
int initialized,
|
||
tree* attrlist)
|
||
{
|
||
RID_BIT_TYPE specbits;
|
||
int nclasses = 0;
|
||
tree spec;
|
||
tree type = NULL_TREE;
|
||
int longlong = 0;
|
||
int type_quals;
|
||
int virtualp, explicitp, friendp, inlinep, staticp;
|
||
int explicit_int = 0;
|
||
int explicit_char = 0;
|
||
int defaulted_int = 0;
|
||
int extern_langp = 0;
|
||
tree dependant_name = NULL_TREE;
|
||
|
||
tree typedef_decl = NULL_TREE;
|
||
const char *name;
|
||
tree typedef_type = NULL_TREE;
|
||
int funcdef_flag = 0;
|
||
enum tree_code innermost_code = ERROR_MARK;
|
||
int bitfield = 0;
|
||
#if 0
|
||
/* See the code below that used this. */
|
||
tree decl_attr = NULL_TREE;
|
||
#endif
|
||
|
||
/* Keep track of what sort of function is being processed
|
||
so that we can warn about default return values, or explicit
|
||
return values which do not match prescribed defaults. */
|
||
special_function_kind sfk = sfk_none;
|
||
|
||
tree dname = NULL_TREE;
|
||
tree ctype = current_class_type;
|
||
tree ctor_return_type = NULL_TREE;
|
||
enum overload_flags flags = NO_SPECIAL;
|
||
tree quals = NULL_TREE;
|
||
tree raises = NULL_TREE;
|
||
int template_count = 0;
|
||
tree in_namespace = NULL_TREE;
|
||
tree returned_attrs = NULL_TREE;
|
||
tree scope = NULL_TREE;
|
||
tree parms = NULL_TREE;
|
||
|
||
RIDBIT_RESET_ALL (specbits);
|
||
if (decl_context == FUNCDEF)
|
||
funcdef_flag = 1, decl_context = NORMAL;
|
||
else if (decl_context == MEMFUNCDEF)
|
||
funcdef_flag = -1, decl_context = FIELD;
|
||
else if (decl_context == BITFIELD)
|
||
bitfield = 1, decl_context = FIELD;
|
||
|
||
/* Look inside a declarator for the name being declared
|
||
and get it as a string, for an error message. */
|
||
{
|
||
tree *next = &declarator;
|
||
tree decl;
|
||
name = NULL;
|
||
|
||
while (next && *next)
|
||
{
|
||
decl = *next;
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case TREE_LIST:
|
||
/* For attributes. */
|
||
next = &TREE_VALUE (decl);
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
ctype = NULL_TREE;
|
||
next = &TREE_OPERAND (decl, 0);
|
||
break;
|
||
|
||
case BIT_NOT_EXPR: /* For C++ destructors! */
|
||
{
|
||
tree name = TREE_OPERAND (decl, 0);
|
||
tree rename = NULL_TREE;
|
||
|
||
my_friendly_assert (flags == NO_SPECIAL, 152);
|
||
flags = DTOR_FLAG;
|
||
sfk = sfk_destructor;
|
||
if (TYPE_P (name))
|
||
TREE_OPERAND (decl, 0) = name = constructor_name (name);
|
||
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 153);
|
||
if (ctype == NULL_TREE)
|
||
{
|
||
if (current_class_type == NULL_TREE)
|
||
{
|
||
error ("destructors must be member functions");
|
||
flags = NO_SPECIAL;
|
||
}
|
||
else
|
||
{
|
||
tree t = constructor_name (current_class_type);
|
||
if (t != name)
|
||
rename = t;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree t = constructor_name (ctype);
|
||
if (t != name)
|
||
rename = t;
|
||
}
|
||
|
||
if (rename)
|
||
{
|
||
error ("destructor `%T' must match class name `%T'",
|
||
name, rename);
|
||
TREE_OPERAND (decl, 0) = rename;
|
||
}
|
||
next = &name;
|
||
}
|
||
break;
|
||
|
||
case ADDR_EXPR: /* C++ reference declaration */
|
||
/* Fall through. */
|
||
case ARRAY_REF:
|
||
case INDIRECT_REF:
|
||
ctype = NULL_TREE;
|
||
innermost_code = TREE_CODE (decl);
|
||
next = &TREE_OPERAND (decl, 0);
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
innermost_code = TREE_CODE (decl);
|
||
if (decl_context == FIELD && ctype == NULL_TREE)
|
||
ctype = current_class_type;
|
||
if (ctype
|
||
&& TREE_OPERAND (decl, 0)
|
||
&& (TREE_CODE (TREE_OPERAND (decl, 0)) == TYPE_DECL
|
||
&& constructor_name_p (DECL_NAME (TREE_OPERAND (decl, 0)),
|
||
ctype)))
|
||
TREE_OPERAND (decl, 0) = constructor_name (ctype);
|
||
next = &TREE_OPERAND (decl, 0);
|
||
decl = *next;
|
||
if (ctype != NULL_TREE
|
||
&& decl != NULL_TREE && flags != DTOR_FLAG
|
||
&& constructor_name_p (decl, ctype))
|
||
{
|
||
sfk = sfk_constructor;
|
||
ctor_return_type = ctype;
|
||
}
|
||
ctype = NULL_TREE;
|
||
break;
|
||
|
||
case TEMPLATE_ID_EXPR:
|
||
{
|
||
tree fns = TREE_OPERAND (decl, 0);
|
||
|
||
dname = fns;
|
||
if (TREE_CODE (dname) == COMPONENT_REF)
|
||
dname = TREE_OPERAND (dname, 1);
|
||
if (TREE_CODE (dname) != IDENTIFIER_NODE)
|
||
{
|
||
my_friendly_assert (is_overloaded_fn (dname),
|
||
19990331);
|
||
dname = DECL_NAME (get_first_fn (dname));
|
||
}
|
||
}
|
||
/* Fall through. */
|
||
|
||
case IDENTIFIER_NODE:
|
||
if (TREE_CODE (decl) == IDENTIFIER_NODE)
|
||
dname = decl;
|
||
|
||
next = 0;
|
||
|
||
if (C_IS_RESERVED_WORD (dname))
|
||
{
|
||
error ("declarator-id missing; using reserved word `%D'",
|
||
dname);
|
||
name = IDENTIFIER_POINTER (dname);
|
||
}
|
||
else if (!IDENTIFIER_TYPENAME_P (dname))
|
||
name = IDENTIFIER_POINTER (dname);
|
||
else
|
||
{
|
||
my_friendly_assert (flags == NO_SPECIAL, 154);
|
||
flags = TYPENAME_FLAG;
|
||
ctor_return_type = TREE_TYPE (dname);
|
||
sfk = sfk_conversion;
|
||
if (is_typename_at_global_scope (dname))
|
||
name = IDENTIFIER_POINTER (dname);
|
||
else
|
||
name = "<invalid operator>";
|
||
}
|
||
break;
|
||
|
||
/* C++ extension */
|
||
case SCOPE_REF:
|
||
{
|
||
/* Perform error checking, and decide on a ctype. */
|
||
tree cname = TREE_OPERAND (decl, 0);
|
||
if (cname == NULL_TREE)
|
||
ctype = NULL_TREE;
|
||
else if (TREE_CODE (cname) == NAMESPACE_DECL)
|
||
{
|
||
ctype = NULL_TREE;
|
||
in_namespace = TREE_OPERAND (decl, 0);
|
||
}
|
||
else if (! is_aggr_type (cname, 1))
|
||
ctype = NULL_TREE;
|
||
/* Must test TREE_OPERAND (decl, 1), in case user gives
|
||
us `typedef (class::memfunc)(int); memfunc *memfuncptr;' */
|
||
else if (TREE_OPERAND (decl, 1)
|
||
&& TREE_CODE (TREE_OPERAND (decl, 1)) == INDIRECT_REF)
|
||
ctype = cname;
|
||
else if (TREE_CODE (cname) == TEMPLATE_TYPE_PARM
|
||
|| TREE_CODE (cname) == BOUND_TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
/* This might be declaring a member of a template
|
||
parm to be a friend. */
|
||
ctype = cname;
|
||
dependant_name = TREE_OPERAND (decl, 1);
|
||
}
|
||
else if (ctype == NULL_TREE)
|
||
ctype = cname;
|
||
else if (TREE_COMPLEXITY (decl) == current_class_depth)
|
||
;
|
||
else
|
||
{
|
||
if (! UNIQUELY_DERIVED_FROM_P (cname, ctype))
|
||
{
|
||
error ("type `%T' is not derived from type `%T'",
|
||
cname, ctype);
|
||
ctype = NULL_TREE;
|
||
}
|
||
else
|
||
ctype = cname;
|
||
}
|
||
|
||
/* It is valid to write:
|
||
|
||
class C { void f(); };
|
||
typedef C D;
|
||
void D::f();
|
||
|
||
The standard is not clear about whether `typedef const C D' is
|
||
legal; as of 2002-09-15 the committee is considering
|
||
that question. EDG 3.0 allows that syntax.
|
||
Therefore, we do as well. */
|
||
if (ctype)
|
||
ctype = TYPE_MAIN_VARIANT (ctype);
|
||
/* Update the declarator so that when we process it
|
||
again the correct type is present. */
|
||
TREE_OPERAND (decl, 0) = ctype;
|
||
|
||
if (ctype && TREE_CODE (TREE_OPERAND (decl, 1)) == TYPE_DECL
|
||
&& constructor_name_p (DECL_NAME (TREE_OPERAND (decl, 1)),
|
||
ctype))
|
||
TREE_OPERAND (decl, 1) = constructor_name (ctype);
|
||
next = &TREE_OPERAND (decl, 1);
|
||
decl = *next;
|
||
if (ctype)
|
||
{
|
||
tree name = decl;
|
||
|
||
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
||
name = TREE_OPERAND (name, 0);
|
||
|
||
if (!constructor_name_p (decl, ctype))
|
||
;
|
||
else if (decl == name)
|
||
{
|
||
sfk = sfk_constructor;
|
||
ctor_return_type = ctype;
|
||
}
|
||
else
|
||
{
|
||
sfk = sfk_destructor;
|
||
ctor_return_type = ctype;
|
||
flags = DTOR_FLAG;
|
||
TREE_OPERAND (decl, 0) = constructor_name (ctype);
|
||
next = &TREE_OPERAND (decl, 0);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ERROR_MARK:
|
||
next = 0;
|
||
break;
|
||
|
||
case TYPE_DECL:
|
||
/* Parse error puts this typespec where
|
||
a declarator should go. */
|
||
error ("`%T' specified as declarator-id", DECL_NAME (decl));
|
||
if (TREE_TYPE (decl) == current_class_type)
|
||
error (" perhaps you want `%T' for a constructor",
|
||
current_class_name);
|
||
dname = DECL_NAME (decl);
|
||
name = IDENTIFIER_POINTER (dname);
|
||
|
||
/* Avoid giving two errors for this. */
|
||
IDENTIFIER_CLASS_VALUE (dname) = NULL_TREE;
|
||
|
||
declspecs = tree_cons (NULL_TREE, integer_type_node, declspecs);
|
||
*next = dname;
|
||
next = 0;
|
||
break;
|
||
|
||
case BASELINK:
|
||
next = &BASELINK_FUNCTIONS (decl);
|
||
break;
|
||
|
||
case TEMPLATE_DECL:
|
||
/* Sometimes, we see a template-name used as part of a
|
||
decl-specifier like in
|
||
std::allocator alloc;
|
||
Handle that gracefully. */
|
||
error ("invalid use of template-name '%E' in a declarator", decl);
|
||
return error_mark_node;
|
||
break;
|
||
|
||
default:
|
||
my_friendly_assert (0, 20020917);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A function definition's declarator must have the form of
|
||
a function declarator. */
|
||
|
||
if (funcdef_flag && innermost_code != CALL_EXPR)
|
||
return 0;
|
||
|
||
if (((dname && IDENTIFIER_OPNAME_P (dname)) || flags == TYPENAME_FLAG)
|
||
&& innermost_code != CALL_EXPR
|
||
&& ! (ctype && declspecs == NULL_TREE))
|
||
{
|
||
error ("declaration of `%D' as non-function", dname);
|
||
return void_type_node;
|
||
}
|
||
|
||
/* Anything declared one level down from the top level
|
||
must be one of the parameters of a function
|
||
(because the body is at least two levels down). */
|
||
|
||
/* This heuristic cannot be applied to C++ nodes! Fixed, however,
|
||
by not allowing C++ class definitions to specify their parameters
|
||
with xdecls (must be spec.d in the parmlist).
|
||
|
||
Since we now wait to push a class scope until we are sure that
|
||
we are in a legitimate method context, we must set oldcname
|
||
explicitly (since current_class_name is not yet alive).
|
||
|
||
We also want to avoid calling this a PARM if it is in a namespace. */
|
||
|
||
if (decl_context == NORMAL && !toplevel_bindings_p ())
|
||
{
|
||
struct cp_binding_level *b = current_binding_level;
|
||
current_binding_level = b->level_chain;
|
||
if (current_binding_level != 0 && toplevel_bindings_p ())
|
||
decl_context = PARM;
|
||
current_binding_level = b;
|
||
}
|
||
|
||
if (name == NULL)
|
||
name = decl_context == PARM ? "parameter" : "type name";
|
||
|
||
/* Look through the decl specs and record which ones appear.
|
||
Some typespecs are defined as built-in typenames.
|
||
Others, the ones that are modifiers of other types,
|
||
are represented by bits in SPECBITS: set the bits for
|
||
the modifiers that appear. Storage class keywords are also in SPECBITS.
|
||
|
||
If there is a typedef name or a type, store the type in TYPE.
|
||
This includes builtin typedefs such as `int'.
|
||
|
||
Set EXPLICIT_INT if the type is `int' or `char' and did not
|
||
come from a user typedef.
|
||
|
||
Set LONGLONG if `long' is mentioned twice.
|
||
|
||
For C++, constructors and destructors have their own fast treatment. */
|
||
|
||
for (spec = declspecs; spec; spec = TREE_CHAIN (spec))
|
||
{
|
||
int i;
|
||
tree id;
|
||
|
||
/* Certain parse errors slip through. For example,
|
||
`int class;' is not caught by the parser. Try
|
||
weakly to recover here. */
|
||
if (TREE_CODE (spec) != TREE_LIST)
|
||
return 0;
|
||
|
||
id = TREE_VALUE (spec);
|
||
|
||
/* If the entire declaration is itself tagged as deprecated then
|
||
suppress reports of deprecated items. */
|
||
if (!adding_implicit_members && id && TREE_DEPRECATED (id))
|
||
{
|
||
if (deprecated_state != DEPRECATED_SUPPRESS)
|
||
warn_deprecated_use (id);
|
||
}
|
||
|
||
if (TREE_CODE (id) == IDENTIFIER_NODE)
|
||
{
|
||
if (id == ridpointers[(int) RID_INT]
|
||
|| id == ridpointers[(int) RID_CHAR]
|
||
|| id == ridpointers[(int) RID_BOOL]
|
||
|| id == ridpointers[(int) RID_WCHAR])
|
||
{
|
||
if (type)
|
||
{
|
||
if (id == ridpointers[(int) RID_BOOL])
|
||
error ("`bool' is now a keyword");
|
||
else
|
||
error ("extraneous `%T' ignored", id);
|
||
}
|
||
else
|
||
{
|
||
if (id == ridpointers[(int) RID_INT])
|
||
explicit_int = 1;
|
||
else if (id == ridpointers[(int) RID_CHAR])
|
||
explicit_char = 1;
|
||
type = TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (id));
|
||
}
|
||
goto found;
|
||
}
|
||
/* C++ aggregate types. */
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (id))
|
||
{
|
||
if (type)
|
||
error ("multiple declarations `%T' and `%T'", type, id);
|
||
else
|
||
type = IDENTIFIER_TYPE_VALUE (id);
|
||
goto found;
|
||
}
|
||
|
||
for (i = (int) RID_FIRST_MODIFIER; i <= (int) RID_LAST_MODIFIER; i++)
|
||
{
|
||
if (ridpointers[i] == id)
|
||
{
|
||
if (i == (int) RID_LONG && RIDBIT_SETP (i, specbits))
|
||
{
|
||
if (pedantic && ! in_system_header && warn_long_long)
|
||
pedwarn ("ISO C++ does not support `long long'");
|
||
if (longlong)
|
||
error ("`long long long' is too long for GCC");
|
||
else
|
||
longlong = 1;
|
||
}
|
||
else if (RIDBIT_SETP (i, specbits))
|
||
pedwarn ("duplicate `%s'", IDENTIFIER_POINTER (id));
|
||
|
||
/* Diagnose "__thread extern" or "__thread static". */
|
||
if (RIDBIT_SETP (RID_THREAD, specbits))
|
||
{
|
||
if (i == (int)RID_EXTERN)
|
||
error ("`__thread' before `extern'");
|
||
else if (i == (int)RID_STATIC)
|
||
error ("`__thread' before `static'");
|
||
}
|
||
|
||
if (i == (int)RID_EXTERN
|
||
&& TREE_PURPOSE (spec) == error_mark_node)
|
||
/* This extern was part of a language linkage. */
|
||
extern_langp = 1;
|
||
|
||
RIDBIT_SET (i, specbits);
|
||
goto found;
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (id) == TYPE_DECL)
|
||
{
|
||
if (type)
|
||
error ("multiple declarations `%T' and `%T'", type,
|
||
TREE_TYPE (id));
|
||
else
|
||
{
|
||
type = TREE_TYPE (id);
|
||
TREE_VALUE (spec) = type;
|
||
typedef_decl = id;
|
||
}
|
||
goto found;
|
||
}
|
||
if (type)
|
||
error ("two or more data types in declaration of `%s'", name);
|
||
else if (TREE_CODE (id) == IDENTIFIER_NODE)
|
||
{
|
||
tree t = lookup_name (id, 1);
|
||
if (!t || TREE_CODE (t) != TYPE_DECL)
|
||
error ("`%s' fails to be a typedef or built in type",
|
||
IDENTIFIER_POINTER (id));
|
||
else
|
||
{
|
||
type = TREE_TYPE (t);
|
||
typedef_decl = t;
|
||
}
|
||
}
|
||
else if (id != error_mark_node)
|
||
/* Can't change CLASS nodes into RECORD nodes here! */
|
||
type = id;
|
||
|
||
found: ;
|
||
}
|
||
|
||
#if 0
|
||
/* See the code below that used this. */
|
||
if (typedef_decl)
|
||
decl_attr = DECL_ATTRIBUTES (typedef_decl);
|
||
#endif
|
||
typedef_type = type;
|
||
|
||
/* No type at all: default to `int', and set DEFAULTED_INT
|
||
because it was not a user-defined typedef. */
|
||
|
||
if (type == NULL_TREE
|
||
&& (RIDBIT_SETP (RID_SIGNED, specbits)
|
||
|| RIDBIT_SETP (RID_UNSIGNED, specbits)
|
||
|| RIDBIT_SETP (RID_LONG, specbits)
|
||
|| RIDBIT_SETP (RID_SHORT, specbits)))
|
||
{
|
||
/* These imply 'int'. */
|
||
type = integer_type_node;
|
||
defaulted_int = 1;
|
||
}
|
||
|
||
if (sfk != sfk_none)
|
||
type = check_special_function_return_type (sfk, type,
|
||
ctor_return_type);
|
||
else if (type == NULL_TREE)
|
||
{
|
||
int is_main;
|
||
|
||
explicit_int = -1;
|
||
|
||
/* We handle `main' specially here, because 'main () { }' is so
|
||
common. With no options, it is allowed. With -Wreturn-type,
|
||
it is a warning. It is only an error with -pedantic-errors. */
|
||
is_main = (funcdef_flag
|
||
&& dname && MAIN_NAME_P (dname)
|
||
&& ctype == NULL_TREE
|
||
&& in_namespace == NULL_TREE
|
||
&& current_namespace == global_namespace);
|
||
|
||
if (in_system_header || flag_ms_extensions)
|
||
/* Allow it, sigh. */;
|
||
else if (pedantic || ! is_main)
|
||
pedwarn ("ISO C++ forbids declaration of `%s' with no type",
|
||
name);
|
||
else if (warn_return_type)
|
||
warning ("ISO C++ forbids declaration of `%s' with no type",
|
||
name);
|
||
|
||
type = integer_type_node;
|
||
}
|
||
|
||
ctype = NULL_TREE;
|
||
|
||
/* Now process the modifiers that were specified
|
||
and check for invalid combinations. */
|
||
|
||
/* Long double is a special combination. */
|
||
|
||
if (RIDBIT_SETP (RID_LONG, specbits)
|
||
&& TYPE_MAIN_VARIANT (type) == double_type_node)
|
||
{
|
||
RIDBIT_RESET (RID_LONG, specbits);
|
||
type = build_qualified_type (long_double_type_node,
|
||
cp_type_quals (type));
|
||
}
|
||
|
||
/* Check all other uses of type modifiers. */
|
||
|
||
if (RIDBIT_SETP (RID_UNSIGNED, specbits)
|
||
|| RIDBIT_SETP (RID_SIGNED, specbits)
|
||
|| RIDBIT_SETP (RID_LONG, specbits)
|
||
|| RIDBIT_SETP (RID_SHORT, specbits))
|
||
{
|
||
int ok = 0;
|
||
|
||
if (TREE_CODE (type) == REAL_TYPE)
|
||
error ("short, signed or unsigned invalid for `%s'", name);
|
||
else if (TREE_CODE (type) != INTEGER_TYPE)
|
||
error ("long, short, signed or unsigned invalid for `%s'", name);
|
||
else if (RIDBIT_SETP (RID_LONG, specbits)
|
||
&& RIDBIT_SETP (RID_SHORT, specbits))
|
||
error ("long and short specified together for `%s'", name);
|
||
else if ((RIDBIT_SETP (RID_LONG, specbits)
|
||
|| RIDBIT_SETP (RID_SHORT, specbits))
|
||
&& explicit_char)
|
||
error ("long or short specified with char for `%s'", name);
|
||
else if ((RIDBIT_SETP (RID_LONG, specbits)
|
||
|| RIDBIT_SETP (RID_SHORT, specbits))
|
||
&& TREE_CODE (type) == REAL_TYPE)
|
||
error ("long or short specified with floating type for `%s'", name);
|
||
else if (RIDBIT_SETP (RID_SIGNED, specbits)
|
||
&& RIDBIT_SETP (RID_UNSIGNED, specbits))
|
||
error ("signed and unsigned given together for `%s'", name);
|
||
else
|
||
{
|
||
ok = 1;
|
||
if (!explicit_int && !defaulted_int && !explicit_char && pedantic)
|
||
{
|
||
pedwarn ("long, short, signed or unsigned used invalidly for `%s'",
|
||
name);
|
||
if (flag_pedantic_errors)
|
||
ok = 0;
|
||
}
|
||
}
|
||
|
||
/* Discard the type modifiers if they are invalid. */
|
||
if (! ok)
|
||
{
|
||
RIDBIT_RESET (RID_UNSIGNED, specbits);
|
||
RIDBIT_RESET (RID_SIGNED, specbits);
|
||
RIDBIT_RESET (RID_LONG, specbits);
|
||
RIDBIT_RESET (RID_SHORT, specbits);
|
||
longlong = 0;
|
||
}
|
||
}
|
||
|
||
if (RIDBIT_SETP (RID_COMPLEX, specbits)
|
||
&& TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
|
||
{
|
||
error ("complex invalid for `%s'", name);
|
||
RIDBIT_RESET (RID_COMPLEX, specbits);
|
||
}
|
||
|
||
/* Decide whether an integer type is signed or not.
|
||
Optionally treat bitfields as signed by default. */
|
||
if (RIDBIT_SETP (RID_UNSIGNED, specbits)
|
||
/* [class.bit]
|
||
|
||
It is implementation-defined whether a plain (neither
|
||
explicitly signed or unsigned) char, short, int, or long
|
||
bit-field is signed or unsigned.
|
||
|
||
Naturally, we extend this to long long as well. Note that
|
||
this does not include wchar_t. */
|
||
|| (bitfield && !flag_signed_bitfields
|
||
&& RIDBIT_NOTSETP (RID_SIGNED, specbits)
|
||
/* A typedef for plain `int' without `signed' can be
|
||
controlled just like plain `int', but a typedef for
|
||
`signed int' cannot be so controlled. */
|
||
&& !(typedef_decl
|
||
&& C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))
|
||
&& (TREE_CODE (type) == INTEGER_TYPE
|
||
|| TREE_CODE (type) == CHAR_TYPE)
|
||
&& !same_type_p (TYPE_MAIN_VARIANT (type), wchar_type_node)))
|
||
{
|
||
if (longlong)
|
||
type = long_long_unsigned_type_node;
|
||
else if (RIDBIT_SETP (RID_LONG, specbits))
|
||
type = long_unsigned_type_node;
|
||
else if (RIDBIT_SETP (RID_SHORT, specbits))
|
||
type = short_unsigned_type_node;
|
||
else if (type == char_type_node)
|
||
type = unsigned_char_type_node;
|
||
else if (typedef_decl)
|
||
type = c_common_unsigned_type (type);
|
||
else
|
||
type = unsigned_type_node;
|
||
}
|
||
else if (RIDBIT_SETP (RID_SIGNED, specbits)
|
||
&& type == char_type_node)
|
||
type = signed_char_type_node;
|
||
else if (longlong)
|
||
type = long_long_integer_type_node;
|
||
else if (RIDBIT_SETP (RID_LONG, specbits))
|
||
type = long_integer_type_node;
|
||
else if (RIDBIT_SETP (RID_SHORT, specbits))
|
||
type = short_integer_type_node;
|
||
|
||
if (RIDBIT_SETP (RID_COMPLEX, specbits))
|
||
{
|
||
/* If we just have "complex", it is equivalent to
|
||
"complex double", but if any modifiers at all are specified it is
|
||
the complex form of TYPE. E.g, "complex short" is
|
||
"complex short int". */
|
||
|
||
if (defaulted_int && ! longlong
|
||
&& ! (RIDBIT_SETP (RID_LONG, specbits)
|
||
|| RIDBIT_SETP (RID_SHORT, specbits)
|
||
|| RIDBIT_SETP (RID_SIGNED, specbits)
|
||
|| RIDBIT_SETP (RID_UNSIGNED, specbits)))
|
||
type = complex_double_type_node;
|
||
else if (type == integer_type_node)
|
||
type = complex_integer_type_node;
|
||
else if (type == float_type_node)
|
||
type = complex_float_type_node;
|
||
else if (type == double_type_node)
|
||
type = complex_double_type_node;
|
||
else if (type == long_double_type_node)
|
||
type = complex_long_double_type_node;
|
||
else
|
||
type = build_complex_type (type);
|
||
}
|
||
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
if (RIDBIT_SETP (RID_CONST, specbits))
|
||
type_quals |= TYPE_QUAL_CONST;
|
||
if (RIDBIT_SETP (RID_VOLATILE, specbits))
|
||
type_quals |= TYPE_QUAL_VOLATILE;
|
||
if (RIDBIT_SETP (RID_RESTRICT, specbits))
|
||
type_quals |= TYPE_QUAL_RESTRICT;
|
||
if (sfk == sfk_conversion && type_quals != TYPE_UNQUALIFIED)
|
||
error ("qualifiers are not allowed on declaration of `operator %T'",
|
||
ctor_return_type);
|
||
|
||
type_quals |= cp_type_quals (type);
|
||
type = cp_build_qualified_type_real
|
||
(type, type_quals, ((typedef_decl && !DECL_ARTIFICIAL (typedef_decl)
|
||
? tf_ignore_bad_quals : 0) | tf_error | tf_warning));
|
||
/* We might have ignored or rejected some of the qualifiers. */
|
||
type_quals = cp_type_quals (type);
|
||
|
||
staticp = 0;
|
||
inlinep = !! RIDBIT_SETP (RID_INLINE, specbits);
|
||
virtualp = RIDBIT_SETP (RID_VIRTUAL, specbits);
|
||
RIDBIT_RESET (RID_VIRTUAL, specbits);
|
||
explicitp = RIDBIT_SETP (RID_EXPLICIT, specbits) != 0;
|
||
RIDBIT_RESET (RID_EXPLICIT, specbits);
|
||
|
||
if (RIDBIT_SETP (RID_STATIC, specbits))
|
||
staticp = 1 + (decl_context == FIELD);
|
||
|
||
if (virtualp && staticp == 2)
|
||
{
|
||
error ("member `%D' cannot be declared both virtual and static",
|
||
dname);
|
||
staticp = 0;
|
||
}
|
||
friendp = RIDBIT_SETP (RID_FRIEND, specbits);
|
||
RIDBIT_RESET (RID_FRIEND, specbits);
|
||
|
||
if (dependant_name && !friendp)
|
||
{
|
||
error ("`%T::%D' is not a valid declarator", ctype, dependant_name);
|
||
return void_type_node;
|
||
}
|
||
|
||
/* Warn if two storage classes are given. Default to `auto'. */
|
||
|
||
if (RIDBIT_ANY_SET (specbits))
|
||
{
|
||
if (RIDBIT_SETP (RID_STATIC, specbits)) nclasses++;
|
||
if (RIDBIT_SETP (RID_EXTERN, specbits) && !extern_langp) nclasses++;
|
||
if (RIDBIT_SETP (RID_THREAD, specbits)) nclasses++;
|
||
if (decl_context == PARM && nclasses > 0)
|
||
error ("storage class specifiers invalid in parameter declarations");
|
||
if (RIDBIT_SETP (RID_TYPEDEF, specbits))
|
||
{
|
||
if (decl_context == PARM)
|
||
error ("typedef declaration invalid in parameter declaration");
|
||
nclasses++;
|
||
}
|
||
if (RIDBIT_SETP (RID_AUTO, specbits)) nclasses++;
|
||
if (RIDBIT_SETP (RID_REGISTER, specbits)) nclasses++;
|
||
if (!nclasses && !friendp && extern_langp)
|
||
nclasses++;
|
||
}
|
||
|
||
/* Give error if `virtual' is used outside of class declaration. */
|
||
if (virtualp
|
||
&& (current_class_name == NULL_TREE || decl_context != FIELD))
|
||
{
|
||
error ("virtual outside class declaration");
|
||
virtualp = 0;
|
||
}
|
||
|
||
/* Static anonymous unions are dealt with here. */
|
||
if (staticp && decl_context == TYPENAME
|
||
&& TREE_CODE (declspecs) == TREE_LIST
|
||
&& ANON_AGGR_TYPE_P (TREE_VALUE (declspecs)))
|
||
decl_context = FIELD;
|
||
|
||
/* Warn about storage classes that are invalid for certain
|
||
kinds of declarations (parameters, typenames, etc.). */
|
||
|
||
/* "static __thread" and "extern __thread" are allowed. */
|
||
if (nclasses == 2
|
||
&& RIDBIT_SETP (RID_THREAD, specbits)
|
||
&& (RIDBIT_SETP (RID_EXTERN, specbits)
|
||
|| RIDBIT_SETP (RID_STATIC, specbits)))
|
||
nclasses = 1;
|
||
|
||
if (nclasses > 1)
|
||
error ("multiple storage classes in declaration of `%s'", name);
|
||
else if (decl_context != NORMAL && nclasses > 0)
|
||
{
|
||
if ((decl_context == PARM || decl_context == CATCHPARM)
|
||
&& (RIDBIT_SETP (RID_REGISTER, specbits)
|
||
|| RIDBIT_SETP (RID_AUTO, specbits)))
|
||
;
|
||
else if (RIDBIT_SETP (RID_TYPEDEF, specbits))
|
||
;
|
||
else if (decl_context == FIELD
|
||
/* C++ allows static class elements. */
|
||
&& RIDBIT_SETP (RID_STATIC, specbits))
|
||
/* C++ also allows inlines and signed and unsigned elements,
|
||
but in those cases we don't come in here. */
|
||
;
|
||
else
|
||
{
|
||
if (decl_context == FIELD)
|
||
{
|
||
tree tmp = NULL_TREE;
|
||
int op = 0;
|
||
|
||
if (declarator)
|
||
{
|
||
/* Avoid trying to get an operand off an identifier node. */
|
||
if (TREE_CODE (declarator) == IDENTIFIER_NODE)
|
||
tmp = declarator;
|
||
else
|
||
tmp = TREE_OPERAND (declarator, 0);
|
||
op = IDENTIFIER_OPNAME_P (tmp);
|
||
if (IDENTIFIER_TYPENAME_P (tmp))
|
||
{
|
||
if (is_typename_at_global_scope (tmp))
|
||
name = IDENTIFIER_POINTER (tmp);
|
||
else
|
||
name = "<invalid operator>";
|
||
}
|
||
}
|
||
error ("storage class specified for %s `%s'",
|
||
op ? "member operator" : "field",
|
||
name);
|
||
}
|
||
else
|
||
{
|
||
if (decl_context == PARM || decl_context == CATCHPARM)
|
||
error ("storage class specified for parameter `%s'", name);
|
||
else
|
||
error ("storage class specified for typename");
|
||
}
|
||
RIDBIT_RESET (RID_REGISTER, specbits);
|
||
RIDBIT_RESET (RID_AUTO, specbits);
|
||
RIDBIT_RESET (RID_EXTERN, specbits);
|
||
RIDBIT_RESET (RID_THREAD, specbits);
|
||
}
|
||
}
|
||
else if (RIDBIT_SETP (RID_EXTERN, specbits) && initialized && !funcdef_flag)
|
||
{
|
||
if (toplevel_bindings_p ())
|
||
{
|
||
/* It's common practice (and completely valid) to have a const
|
||
be initialized and declared extern. */
|
||
if (!(type_quals & TYPE_QUAL_CONST))
|
||
warning ("`%s' initialized and declared `extern'", name);
|
||
}
|
||
else
|
||
error ("`%s' has both `extern' and initializer", name);
|
||
}
|
||
else if (RIDBIT_SETP (RID_EXTERN, specbits) && funcdef_flag
|
||
&& ! toplevel_bindings_p ())
|
||
error ("nested function `%s' declared `extern'", name);
|
||
else if (toplevel_bindings_p ())
|
||
{
|
||
if (RIDBIT_SETP (RID_AUTO, specbits))
|
||
error ("top-level declaration of `%s' specifies `auto'", name);
|
||
}
|
||
else if (RIDBIT_SETP (RID_THREAD, specbits)
|
||
&& !RIDBIT_SETP (RID_EXTERN, specbits)
|
||
&& !RIDBIT_SETP (RID_STATIC, specbits))
|
||
{
|
||
error ("function-scope `%s' implicitly auto and declared `__thread'",
|
||
name);
|
||
RIDBIT_RESET (RID_THREAD, specbits);
|
||
}
|
||
|
||
if (nclasses > 0 && friendp)
|
||
error ("storage class specifiers invalid in friend function declarations");
|
||
|
||
scope = get_scope_of_declarator (declarator);
|
||
|
||
/* Now figure out the structure of the declarator proper.
|
||
Descend through it, creating more complex types, until we reach
|
||
the declared identifier (or NULL_TREE, in an abstract declarator). */
|
||
|
||
while (declarator && TREE_CODE (declarator) != IDENTIFIER_NODE
|
||
&& TREE_CODE (declarator) != TEMPLATE_ID_EXPR)
|
||
{
|
||
/* Each level of DECLARATOR is either an ARRAY_REF (for ...[..]),
|
||
an INDIRECT_REF (for *...),
|
||
a CALL_EXPR (for ...(...)),
|
||
an identifier (for the name being declared)
|
||
or a null pointer (for the place in an absolute declarator
|
||
where the name was omitted).
|
||
For the last two cases, we have just exited the loop.
|
||
|
||
For C++ it could also be
|
||
a SCOPE_REF (for class :: ...). In this case, we have converted
|
||
sensible names to types, and those are the values we use to
|
||
qualify the member name.
|
||
an ADDR_EXPR (for &...),
|
||
a BIT_NOT_EXPR (for destructors)
|
||
|
||
At this point, TYPE is the type of elements of an array,
|
||
or for a function to return, or for a pointer to point to.
|
||
After this sequence of ifs, TYPE is the type of the
|
||
array or function or pointer, and DECLARATOR has had its
|
||
outermost layer removed. */
|
||
|
||
if (type == error_mark_node)
|
||
{
|
||
if (declarator == error_mark_node)
|
||
return error_mark_node;
|
||
else if (TREE_CODE (declarator) == SCOPE_REF)
|
||
declarator = TREE_OPERAND (declarator, 1);
|
||
else
|
||
declarator = TREE_OPERAND (declarator, 0);
|
||
continue;
|
||
}
|
||
if (quals != NULL_TREE
|
||
&& (declarator == NULL_TREE
|
||
|| TREE_CODE (declarator) != SCOPE_REF))
|
||
{
|
||
if (ctype == NULL_TREE && TREE_CODE (type) == METHOD_TYPE)
|
||
ctype = TYPE_METHOD_BASETYPE (type);
|
||
if (ctype != NULL_TREE)
|
||
{
|
||
tree dummy = build_decl (TYPE_DECL, NULL_TREE, type);
|
||
grok_method_quals (ctype, dummy, quals);
|
||
type = TREE_TYPE (dummy);
|
||
quals = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
switch (TREE_CODE (declarator))
|
||
{
|
||
case TREE_LIST:
|
||
{
|
||
/* We encode a declarator with embedded attributes using
|
||
a TREE_LIST. */
|
||
tree attrs = TREE_PURPOSE (declarator);
|
||
tree inner_decl;
|
||
int attr_flags;
|
||
|
||
declarator = TREE_VALUE (declarator);
|
||
inner_decl = declarator;
|
||
while (inner_decl != NULL_TREE
|
||
&& TREE_CODE (inner_decl) == TREE_LIST)
|
||
inner_decl = TREE_VALUE (inner_decl);
|
||
attr_flags = 0;
|
||
if (inner_decl == NULL_TREE
|
||
|| TREE_CODE (inner_decl) == IDENTIFIER_NODE)
|
||
attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
|
||
if (TREE_CODE (inner_decl) == CALL_EXPR)
|
||
attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
|
||
if (TREE_CODE (inner_decl) == ARRAY_REF)
|
||
attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
|
||
returned_attrs = decl_attributes (&type,
|
||
chainon (returned_attrs, attrs),
|
||
attr_flags);
|
||
}
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
{
|
||
tree size = TREE_OPERAND (declarator, 1);
|
||
declarator = TREE_OPERAND (declarator, 0);
|
||
|
||
type = create_array_type_for_decl (dname, type, size);
|
||
|
||
ctype = NULL_TREE;
|
||
}
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
{
|
||
tree arg_types;
|
||
int funcdecl_p;
|
||
tree inner_parms = CALL_DECLARATOR_PARMS (declarator);
|
||
tree inner_decl = TREE_OPERAND (declarator, 0);
|
||
|
||
/* Declaring a function type.
|
||
Make sure we have a valid type for the function to return. */
|
||
|
||
/* We now know that the TYPE_QUALS don't apply to the
|
||
decl, but to its return type. */
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
|
||
/* Warn about some types functions can't return. */
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("`%s' declared as function returning a function", name);
|
||
type = integer_type_node;
|
||
}
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
error ("`%s' declared as function returning an array", name);
|
||
type = integer_type_node;
|
||
}
|
||
|
||
if (inner_decl && TREE_CODE (inner_decl) == SCOPE_REF)
|
||
inner_decl = TREE_OPERAND (inner_decl, 1);
|
||
|
||
if (inner_decl && TREE_CODE (inner_decl) == TEMPLATE_ID_EXPR)
|
||
inner_decl = dname;
|
||
|
||
/* Pick up type qualifiers which should be applied to `this'. */
|
||
quals = CALL_DECLARATOR_QUALS (declarator);
|
||
|
||
/* Pick up the exception specifications. */
|
||
raises = CALL_DECLARATOR_EXCEPTION_SPEC (declarator);
|
||
|
||
/* Say it's a definition only for the CALL_EXPR
|
||
closest to the identifier. */
|
||
funcdecl_p
|
||
= inner_decl
|
||
&& (TREE_CODE (inner_decl) == IDENTIFIER_NODE
|
||
|| TREE_CODE (inner_decl) == TEMPLATE_ID_EXPR
|
||
|| TREE_CODE (inner_decl) == BIT_NOT_EXPR);
|
||
|
||
if (ctype == NULL_TREE
|
||
&& decl_context == FIELD
|
||
&& funcdecl_p
|
||
&& (friendp == 0 || dname == current_class_name))
|
||
ctype = current_class_type;
|
||
|
||
if (ctype && sfk == sfk_conversion)
|
||
TYPE_HAS_CONVERSION (ctype) = 1;
|
||
if (ctype && constructor_name_p (dname, ctype))
|
||
{
|
||
/* We are within a class's scope. If our declarator name
|
||
is the same as the class name, and we are defining
|
||
a function, then it is a constructor/destructor, and
|
||
therefore returns a void type. */
|
||
|
||
if (flags == DTOR_FLAG)
|
||
{
|
||
/* ISO C++ 12.4/2. A destructor may not be
|
||
declared const or volatile. A destructor may
|
||
not be static. */
|
||
if (staticp == 2)
|
||
error ("destructor cannot be static member function");
|
||
if (quals)
|
||
{
|
||
error ("destructors may not be `%s'",
|
||
IDENTIFIER_POINTER (TREE_VALUE (quals)));
|
||
quals = NULL_TREE;
|
||
}
|
||
if (decl_context == FIELD)
|
||
{
|
||
if (! member_function_or_else (ctype,
|
||
current_class_type,
|
||
flags))
|
||
return void_type_node;
|
||
}
|
||
}
|
||
else /* It's a constructor. */
|
||
{
|
||
if (explicitp == 1)
|
||
explicitp = 2;
|
||
/* ISO C++ 12.1. A constructor may not be
|
||
declared const or volatile. A constructor may
|
||
not be virtual. A constructor may not be
|
||
static. */
|
||
if (staticp == 2)
|
||
error ("constructor cannot be static member function");
|
||
if (virtualp)
|
||
{
|
||
pedwarn ("constructors cannot be declared virtual");
|
||
virtualp = 0;
|
||
}
|
||
if (quals)
|
||
{
|
||
error ("constructors may not be `%s'",
|
||
IDENTIFIER_POINTER (TREE_VALUE (quals)));
|
||
quals = NULL_TREE;
|
||
}
|
||
{
|
||
RID_BIT_TYPE tmp_bits;
|
||
memcpy (&tmp_bits, &specbits, sizeof (RID_BIT_TYPE));
|
||
RIDBIT_RESET (RID_INLINE, tmp_bits);
|
||
RIDBIT_RESET (RID_STATIC, tmp_bits);
|
||
if (RIDBIT_ANY_SET (tmp_bits))
|
||
error ("return value type specifier for constructor ignored");
|
||
}
|
||
if (decl_context == FIELD)
|
||
{
|
||
if (! member_function_or_else (ctype,
|
||
current_class_type,
|
||
flags))
|
||
return void_type_node;
|
||
TYPE_HAS_CONSTRUCTOR (ctype) = 1;
|
||
if (sfk != sfk_constructor)
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
if (decl_context == FIELD)
|
||
staticp = 0;
|
||
}
|
||
else if (friendp)
|
||
{
|
||
if (initialized)
|
||
error ("can't initialize friend function `%s'", name);
|
||
if (virtualp)
|
||
{
|
||
/* Cannot be both friend and virtual. */
|
||
error ("virtual functions cannot be friends");
|
||
RIDBIT_RESET (RID_FRIEND, specbits);
|
||
friendp = 0;
|
||
}
|
||
if (decl_context == NORMAL)
|
||
error ("friend declaration not in class definition");
|
||
if (current_function_decl && funcdef_flag)
|
||
error ("can't define friend function `%s' in a local class definition",
|
||
name);
|
||
}
|
||
|
||
/* Construct the function type and go to the next
|
||
inner layer of declarator. */
|
||
|
||
declarator = TREE_OPERAND (declarator, 0);
|
||
|
||
arg_types = grokparms (inner_parms, &parms);
|
||
|
||
if (declarator && flags == DTOR_FLAG)
|
||
{
|
||
/* A destructor declared in the body of a class will
|
||
be represented as a BIT_NOT_EXPR. But, we just
|
||
want the underlying IDENTIFIER. */
|
||
if (TREE_CODE (declarator) == BIT_NOT_EXPR)
|
||
declarator = TREE_OPERAND (declarator, 0);
|
||
|
||
if (arg_types != void_list_node)
|
||
{
|
||
error ("destructors may not have parameters");
|
||
arg_types = void_list_node;
|
||
parms = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* ANSI says that `const int foo ();'
|
||
does not make the function foo const. */
|
||
type = build_function_type (type, arg_types);
|
||
}
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
case INDIRECT_REF:
|
||
/* Filter out pointers-to-references and references-to-references.
|
||
We can get these if a TYPE_DECL is used. */
|
||
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
error (TREE_CODE (declarator) == ADDR_EXPR
|
||
? "cannot declare reference to `%#T'"
|
||
: "cannot declare pointer to `%#T'", type);
|
||
type = TREE_TYPE (type);
|
||
}
|
||
else if (VOID_TYPE_P (type)
|
||
&& (ctype || TREE_CODE (declarator) == ADDR_EXPR))
|
||
error (ctype ? "cannot declare pointer to `%#T' member"
|
||
: "cannot declare reference to `%#T'", type);
|
||
|
||
/* Merge any constancy or volatility into the target type
|
||
for the pointer. */
|
||
|
||
/* We now know that the TYPE_QUALS don't apply to the decl,
|
||
but to the target of the pointer. */
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
|
||
if (TREE_CODE (declarator) == ADDR_EXPR)
|
||
{
|
||
if (!VOID_TYPE_P (type))
|
||
type = build_reference_type (type);
|
||
}
|
||
else if (TREE_CODE (type) == METHOD_TYPE)
|
||
type = build_ptrmemfunc_type (build_pointer_type (type));
|
||
else if (ctype)
|
||
type = build_ptrmem_type (ctype, type);
|
||
else
|
||
type = build_pointer_type (type);
|
||
|
||
/* Process a list of type modifier keywords (such as
|
||
const or volatile) that were given inside the `*' or `&'. */
|
||
|
||
if (TREE_TYPE (declarator))
|
||
{
|
||
tree typemodlist;
|
||
int erred = 0;
|
||
int constp = 0;
|
||
int volatilep = 0;
|
||
int restrictp = 0;
|
||
|
||
for (typemodlist = TREE_TYPE (declarator); typemodlist;
|
||
typemodlist = TREE_CHAIN (typemodlist))
|
||
{
|
||
tree qualifier = TREE_VALUE (typemodlist);
|
||
|
||
if (qualifier == ridpointers[(int) RID_CONST])
|
||
{
|
||
constp++;
|
||
type_quals |= TYPE_QUAL_CONST;
|
||
}
|
||
else if (qualifier == ridpointers[(int) RID_VOLATILE])
|
||
{
|
||
volatilep++;
|
||
type_quals |= TYPE_QUAL_VOLATILE;
|
||
}
|
||
else if (qualifier == ridpointers[(int) RID_RESTRICT])
|
||
{
|
||
restrictp++;
|
||
type_quals |= TYPE_QUAL_RESTRICT;
|
||
}
|
||
else if (!erred)
|
||
{
|
||
erred = 1;
|
||
error ("invalid type modifier within pointer declarator");
|
||
}
|
||
}
|
||
if (constp > 1)
|
||
pedwarn ("duplicate `const'");
|
||
if (volatilep > 1)
|
||
pedwarn ("duplicate `volatile'");
|
||
if (restrictp > 1)
|
||
pedwarn ("duplicate `restrict'");
|
||
type = cp_build_qualified_type (type, type_quals);
|
||
type_quals = cp_type_quals (type);
|
||
}
|
||
declarator = TREE_OPERAND (declarator, 0);
|
||
ctype = NULL_TREE;
|
||
break;
|
||
|
||
case SCOPE_REF:
|
||
{
|
||
/* We have converted type names to NULL_TREE if the
|
||
name was bogus, or to a _TYPE node, if not.
|
||
|
||
The variable CTYPE holds the type we will ultimately
|
||
resolve to. The code here just needs to build
|
||
up appropriate member types. */
|
||
tree sname = TREE_OPERAND (declarator, 1);
|
||
tree t;
|
||
|
||
/* Destructors can have their visibilities changed as well. */
|
||
if (TREE_CODE (sname) == BIT_NOT_EXPR)
|
||
sname = TREE_OPERAND (sname, 0);
|
||
|
||
if (TREE_OPERAND (declarator, 0) == NULL_TREE)
|
||
{
|
||
/* We had a reference to a global decl, or
|
||
perhaps we were given a non-aggregate typedef,
|
||
in which case we cleared this out, and should just
|
||
keep going as though it wasn't there. */
|
||
declarator = sname;
|
||
continue;
|
||
}
|
||
ctype = TREE_OPERAND (declarator, 0);
|
||
|
||
t = ctype;
|
||
if (TREE_CODE (TREE_OPERAND (declarator, 1)) != INDIRECT_REF)
|
||
while (t != NULL_TREE && CLASS_TYPE_P (t))
|
||
{
|
||
/* You're supposed to have one `template <...>'
|
||
for every template class, but you don't need one
|
||
for a full specialization. For example:
|
||
|
||
template <class T> struct S{};
|
||
template <> struct S<int> { void f(); };
|
||
void S<int>::f () {}
|
||
|
||
is correct; there shouldn't be a `template <>' for
|
||
the definition of `S<int>::f'. */
|
||
if (CLASSTYPE_TEMPLATE_INFO (t)
|
||
&& (CLASSTYPE_TEMPLATE_INSTANTIATION (t)
|
||
|| uses_template_parms (CLASSTYPE_TI_ARGS (t)))
|
||
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (t)))
|
||
template_count += 1;
|
||
|
||
t = TYPE_MAIN_DECL (t);
|
||
t = DECL_CONTEXT (t);
|
||
}
|
||
|
||
if (sname == NULL_TREE)
|
||
goto done_scoping;
|
||
|
||
if (TREE_CODE (sname) == IDENTIFIER_NODE)
|
||
{
|
||
/* This is the `standard' use of the scoping operator:
|
||
basetype :: member . */
|
||
|
||
if (ctype == current_class_type)
|
||
{
|
||
/* class A {
|
||
void A::f ();
|
||
};
|
||
|
||
Is this ill-formed? */
|
||
|
||
if (pedantic)
|
||
pedwarn ("extra qualification `%T::' on member `%s' ignored",
|
||
ctype, name);
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
if (NEW_DELETE_OPNAME_P (sname))
|
||
/* Overloaded operator new and operator delete
|
||
are always static functions. */
|
||
;
|
||
else if (current_class_type == NULL_TREE || friendp)
|
||
type
|
||
= build_method_type_directly (ctype,
|
||
TREE_TYPE (type),
|
||
TYPE_ARG_TYPES (type));
|
||
else
|
||
{
|
||
error ("cannot declare member function `%T::%s' within `%T'",
|
||
ctype, name, current_class_type);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else if (RIDBIT_SETP (RID_TYPEDEF, specbits)
|
||
|| COMPLETE_TYPE_P (complete_type (ctype)))
|
||
{
|
||
/* Have to move this code elsewhere in this function.
|
||
this code is used for i.e., typedef int A::M; M *pm;
|
||
|
||
It is? How? jason 10/2/94 */
|
||
|
||
if (current_class_type)
|
||
{
|
||
error ("cannot declare member `%T::%s' within `%T'",
|
||
ctype, name, current_class_type);
|
||
return void_type_node;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
cxx_incomplete_type_error (NULL_TREE, ctype);
|
||
return error_mark_node;
|
||
}
|
||
|
||
declarator = sname;
|
||
}
|
||
else if (TREE_CODE (sname) == SCOPE_REF)
|
||
abort ();
|
||
else
|
||
{
|
||
done_scoping:
|
||
declarator = TREE_OPERAND (declarator, 1);
|
||
if (declarator && TREE_CODE (declarator) == CALL_EXPR)
|
||
/* In this case, we will deal with it later. */
|
||
;
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
type = build_method_type_directly (ctype,
|
||
TREE_TYPE (type),
|
||
TYPE_ARG_TYPES (type));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case BIT_NOT_EXPR:
|
||
declarator = TREE_OPERAND (declarator, 0);
|
||
break;
|
||
|
||
case BASELINK:
|
||
declarator = BASELINK_FUNCTIONS (declarator);
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
declarator = NULL_TREE;
|
||
break;
|
||
|
||
case ERROR_MARK:
|
||
declarator = NULL_TREE;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
if (returned_attrs)
|
||
{
|
||
if (attrlist)
|
||
*attrlist = chainon (returned_attrs, *attrlist);
|
||
else
|
||
attrlist = &returned_attrs;
|
||
}
|
||
|
||
/* Now TYPE has the actual type. */
|
||
|
||
/* Did array size calculations overflow? */
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& COMPLETE_TYPE_P (type)
|
||
&& TREE_OVERFLOW (TYPE_SIZE (type)))
|
||
{
|
||
error ("size of array `%s' is too large", name);
|
||
/* If we proceed with the array type as it is, we'll eventually
|
||
crash in tree_low_cst(). */
|
||
type = error_mark_node;
|
||
}
|
||
|
||
if ((decl_context == FIELD || decl_context == PARM)
|
||
&& !processing_template_decl
|
||
&& variably_modified_type_p (type))
|
||
{
|
||
if (decl_context == FIELD)
|
||
error ("data member may not have variably modified type `%T'", type);
|
||
else
|
||
error ("parameter may not have variably modified type `%T'", type);
|
||
type = error_mark_node;
|
||
}
|
||
|
||
if (explicitp == 1 || (explicitp && friendp))
|
||
{
|
||
/* [dcl.fct.spec] The explicit specifier shall only be used in
|
||
declarations of constructors within a class definition. */
|
||
error ("only declarations of constructors can be `explicit'");
|
||
explicitp = 0;
|
||
}
|
||
|
||
if (RIDBIT_SETP (RID_MUTABLE, specbits))
|
||
{
|
||
if (decl_context != FIELD || friendp)
|
||
{
|
||
error ("non-member `%s' cannot be declared `mutable'", name);
|
||
RIDBIT_RESET (RID_MUTABLE, specbits);
|
||
}
|
||
else if (decl_context == TYPENAME || RIDBIT_SETP (RID_TYPEDEF, specbits))
|
||
{
|
||
error ("non-object member `%s' cannot be declared `mutable'", name);
|
||
RIDBIT_RESET (RID_MUTABLE, specbits);
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
error ("function `%s' cannot be declared `mutable'", name);
|
||
RIDBIT_RESET (RID_MUTABLE, specbits);
|
||
}
|
||
else if (staticp)
|
||
{
|
||
error ("static `%s' cannot be declared `mutable'", name);
|
||
RIDBIT_RESET (RID_MUTABLE, specbits);
|
||
}
|
||
else if (type_quals & TYPE_QUAL_CONST)
|
||
{
|
||
error ("const `%s' cannot be declared `mutable'", name);
|
||
RIDBIT_RESET (RID_MUTABLE, specbits);
|
||
}
|
||
}
|
||
|
||
if (declarator == NULL_TREE
|
||
|| TREE_CODE (declarator) == IDENTIFIER_NODE
|
||
|| (TREE_CODE (declarator) == TEMPLATE_ID_EXPR
|
||
&& (TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE)))
|
||
/* OK */;
|
||
else if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
|
||
{
|
||
error ("template-id `%D' used as a declarator", declarator);
|
||
declarator = dname;
|
||
}
|
||
else
|
||
/* Unexpected declarator format. */
|
||
abort ();
|
||
|
||
/* If this is declaring a typedef name, return a TYPE_DECL. */
|
||
|
||
if (RIDBIT_SETP (RID_TYPEDEF, specbits) && decl_context != TYPENAME)
|
||
{
|
||
tree decl;
|
||
|
||
/* Note that the grammar rejects storage classes
|
||
in typenames, fields or parameters. */
|
||
if (current_lang_name == lang_name_java)
|
||
TYPE_FOR_JAVA (type) = 1;
|
||
|
||
if (decl_context == FIELD)
|
||
{
|
||
if (constructor_name_p (declarator, current_class_type))
|
||
pedwarn ("ISO C++ forbids nested type `%D' with same name as enclosing class",
|
||
declarator);
|
||
decl = build_lang_decl (TYPE_DECL, declarator, type);
|
||
}
|
||
else
|
||
{
|
||
decl = build_decl (TYPE_DECL, declarator, type);
|
||
if (in_namespace || ctype)
|
||
error ("%Jtypedef name may not be a nested-name-specifier", decl);
|
||
if (!current_function_decl)
|
||
DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
|
||
}
|
||
|
||
/* If the user declares "typedef struct {...} foo" then the
|
||
struct will have an anonymous name. Fill that name in now.
|
||
Nothing can refer to it, so nothing needs know about the name
|
||
change. */
|
||
if (type != error_mark_node
|
||
&& declarator
|
||
&& TYPE_NAME (type)
|
||
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& TYPE_ANONYMOUS_P (type)
|
||
/* Don't do this if there are attributes. */
|
||
&& (!attrlist || !*attrlist)
|
||
&& cp_type_quals (type) == TYPE_UNQUALIFIED)
|
||
{
|
||
tree oldname = TYPE_NAME (type);
|
||
tree t;
|
||
|
||
/* Replace the anonymous name with the real name everywhere. */
|
||
lookup_tag_reverse (type, declarator);
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (TYPE_NAME (t) == oldname)
|
||
TYPE_NAME (t) = decl;
|
||
|
||
if (TYPE_LANG_SPECIFIC (type))
|
||
TYPE_WAS_ANONYMOUS (type) = 1;
|
||
|
||
/* If this is a typedef within a template class, the nested
|
||
type is a (non-primary) template. The name for the
|
||
template needs updating as well. */
|
||
if (TYPE_LANG_SPECIFIC (type) && CLASSTYPE_TEMPLATE_INFO (type))
|
||
DECL_NAME (CLASSTYPE_TI_TEMPLATE (type))
|
||
= TYPE_IDENTIFIER (type);
|
||
|
||
/* FIXME remangle member functions; member functions of a
|
||
type with external linkage have external linkage. */
|
||
}
|
||
|
||
if (quals)
|
||
{
|
||
if (ctype == NULL_TREE)
|
||
{
|
||
if (TREE_CODE (type) != METHOD_TYPE)
|
||
error ("%Jinvalid type qualifier for non-member function type",
|
||
decl);
|
||
else
|
||
ctype = TYPE_METHOD_BASETYPE (type);
|
||
}
|
||
if (ctype != NULL_TREE)
|
||
grok_method_quals (ctype, decl, quals);
|
||
}
|
||
|
||
if (RIDBIT_SETP (RID_SIGNED, specbits)
|
||
|| (typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl)))
|
||
C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1;
|
||
|
||
bad_specifiers (decl, "type", virtualp, quals != NULL_TREE,
|
||
inlinep, friendp, raises != NULL_TREE);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Detect the case of an array type of unspecified size
|
||
which came, as such, direct from a typedef name.
|
||
We must copy the type, so that the array's domain can be
|
||
individually set by the object's initializer. */
|
||
|
||
if (type && typedef_type
|
||
&& TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type)
|
||
&& TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (typedef_type))
|
||
type = build_cplus_array_type (TREE_TYPE (type), NULL_TREE);
|
||
|
||
/* Detect where we're using a typedef of function type to declare a
|
||
function. PARMS will not be set, so we must create it now. */
|
||
|
||
if (type == typedef_type && TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
tree decls = NULL_TREE;
|
||
tree args;
|
||
|
||
for (args = TYPE_ARG_TYPES (type); args; args = TREE_CHAIN (args))
|
||
{
|
||
tree decl = cp_build_parm_decl (NULL_TREE, TREE_VALUE (args));
|
||
|
||
TREE_CHAIN (decl) = decls;
|
||
decls = decl;
|
||
}
|
||
|
||
parms = nreverse (decls);
|
||
}
|
||
|
||
/* If this is a type name (such as, in a cast or sizeof),
|
||
compute the type and return it now. */
|
||
|
||
if (decl_context == TYPENAME)
|
||
{
|
||
/* Note that the grammar rejects storage classes
|
||
in typenames, fields or parameters. */
|
||
if (type_quals != TYPE_UNQUALIFIED)
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
|
||
/* Special case: "friend class foo" looks like a TYPENAME context. */
|
||
if (friendp)
|
||
{
|
||
if (type_quals != TYPE_UNQUALIFIED)
|
||
{
|
||
error ("type qualifiers specified for friend class declaration");
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
}
|
||
if (inlinep)
|
||
{
|
||
error ("`inline' specified for friend class declaration");
|
||
inlinep = 0;
|
||
}
|
||
|
||
if (!current_aggr)
|
||
{
|
||
/* Don't allow friend declaration without a class-key. */
|
||
if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
|
||
pedwarn ("template parameters cannot be friends");
|
||
else if (TREE_CODE (type) == TYPENAME_TYPE)
|
||
pedwarn ("friend declaration requires class-key, "
|
||
"i.e. `friend class %T::%D'",
|
||
TYPE_CONTEXT (type), TYPENAME_TYPE_FULLNAME (type));
|
||
else
|
||
pedwarn ("friend declaration requires class-key, "
|
||
"i.e. `friend %#T'",
|
||
type);
|
||
}
|
||
|
||
/* Only try to do this stuff if we didn't already give up. */
|
||
if (type != integer_type_node)
|
||
{
|
||
/* A friendly class? */
|
||
if (current_class_type)
|
||
make_friend_class (current_class_type, TYPE_MAIN_VARIANT (type),
|
||
/*complain=*/true);
|
||
else
|
||
error ("trying to make class `%T' a friend of global scope",
|
||
type);
|
||
|
||
type = void_type_node;
|
||
}
|
||
}
|
||
else if (quals)
|
||
{
|
||
if (ctype == NULL_TREE)
|
||
{
|
||
if (TREE_CODE (type) != METHOD_TYPE)
|
||
error ("invalid qualifiers on non-member function type");
|
||
else
|
||
ctype = TYPE_METHOD_BASETYPE (type);
|
||
}
|
||
if (ctype)
|
||
{
|
||
tree dummy = build_decl (TYPE_DECL, declarator, type);
|
||
grok_method_quals (ctype, dummy, quals);
|
||
type = TREE_TYPE (dummy);
|
||
}
|
||
}
|
||
|
||
return type;
|
||
}
|
||
else if (declarator == NULL_TREE && decl_context != PARM
|
||
&& decl_context != CATCHPARM
|
||
&& TREE_CODE (type) != UNION_TYPE
|
||
&& ! bitfield)
|
||
{
|
||
error ("abstract declarator `%T' used as declaration", type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Only functions may be declared using an operator-function-id. */
|
||
if (declarator
|
||
&& TREE_CODE (declarator) == IDENTIFIER_NODE
|
||
&& IDENTIFIER_OPNAME_P (declarator)
|
||
&& TREE_CODE (type) != FUNCTION_TYPE
|
||
&& TREE_CODE (type) != METHOD_TYPE)
|
||
{
|
||
error ("declaration of `%D' as non-function", declarator);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* We don't check parameter types here because we can emit a better
|
||
error message later. */
|
||
if (decl_context != PARM)
|
||
type = check_var_type (declarator, type);
|
||
|
||
/* Now create the decl, which may be a VAR_DECL, a PARM_DECL
|
||
or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE. */
|
||
|
||
if (decl_context == PARM || decl_context == CATCHPARM)
|
||
{
|
||
if (ctype || in_namespace)
|
||
error ("cannot use `::' in parameter declaration");
|
||
|
||
/* A parameter declared as an array of T is really a pointer to T.
|
||
One declared as a function is really a pointer to a function.
|
||
One declared as a member is really a pointer to member. */
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* Transfer const-ness of array into that of type pointed to. */
|
||
type = build_pointer_type (TREE_TYPE (type));
|
||
type_quals = TYPE_UNQUALIFIED;
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
type = build_pointer_type (type);
|
||
}
|
||
|
||
{
|
||
tree decl;
|
||
|
||
if (decl_context == PARM)
|
||
{
|
||
decl = cp_build_parm_decl (declarator, type);
|
||
|
||
bad_specifiers (decl, "parameter", virtualp, quals != NULL_TREE,
|
||
inlinep, friendp, raises != NULL_TREE);
|
||
}
|
||
else if (decl_context == FIELD)
|
||
{
|
||
/* The C99 flexible array extension. */
|
||
if (!staticp && TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_DOMAIN (type) == NULL_TREE)
|
||
{
|
||
tree itype = compute_array_index_type (dname, integer_zero_node);
|
||
type = build_cplus_array_type (TREE_TYPE (type), itype);
|
||
}
|
||
|
||
if (type == error_mark_node)
|
||
{
|
||
/* Happens when declaring arrays of sizes which
|
||
are error_mark_node, for example. */
|
||
decl = NULL_TREE;
|
||
}
|
||
else if (in_namespace && !friendp)
|
||
{
|
||
/* Something like struct S { int N::j; }; */
|
||
error ("invalid use of `::'");
|
||
decl = NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
int publicp = 0;
|
||
tree function_context;
|
||
|
||
/* We catch the others as conflicts with the builtin
|
||
typedefs. */
|
||
if (friendp && declarator == ridpointers[(int) RID_SIGNED])
|
||
{
|
||
error ("function `%D' cannot be declared friend",
|
||
declarator);
|
||
friendp = 0;
|
||
}
|
||
|
||
if (friendp == 0)
|
||
{
|
||
if (ctype == NULL_TREE)
|
||
ctype = current_class_type;
|
||
|
||
if (ctype == NULL_TREE)
|
||
{
|
||
error ("can't make `%D' into a method -- not in a class",
|
||
declarator);
|
||
return void_type_node;
|
||
}
|
||
|
||
/* ``A union may [ ... ] not [ have ] virtual functions.''
|
||
ARM 9.5 */
|
||
if (virtualp && TREE_CODE (ctype) == UNION_TYPE)
|
||
{
|
||
error ("function `%D' declared virtual inside a union",
|
||
declarator);
|
||
return void_type_node;
|
||
}
|
||
|
||
if (NEW_DELETE_OPNAME_P (declarator))
|
||
{
|
||
if (virtualp)
|
||
{
|
||
error ("`%D' cannot be declared virtual, since it is always static",
|
||
declarator);
|
||
virtualp = 0;
|
||
}
|
||
}
|
||
else if (staticp < 2)
|
||
type = build_method_type_directly (ctype,
|
||
TREE_TYPE (type),
|
||
TYPE_ARG_TYPES (type));
|
||
}
|
||
|
||
/* Tell grokfndecl if it needs to set TREE_PUBLIC on the node. */
|
||
function_context = (ctype != NULL_TREE) ?
|
||
decl_function_context (TYPE_MAIN_DECL (ctype)) : NULL_TREE;
|
||
publicp = (! friendp || ! staticp)
|
||
&& function_context == NULL_TREE;
|
||
decl = grokfndecl (ctype, type,
|
||
TREE_CODE (declarator) != TEMPLATE_ID_EXPR
|
||
? declarator : dname,
|
||
parms,
|
||
declarator,
|
||
virtualp, flags, quals, raises,
|
||
friendp ? -1 : 0, friendp, publicp, inlinep,
|
||
funcdef_flag, template_count, in_namespace);
|
||
if (decl == NULL_TREE)
|
||
return decl;
|
||
#if 0
|
||
/* This clobbers the attrs stored in `decl' from `attrlist'. */
|
||
/* The decl and setting of decl_attr is also turned off. */
|
||
decl = build_decl_attribute_variant (decl, decl_attr);
|
||
#endif
|
||
|
||
/* [class.conv.ctor]
|
||
|
||
A constructor declared without the function-specifier
|
||
explicit that can be called with a single parameter
|
||
specifies a conversion from the type of its first
|
||
parameter to the type of its class. Such a constructor
|
||
is called a converting constructor. */
|
||
if (explicitp == 2)
|
||
DECL_NONCONVERTING_P (decl) = 1;
|
||
else if (DECL_CONSTRUCTOR_P (decl))
|
||
{
|
||
/* The constructor can be called with exactly one
|
||
parameter if there is at least one parameter, and
|
||
any subsequent parameters have default arguments.
|
||
Ignore any compiler-added parms. */
|
||
tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (decl);
|
||
|
||
if (arg_types == void_list_node
|
||
|| (arg_types
|
||
&& TREE_CHAIN (arg_types)
|
||
&& TREE_CHAIN (arg_types) != void_list_node
|
||
&& !TREE_PURPOSE (TREE_CHAIN (arg_types))))
|
||
DECL_NONCONVERTING_P (decl) = 1;
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
/* We only get here for friend declarations of
|
||
members of other classes. */
|
||
/* All method decls are public, so tell grokfndecl to set
|
||
TREE_PUBLIC, also. */
|
||
decl = grokfndecl (ctype, type,
|
||
TREE_CODE (declarator) != TEMPLATE_ID_EXPR
|
||
? declarator : dname,
|
||
parms,
|
||
declarator,
|
||
virtualp, flags, quals, raises,
|
||
friendp ? -1 : 0, friendp, 1, 0, funcdef_flag,
|
||
template_count, in_namespace);
|
||
if (decl == NULL_TREE)
|
||
return NULL_TREE;
|
||
}
|
||
else if (!staticp && !dependent_type_p (type)
|
||
&& !COMPLETE_TYPE_P (complete_type (type))
|
||
&& (TREE_CODE (type) != ARRAY_TYPE || initialized == 0))
|
||
{
|
||
if (declarator)
|
||
error ("field `%D' has incomplete type", declarator);
|
||
else
|
||
error ("name `%T' has incomplete type", type);
|
||
|
||
/* If we're instantiating a template, tell them which
|
||
instantiation made the field's type be incomplete. */
|
||
if (current_class_type
|
||
&& TYPE_NAME (current_class_type)
|
||
&& IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (current_class_type))
|
||
&& declspecs && TREE_VALUE (declspecs)
|
||
&& TREE_TYPE (TREE_VALUE (declspecs)) == type)
|
||
error (" in instantiation of template `%T'",
|
||
current_class_type);
|
||
|
||
type = error_mark_node;
|
||
decl = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
if (friendp)
|
||
{
|
||
error ("`%s' is neither function nor member function; cannot be declared friend",
|
||
IDENTIFIER_POINTER (declarator));
|
||
friendp = 0;
|
||
}
|
||
decl = NULL_TREE;
|
||
}
|
||
|
||
if (friendp)
|
||
{
|
||
/* Friends are treated specially. */
|
||
if (ctype == current_class_type)
|
||
warning ("member functions are implicitly friends of their class");
|
||
else if (decl && DECL_NAME (decl))
|
||
{
|
||
if (template_class_depth (current_class_type) == 0)
|
||
{
|
||
decl = check_explicit_specialization
|
||
(declarator, decl, template_count,
|
||
2 * (funcdef_flag != 0) + 4);
|
||
if (decl == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
|
||
decl = do_friend (ctype, declarator, decl,
|
||
*attrlist, flags, quals, funcdef_flag);
|
||
return decl;
|
||
}
|
||
else
|
||
return void_type_node;
|
||
}
|
||
|
||
/* Structure field. It may not be a function, except for C++. */
|
||
|
||
if (decl == NULL_TREE)
|
||
{
|
||
if (initialized)
|
||
{
|
||
if (!staticp)
|
||
{
|
||
/* An attempt is being made to initialize a non-static
|
||
member. But, from [class.mem]:
|
||
|
||
4 A member-declarator can contain a
|
||
constant-initializer only if it declares a static
|
||
member (_class.static_) of integral or enumeration
|
||
type, see _class.static.data_.
|
||
|
||
This used to be relatively common practice, but
|
||
the rest of the compiler does not correctly
|
||
handle the initialization unless the member is
|
||
static so we make it static below. */
|
||
pedwarn ("ISO C++ forbids initialization of member `%D'",
|
||
declarator);
|
||
pedwarn ("making `%D' static", declarator);
|
||
staticp = 1;
|
||
}
|
||
|
||
if (uses_template_parms (type))
|
||
/* We'll check at instantiation time. */
|
||
;
|
||
else if (check_static_variable_definition (declarator,
|
||
type))
|
||
/* If we just return the declaration, crashes
|
||
will sometimes occur. We therefore return
|
||
void_type_node, as if this was a friend
|
||
declaration, to cause callers to completely
|
||
ignore this declaration. */
|
||
return void_type_node;
|
||
}
|
||
|
||
if (staticp)
|
||
{
|
||
/* C++ allows static class members. All other work
|
||
for this is done by grokfield. */
|
||
decl = build_lang_decl (VAR_DECL, declarator, type);
|
||
TREE_STATIC (decl) = 1;
|
||
/* In class context, 'static' means public access. */
|
||
TREE_PUBLIC (decl) = DECL_EXTERNAL (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
decl = build_decl (FIELD_DECL, declarator, type);
|
||
DECL_NONADDRESSABLE_P (decl) = bitfield;
|
||
if (RIDBIT_SETP (RID_MUTABLE, specbits))
|
||
{
|
||
DECL_MUTABLE_P (decl) = 1;
|
||
RIDBIT_RESET (RID_MUTABLE, specbits);
|
||
}
|
||
}
|
||
|
||
bad_specifiers (decl, "field", virtualp, quals != NULL_TREE,
|
||
inlinep, friendp, raises != NULL_TREE);
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
tree original_name;
|
||
int publicp = 0;
|
||
|
||
if (! declarator)
|
||
return NULL_TREE;
|
||
|
||
if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
|
||
original_name = dname;
|
||
else
|
||
original_name = declarator;
|
||
|
||
if (RIDBIT_SETP (RID_AUTO, specbits))
|
||
error ("storage class `auto' invalid for function `%s'", name);
|
||
else if (RIDBIT_SETP (RID_REGISTER, specbits))
|
||
error ("storage class `register' invalid for function `%s'", name);
|
||
else if (RIDBIT_SETP (RID_THREAD, specbits))
|
||
error ("storage class `__thread' invalid for function `%s'", name);
|
||
|
||
/* Function declaration not at top level.
|
||
Storage classes other than `extern' are not allowed
|
||
and `extern' makes no difference. */
|
||
if (! toplevel_bindings_p ()
|
||
&& (RIDBIT_SETP (RID_STATIC, specbits)
|
||
|| RIDBIT_SETP (RID_INLINE, specbits))
|
||
&& pedantic)
|
||
{
|
||
if (RIDBIT_SETP (RID_STATIC, specbits))
|
||
pedwarn ("storage class `static' invalid for function `%s' declared out of global scope", name);
|
||
else
|
||
pedwarn ("storage class `inline' invalid for function `%s' declared out of global scope", name);
|
||
}
|
||
|
||
if (ctype == NULL_TREE)
|
||
{
|
||
if (virtualp)
|
||
{
|
||
error ("virtual non-class function `%s'", name);
|
||
virtualp = 0;
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE && staticp < 2
|
||
&& !NEW_DELETE_OPNAME_P (original_name))
|
||
type = build_method_type_directly (ctype,
|
||
TREE_TYPE (type),
|
||
TYPE_ARG_TYPES (type));
|
||
|
||
/* Record presence of `static'. */
|
||
publicp = (ctype != NULL_TREE
|
||
|| RIDBIT_SETP (RID_EXTERN, specbits)
|
||
|| !RIDBIT_SETP (RID_STATIC, specbits));
|
||
|
||
decl = grokfndecl (ctype, type, original_name, parms, declarator,
|
||
virtualp, flags, quals, raises,
|
||
1, friendp,
|
||
publicp, inlinep, funcdef_flag,
|
||
template_count, in_namespace);
|
||
if (decl == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
if (staticp == 1)
|
||
{
|
||
int invalid_static = 0;
|
||
|
||
/* Don't allow a static member function in a class, and forbid
|
||
declaring main to be static. */
|
||
if (TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
pedwarn ("cannot declare member function `%D' to have static linkage", decl);
|
||
invalid_static = 1;
|
||
}
|
||
else if (current_function_decl)
|
||
{
|
||
/* FIXME need arm citation */
|
||
error ("cannot declare static function inside another function");
|
||
invalid_static = 1;
|
||
}
|
||
|
||
if (invalid_static)
|
||
{
|
||
staticp = 0;
|
||
RIDBIT_RESET (RID_STATIC, specbits);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* It's a variable. */
|
||
|
||
/* An uninitialized decl with `extern' is a reference. */
|
||
decl = grokvardecl (type, declarator, &specbits,
|
||
initialized,
|
||
(type_quals & TYPE_QUAL_CONST) != 0,
|
||
ctype ? ctype : in_namespace);
|
||
bad_specifiers (decl, "variable", virtualp, quals != NULL_TREE,
|
||
inlinep, friendp, raises != NULL_TREE);
|
||
|
||
if (ctype)
|
||
{
|
||
DECL_CONTEXT (decl) = ctype;
|
||
if (staticp == 1)
|
||
{
|
||
pedwarn ("`static' may not be used when defining (as opposed to declaring) a static data member");
|
||
staticp = 0;
|
||
RIDBIT_RESET (RID_STATIC, specbits);
|
||
}
|
||
if (RIDBIT_SETP (RID_REGISTER, specbits) && TREE_STATIC (decl))
|
||
{
|
||
error ("static member `%D' declared `register'", decl);
|
||
RIDBIT_RESET (RID_REGISTER, specbits);
|
||
}
|
||
if (RIDBIT_SETP (RID_EXTERN, specbits) && pedantic)
|
||
{
|
||
pedwarn ("cannot explicitly declare member `%#D' to have extern linkage",
|
||
decl);
|
||
RIDBIT_RESET (RID_EXTERN, specbits);
|
||
}
|
||
}
|
||
}
|
||
|
||
my_friendly_assert (!RIDBIT_SETP (RID_MUTABLE, specbits), 19990927);
|
||
|
||
/* Record `register' declaration for warnings on &
|
||
and in case doing stupid register allocation. */
|
||
|
||
if (RIDBIT_SETP (RID_REGISTER, specbits))
|
||
DECL_REGISTER (decl) = 1;
|
||
|
||
if (RIDBIT_SETP (RID_EXTERN, specbits))
|
||
DECL_THIS_EXTERN (decl) = 1;
|
||
|
||
if (RIDBIT_SETP (RID_STATIC, specbits))
|
||
DECL_THIS_STATIC (decl) = 1;
|
||
|
||
/* Record constancy and volatility. There's no need to do this
|
||
when processing a template; we'll do this for the instantiated
|
||
declaration based on the type of DECL. */
|
||
if (!processing_template_decl)
|
||
c_apply_type_quals_to_decl (type_quals, decl);
|
||
|
||
return decl;
|
||
}
|
||
}
|
||
|
||
/* Subroutine of start_function. Ensure that each of the parameter
|
||
types (as listed in PARMS) is complete, as is required for a
|
||
function definition. */
|
||
|
||
static void
|
||
require_complete_types_for_parms (tree parms)
|
||
{
|
||
for (; parms; parms = TREE_CHAIN (parms))
|
||
{
|
||
if (VOID_TYPE_P (TREE_TYPE (parms)))
|
||
/* grokparms will have already issued an error. */
|
||
TREE_TYPE (parms) = error_mark_node;
|
||
else if (complete_type_or_else (TREE_TYPE (parms), parms))
|
||
{
|
||
layout_decl (parms, 0);
|
||
DECL_ARG_TYPE (parms) = type_passed_as (TREE_TYPE (parms));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Returns nonzero if T is a local variable. */
|
||
|
||
int
|
||
local_variable_p (tree t)
|
||
{
|
||
if ((TREE_CODE (t) == VAR_DECL
|
||
/* A VAR_DECL with a context that is a _TYPE is a static data
|
||
member. */
|
||
&& !TYPE_P (CP_DECL_CONTEXT (t))
|
||
/* Any other non-local variable must be at namespace scope. */
|
||
&& !DECL_NAMESPACE_SCOPE_P (t))
|
||
|| (TREE_CODE (t) == PARM_DECL))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns nonzero if T is an automatic local variable or a label.
|
||
(These are the declarations that need to be remapped when the code
|
||
containing them is duplicated.) */
|
||
|
||
int
|
||
nonstatic_local_decl_p (tree t)
|
||
{
|
||
return ((local_variable_p (t) && !TREE_STATIC (t))
|
||
|| TREE_CODE (t) == LABEL_DECL
|
||
|| TREE_CODE (t) == RESULT_DECL);
|
||
}
|
||
|
||
/* Like local_variable_p, but suitable for use as a tree-walking
|
||
function. */
|
||
|
||
static tree
|
||
local_variable_p_walkfn (tree* tp,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data ATTRIBUTE_UNUSED )
|
||
{
|
||
return ((local_variable_p (*tp) && !DECL_ARTIFICIAL (*tp))
|
||
? *tp : NULL_TREE);
|
||
}
|
||
|
||
/* Check that ARG, which is a default-argument expression for a
|
||
parameter DECL, is valid. Returns ARG, or ERROR_MARK_NODE, if
|
||
something goes wrong. DECL may also be a _TYPE node, rather than a
|
||
DECL, if there is no DECL available. */
|
||
|
||
tree
|
||
check_default_argument (tree decl, tree arg)
|
||
{
|
||
tree var;
|
||
tree decl_type;
|
||
|
||
if (TREE_CODE (arg) == DEFAULT_ARG)
|
||
/* We get a DEFAULT_ARG when looking at an in-class declaration
|
||
with a default argument. Ignore the argument for now; we'll
|
||
deal with it after the class is complete. */
|
||
return arg;
|
||
|
||
if (processing_template_decl || uses_template_parms (arg))
|
||
/* We don't do anything checking until instantiation-time. Note
|
||
that there may be uninstantiated arguments even for an
|
||
instantiated function, since default arguments are not
|
||
instantiated until they are needed. */
|
||
return arg;
|
||
|
||
if (TYPE_P (decl))
|
||
{
|
||
decl_type = decl;
|
||
decl = NULL_TREE;
|
||
}
|
||
else
|
||
decl_type = TREE_TYPE (decl);
|
||
|
||
if (arg == error_mark_node
|
||
|| decl == error_mark_node
|
||
|| TREE_TYPE (arg) == error_mark_node
|
||
|| decl_type == error_mark_node)
|
||
/* Something already went wrong. There's no need to check
|
||
further. */
|
||
return error_mark_node;
|
||
|
||
/* [dcl.fct.default]
|
||
|
||
A default argument expression is implicitly converted to the
|
||
parameter type. */
|
||
if (!TREE_TYPE (arg)
|
||
|| !can_convert_arg (decl_type, TREE_TYPE (arg), arg))
|
||
{
|
||
if (decl)
|
||
error ("default argument for `%#D' has type `%T'",
|
||
decl, TREE_TYPE (arg));
|
||
else
|
||
error ("default argument for parameter of type `%T' has type `%T'",
|
||
decl_type, TREE_TYPE (arg));
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* [dcl.fct.default]
|
||
|
||
Local variables shall not be used in default argument
|
||
expressions.
|
||
|
||
The keyword `this' shall not be used in a default argument of a
|
||
member function. */
|
||
var = walk_tree_without_duplicates (&arg, local_variable_p_walkfn,
|
||
NULL);
|
||
if (var)
|
||
{
|
||
error ("default argument `%E' uses local variable `%D'",
|
||
arg, var);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* All is well. */
|
||
return arg;
|
||
}
|
||
|
||
/* Decode the list of parameter types for a function type.
|
||
Given the list of things declared inside the parens,
|
||
return a list of types.
|
||
|
||
We determine whether ellipsis parms are used by PARMLIST_ELLIPSIS_P
|
||
flag. If unset, we append void_list_node. A parmlist declared
|
||
as `(void)' is accepted as the empty parmlist.
|
||
|
||
*PARMS is set to the chain of PARM_DECLs created. */
|
||
|
||
static tree
|
||
grokparms (tree first_parm, tree *parms)
|
||
{
|
||
tree result = NULL_TREE;
|
||
tree decls = NULL_TREE;
|
||
int ellipsis = !first_parm || PARMLIST_ELLIPSIS_P (first_parm);
|
||
tree parm, chain;
|
||
int any_error = 0;
|
||
|
||
my_friendly_assert (!first_parm || TREE_PARMLIST (first_parm), 20001115);
|
||
|
||
for (parm = first_parm; parm != NULL_TREE; parm = chain)
|
||
{
|
||
tree type = NULL_TREE;
|
||
tree decl = TREE_VALUE (parm);
|
||
tree init = TREE_PURPOSE (parm);
|
||
tree specs, attrs;
|
||
|
||
chain = TREE_CHAIN (parm);
|
||
/* @@ weak defense against parse errors. */
|
||
if (TREE_CODE (decl) != VOID_TYPE
|
||
&& TREE_CODE (decl) != TREE_LIST)
|
||
{
|
||
/* Give various messages as the need arises. */
|
||
if (TREE_CODE (decl) == STRING_CST)
|
||
error ("invalid string constant `%E'", decl);
|
||
else if (TREE_CODE (decl) == INTEGER_CST)
|
||
error ("invalid integer constant in parameter list, did you forget to give parameter name?");
|
||
continue;
|
||
}
|
||
|
||
if (parm == void_list_node)
|
||
break;
|
||
|
||
split_specs_attrs (TREE_PURPOSE (decl), &specs, &attrs);
|
||
decl = grokdeclarator (TREE_VALUE (decl), specs,
|
||
PARM, init != NULL_TREE, &attrs);
|
||
if (! decl || TREE_TYPE (decl) == error_mark_node)
|
||
continue;
|
||
|
||
if (attrs)
|
||
cplus_decl_attributes (&decl, attrs, 0);
|
||
|
||
type = TREE_TYPE (decl);
|
||
if (VOID_TYPE_P (type))
|
||
{
|
||
if (same_type_p (type, void_type_node)
|
||
&& !DECL_NAME (decl) && !result && !chain && !ellipsis)
|
||
/* this is a parmlist of `(void)', which is ok. */
|
||
break;
|
||
cxx_incomplete_type_error (decl, type);
|
||
/* It's not a good idea to actually create parameters of
|
||
type `void'; other parts of the compiler assume that a
|
||
void type terminates the parameter list. */
|
||
type = error_mark_node;
|
||
TREE_TYPE (decl) = error_mark_node;
|
||
}
|
||
|
||
if (type != error_mark_node)
|
||
{
|
||
/* Top-level qualifiers on the parameters are
|
||
ignored for function types. */
|
||
type = cp_build_qualified_type (type, 0);
|
||
if (TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
error ("parameter `%D' invalidly declared method type", decl);
|
||
type = build_pointer_type (type);
|
||
TREE_TYPE (decl) = type;
|
||
}
|
||
else if (abstract_virtuals_error (decl, type))
|
||
any_error = 1; /* Seems like a good idea. */
|
||
else if (POINTER_TYPE_P (type))
|
||
{
|
||
/* [dcl.fct]/6, parameter types cannot contain pointers
|
||
(references) to arrays of unknown bound. */
|
||
tree t = TREE_TYPE (type);
|
||
int ptr = TYPE_PTR_P (type);
|
||
|
||
while (1)
|
||
{
|
||
if (TYPE_PTR_P (t))
|
||
ptr = 1;
|
||
else if (TREE_CODE (t) != ARRAY_TYPE)
|
||
break;
|
||
else if (!TYPE_DOMAIN (t))
|
||
break;
|
||
t = TREE_TYPE (t);
|
||
}
|
||
if (TREE_CODE (t) == ARRAY_TYPE)
|
||
error ("parameter `%D' includes %s to array of unknown bound `%T'",
|
||
decl, ptr ? "pointer" : "reference", t);
|
||
}
|
||
|
||
if (!any_error && init)
|
||
init = check_default_argument (decl, init);
|
||
else
|
||
init = NULL_TREE;
|
||
}
|
||
|
||
TREE_CHAIN (decl) = decls;
|
||
decls = decl;
|
||
result = tree_cons (init, type, result);
|
||
}
|
||
decls = nreverse (decls);
|
||
result = nreverse (result);
|
||
if (!ellipsis)
|
||
result = chainon (result, void_list_node);
|
||
*parms = decls;
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* D is a constructor or overloaded `operator='.
|
||
|
||
Let T be the class in which D is declared. Then, this function
|
||
returns:
|
||
|
||
-1 if D's is an ill-formed constructor or copy assignment operator
|
||
whose first parameter is of type `T'.
|
||
0 if D is not a copy constructor or copy assignment
|
||
operator.
|
||
1 if D is a copy constructor or copy assignment operator whose
|
||
first parameter is a reference to const qualified T.
|
||
2 if D is a copy constructor or copy assignment operator whose
|
||
first parameter is a reference to non-const qualified T.
|
||
|
||
This function can be used as a predicate. Positive values indicate
|
||
a copy constructor and nonzero values indicate a copy assignment
|
||
operator. */
|
||
|
||
int
|
||
copy_fn_p (tree d)
|
||
{
|
||
tree args;
|
||
tree arg_type;
|
||
int result = 1;
|
||
|
||
my_friendly_assert (DECL_FUNCTION_MEMBER_P (d), 20011208);
|
||
|
||
if (DECL_TEMPLATE_INFO (d) && is_member_template (DECL_TI_TEMPLATE (d)))
|
||
/* Instantiations of template member functions are never copy
|
||
functions. Note that member functions of templated classes are
|
||
represented as template functions internally, and we must
|
||
accept those as copy functions. */
|
||
return 0;
|
||
|
||
args = FUNCTION_FIRST_USER_PARMTYPE (d);
|
||
if (!args)
|
||
return 0;
|
||
|
||
arg_type = TREE_VALUE (args);
|
||
|
||
if (TYPE_MAIN_VARIANT (arg_type) == DECL_CONTEXT (d))
|
||
{
|
||
/* Pass by value copy assignment operator. */
|
||
result = -1;
|
||
}
|
||
else if (TREE_CODE (arg_type) == REFERENCE_TYPE
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)) == DECL_CONTEXT (d))
|
||
{
|
||
if (CP_TYPE_CONST_P (TREE_TYPE (arg_type)))
|
||
result = 2;
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
args = TREE_CHAIN (args);
|
||
|
||
if (args && args != void_list_node && !TREE_PURPOSE (args))
|
||
/* There are more non-optional args. */
|
||
return 0;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Remember any special properties of member function DECL. */
|
||
|
||
void grok_special_member_properties (tree decl)
|
||
{
|
||
if (!DECL_NONSTATIC_MEMBER_FUNCTION_P(decl))
|
||
; /* Not special. */
|
||
else if (DECL_CONSTRUCTOR_P (decl))
|
||
{
|
||
int ctor = copy_fn_p (decl);
|
||
|
||
if (ctor > 0)
|
||
{
|
||
/* [class.copy]
|
||
|
||
A non-template constructor for class X is a copy
|
||
constructor if its first parameter is of type X&, const
|
||
X&, volatile X& or const volatile X&, and either there
|
||
are no other parameters or else all other parameters have
|
||
default arguments. */
|
||
TYPE_HAS_INIT_REF (DECL_CONTEXT (decl)) = 1;
|
||
if (ctor > 1)
|
||
TYPE_HAS_CONST_INIT_REF (DECL_CONTEXT (decl)) = 1;
|
||
}
|
||
else if (sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (decl)))
|
||
TYPE_HAS_DEFAULT_CONSTRUCTOR (DECL_CONTEXT (decl)) = 1;
|
||
}
|
||
else if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
|
||
{
|
||
/* [class.copy]
|
||
|
||
A non-template assignment operator for class X is a copy
|
||
assignment operator if its parameter is of type X, X&, const
|
||
X&, volatile X& or const volatile X&. */
|
||
|
||
int assop = copy_fn_p (decl);
|
||
|
||
if (assop)
|
||
{
|
||
TYPE_HAS_ASSIGN_REF (DECL_CONTEXT (decl)) = 1;
|
||
if (assop != 1)
|
||
TYPE_HAS_CONST_ASSIGN_REF (DECL_CONTEXT (decl)) = 1;
|
||
if (DECL_PURE_VIRTUAL_P (decl))
|
||
TYPE_HAS_ABSTRACT_ASSIGN_REF (DECL_CONTEXT (decl)) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check a constructor DECL has the correct form. Complains
|
||
if the class has a constructor of the form X(X). */
|
||
|
||
int
|
||
grok_ctor_properties (tree ctype, tree decl)
|
||
{
|
||
int ctor_parm = copy_fn_p (decl);
|
||
|
||
if (ctor_parm < 0)
|
||
{
|
||
/* [class.copy]
|
||
|
||
A declaration of a constructor for a class X is ill-formed if
|
||
its first parameter is of type (optionally cv-qualified) X
|
||
and either there are no other parameters or else all other
|
||
parameters have default arguments.
|
||
|
||
We *don't* complain about member template instantiations that
|
||
have this form, though; they can occur as we try to decide
|
||
what constructor to use during overload resolution. Since
|
||
overload resolution will never prefer such a constructor to
|
||
the non-template copy constructor (which is either explicitly
|
||
or implicitly defined), there's no need to worry about their
|
||
existence. Theoretically, they should never even be
|
||
instantiated, but that's hard to forestall. */
|
||
error ("invalid constructor; you probably meant `%T (const %T&)'",
|
||
ctype, ctype);
|
||
SET_IDENTIFIER_ERROR_LOCUS (DECL_NAME (decl), ctype);
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* An operator with this code is unary, but can also be binary. */
|
||
|
||
static int
|
||
ambi_op_p (enum tree_code code)
|
||
{
|
||
return (code == INDIRECT_REF
|
||
|| code == ADDR_EXPR
|
||
|| code == CONVERT_EXPR
|
||
|| code == NEGATE_EXPR
|
||
|| code == PREINCREMENT_EXPR
|
||
|| code == PREDECREMENT_EXPR);
|
||
}
|
||
|
||
/* An operator with this name can only be unary. */
|
||
|
||
static int
|
||
unary_op_p (enum tree_code code)
|
||
{
|
||
return (code == TRUTH_NOT_EXPR
|
||
|| code == BIT_NOT_EXPR
|
||
|| code == COMPONENT_REF
|
||
|| code == TYPE_EXPR);
|
||
}
|
||
|
||
/* DECL is a declaration for an overloaded operator. Returns true if
|
||
the declaration is valid; false otherwise. If COMPLAIN is true,
|
||
errors are issued for invalid declarations. */
|
||
|
||
bool
|
||
grok_op_properties (tree decl, int friendp, bool complain)
|
||
{
|
||
tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl));
|
||
tree argtype;
|
||
int methodp = (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE);
|
||
tree name = DECL_NAME (decl);
|
||
enum tree_code operator_code;
|
||
int arity;
|
||
bool ok;
|
||
|
||
/* Assume that the declaration is valid. */
|
||
ok = true;
|
||
|
||
/* Count the number of arguments. */
|
||
for (argtype = argtypes, arity = 0;
|
||
argtype && argtype != void_list_node;
|
||
argtype = TREE_CHAIN (argtype))
|
||
++arity;
|
||
|
||
if (current_class_type == NULL_TREE)
|
||
friendp = 1;
|
||
|
||
if (DECL_CONV_FN_P (decl))
|
||
operator_code = TYPE_EXPR;
|
||
else
|
||
do
|
||
{
|
||
#define DEF_OPERATOR(NAME, CODE, MANGLING, ARITY, ASSN_P) \
|
||
if (ansi_opname (CODE) == name) \
|
||
{ \
|
||
operator_code = (CODE); \
|
||
break; \
|
||
} \
|
||
else if (ansi_assopname (CODE) == name) \
|
||
{ \
|
||
operator_code = (CODE); \
|
||
DECL_ASSIGNMENT_OPERATOR_P (decl) = 1; \
|
||
break; \
|
||
}
|
||
|
||
#include "operators.def"
|
||
#undef DEF_OPERATOR
|
||
|
||
abort ();
|
||
}
|
||
while (0);
|
||
my_friendly_assert (operator_code != LAST_CPLUS_TREE_CODE, 20000526);
|
||
SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);
|
||
|
||
if (! friendp)
|
||
{
|
||
switch (operator_code)
|
||
{
|
||
case NEW_EXPR:
|
||
TYPE_HAS_NEW_OPERATOR (current_class_type) = 1;
|
||
break;
|
||
|
||
case DELETE_EXPR:
|
||
TYPE_GETS_DELETE (current_class_type) |= 1;
|
||
break;
|
||
|
||
case VEC_NEW_EXPR:
|
||
TYPE_HAS_ARRAY_NEW_OPERATOR (current_class_type) = 1;
|
||
break;
|
||
|
||
case VEC_DELETE_EXPR:
|
||
TYPE_GETS_DELETE (current_class_type) |= 2;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR)
|
||
TREE_TYPE (decl) = coerce_new_type (TREE_TYPE (decl));
|
||
else if (operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR)
|
||
TREE_TYPE (decl) = coerce_delete_type (TREE_TYPE (decl));
|
||
else
|
||
{
|
||
/* An operator function must either be a non-static member function
|
||
or have at least one parameter of a class, a reference to a class,
|
||
an enumeration, or a reference to an enumeration. 13.4.0.6 */
|
||
if (! methodp || DECL_STATIC_FUNCTION_P (decl))
|
||
{
|
||
if (operator_code == TYPE_EXPR
|
||
|| operator_code == CALL_EXPR
|
||
|| operator_code == COMPONENT_REF
|
||
|| operator_code == ARRAY_REF
|
||
|| operator_code == NOP_EXPR)
|
||
error ("`%D' must be a nonstatic member function", decl);
|
||
else
|
||
{
|
||
tree p;
|
||
|
||
if (DECL_STATIC_FUNCTION_P (decl))
|
||
error ("`%D' must be either a non-static member function or a non-member function", decl);
|
||
|
||
for (p = argtypes; p && p != void_list_node; p = TREE_CHAIN (p))
|
||
{
|
||
tree arg = non_reference (TREE_VALUE (p));
|
||
/* IS_AGGR_TYPE, rather than CLASS_TYPE_P, is used
|
||
because these checks are performed even on
|
||
template functions. */
|
||
if (IS_AGGR_TYPE (arg) || TREE_CODE (arg) == ENUMERAL_TYPE)
|
||
break;
|
||
}
|
||
|
||
if (!p || p == void_list_node)
|
||
{
|
||
if (!complain)
|
||
return false;
|
||
|
||
error ("`%D' must have an argument of class or "
|
||
"enumerated type",
|
||
decl);
|
||
ok = false;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* There are no restrictions on the arguments to an overloaded
|
||
"operator ()". */
|
||
if (operator_code == CALL_EXPR)
|
||
return ok;
|
||
|
||
if (IDENTIFIER_TYPENAME_P (name) && ! DECL_TEMPLATE_INFO (decl))
|
||
{
|
||
tree t = TREE_TYPE (name);
|
||
if (! friendp)
|
||
{
|
||
int ref = (TREE_CODE (t) == REFERENCE_TYPE);
|
||
const char *what = 0;
|
||
|
||
if (ref)
|
||
t = TYPE_MAIN_VARIANT (TREE_TYPE (t));
|
||
|
||
if (TREE_CODE (t) == VOID_TYPE)
|
||
what = "void";
|
||
else if (t == current_class_type)
|
||
what = "the same type";
|
||
/* Don't force t to be complete here. */
|
||
else if (IS_AGGR_TYPE (t)
|
||
&& COMPLETE_TYPE_P (t)
|
||
&& DERIVED_FROM_P (t, current_class_type))
|
||
what = "a base class";
|
||
|
||
if (what && warn_conversion)
|
||
warning ("conversion to %s%s will never use a type conversion operator",
|
||
ref ? "a reference to " : "", what);
|
||
}
|
||
}
|
||
if (operator_code == COND_EXPR)
|
||
{
|
||
/* 13.4.0.3 */
|
||
error ("ISO C++ prohibits overloading operator ?:");
|
||
}
|
||
else if (ambi_op_p (operator_code))
|
||
{
|
||
if (arity == 1)
|
||
/* We pick the one-argument operator codes by default, so
|
||
we don't have to change anything. */
|
||
;
|
||
else if (arity == 2)
|
||
{
|
||
/* If we thought this was a unary operator, we now know
|
||
it to be a binary operator. */
|
||
switch (operator_code)
|
||
{
|
||
case INDIRECT_REF:
|
||
operator_code = MULT_EXPR;
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
operator_code = BIT_AND_EXPR;
|
||
break;
|
||
|
||
case CONVERT_EXPR:
|
||
operator_code = PLUS_EXPR;
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
operator_code = MINUS_EXPR;
|
||
break;
|
||
|
||
case PREINCREMENT_EXPR:
|
||
operator_code = POSTINCREMENT_EXPR;
|
||
break;
|
||
|
||
case PREDECREMENT_EXPR:
|
||
operator_code = POSTDECREMENT_EXPR;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
SET_OVERLOADED_OPERATOR_CODE (decl, operator_code);
|
||
|
||
if ((operator_code == POSTINCREMENT_EXPR
|
||
|| operator_code == POSTDECREMENT_EXPR)
|
||
&& ! processing_template_decl
|
||
&& ! same_type_p (TREE_VALUE (TREE_CHAIN (argtypes)), integer_type_node))
|
||
{
|
||
if (methodp)
|
||
error ("postfix `%D' must take `int' as its argument",
|
||
decl);
|
||
else
|
||
error
|
||
("postfix `%D' must take `int' as its second argument",
|
||
decl);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (methodp)
|
||
error ("`%D' must take either zero or one argument", decl);
|
||
else
|
||
error ("`%D' must take either one or two arguments", decl);
|
||
}
|
||
|
||
/* More Effective C++ rule 6. */
|
||
if (warn_ecpp
|
||
&& (operator_code == POSTINCREMENT_EXPR
|
||
|| operator_code == POSTDECREMENT_EXPR
|
||
|| operator_code == PREINCREMENT_EXPR
|
||
|| operator_code == PREDECREMENT_EXPR))
|
||
{
|
||
tree arg = TREE_VALUE (argtypes);
|
||
tree ret = TREE_TYPE (TREE_TYPE (decl));
|
||
if (methodp || TREE_CODE (arg) == REFERENCE_TYPE)
|
||
arg = TREE_TYPE (arg);
|
||
arg = TYPE_MAIN_VARIANT (arg);
|
||
if (operator_code == PREINCREMENT_EXPR
|
||
|| operator_code == PREDECREMENT_EXPR)
|
||
{
|
||
if (TREE_CODE (ret) != REFERENCE_TYPE
|
||
|| !same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (ret)),
|
||
arg))
|
||
warning ("prefix `%D' should return `%T'", decl,
|
||
build_reference_type (arg));
|
||
}
|
||
else
|
||
{
|
||
if (!same_type_p (TYPE_MAIN_VARIANT (ret), arg))
|
||
warning ("postfix `%D' should return `%T'", decl, arg);
|
||
}
|
||
}
|
||
}
|
||
else if (unary_op_p (operator_code))
|
||
{
|
||
if (arity != 1)
|
||
{
|
||
if (methodp)
|
||
error ("`%D' must take `void'", decl);
|
||
else
|
||
error ("`%D' must take exactly one argument", decl);
|
||
}
|
||
}
|
||
else /* if (binary_op_p (operator_code)) */
|
||
{
|
||
if (arity != 2)
|
||
{
|
||
if (methodp)
|
||
error ("`%D' must take exactly one argument", decl);
|
||
else
|
||
error ("`%D' must take exactly two arguments", decl);
|
||
}
|
||
|
||
/* More Effective C++ rule 7. */
|
||
if (warn_ecpp
|
||
&& (operator_code == TRUTH_ANDIF_EXPR
|
||
|| operator_code == TRUTH_ORIF_EXPR
|
||
|| operator_code == COMPOUND_EXPR))
|
||
warning ("user-defined `%D' always evaluates both arguments",
|
||
decl);
|
||
}
|
||
|
||
/* Effective C++ rule 23. */
|
||
if (warn_ecpp
|
||
&& arity == 2
|
||
&& !DECL_ASSIGNMENT_OPERATOR_P (decl)
|
||
&& (operator_code == PLUS_EXPR
|
||
|| operator_code == MINUS_EXPR
|
||
|| operator_code == TRUNC_DIV_EXPR
|
||
|| operator_code == MULT_EXPR
|
||
|| operator_code == TRUNC_MOD_EXPR)
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (decl))) == REFERENCE_TYPE)
|
||
warning ("`%D' should return by value", decl);
|
||
|
||
/* [over.oper]/8 */
|
||
for (; argtypes && argtypes != void_list_node;
|
||
argtypes = TREE_CHAIN (argtypes))
|
||
if (TREE_PURPOSE (argtypes))
|
||
{
|
||
TREE_PURPOSE (argtypes) = NULL_TREE;
|
||
if (operator_code == POSTINCREMENT_EXPR
|
||
|| operator_code == POSTDECREMENT_EXPR)
|
||
{
|
||
if (pedantic)
|
||
pedwarn ("`%D' cannot have default arguments", decl);
|
||
}
|
||
else
|
||
error ("`%D' cannot have default arguments", decl);
|
||
}
|
||
|
||
}
|
||
|
||
return ok;
|
||
}
|
||
|
||
static const char *
|
||
tag_name (enum tag_types code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case record_type:
|
||
return "struct";
|
||
case class_type:
|
||
return "class";
|
||
case union_type:
|
||
return "union ";
|
||
case enum_type:
|
||
return "enum";
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Name lookup in an elaborated-type-specifier (after the keyword
|
||
indicated by TAG_CODE) has found the TYPE_DECL DECL. If the
|
||
elaborated-type-specifier is invalid, issue a diagnostic and return
|
||
error_mark_node; otherwise, return the *_TYPE to which it referred.
|
||
If ALLOW_TEMPLATE_P is true, TYPE may be a class template. */
|
||
|
||
tree
|
||
check_elaborated_type_specifier (enum tag_types tag_code,
|
||
tree decl,
|
||
bool allow_template_p)
|
||
{
|
||
tree type;
|
||
|
||
/* In the case of:
|
||
|
||
struct S { struct S *p; };
|
||
|
||
name lookup will find the TYPE_DECL for the implicit "S::S"
|
||
typedef. Adjust for that here. */
|
||
if (DECL_SELF_REFERENCE_P (decl))
|
||
decl = TYPE_NAME (TREE_TYPE (decl));
|
||
|
||
type = TREE_TYPE (decl);
|
||
|
||
/* [dcl.type.elab]
|
||
|
||
If the identifier resolves to a typedef-name or a template
|
||
type-parameter, the elaborated-type-specifier is ill-formed.
|
||
|
||
In other words, the only legitimate declaration to use in the
|
||
elaborated type specifier is the implicit typedef created when
|
||
the type is declared. */
|
||
if (!DECL_IMPLICIT_TYPEDEF_P (decl))
|
||
{
|
||
error ("using typedef-name `%D' after `%s'", decl, tag_name (tag_code));
|
||
return IS_AGGR_TYPE (type) ? type : error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (type) == TEMPLATE_TYPE_PARM)
|
||
{
|
||
error ("using template type parameter `%T' after `%s'",
|
||
type, tag_name (tag_code));
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (type) != RECORD_TYPE
|
||
&& TREE_CODE (type) != UNION_TYPE
|
||
&& tag_code != enum_type)
|
||
{
|
||
error ("`%T' referred to as `%s'", type, tag_name (tag_code));
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (type) != ENUMERAL_TYPE
|
||
&& tag_code == enum_type)
|
||
{
|
||
error ("`%T' referred to as enum", type);
|
||
return error_mark_node;
|
||
}
|
||
else if (!allow_template_p
|
||
&& TREE_CODE (type) == RECORD_TYPE
|
||
&& CLASSTYPE_IS_TEMPLATE (type))
|
||
{
|
||
/* If a class template appears as elaborated type specifier
|
||
without a template header such as:
|
||
|
||
template <class T> class C {};
|
||
void f(class C); // No template header here
|
||
|
||
then the required template argument is missing. */
|
||
|
||
error ("template argument required for `%s %T'",
|
||
tag_name (tag_code),
|
||
DECL_NAME (CLASSTYPE_TI_TEMPLATE (type)));
|
||
return error_mark_node;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Get the struct, enum or union (TAG_CODE says which) with tag NAME.
|
||
Define the tag as a forward-reference if it is not defined.
|
||
|
||
If a declaration is given, process it here, and report an error if
|
||
multiple declarations are not identical.
|
||
|
||
GLOBALIZE is false when this is also a definition. Only look in
|
||
the current frame for the name (since C++ allows new names in any
|
||
scope.)
|
||
|
||
TEMPLATE_HEADER_P is true when this declaration is preceded by
|
||
a set of template parameters. */
|
||
|
||
tree
|
||
xref_tag (enum tag_types tag_code, tree name,
|
||
bool globalize, bool template_header_p)
|
||
{
|
||
enum tree_code code;
|
||
tree t;
|
||
struct cp_binding_level *b = current_binding_level;
|
||
tree context = NULL_TREE;
|
||
|
||
timevar_push (TV_NAME_LOOKUP);
|
||
|
||
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
|
||
|
||
switch (tag_code)
|
||
{
|
||
case record_type:
|
||
case class_type:
|
||
code = RECORD_TYPE;
|
||
break;
|
||
case union_type:
|
||
code = UNION_TYPE;
|
||
break;
|
||
case enum_type:
|
||
code = ENUMERAL_TYPE;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (! globalize)
|
||
{
|
||
/* If we know we are defining this tag, only look it up in
|
||
this scope and don't try to find it as a type. */
|
||
t = lookup_tag (code, name, b, 1);
|
||
}
|
||
else
|
||
{
|
||
tree decl = lookup_name (name, 2);
|
||
|
||
if (decl && DECL_CLASS_TEMPLATE_P (decl))
|
||
decl = DECL_TEMPLATE_RESULT (decl);
|
||
|
||
if (decl && TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
/* Two cases we need to consider when deciding if a class
|
||
template is allowed as an elaborated type specifier:
|
||
1. It is a self reference to its own class.
|
||
2. It comes with a template header.
|
||
|
||
For example:
|
||
|
||
template <class T> class C {
|
||
class C *c1; // DECL_SELF_REFERENCE_P is true
|
||
class D;
|
||
};
|
||
template <class U> class C; // template_header_p is true
|
||
template <class T> class C<T>::D {
|
||
class C *c2; // DECL_SELF_REFERENCE_P is true
|
||
}; */
|
||
|
||
t = check_elaborated_type_specifier (tag_code,
|
||
decl,
|
||
template_header_p
|
||
| DECL_SELF_REFERENCE_P (decl));
|
||
if (t == error_mark_node)
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
|
||
}
|
||
else
|
||
t = NULL_TREE;
|
||
|
||
if (t && current_class_type
|
||
&& template_class_depth (current_class_type)
|
||
&& template_header_p)
|
||
{
|
||
/* Since GLOBALIZE is nonzero, we are not looking at a
|
||
definition of this tag. Since, in addition, we are currently
|
||
processing a (member) template declaration of a template
|
||
class, we must be very careful; consider:
|
||
|
||
template <class X>
|
||
struct S1
|
||
|
||
template <class U>
|
||
struct S2
|
||
{ template <class V>
|
||
friend struct S1; };
|
||
|
||
Here, the S2::S1 declaration should not be confused with the
|
||
outer declaration. In particular, the inner version should
|
||
have a template parameter of level 2, not level 1. This
|
||
would be particularly important if the member declaration
|
||
were instead:
|
||
|
||
template <class V = U> friend struct S1;
|
||
|
||
say, when we should tsubst into `U' when instantiating
|
||
S2. On the other hand, when presented with:
|
||
|
||
template <class T>
|
||
struct S1 {
|
||
template <class U>
|
||
struct S2 {};
|
||
template <class U>
|
||
friend struct S2;
|
||
};
|
||
|
||
we must find the inner binding eventually. We
|
||
accomplish this by making sure that the new type we
|
||
create to represent this declaration has the right
|
||
TYPE_CONTEXT. */
|
||
context = TYPE_CONTEXT (t);
|
||
t = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
if (! t)
|
||
{
|
||
/* If no such tag is yet defined, create a forward-reference node
|
||
and record it as the "definition".
|
||
When a real declaration of this type is found,
|
||
the forward-reference will be altered into a real type. */
|
||
if (code == ENUMERAL_TYPE)
|
||
{
|
||
error ("use of enum `%#D' without previous declaration", name);
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node);
|
||
}
|
||
else
|
||
{
|
||
t = make_aggr_type (code);
|
||
TYPE_CONTEXT (t) = context;
|
||
pushtag (name, t, globalize);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!globalize && processing_template_decl && IS_AGGR_TYPE (t))
|
||
redeclare_class_template (t, current_template_parms);
|
||
else if (!processing_template_decl
|
||
&& CLASS_TYPE_P (t)
|
||
&& CLASSTYPE_IS_TEMPLATE (t))
|
||
{
|
||
error ("redeclaration of `%T' as a non-template", t);
|
||
t = error_mark_node;
|
||
}
|
||
}
|
||
|
||
POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t);
|
||
}
|
||
|
||
tree
|
||
xref_tag_from_type (tree old, tree id, int globalize)
|
||
{
|
||
enum tag_types tag_kind;
|
||
|
||
if (TREE_CODE (old) == RECORD_TYPE)
|
||
tag_kind = (CLASSTYPE_DECLARED_CLASS (old) ? class_type : record_type);
|
||
else
|
||
tag_kind = union_type;
|
||
|
||
if (id == NULL_TREE)
|
||
id = TYPE_IDENTIFIER (old);
|
||
|
||
return xref_tag (tag_kind, id, globalize, false);
|
||
}
|
||
|
||
/* REF is a type (named NAME), for which we have just seen some
|
||
baseclasses. BASE_LIST is a list of those baseclasses; the
|
||
TREE_PURPOSE is an access_* node, and the TREE_VALUE is the type of
|
||
the base-class. TREE_VIA_VIRTUAL indicates virtual
|
||
inheritance. CODE_TYPE_NODE indicates whether REF is a class,
|
||
struct, or union. */
|
||
|
||
void
|
||
xref_basetypes (tree ref, tree base_list)
|
||
{
|
||
/* In the declaration `A : X, Y, ... Z' we mark all the types
|
||
(A, X, Y, ..., Z) so we can check for duplicates. */
|
||
tree *basep;
|
||
|
||
int i;
|
||
enum tag_types tag_code;
|
||
|
||
if (ref == error_mark_node)
|
||
return;
|
||
|
||
if (TREE_CODE (ref) == UNION_TYPE)
|
||
{
|
||
error ("derived union `%T' invalid", ref);
|
||
return;
|
||
}
|
||
|
||
tag_code = (CLASSTYPE_DECLARED_CLASS (ref) ? class_type : record_type);
|
||
|
||
/* First, make sure that any templates in base-classes are
|
||
instantiated. This ensures that if we call ourselves recursively
|
||
we do not get confused about which classes are marked and which
|
||
are not. */
|
||
basep = &base_list;
|
||
while (*basep)
|
||
{
|
||
tree basetype = TREE_VALUE (*basep);
|
||
if (!(processing_template_decl && uses_template_parms (basetype))
|
||
&& !complete_type_or_else (basetype, NULL))
|
||
/* An incomplete type. Remove it from the list. */
|
||
*basep = TREE_CHAIN (*basep);
|
||
else
|
||
basep = &TREE_CHAIN (*basep);
|
||
}
|
||
|
||
SET_CLASSTYPE_MARKED (ref);
|
||
i = list_length (base_list);
|
||
if (i)
|
||
{
|
||
tree binfo = TYPE_BINFO (ref);
|
||
tree binfos = make_tree_vec (i);
|
||
tree accesses = make_tree_vec (i);
|
||
|
||
BINFO_BASETYPES (binfo) = binfos;
|
||
BINFO_BASEACCESSES (binfo) = accesses;
|
||
|
||
for (i = 0; base_list; base_list = TREE_CHAIN (base_list))
|
||
{
|
||
tree access = TREE_PURPOSE (base_list);
|
||
int via_virtual = TREE_VIA_VIRTUAL (base_list);
|
||
tree basetype = TREE_VALUE (base_list);
|
||
tree base_binfo;
|
||
|
||
if (access == access_default_node)
|
||
/* The base of a derived struct is public by default. */
|
||
access = (tag_code == class_type
|
||
? access_private_node : access_public_node);
|
||
|
||
if (basetype && TREE_CODE (basetype) == TYPE_DECL)
|
||
basetype = TREE_TYPE (basetype);
|
||
if (!basetype
|
||
|| (TREE_CODE (basetype) != RECORD_TYPE
|
||
&& TREE_CODE (basetype) != TYPENAME_TYPE
|
||
&& TREE_CODE (basetype) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (basetype) != BOUND_TEMPLATE_TEMPLATE_PARM))
|
||
{
|
||
error ("base type `%T' fails to be a struct or class type",
|
||
basetype);
|
||
continue;
|
||
}
|
||
|
||
if (CLASSTYPE_MARKED (basetype))
|
||
{
|
||
if (basetype == ref)
|
||
error ("recursive type `%T' undefined", basetype);
|
||
else
|
||
error ("duplicate base type `%T' invalid", basetype);
|
||
continue;
|
||
}
|
||
|
||
if (TYPE_FOR_JAVA (basetype)
|
||
&& (current_lang_depth () == 0))
|
||
TYPE_FOR_JAVA (ref) = 1;
|
||
|
||
if (CLASS_TYPE_P (basetype))
|
||
{
|
||
base_binfo = TYPE_BINFO (basetype);
|
||
/* This flag will be in the binfo of the base type, we must
|
||
clear it after copying the base binfos. */
|
||
BINFO_DEPENDENT_BASE_P (base_binfo)
|
||
= dependent_type_p (basetype);
|
||
}
|
||
else
|
||
base_binfo = make_binfo (size_zero_node, basetype,
|
||
NULL_TREE, NULL_TREE);
|
||
|
||
TREE_VEC_ELT (binfos, i) = base_binfo;
|
||
TREE_VEC_ELT (accesses, i) = access;
|
||
/* This flag will be in the binfo of the base type, we must
|
||
clear it after copying the base binfos. */
|
||
TREE_VIA_VIRTUAL (base_binfo) = via_virtual;
|
||
|
||
SET_CLASSTYPE_MARKED (basetype);
|
||
|
||
/* We are free to modify these bits because they are meaningless
|
||
at top level, and BASETYPE is a top-level type. */
|
||
if (via_virtual || TYPE_USES_VIRTUAL_BASECLASSES (basetype))
|
||
{
|
||
TYPE_USES_VIRTUAL_BASECLASSES (ref) = 1;
|
||
/* Converting to a virtual base class requires looking
|
||
up the offset of the virtual base. */
|
||
TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref) = 1;
|
||
}
|
||
|
||
if (CLASS_TYPE_P (basetype))
|
||
{
|
||
TYPE_HAS_NEW_OPERATOR (ref)
|
||
|= TYPE_HAS_NEW_OPERATOR (basetype);
|
||
TYPE_HAS_ARRAY_NEW_OPERATOR (ref)
|
||
|= TYPE_HAS_ARRAY_NEW_OPERATOR (basetype);
|
||
TYPE_GETS_DELETE (ref) |= TYPE_GETS_DELETE (basetype);
|
||
/* If the base-class uses multiple inheritance, so do we. */
|
||
TYPE_USES_MULTIPLE_INHERITANCE (ref)
|
||
|= TYPE_USES_MULTIPLE_INHERITANCE (basetype);
|
||
/* Likewise, if converting to a base of the base may require
|
||
code, then we may need to generate code to convert to a
|
||
base as well. */
|
||
TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref)
|
||
|= TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (basetype);
|
||
}
|
||
i++;
|
||
}
|
||
if (i)
|
||
TREE_VEC_LENGTH (accesses) = TREE_VEC_LENGTH (binfos) = i;
|
||
else
|
||
BINFO_BASEACCESSES (binfo) = BINFO_BASETYPES (binfo) = NULL_TREE;
|
||
|
||
if (i > 1)
|
||
{
|
||
TYPE_USES_MULTIPLE_INHERITANCE (ref) = 1;
|
||
/* If there is more than one non-empty they cannot be at the same
|
||
address. */
|
||
TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref) = 1;
|
||
}
|
||
}
|
||
|
||
/* Copy the base binfos, collect the virtual bases and set the
|
||
inheritance order chain. */
|
||
copy_base_binfos (TYPE_BINFO (ref), ref, NULL_TREE);
|
||
CLASSTYPE_VBASECLASSES (ref) = nreverse (CLASSTYPE_VBASECLASSES (ref));
|
||
|
||
if (TYPE_FOR_JAVA (ref))
|
||
{
|
||
if (TYPE_USES_MULTIPLE_INHERITANCE (ref))
|
||
error ("Java class '%T' cannot have multiple bases", ref);
|
||
if (CLASSTYPE_VBASECLASSES (ref))
|
||
error ("Java class '%T' cannot have virtual bases", ref);
|
||
}
|
||
|
||
/* Unmark all the types. */
|
||
while (i--)
|
||
{
|
||
tree basetype = BINFO_TYPE (BINFO_BASETYPE (TYPE_BINFO (ref), i));
|
||
|
||
CLEAR_CLASSTYPE_MARKED (basetype);
|
||
if (CLASS_TYPE_P (basetype))
|
||
{
|
||
TREE_VIA_VIRTUAL (TYPE_BINFO (basetype)) = 0;
|
||
BINFO_DEPENDENT_BASE_P (TYPE_BINFO (basetype)) = 0;
|
||
}
|
||
}
|
||
CLEAR_CLASSTYPE_MARKED (ref);
|
||
}
|
||
|
||
|
||
/* Begin compiling the definition of an enumeration type.
|
||
NAME is its name (or null if anonymous).
|
||
Returns the type object, as yet incomplete.
|
||
Also records info about it so that build_enumerator
|
||
may be used to declare the individual values as they are read. */
|
||
|
||
tree
|
||
start_enum (tree name)
|
||
{
|
||
tree enumtype = NULL_TREE;
|
||
struct cp_binding_level *b = current_binding_level;
|
||
|
||
/* If this is the real definition for a previous forward reference,
|
||
fill in the contents in the same object that used to be the
|
||
forward reference. */
|
||
|
||
if (name != NULL_TREE)
|
||
enumtype = lookup_tag (ENUMERAL_TYPE, name, b, 1);
|
||
|
||
if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE)
|
||
{
|
||
error ("multiple definition of `%#T'", enumtype);
|
||
error ("%Jprevious definition here", TYPE_MAIN_DECL (enumtype));
|
||
/* Clear out TYPE_VALUES, and start again. */
|
||
TYPE_VALUES (enumtype) = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
enumtype = make_node (ENUMERAL_TYPE);
|
||
pushtag (name, enumtype, 0);
|
||
}
|
||
|
||
return enumtype;
|
||
}
|
||
|
||
/* After processing and defining all the values of an enumeration type,
|
||
install their decls in the enumeration type and finish it off.
|
||
ENUMTYPE is the type object and VALUES a list of name-value pairs. */
|
||
|
||
void
|
||
finish_enum (tree enumtype)
|
||
{
|
||
tree values;
|
||
tree decl;
|
||
tree value;
|
||
tree minnode;
|
||
tree maxnode;
|
||
tree t;
|
||
bool unsignedp;
|
||
int lowprec;
|
||
int highprec;
|
||
int precision;
|
||
integer_type_kind itk;
|
||
tree underlying_type = NULL_TREE;
|
||
|
||
/* We built up the VALUES in reverse order. */
|
||
TYPE_VALUES (enumtype) = nreverse (TYPE_VALUES (enumtype));
|
||
|
||
/* For an enum defined in a template, just set the type of the values;
|
||
all further processing is postponed until the template is
|
||
instantiated. We need to set the type so that tsubst of a CONST_DECL
|
||
works. */
|
||
if (processing_template_decl)
|
||
{
|
||
for (values = TYPE_VALUES (enumtype);
|
||
values;
|
||
values = TREE_CHAIN (values))
|
||
TREE_TYPE (TREE_VALUE (values)) = enumtype;
|
||
if (at_function_scope_p ())
|
||
add_stmt (build_min (TAG_DEFN, enumtype));
|
||
return;
|
||
}
|
||
|
||
/* Determine the minimum and maximum values of the enumerators. */
|
||
if (TYPE_VALUES (enumtype))
|
||
{
|
||
minnode = maxnode = NULL_TREE;
|
||
|
||
for (values = TYPE_VALUES (enumtype);
|
||
values;
|
||
values = TREE_CHAIN (values))
|
||
{
|
||
decl = TREE_VALUE (values);
|
||
|
||
/* [dcl.enum]: Following the closing brace of an enum-specifier,
|
||
each enumerator has the type of its enumeration. Prior to the
|
||
closing brace, the type of each enumerator is the type of its
|
||
initializing value. */
|
||
TREE_TYPE (decl) = enumtype;
|
||
|
||
/* Update the minimum and maximum values, if appropriate. */
|
||
value = DECL_INITIAL (decl);
|
||
/* Figure out what the minimum and maximum values of the
|
||
enumerators are. */
|
||
if (!minnode)
|
||
minnode = maxnode = value;
|
||
else if (tree_int_cst_lt (maxnode, value))
|
||
maxnode = value;
|
||
else if (tree_int_cst_lt (value, minnode))
|
||
minnode = value;
|
||
|
||
/* Set the TREE_TYPE for the values as well. That's so that when
|
||
we call decl_constant_value we get an entity of the right type
|
||
(but with the constant value). But first make a copy so we
|
||
don't clobber shared INTEGER_CSTs. */
|
||
if (TREE_TYPE (value) != enumtype)
|
||
{
|
||
value = DECL_INITIAL (decl) = copy_node (value);
|
||
TREE_TYPE (value) = enumtype;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
/* [dcl.enum]
|
||
|
||
If the enumerator-list is empty, the underlying type is as if
|
||
the enumeration had a single enumerator with value 0. */
|
||
minnode = maxnode = integer_zero_node;
|
||
|
||
/* Compute the number of bits require to represent all values of the
|
||
enumeration. We must do this before the type of MINNODE and
|
||
MAXNODE are transformed, since min_precision relies on the
|
||
TREE_TYPE of the value it is passed. */
|
||
unsignedp = tree_int_cst_sgn (minnode) >= 0;
|
||
lowprec = min_precision (minnode, unsignedp);
|
||
highprec = min_precision (maxnode, unsignedp);
|
||
precision = MAX (lowprec, highprec);
|
||
|
||
/* Determine the underlying type of the enumeration.
|
||
|
||
[dcl.enum]
|
||
|
||
The underlying type of an enumeration is an integral type that
|
||
can represent all the enumerator values defined in the
|
||
enumeration. It is implementation-defined which integral type is
|
||
used as the underlying type for an enumeration except that the
|
||
underlying type shall not be larger than int unless the value of
|
||
an enumerator cannot fit in an int or unsigned int.
|
||
|
||
We use "int" or an "unsigned int" as the underlying type, even if
|
||
a smaller integral type would work, unless the user has
|
||
explicitly requested that we use the smallest possible type. */
|
||
for (itk = (flag_short_enums ? itk_char : itk_int);
|
||
itk != itk_none;
|
||
itk++)
|
||
{
|
||
underlying_type = integer_types[itk];
|
||
if (TYPE_PRECISION (underlying_type) >= precision
|
||
&& TREE_UNSIGNED (underlying_type) == unsignedp)
|
||
break;
|
||
}
|
||
if (itk == itk_none)
|
||
{
|
||
/* DR 377
|
||
|
||
IF no integral type can represent all the enumerator values, the
|
||
enumeration is ill-formed. */
|
||
error ("no integral type can represent all of the enumerator values "
|
||
"for `%T'", enumtype);
|
||
precision = TYPE_PRECISION (long_long_integer_type_node);
|
||
underlying_type = integer_types[itk_unsigned_long_long];
|
||
}
|
||
|
||
/* Compute the minium and maximum values for the type.
|
||
|
||
[dcl.enum]
|
||
|
||
For an enumeration where emin is the smallest enumerator and emax
|
||
is the largest, the values of the enumeration are the values of the
|
||
underlying type in the range bmin to bmax, where bmin and bmax are,
|
||
respectively, the smallest and largest values of the smallest bit-
|
||
field that can store emin and emax. */
|
||
|
||
/* The middle-end currently assumes that types with TYPE_PRECISION
|
||
narrower than their underlying type are suitably zero or sign
|
||
extended to fill their mode. g++ doesn't make these guarantees.
|
||
Until the middle-end can represent such paradoxical types, we
|
||
set the TYPE_PRECISON to the width of the underlying type. */
|
||
TYPE_PRECISION (enumtype) = TYPE_PRECISION (underlying_type);
|
||
|
||
set_min_and_max_values_for_integral_type (enumtype, precision, unsignedp);
|
||
|
||
/* [dcl.enum]
|
||
|
||
The value of sizeof() applied to an enumeration type, an object
|
||
of an enumeration type, or an enumerator, is the value of sizeof()
|
||
applied to the underlying type. */
|
||
TYPE_SIZE (enumtype) = TYPE_SIZE (underlying_type);
|
||
TYPE_SIZE_UNIT (enumtype) = TYPE_SIZE_UNIT (underlying_type);
|
||
TYPE_MODE (enumtype) = TYPE_MODE (underlying_type);
|
||
TYPE_ALIGN (enumtype) = TYPE_ALIGN (underlying_type);
|
||
TYPE_USER_ALIGN (enumtype) = TYPE_USER_ALIGN (underlying_type);
|
||
TREE_UNSIGNED (enumtype) = TREE_UNSIGNED (underlying_type);
|
||
|
||
/* Convert each of the enumerators to the type of the underlying
|
||
type of the enumeration. */
|
||
for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
|
||
{
|
||
decl = TREE_VALUE (values);
|
||
value = perform_implicit_conversion (underlying_type,
|
||
DECL_INITIAL (decl));
|
||
TREE_TYPE (value) = enumtype;
|
||
DECL_INITIAL (decl) = value;
|
||
TREE_VALUE (values) = value;
|
||
}
|
||
|
||
/* Fix up all variant types of this enum type. */
|
||
for (t = TYPE_MAIN_VARIANT (enumtype); t; t = TYPE_NEXT_VARIANT (t))
|
||
{
|
||
TYPE_VALUES (t) = TYPE_VALUES (enumtype);
|
||
TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (enumtype);
|
||
TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (enumtype);
|
||
TYPE_SIZE (t) = TYPE_SIZE (enumtype);
|
||
TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (enumtype);
|
||
TYPE_MODE (t) = TYPE_MODE (enumtype);
|
||
TYPE_PRECISION (t) = TYPE_PRECISION (enumtype);
|
||
TYPE_ALIGN (t) = TYPE_ALIGN (enumtype);
|
||
TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (enumtype);
|
||
TREE_UNSIGNED (t) = TREE_UNSIGNED (enumtype);
|
||
}
|
||
|
||
/* Finish debugging output for this type. */
|
||
rest_of_type_compilation (enumtype, namespace_bindings_p ());
|
||
}
|
||
|
||
/* Build and install a CONST_DECL for an enumeration constant of the
|
||
enumeration type ENUMTYPE whose NAME and VALUE (if any) are provided.
|
||
Assignment of sequential values by default is handled here. */
|
||
|
||
void
|
||
build_enumerator (tree name, tree value, tree enumtype)
|
||
{
|
||
tree decl;
|
||
tree context;
|
||
tree type;
|
||
|
||
/* Remove no-op casts from the value. */
|
||
if (value)
|
||
STRIP_TYPE_NOPS (value);
|
||
|
||
if (! processing_template_decl)
|
||
{
|
||
/* Validate and default VALUE. */
|
||
if (value != NULL_TREE)
|
||
{
|
||
value = decl_constant_value (value);
|
||
|
||
if (TREE_CODE (value) == INTEGER_CST)
|
||
{
|
||
value = perform_integral_promotions (value);
|
||
constant_expression_warning (value);
|
||
}
|
||
else
|
||
{
|
||
error ("enumerator value for `%D' not integer constant", name);
|
||
value = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Default based on previous value. */
|
||
if (value == NULL_TREE)
|
||
{
|
||
tree prev_value;
|
||
|
||
if (TYPE_VALUES (enumtype))
|
||
{
|
||
/* The next value is the previous value ... */
|
||
prev_value = DECL_INITIAL (TREE_VALUE (TYPE_VALUES (enumtype)));
|
||
/* ... plus one. */
|
||
value = cp_build_binary_op (PLUS_EXPR,
|
||
prev_value,
|
||
integer_one_node);
|
||
|
||
if (tree_int_cst_lt (value, prev_value))
|
||
error ("overflow in enumeration values at `%D'", name);
|
||
}
|
||
else
|
||
value = integer_zero_node;
|
||
}
|
||
|
||
/* Remove no-op casts from the value. */
|
||
STRIP_TYPE_NOPS (value);
|
||
}
|
||
|
||
/* C++ associates enums with global, function, or class declarations. */
|
||
context = current_scope ();
|
||
if (!context)
|
||
context = current_namespace;
|
||
|
||
/* Build the actual enumeration constant. Note that the enumeration
|
||
constants have the type of their initializers until the
|
||
enumeration is complete:
|
||
|
||
[ dcl.enum ]
|
||
|
||
Following the closing brace of an enum-specifier, each enumer-
|
||
ator has the type of its enumeration. Prior to the closing
|
||
brace, the type of each enumerator is the type of its
|
||
initializing value.
|
||
|
||
In finish_enum we will reset the type. Of course, if we're
|
||
processing a template, there may be no value. */
|
||
type = value ? TREE_TYPE (value) : NULL_TREE;
|
||
|
||
if (context && context == current_class_type)
|
||
/* This enum declaration is local to the class. We need the full
|
||
lang_decl so that we can record DECL_CLASS_CONTEXT, for example. */
|
||
decl = build_lang_decl (CONST_DECL, name, type);
|
||
else
|
||
/* It's a global enum, or it's local to a function. (Note local to
|
||
a function could mean local to a class method. */
|
||
decl = build_decl (CONST_DECL, name, type);
|
||
|
||
DECL_CONTEXT (decl) = FROB_CONTEXT (context);
|
||
TREE_CONSTANT (decl) = TREE_READONLY (decl) = 1;
|
||
DECL_INITIAL (decl) = value;
|
||
|
||
if (context && context == current_class_type)
|
||
/* In something like `struct S { enum E { i = 7 }; };' we put `i'
|
||
on the TYPE_FIELDS list for `S'. (That's so that you can say
|
||
things like `S::i' later.) */
|
||
finish_member_declaration (decl);
|
||
else
|
||
pushdecl (decl);
|
||
|
||
/* Add this enumeration constant to the list for this type. */
|
||
TYPE_VALUES (enumtype) = tree_cons (name, decl, TYPE_VALUES (enumtype));
|
||
}
|
||
|
||
|
||
/* We're defining DECL. Make sure that it's type is OK. */
|
||
|
||
static void
|
||
check_function_type (tree decl, tree current_function_parms)
|
||
{
|
||
tree fntype = TREE_TYPE (decl);
|
||
tree return_type = complete_type (TREE_TYPE (fntype));
|
||
|
||
/* In a function definition, arg types must be complete. */
|
||
require_complete_types_for_parms (current_function_parms);
|
||
|
||
if (!COMPLETE_OR_VOID_TYPE_P (return_type))
|
||
{
|
||
error ("return type `%#T' is incomplete", TREE_TYPE (fntype));
|
||
|
||
/* Make it return void instead, but don't change the
|
||
type of the DECL_RESULT, in case we have a named return value. */
|
||
if (TREE_CODE (fntype) == METHOD_TYPE)
|
||
{
|
||
tree ctype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fntype)));
|
||
TREE_TYPE (decl)
|
||
= build_method_type_directly (ctype,
|
||
void_type_node,
|
||
FUNCTION_ARG_CHAIN (decl));
|
||
}
|
||
else
|
||
TREE_TYPE (decl)
|
||
= build_function_type (void_type_node,
|
||
TYPE_ARG_TYPES (TREE_TYPE (decl)));
|
||
TREE_TYPE (decl)
|
||
= build_exception_variant (fntype,
|
||
TYPE_RAISES_EXCEPTIONS (fntype));
|
||
}
|
||
else
|
||
abstract_virtuals_error (decl, TREE_TYPE (fntype));
|
||
}
|
||
|
||
/* Create the FUNCTION_DECL for a function definition.
|
||
DECLSPECS and DECLARATOR are the parts of the declaration;
|
||
they describe the function's name and the type it returns,
|
||
but twisted together in a fashion that parallels the syntax of C.
|
||
|
||
FLAGS is a bitwise or of SF_PRE_PARSED (indicating that the
|
||
DECLARATOR is really the DECL for the function we are about to
|
||
process and that DECLSPECS should be ignored), SF_INCLASS_INLINE
|
||
indicating that the function is an inline defined in-class.
|
||
|
||
This function creates a binding context for the function body
|
||
as well as setting up the FUNCTION_DECL in current_function_decl.
|
||
|
||
Returns 1 on success. If the DECLARATOR is not suitable for a function
|
||
(it defines a datum instead), we return 0, which tells
|
||
yyparse to report a parse error.
|
||
|
||
For C++, we must first check whether that datum makes any sense.
|
||
For example, "class A local_a(1,2);" means that variable local_a
|
||
is an aggregate of type A, which should have a constructor
|
||
applied to it with the argument list [1, 2]. */
|
||
|
||
int
|
||
start_function (tree declspecs, tree declarator, tree attrs, int flags)
|
||
{
|
||
tree decl1;
|
||
tree ctype = NULL_TREE;
|
||
tree fntype;
|
||
tree restype;
|
||
int doing_friend = 0;
|
||
struct cp_binding_level *bl;
|
||
tree current_function_parms;
|
||
|
||
/* Sanity check. */
|
||
my_friendly_assert (TREE_CODE (TREE_VALUE (void_list_node)) == VOID_TYPE, 160);
|
||
my_friendly_assert (TREE_CHAIN (void_list_node) == NULL_TREE, 161);
|
||
|
||
/* This should only be done once on the top most decl. */
|
||
if (have_extern_spec)
|
||
{
|
||
declspecs = tree_cons (NULL_TREE, get_identifier ("extern"), declspecs);
|
||
have_extern_spec = false;
|
||
}
|
||
|
||
if (flags & SF_PRE_PARSED)
|
||
{
|
||
decl1 = declarator;
|
||
|
||
fntype = TREE_TYPE (decl1);
|
||
if (TREE_CODE (fntype) == METHOD_TYPE)
|
||
ctype = TYPE_METHOD_BASETYPE (fntype);
|
||
|
||
/* ISO C++ 11.4/5. A friend function defined in a class is in
|
||
the (lexical) scope of the class in which it is defined. */
|
||
if (!ctype && DECL_FRIEND_P (decl1))
|
||
{
|
||
ctype = DECL_FRIEND_CONTEXT (decl1);
|
||
|
||
/* CTYPE could be null here if we're dealing with a template;
|
||
for example, `inline friend float foo()' inside a template
|
||
will have no CTYPE set. */
|
||
if (ctype && TREE_CODE (ctype) != RECORD_TYPE)
|
||
ctype = NULL_TREE;
|
||
else
|
||
doing_friend = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, 1, &attrs);
|
||
/* If the declarator is not suitable for a function definition,
|
||
cause a syntax error. */
|
||
if (decl1 == NULL_TREE || TREE_CODE (decl1) != FUNCTION_DECL)
|
||
return 0;
|
||
|
||
cplus_decl_attributes (&decl1, attrs, 0);
|
||
|
||
/* If #pragma weak was used, mark the decl weak now. */
|
||
if (global_scope_p (current_binding_level))
|
||
maybe_apply_pragma_weak (decl1);
|
||
|
||
fntype = TREE_TYPE (decl1);
|
||
|
||
restype = TREE_TYPE (fntype);
|
||
|
||
if (TREE_CODE (fntype) == METHOD_TYPE)
|
||
ctype = TYPE_METHOD_BASETYPE (fntype);
|
||
else if (DECL_MAIN_P (decl1))
|
||
{
|
||
/* If this doesn't return integer_type, or a typedef to
|
||
integer_type, complain. */
|
||
if (!same_type_p (TREE_TYPE (TREE_TYPE (decl1)), integer_type_node))
|
||
{
|
||
if (pedantic || warn_return_type)
|
||
pedwarn ("return type for `main' changed to `int'");
|
||
TREE_TYPE (decl1) = fntype = default_function_type;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (DECL_DECLARED_INLINE_P (decl1)
|
||
&& lookup_attribute ("noinline", attrs))
|
||
warning ("%Jinline function '%D' given attribute noinline", decl1, decl1);
|
||
|
||
if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl1))
|
||
/* This is a constructor, we must ensure that any default args
|
||
introduced by this definition are propagated to the clones
|
||
now. The clones are used directly in overload resolution. */
|
||
adjust_clone_args (decl1);
|
||
|
||
/* Sometimes we don't notice that a function is a static member, and
|
||
build a METHOD_TYPE for it. Fix that up now. */
|
||
if (ctype != NULL_TREE && DECL_STATIC_FUNCTION_P (decl1)
|
||
&& TREE_CODE (TREE_TYPE (decl1)) == METHOD_TYPE)
|
||
{
|
||
revert_static_member_fn (decl1);
|
||
ctype = NULL_TREE;
|
||
}
|
||
|
||
/* Warn if function was previously implicitly declared
|
||
(but not if we warned then). */
|
||
if (! warn_implicit
|
||
&& IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1)) != NULL_TREE)
|
||
cp_warning_at ("`%D' implicitly declared before its definition", IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1)));
|
||
|
||
/* Set up current_class_type, and enter the scope of the class, if
|
||
appropriate. */
|
||
if (ctype)
|
||
push_nested_class (ctype);
|
||
else if (DECL_STATIC_FUNCTION_P (decl1))
|
||
push_nested_class (DECL_CONTEXT (decl1));
|
||
|
||
/* Now that we have entered the scope of the class, we must restore
|
||
the bindings for any template parameters surrounding DECL1, if it
|
||
is an inline member template. (Order is important; consider the
|
||
case where a template parameter has the same name as a field of
|
||
the class.) It is not until after this point that
|
||
PROCESSING_TEMPLATE_DECL is guaranteed to be set up correctly. */
|
||
if (flags & SF_INCLASS_INLINE)
|
||
maybe_begin_member_template_processing (decl1);
|
||
|
||
/* Effective C++ rule 15. */
|
||
if (warn_ecpp
|
||
&& DECL_OVERLOADED_OPERATOR_P (decl1) == NOP_EXPR
|
||
&& TREE_CODE (TREE_TYPE (fntype)) == VOID_TYPE)
|
||
warning ("`operator=' should return a reference to `*this'");
|
||
|
||
/* Make the init_value nonzero so pushdecl knows this is not tentative.
|
||
error_mark_node is replaced below (in poplevel) with the BLOCK. */
|
||
if (!DECL_INITIAL (decl1))
|
||
DECL_INITIAL (decl1) = error_mark_node;
|
||
|
||
/* This function exists in static storage.
|
||
(This does not mean `static' in the C sense!) */
|
||
TREE_STATIC (decl1) = 1;
|
||
|
||
/* We must call push_template_decl after current_class_type is set
|
||
up. (If we are processing inline definitions after exiting a
|
||
class scope, current_class_type will be NULL_TREE until set above
|
||
by push_nested_class.) */
|
||
if (processing_template_decl)
|
||
decl1 = push_template_decl (decl1);
|
||
|
||
/* We are now in the scope of the function being defined. */
|
||
current_function_decl = decl1;
|
||
|
||
/* Save the parm names or decls from this function's declarator
|
||
where store_parm_decls will find them. */
|
||
current_function_parms = DECL_ARGUMENTS (decl1);
|
||
|
||
/* Make sure the parameter and return types are reasonable. When
|
||
you declare a function, these types can be incomplete, but they
|
||
must be complete when you define the function. */
|
||
if (! processing_template_decl)
|
||
check_function_type (decl1, current_function_parms);
|
||
|
||
/* Build the return declaration for the function. */
|
||
restype = TREE_TYPE (fntype);
|
||
/* Promote the value to int before returning it. */
|
||
if (c_promoting_integer_type_p (restype))
|
||
restype = type_promotes_to (restype);
|
||
if (DECL_RESULT (decl1) == NULL_TREE)
|
||
{
|
||
DECL_RESULT (decl1)
|
||
= build_decl (RESULT_DECL, 0, TYPE_MAIN_VARIANT (restype));
|
||
c_apply_type_quals_to_decl (cp_type_quals (restype),
|
||
DECL_RESULT (decl1));
|
||
}
|
||
|
||
/* Initialize RTL machinery. We cannot do this until
|
||
CURRENT_FUNCTION_DECL and DECL_RESULT are set up. We do this
|
||
even when processing a template; this is how we get
|
||
CFUN set up, and our per-function variables initialized.
|
||
FIXME factor out the non-RTL stuff. */
|
||
bl = current_binding_level;
|
||
allocate_struct_function (decl1);
|
||
current_binding_level = bl;
|
||
|
||
/* Even though we're inside a function body, we still don't want to
|
||
call expand_expr to calculate the size of a variable-sized array.
|
||
We haven't necessarily assigned RTL to all variables yet, so it's
|
||
not safe to try to expand expressions involving them. */
|
||
immediate_size_expand = 0;
|
||
cfun->x_dont_save_pending_sizes_p = 1;
|
||
|
||
/* Start the statement-tree, start the tree now. */
|
||
begin_stmt_tree (&DECL_SAVED_TREE (decl1));
|
||
|
||
/* Let the user know we're compiling this function. */
|
||
announce_function (decl1);
|
||
|
||
/* Record the decl so that the function name is defined.
|
||
If we already have a decl for this name, and it is a FUNCTION_DECL,
|
||
use the old decl. */
|
||
if (!processing_template_decl && !(flags & SF_PRE_PARSED))
|
||
{
|
||
/* A specialization is not used to guide overload resolution. */
|
||
if (!DECL_FUNCTION_MEMBER_P (decl1)
|
||
&& !(DECL_USE_TEMPLATE (decl1) &&
|
||
PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (decl1))))
|
||
{
|
||
tree olddecl = pushdecl (decl1);
|
||
|
||
if (olddecl == error_mark_node)
|
||
/* If something went wrong when registering the declaration,
|
||
use DECL1; we have to have a FUNCTION_DECL to use when
|
||
parsing the body of the function. */
|
||
;
|
||
else
|
||
/* Otherwise, OLDDECL is either a previous declaration of
|
||
the same function or DECL1 itself. */
|
||
decl1 = olddecl;
|
||
}
|
||
else
|
||
{
|
||
/* We need to set the DECL_CONTEXT. */
|
||
if (!DECL_CONTEXT (decl1) && DECL_TEMPLATE_INFO (decl1))
|
||
DECL_CONTEXT (decl1) = DECL_CONTEXT (DECL_TI_TEMPLATE (decl1));
|
||
/* And make sure we have enough default args. */
|
||
check_default_args (decl1);
|
||
}
|
||
fntype = TREE_TYPE (decl1);
|
||
}
|
||
|
||
/* Reset these in case the call to pushdecl changed them. */
|
||
current_function_decl = decl1;
|
||
cfun->decl = decl1;
|
||
|
||
/* If we are (erroneously) defining a function that we have already
|
||
defined before, wipe out what we knew before. */
|
||
if (!DECL_PENDING_INLINE_P (decl1))
|
||
DECL_SAVED_FUNCTION_DATA (decl1) = NULL;
|
||
|
||
if (ctype && !doing_friend && !DECL_STATIC_FUNCTION_P (decl1))
|
||
{
|
||
/* We know that this was set up by `grokclassfn'. We do not
|
||
wait until `store_parm_decls', since evil parse errors may
|
||
never get us to that point. Here we keep the consistency
|
||
between `current_class_type' and `current_class_ptr'. */
|
||
tree t = DECL_ARGUMENTS (decl1);
|
||
|
||
my_friendly_assert (t != NULL_TREE && TREE_CODE (t) == PARM_DECL,
|
||
162);
|
||
my_friendly_assert (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE,
|
||
19990811);
|
||
|
||
cp_function_chain->x_current_class_ref
|
||
= build_indirect_ref (t, NULL);
|
||
cp_function_chain->x_current_class_ptr = t;
|
||
|
||
/* Constructors and destructors need to know whether they're "in
|
||
charge" of initializing virtual base classes. */
|
||
t = TREE_CHAIN (t);
|
||
if (DECL_HAS_IN_CHARGE_PARM_P (decl1))
|
||
{
|
||
current_in_charge_parm = t;
|
||
t = TREE_CHAIN (t);
|
||
}
|
||
if (DECL_HAS_VTT_PARM_P (decl1))
|
||
{
|
||
if (DECL_NAME (t) != vtt_parm_identifier)
|
||
abort ();
|
||
current_vtt_parm = t;
|
||
}
|
||
}
|
||
|
||
if (DECL_INTERFACE_KNOWN (decl1))
|
||
{
|
||
tree ctx = decl_function_context (decl1);
|
||
|
||
if (DECL_NOT_REALLY_EXTERN (decl1))
|
||
DECL_EXTERNAL (decl1) = 0;
|
||
|
||
if (ctx != NULL_TREE && DECL_DECLARED_INLINE_P (ctx)
|
||
&& TREE_PUBLIC (ctx))
|
||
/* This is a function in a local class in an extern inline
|
||
function. */
|
||
comdat_linkage (decl1);
|
||
}
|
||
/* If this function belongs to an interface, it is public.
|
||
If it belongs to someone else's interface, it is also external.
|
||
This only affects inlines and template instantiations. */
|
||
else if (interface_unknown == 0
|
||
&& ! DECL_TEMPLATE_INSTANTIATION (decl1))
|
||
{
|
||
if (DECL_DECLARED_INLINE_P (decl1)
|
||
|| DECL_TEMPLATE_INSTANTIATION (decl1)
|
||
|| processing_template_decl)
|
||
{
|
||
DECL_EXTERNAL (decl1)
|
||
= (interface_only
|
||
|| (DECL_DECLARED_INLINE_P (decl1)
|
||
&& ! flag_implement_inlines
|
||
&& !DECL_VINDEX (decl1)));
|
||
|
||
/* For WIN32 we also want to put these in linkonce sections. */
|
||
maybe_make_one_only (decl1);
|
||
}
|
||
else
|
||
DECL_EXTERNAL (decl1) = 0;
|
||
DECL_NOT_REALLY_EXTERN (decl1) = 0;
|
||
DECL_INTERFACE_KNOWN (decl1) = 1;
|
||
}
|
||
else if (interface_unknown && interface_only
|
||
&& ! DECL_TEMPLATE_INSTANTIATION (decl1))
|
||
{
|
||
/* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma
|
||
interface, we will have interface_only set but not
|
||
interface_known. In that case, we don't want to use the normal
|
||
heuristics because someone will supply a #pragma implementation
|
||
elsewhere, and deducing it here would produce a conflict. */
|
||
comdat_linkage (decl1);
|
||
DECL_EXTERNAL (decl1) = 0;
|
||
DECL_INTERFACE_KNOWN (decl1) = 1;
|
||
DECL_DEFER_OUTPUT (decl1) = 1;
|
||
}
|
||
else
|
||
{
|
||
/* This is a definition, not a reference.
|
||
So clear DECL_EXTERNAL. */
|
||
DECL_EXTERNAL (decl1) = 0;
|
||
|
||
if ((DECL_DECLARED_INLINE_P (decl1)
|
||
|| DECL_TEMPLATE_INSTANTIATION (decl1))
|
||
&& ! DECL_INTERFACE_KNOWN (decl1)
|
||
/* Don't try to defer nested functions for now. */
|
||
&& ! decl_function_context (decl1))
|
||
DECL_DEFER_OUTPUT (decl1) = 1;
|
||
else
|
||
DECL_INTERFACE_KNOWN (decl1) = 1;
|
||
}
|
||
|
||
begin_scope (sk_function_parms, decl1);
|
||
|
||
++function_depth;
|
||
|
||
if (DECL_DESTRUCTOR_P (decl1))
|
||
{
|
||
dtor_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
|
||
DECL_CONTEXT (dtor_label) = current_function_decl;
|
||
}
|
||
|
||
start_fname_decls ();
|
||
|
||
store_parm_decls (current_function_parms);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Store the parameter declarations into the current function declaration.
|
||
This is called after parsing the parameter declarations, before
|
||
digesting the body of the function.
|
||
|
||
Also install to binding contour return value identifier, if any. */
|
||
|
||
static void
|
||
store_parm_decls (tree current_function_parms)
|
||
{
|
||
tree fndecl = current_function_decl;
|
||
tree parm;
|
||
|
||
/* This is a chain of any other decls that came in among the parm
|
||
declarations. If a parm is declared with enum {foo, bar} x;
|
||
then CONST_DECLs for foo and bar are put here. */
|
||
tree nonparms = NULL_TREE;
|
||
|
||
if (current_function_parms)
|
||
{
|
||
/* This case is when the function was defined with an ANSI prototype.
|
||
The parms already have decls, so we need not do anything here
|
||
except record them as in effect
|
||
and complain if any redundant old-style parm decls were written. */
|
||
|
||
tree specparms = current_function_parms;
|
||
tree next;
|
||
|
||
/* Must clear this because it might contain TYPE_DECLs declared
|
||
at class level. */
|
||
current_binding_level->names = NULL;
|
||
|
||
/* If we're doing semantic analysis, then we'll call pushdecl
|
||
for each of these. We must do them in reverse order so that
|
||
they end in the correct forward order. */
|
||
specparms = nreverse (specparms);
|
||
|
||
for (parm = specparms; parm; parm = next)
|
||
{
|
||
next = TREE_CHAIN (parm);
|
||
if (TREE_CODE (parm) == PARM_DECL)
|
||
{
|
||
if (DECL_NAME (parm) == NULL_TREE
|
||
|| TREE_CODE (parm) != VOID_TYPE)
|
||
pushdecl (parm);
|
||
else
|
||
error ("parameter `%D' declared void", parm);
|
||
}
|
||
else
|
||
{
|
||
/* If we find an enum constant or a type tag,
|
||
put it aside for the moment. */
|
||
TREE_CHAIN (parm) = NULL_TREE;
|
||
nonparms = chainon (nonparms, parm);
|
||
}
|
||
}
|
||
|
||
/* Get the decls in their original chain order and record in the
|
||
function. This is all and only the PARM_DECLs that were
|
||
pushed into scope by the loop above. */
|
||
DECL_ARGUMENTS (fndecl) = getdecls ();
|
||
}
|
||
else
|
||
DECL_ARGUMENTS (fndecl) = NULL_TREE;
|
||
|
||
/* Now store the final chain of decls for the arguments
|
||
as the decl-chain of the current lexical scope.
|
||
Put the enumerators in as well, at the front so that
|
||
DECL_ARGUMENTS is not modified. */
|
||
current_binding_level->names = chainon (nonparms, DECL_ARGUMENTS (fndecl));
|
||
|
||
/* Do the starting of the exception specifications, if we have any. */
|
||
if (flag_exceptions && !processing_template_decl
|
||
&& flag_enforce_eh_specs
|
||
&& TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl)))
|
||
current_eh_spec_block = begin_eh_spec_block ();
|
||
}
|
||
|
||
|
||
/* We have finished doing semantic analysis on DECL, but have not yet
|
||
generated RTL for its body. Save away our current state, so that
|
||
when we want to generate RTL later we know what to do. */
|
||
|
||
static void
|
||
save_function_data (tree decl)
|
||
{
|
||
struct language_function *f;
|
||
|
||
/* Save the language-specific per-function data so that we can
|
||
get it back when we really expand this function. */
|
||
my_friendly_assert (!DECL_PENDING_INLINE_P (decl),
|
||
19990908);
|
||
|
||
/* Make a copy. */
|
||
f = ggc_alloc (sizeof (struct language_function));
|
||
memcpy (f, cp_function_chain, sizeof (struct language_function));
|
||
DECL_SAVED_FUNCTION_DATA (decl) = f;
|
||
|
||
/* Clear out the bits we don't need. */
|
||
f->base.x_stmt_tree.x_last_stmt = NULL_TREE;
|
||
f->base.x_stmt_tree.x_last_expr_type = NULL_TREE;
|
||
f->x_named_label_uses = NULL;
|
||
f->bindings = NULL;
|
||
f->x_local_names = NULL;
|
||
|
||
/* If we've already decided that we cannot inline this function, we
|
||
must remember that fact when we actually go to expand the
|
||
function. */
|
||
if (current_function_cannot_inline)
|
||
{
|
||
f->cannot_inline = current_function_cannot_inline;
|
||
DECL_INLINE (decl) = 0;
|
||
}
|
||
}
|
||
|
||
/* Add a note to mark the beginning of the main body of the constructor.
|
||
This is used to set up the data structures for the cleanup regions for
|
||
fully-constructed bases and members. */
|
||
|
||
static void
|
||
begin_constructor_body (void)
|
||
{
|
||
}
|
||
|
||
/* Add a note to mark the end of the main body of the constructor. This is
|
||
used to end the cleanup regions for fully-constructed bases and
|
||
members. */
|
||
|
||
static void
|
||
finish_constructor_body (void)
|
||
{
|
||
}
|
||
|
||
/* Do all the processing for the beginning of a destructor; set up the
|
||
vtable pointers and cleanups for bases and members. */
|
||
|
||
static void
|
||
begin_destructor_body (void)
|
||
{
|
||
tree if_stmt;
|
||
tree compound_stmt;
|
||
|
||
/* If the dtor is empty, and we know there is not any possible
|
||
way we could use any vtable entries, before they are possibly
|
||
set by a base class dtor, we don't have to setup the vtables,
|
||
as we know that any base class dtor will set up any vtables
|
||
it needs. We avoid MI, because one base class dtor can do a
|
||
virtual dispatch to an overridden function that would need to
|
||
have a non-related vtable set up, we cannot avoid setting up
|
||
vtables in that case. We could change this to see if there
|
||
is just one vtable.
|
||
|
||
??? In the destructor for a class, the vtables are set
|
||
appropriately for that class. There will be no non-related
|
||
vtables. jason 2001-12-11. */
|
||
if_stmt = begin_if_stmt ();
|
||
|
||
/* If it is not safe to avoid setting up the vtables, then
|
||
someone will change the condition to be boolean_true_node.
|
||
(Actually, for now, we do not have code to set the condition
|
||
appropriately, so we just assume that we always need to
|
||
initialize the vtables.) */
|
||
finish_if_stmt_cond (boolean_true_node, if_stmt);
|
||
|
||
compound_stmt = begin_compound_stmt (/*has_no_scope=*/false);
|
||
|
||
/* Make all virtual function table pointers in non-virtual base
|
||
classes point to CURRENT_CLASS_TYPE's virtual function
|
||
tables. */
|
||
initialize_vtbl_ptrs (current_class_ptr);
|
||
|
||
finish_compound_stmt (compound_stmt);
|
||
finish_then_clause (if_stmt);
|
||
finish_if_stmt ();
|
||
|
||
/* And insert cleanups for our bases and members so that they
|
||
will be properly destroyed if we throw. */
|
||
push_base_cleanups ();
|
||
}
|
||
|
||
/* At the end of every destructor we generate code to delete the object if
|
||
necessary. Do that now. */
|
||
|
||
static void
|
||
finish_destructor_body (void)
|
||
{
|
||
tree exprstmt;
|
||
|
||
/* Any return from a destructor will end up here; that way all base
|
||
and member cleanups will be run when the function returns. */
|
||
add_stmt (build_stmt (LABEL_STMT, dtor_label));
|
||
|
||
/* In a virtual destructor, we must call delete. */
|
||
if (DECL_VIRTUAL_P (current_function_decl))
|
||
{
|
||
tree if_stmt;
|
||
tree virtual_size = cxx_sizeof (current_class_type);
|
||
|
||
/* [class.dtor]
|
||
|
||
At the point of definition of a virtual destructor (including
|
||
an implicit definition), non-placement operator delete shall
|
||
be looked up in the scope of the destructor's class and if
|
||
found shall be accessible and unambiguous. */
|
||
exprstmt = build_op_delete_call
|
||
(DELETE_EXPR, current_class_ptr, virtual_size,
|
||
LOOKUP_NORMAL | LOOKUP_SPECULATIVELY, NULL_TREE);
|
||
|
||
if_stmt = begin_if_stmt ();
|
||
finish_if_stmt_cond (build (BIT_AND_EXPR, integer_type_node,
|
||
current_in_charge_parm,
|
||
integer_one_node),
|
||
if_stmt);
|
||
finish_expr_stmt (exprstmt);
|
||
finish_then_clause (if_stmt);
|
||
finish_if_stmt ();
|
||
}
|
||
}
|
||
|
||
/* Do the necessary processing for the beginning of a function body, which
|
||
in this case includes member-initializers, but not the catch clauses of
|
||
a function-try-block. Currently, this means opening a binding level
|
||
for the member-initializers (in a ctor) and member cleanups (in a dtor).
|
||
In other functions, this isn't necessary, but it doesn't hurt. */
|
||
|
||
tree
|
||
begin_function_body (void)
|
||
{
|
||
tree stmt;
|
||
|
||
if (processing_template_decl)
|
||
/* Do nothing now. */;
|
||
else
|
||
/* Always keep the BLOCK node associated with the outermost pair of
|
||
curly braces of a function. These are needed for correct
|
||
operation of dwarfout.c. */
|
||
keep_next_level (true);
|
||
|
||
stmt = begin_compound_stmt (/*has_no_scope=*/false);
|
||
COMPOUND_STMT_BODY_BLOCK (stmt) = 1;
|
||
|
||
if (processing_template_decl)
|
||
/* Do nothing now. */;
|
||
else if (DECL_CONSTRUCTOR_P (current_function_decl))
|
||
begin_constructor_body ();
|
||
else if (DECL_DESTRUCTOR_P (current_function_decl))
|
||
begin_destructor_body ();
|
||
|
||
return stmt;
|
||
}
|
||
|
||
/* Do the processing for the end of a function body. Currently, this means
|
||
closing out the cleanups for fully-constructed bases and members, and in
|
||
the case of the destructor, deleting the object if desired. Again, this
|
||
is only meaningful for [cd]tors, since they are the only functions where
|
||
there is a significant distinction between the main body and any
|
||
function catch clauses. Handling, say, main() return semantics here
|
||
would be wrong, as flowing off the end of a function catch clause for
|
||
main() would also need to return 0. */
|
||
|
||
void
|
||
finish_function_body (tree compstmt)
|
||
{
|
||
/* Close the block. */
|
||
finish_compound_stmt (compstmt);
|
||
|
||
if (processing_template_decl)
|
||
/* Do nothing now. */;
|
||
else if (DECL_CONSTRUCTOR_P (current_function_decl))
|
||
finish_constructor_body ();
|
||
else if (DECL_DESTRUCTOR_P (current_function_decl))
|
||
finish_destructor_body ();
|
||
}
|
||
|
||
/* Finish up a function declaration and compile that function
|
||
all the way to assembler language output. The free the storage
|
||
for the function definition.
|
||
|
||
FLAGS is a bitwise or of the following values:
|
||
2 - INCLASS_INLINE
|
||
We just finished processing the body of an in-class inline
|
||
function definition. (This processing will have taken place
|
||
after the class definition is complete.) */
|
||
|
||
tree
|
||
finish_function (int flags)
|
||
{
|
||
tree fndecl = current_function_decl;
|
||
tree fntype, ctype = NULL_TREE;
|
||
int inclass_inline = (flags & 2) != 0;
|
||
int nested;
|
||
|
||
/* When we get some parse errors, we can end up without a
|
||
current_function_decl, so cope. */
|
||
if (fndecl == NULL_TREE)
|
||
return error_mark_node;
|
||
|
||
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fndecl)
|
||
&& DECL_VIRTUAL_P (fndecl)
|
||
&& !processing_template_decl)
|
||
{
|
||
tree fnclass = DECL_CONTEXT (fndecl);
|
||
if (fndecl == CLASSTYPE_KEY_METHOD (fnclass))
|
||
keyed_classes = tree_cons (NULL_TREE, fnclass, keyed_classes);
|
||
}
|
||
|
||
nested = function_depth > 1;
|
||
fntype = TREE_TYPE (fndecl);
|
||
|
||
/* TREE_READONLY (fndecl) = 1;
|
||
This caused &foo to be of type ptr-to-const-function
|
||
which then got a warning when stored in a ptr-to-function variable. */
|
||
|
||
my_friendly_assert (building_stmt_tree (), 20000911);
|
||
|
||
/* For a cloned function, we've already got all the code we need;
|
||
there's no need to add any extra bits. */
|
||
if (!DECL_CLONED_FUNCTION_P (fndecl))
|
||
{
|
||
if (DECL_MAIN_P (current_function_decl))
|
||
{
|
||
/* Make it so that `main' always returns 0 by default. */
|
||
#if VMS_TARGET
|
||
finish_return_stmt (integer_one_node);
|
||
#else
|
||
finish_return_stmt (integer_zero_node);
|
||
#endif
|
||
}
|
||
|
||
/* Finish dealing with exception specifiers. */
|
||
if (flag_exceptions && !processing_template_decl
|
||
&& flag_enforce_eh_specs
|
||
&& TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl)))
|
||
finish_eh_spec_block (TYPE_RAISES_EXCEPTIONS
|
||
(TREE_TYPE (current_function_decl)),
|
||
current_eh_spec_block);
|
||
}
|
||
|
||
finish_fname_decls ();
|
||
|
||
/* If we're saving up tree structure, tie off the function now. */
|
||
finish_stmt_tree (&DECL_SAVED_TREE (fndecl));
|
||
|
||
/* If this function can't throw any exceptions, remember that. */
|
||
if (!processing_template_decl
|
||
&& !cp_function_chain->can_throw
|
||
&& !flag_non_call_exceptions)
|
||
TREE_NOTHROW (fndecl) = 1;
|
||
|
||
/* This must come after expand_function_end because cleanups might
|
||
have declarations (from inline functions) that need to go into
|
||
this function's blocks. */
|
||
|
||
/* If the current binding level isn't the outermost binding level
|
||
for this function, either there is a bug, or we have experienced
|
||
syntax errors and the statement tree is malformed. */
|
||
if (current_binding_level->kind != sk_function_parms)
|
||
{
|
||
/* Make sure we have already experienced errors. */
|
||
if (errorcount == 0)
|
||
abort ();
|
||
|
||
/* Throw away the broken statement tree and extra binding
|
||
levels. */
|
||
DECL_SAVED_TREE (fndecl) = build_stmt (COMPOUND_STMT, NULL_TREE);
|
||
|
||
while (current_binding_level->kind != sk_function_parms)
|
||
{
|
||
if (current_binding_level->kind == sk_class)
|
||
pop_nested_class ();
|
||
else
|
||
poplevel (0, 0, 0);
|
||
}
|
||
}
|
||
poplevel (1, 0, 1);
|
||
|
||
/* Statements should always be full-expressions at the outermost set
|
||
of curly braces for a function. */
|
||
my_friendly_assert (stmts_are_full_exprs_p (), 19990831);
|
||
|
||
/* Set up the named return value optimization, if we can. Here, we
|
||
eliminate the copy from the nrv into the RESULT_DECL and any cleanup
|
||
for the nrv. genrtl_start_function and declare_return_variable
|
||
handle making the nrv and RESULT_DECL share space. */
|
||
if (current_function_return_value)
|
||
{
|
||
tree r = current_function_return_value;
|
||
tree outer;
|
||
|
||
if (r != error_mark_node
|
||
/* This is only worth doing for fns that return in memory--and
|
||
simpler, since we don't have to worry about promoted modes. */
|
||
&& aggregate_value_p (TREE_TYPE (TREE_TYPE (fndecl)), fndecl)
|
||
/* Only allow this for variables declared in the outer scope of
|
||
the function so we know that their lifetime always ends with a
|
||
return; see g++.dg/opt/nrv6.C. We could be more flexible if
|
||
we were to do this optimization in tree-ssa. */
|
||
/* Skip the artificial function body block. */
|
||
&& (outer = BLOCK_SUBBLOCKS (BLOCK_SUBBLOCKS (DECL_INITIAL (fndecl))),
|
||
chain_member (r, BLOCK_VARS (outer))))
|
||
{
|
||
|
||
DECL_ALIGN (r) = DECL_ALIGN (DECL_RESULT (fndecl));
|
||
walk_tree_without_duplicates (&DECL_SAVED_TREE (fndecl),
|
||
nullify_returns_r, r);
|
||
}
|
||
else
|
||
/* Clear it so genrtl_start_function and declare_return_variable
|
||
know we're not optimizing. */
|
||
current_function_return_value = NULL_TREE;
|
||
}
|
||
|
||
/* Remember that we were in class scope. */
|
||
if (current_class_name)
|
||
ctype = current_class_type;
|
||
|
||
/* Must mark the RESULT_DECL as being in this function. */
|
||
DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
|
||
|
||
/* Set the BLOCK_SUPERCONTEXT of the outermost function scope to point
|
||
to the FUNCTION_DECL node itself. */
|
||
BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
|
||
|
||
/* Save away current state, if appropriate. */
|
||
if (!processing_template_decl)
|
||
save_function_data (fndecl);
|
||
|
||
/* If this function calls `setjmp' it cannot be inlined. When
|
||
`longjmp' is called it is not guaranteed to restore the value of
|
||
local variables that have been modified since the call to
|
||
`setjmp'. So, if were to inline this function into some caller
|
||
`c', then when we `longjmp', we might not restore all variables
|
||
in `c'. (It might seem, at first blush, that there's no way for
|
||
this function to modify local variables in `c', but their
|
||
addresses may have been stored somewhere accessible to this
|
||
function.) */
|
||
if (!processing_template_decl && calls_setjmp_p (fndecl))
|
||
DECL_UNINLINABLE (fndecl) = 1;
|
||
|
||
/* Complain if there's just no return statement. */
|
||
if (warn_return_type
|
||
&& TREE_CODE (TREE_TYPE (fntype)) != VOID_TYPE
|
||
&& !dependent_type_p (TREE_TYPE (fntype))
|
||
&& !current_function_returns_value && !current_function_returns_null
|
||
/* Don't complain if we abort or throw. */
|
||
&& !current_function_returns_abnormally
|
||
&& !DECL_NAME (DECL_RESULT (fndecl))
|
||
/* Normally, with -Wreturn-type, flow will complain. Unless we're an
|
||
inline function, as we might never be compiled separately. */
|
||
&& (DECL_INLINE (fndecl) || processing_template_decl))
|
||
warning ("no return statement in function returning non-void");
|
||
|
||
/* We're leaving the context of this function, so zap cfun. It's still in
|
||
DECL_SAVED_INSNS, and we'll restore it in tree_rest_of_compilation. */
|
||
cfun = NULL;
|
||
current_function_decl = NULL;
|
||
|
||
/* If this is an in-class inline definition, we may have to pop the
|
||
bindings for the template parameters that we added in
|
||
maybe_begin_member_template_processing when start_function was
|
||
called. */
|
||
if (inclass_inline)
|
||
maybe_end_member_template_processing ();
|
||
|
||
/* Leave the scope of the class. */
|
||
if (ctype)
|
||
pop_nested_class ();
|
||
|
||
--function_depth;
|
||
|
||
/* Clean up. */
|
||
if (! nested)
|
||
/* Let the error reporting routines know that we're outside a
|
||
function. For a nested function, this value is used in
|
||
cxx_pop_function_context and then reset via pop_function_context. */
|
||
current_function_decl = NULL_TREE;
|
||
|
||
return fndecl;
|
||
}
|
||
|
||
/* Create the FUNCTION_DECL for a function definition.
|
||
DECLSPECS and DECLARATOR are the parts of the declaration;
|
||
they describe the return type and the name of the function,
|
||
but twisted together in a fashion that parallels the syntax of C.
|
||
|
||
This function creates a binding context for the function body
|
||
as well as setting up the FUNCTION_DECL in current_function_decl.
|
||
|
||
Returns a FUNCTION_DECL on success.
|
||
|
||
If the DECLARATOR is not suitable for a function (it defines a datum
|
||
instead), we return 0, which tells yyparse to report a parse error.
|
||
|
||
May return void_type_node indicating that this method is actually
|
||
a friend. See grokfield for more details.
|
||
|
||
Came here with a `.pushlevel' .
|
||
|
||
DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING
|
||
CHANGES TO CODE IN `grokfield'. */
|
||
|
||
tree
|
||
start_method (tree declspecs, tree declarator, tree attrlist)
|
||
{
|
||
tree fndecl = grokdeclarator (declarator, declspecs, MEMFUNCDEF, 0,
|
||
&attrlist);
|
||
|
||
if (fndecl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (fndecl == NULL || TREE_CODE (fndecl) != FUNCTION_DECL)
|
||
{
|
||
error ("invalid member function declaration");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (attrlist)
|
||
cplus_decl_attributes (&fndecl, attrlist, 0);
|
||
|
||
/* Pass friends other than inline friend functions back. */
|
||
if (fndecl == void_type_node)
|
||
return fndecl;
|
||
|
||
if (DECL_IN_AGGR_P (fndecl))
|
||
{
|
||
if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (fndecl)) != current_class_type)
|
||
{
|
||
if (DECL_CONTEXT (fndecl)
|
||
&& TREE_CODE( DECL_CONTEXT (fndecl)) != NAMESPACE_DECL)
|
||
error ("`%D' is already defined in class `%T'", fndecl,
|
||
DECL_CONTEXT (fndecl));
|
||
}
|
||
return void_type_node;
|
||
}
|
||
|
||
check_template_shadow (fndecl);
|
||
|
||
DECL_DECLARED_INLINE_P (fndecl) = 1;
|
||
if (flag_default_inline)
|
||
DECL_INLINE (fndecl) = 1;
|
||
|
||
/* We process method specializations in finish_struct_1. */
|
||
if (processing_template_decl && !DECL_TEMPLATE_SPECIALIZATION (fndecl))
|
||
{
|
||
fndecl = push_template_decl (fndecl);
|
||
if (fndecl == error_mark_node)
|
||
return fndecl;
|
||
}
|
||
|
||
if (! DECL_FRIEND_P (fndecl))
|
||
{
|
||
if (TREE_CHAIN (fndecl))
|
||
{
|
||
fndecl = copy_node (fndecl);
|
||
TREE_CHAIN (fndecl) = NULL_TREE;
|
||
}
|
||
grok_special_member_properties (fndecl);
|
||
}
|
||
|
||
cp_finish_decl (fndecl, NULL_TREE, NULL_TREE, 0);
|
||
|
||
/* Make a place for the parms. */
|
||
begin_scope (sk_function_parms, fndecl);
|
||
|
||
DECL_IN_AGGR_P (fndecl) = 1;
|
||
return fndecl;
|
||
}
|
||
|
||
/* Go through the motions of finishing a function definition.
|
||
We don't compile this method until after the whole class has
|
||
been processed.
|
||
|
||
FINISH_METHOD must return something that looks as though it
|
||
came from GROKFIELD (since we are defining a method, after all).
|
||
|
||
This is called after parsing the body of the function definition.
|
||
STMTS is the chain of statements that makes up the function body.
|
||
|
||
DECL is the ..._DECL that `start_method' provided. */
|
||
|
||
tree
|
||
finish_method (tree decl)
|
||
{
|
||
tree fndecl = decl;
|
||
tree old_initial;
|
||
|
||
tree link;
|
||
|
||
if (decl == void_type_node)
|
||
return decl;
|
||
|
||
old_initial = DECL_INITIAL (fndecl);
|
||
|
||
/* Undo the level for the parms (from start_method).
|
||
This is like poplevel, but it causes nothing to be
|
||
saved. Saving information here confuses symbol-table
|
||
output routines. Besides, this information will
|
||
be correctly output when this method is actually
|
||
compiled. */
|
||
|
||
/* Clear out the meanings of the local variables of this level;
|
||
also record in each decl which block it belongs to. */
|
||
|
||
for (link = current_binding_level->names; link; link = TREE_CHAIN (link))
|
||
{
|
||
if (DECL_NAME (link) != NULL_TREE)
|
||
pop_binding (DECL_NAME (link), link);
|
||
my_friendly_assert (TREE_CODE (link) != FUNCTION_DECL, 163);
|
||
DECL_CONTEXT (link) = NULL_TREE;
|
||
}
|
||
|
||
poplevel (0, 0, 0);
|
||
|
||
DECL_INITIAL (fndecl) = old_initial;
|
||
|
||
/* We used to check if the context of FNDECL was different from
|
||
current_class_type as another way to get inside here. This didn't work
|
||
for String.cc in libg++. */
|
||
if (DECL_FRIEND_P (fndecl))
|
||
{
|
||
CLASSTYPE_INLINE_FRIENDS (current_class_type)
|
||
= tree_cons (NULL_TREE, fndecl, CLASSTYPE_INLINE_FRIENDS (current_class_type));
|
||
decl = void_type_node;
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
|
||
/* VAR is a VAR_DECL. If its type is incomplete, remember VAR so that
|
||
we can lay it out later, when and if its type becomes complete. */
|
||
|
||
void
|
||
maybe_register_incomplete_var (tree var)
|
||
{
|
||
my_friendly_assert (TREE_CODE (var) == VAR_DECL, 20020406);
|
||
|
||
/* Keep track of variables with incomplete types. */
|
||
if (!processing_template_decl && TREE_TYPE (var) != error_mark_node
|
||
&& DECL_EXTERNAL (var))
|
||
{
|
||
tree inner_type = TREE_TYPE (var);
|
||
|
||
while (TREE_CODE (inner_type) == ARRAY_TYPE)
|
||
inner_type = TREE_TYPE (inner_type);
|
||
inner_type = TYPE_MAIN_VARIANT (inner_type);
|
||
|
||
if ((!COMPLETE_TYPE_P (inner_type) && CLASS_TYPE_P (inner_type))
|
||
/* RTTI TD entries are created while defining the type_info. */
|
||
|| (TYPE_LANG_SPECIFIC (inner_type)
|
||
&& TYPE_BEING_DEFINED (inner_type)))
|
||
incomplete_vars = tree_cons (inner_type, var, incomplete_vars);
|
||
}
|
||
}
|
||
|
||
/* Called when a class type (given by TYPE) is defined. If there are
|
||
any existing VAR_DECLs whose type hsa been completed by this
|
||
declaration, update them now. */
|
||
|
||
void
|
||
complete_vars (tree type)
|
||
{
|
||
tree *list = &incomplete_vars;
|
||
|
||
my_friendly_assert (CLASS_TYPE_P (type), 20020406);
|
||
while (*list)
|
||
{
|
||
if (same_type_p (type, TREE_PURPOSE (*list)))
|
||
{
|
||
tree var = TREE_VALUE (*list);
|
||
/* Complete the type of the variable. The VAR_DECL itself
|
||
will be laid out in expand_expr. */
|
||
complete_type (TREE_TYPE (var));
|
||
/* Remove this entry from the list. */
|
||
*list = TREE_CHAIN (*list);
|
||
}
|
||
else
|
||
list = &TREE_CHAIN (*list);
|
||
}
|
||
}
|
||
|
||
/* If DECL is of a type which needs a cleanup, build that cleanup
|
||
here. */
|
||
|
||
tree
|
||
cxx_maybe_build_cleanup (tree decl)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (type != error_mark_node && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
||
{
|
||
int flags = LOOKUP_NORMAL|LOOKUP_DESTRUCTOR;
|
||
tree rval;
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
rval = decl;
|
||
else
|
||
{
|
||
cxx_mark_addressable (decl);
|
||
rval = build_unary_op (ADDR_EXPR, decl, 0);
|
||
}
|
||
|
||
/* Optimize for space over speed here. */
|
||
if (! TYPE_USES_VIRTUAL_BASECLASSES (type)
|
||
|| flag_expensive_optimizations)
|
||
flags |= LOOKUP_NONVIRTUAL;
|
||
|
||
rval = build_delete (TREE_TYPE (rval), rval,
|
||
sfk_complete_destructor, flags, 0);
|
||
|
||
if (TYPE_USES_VIRTUAL_BASECLASSES (type)
|
||
&& ! TYPE_HAS_DESTRUCTOR (type))
|
||
rval = build_compound_expr (rval, build_vbase_delete (type, decl));
|
||
|
||
return rval;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* When a stmt has been parsed, this function is called. */
|
||
|
||
void
|
||
finish_stmt (void)
|
||
{
|
||
/* Always assume this statement was not an expression statement. If
|
||
it actually was an expression statement, its our callers
|
||
responsibility to fix this up. */
|
||
last_expr_type = NULL_TREE;
|
||
}
|
||
|
||
/* DECL was originally constructed as a non-static member function,
|
||
but turned out to be static. Update it accordingly. */
|
||
|
||
void
|
||
revert_static_member_fn (tree decl)
|
||
{
|
||
tree tmp;
|
||
tree function = TREE_TYPE (decl);
|
||
tree args = TYPE_ARG_TYPES (function);
|
||
|
||
if (cp_type_quals (TREE_TYPE (TREE_VALUE (args)))
|
||
!= TYPE_UNQUALIFIED)
|
||
error ("static member function `%#D' declared with type qualifiers",
|
||
decl);
|
||
|
||
args = TREE_CHAIN (args);
|
||
tmp = build_function_type (TREE_TYPE (function), args);
|
||
tmp = build_qualified_type (tmp, cp_type_quals (function));
|
||
tmp = build_exception_variant (tmp,
|
||
TYPE_RAISES_EXCEPTIONS (function));
|
||
TREE_TYPE (decl) = tmp;
|
||
if (DECL_ARGUMENTS (decl))
|
||
DECL_ARGUMENTS (decl) = TREE_CHAIN (DECL_ARGUMENTS (decl));
|
||
DECL_STATIC_FUNCTION_P (decl) = 1;
|
||
}
|
||
|
||
/* Initialize the variables used during compilation of a C++
|
||
function. */
|
||
|
||
void
|
||
cxx_push_function_context (struct function * f)
|
||
{
|
||
struct language_function *p
|
||
= ggc_alloc_cleared (sizeof (struct language_function));
|
||
f->language = p;
|
||
|
||
/* Whenever we start a new function, we destroy temporaries in the
|
||
usual way. */
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
||
|
||
if (f->decl)
|
||
{
|
||
tree fn = f->decl;
|
||
|
||
if (DECL_SAVED_FUNCTION_DATA (fn))
|
||
{
|
||
/* If we already parsed this function, and we're just expanding it
|
||
now, restore saved state. */
|
||
*cp_function_chain = *DECL_SAVED_FUNCTION_DATA (fn);
|
||
|
||
/* If we decided that we didn't want to inline this function,
|
||
make sure the back-end knows that. */
|
||
if (!current_function_cannot_inline)
|
||
current_function_cannot_inline = cp_function_chain->cannot_inline;
|
||
|
||
/* We don't need the saved data anymore. Unless this is an inline
|
||
function; we need the named return value info for
|
||
cp_copy_res_decl_for_inlining. */
|
||
if (! DECL_INLINE (fn))
|
||
DECL_SAVED_FUNCTION_DATA (fn) = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Free the language-specific parts of F, now that we've finished
|
||
compiling the function. */
|
||
|
||
void
|
||
cxx_pop_function_context (struct function * f)
|
||
{
|
||
f->language = 0;
|
||
}
|
||
|
||
/* Return which tree structure is used by T, or TS_CP_GENERIC if T is
|
||
one of the language-independent trees. */
|
||
|
||
enum cp_tree_node_structure_enum
|
||
cp_tree_node_structure (union lang_tree_node * t)
|
||
{
|
||
switch (TREE_CODE (&t->generic))
|
||
{
|
||
case DEFAULT_ARG: return TS_CP_DEFAULT_ARG;
|
||
case IDENTIFIER_NODE: return TS_CP_IDENTIFIER;
|
||
case OVERLOAD: return TS_CP_OVERLOAD;
|
||
case TEMPLATE_PARM_INDEX: return TS_CP_TPI;
|
||
case PTRMEM_CST: return TS_CP_PTRMEM;
|
||
case BASELINK: return TS_CP_BASELINK;
|
||
case WRAPPER: return TS_CP_WRAPPER;
|
||
default: return TS_CP_GENERIC;
|
||
}
|
||
}
|
||
|
||
/* Build the void_list_node (void_type_node having been created). */
|
||
tree
|
||
build_void_list_node (void)
|
||
{
|
||
tree t = build_tree_list (NULL_TREE, void_type_node);
|
||
TREE_PARMLIST (t) = 1;
|
||
return t;
|
||
}
|
||
|
||
static int
|
||
cp_missing_noreturn_ok_p (tree decl)
|
||
{
|
||
/* A missing noreturn is ok for the `main' function. */
|
||
return DECL_MAIN_P (decl);
|
||
}
|
||
|
||
#include "gt-cp-decl.h"
|
||
#include "gtype-cp.h"
|