freebsd-dev/sys/boot/ia64/common/bootinfo.c
Marcel Moolenaar 76dd035301 Implement Pre-Boot Virtual Memory (PBVM). There's no 1-to-1 mapping
between kernel virtual address and physical address anymore. This so
that we can link the kernel at some virtual address without having
to worry whether the corresponding physical memory exists and is
available. The PBVM uses 64KB pages that are mapped to physical
addresses using a page table. The page table is at least 1 EFI page
in size, but can grow up to 1MB. This effectively gives us a memory
size between 32MB and 8GB -- i.e. enough to load a DVD image if one
wants to.

The loader assigns physical memory based on the EFI memory map and
makes sure that all physical memory is naturally aligned and a power
of 2. At this time there's no consideration for allocating physical
memory that is close to the BSP.

The kernel is informed about the physical address of the page table
and its size and can locate all PBVM pages through it.

The loader does not wire the PBVM page table yet. Instead it wires
all of the PBVM with a single translation. This is fine for now,
but a follow-up commit will fix it. We cannot handle more than 32MB
right now.

Note that the loader will map as much of the loaded kernel and
modules as possible, but it's up to the kernel to handle page faults
for references that aren't mapped. To make that easier, the page
table is mapped at a fixed virtual address.
2011-03-11 22:14:02 +00:00

319 lines
8.3 KiB
C

/*-
* Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
* Copyright (c) 2006 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <string.h>
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/linker.h>
#include <efi.h>
#include <efilib.h>
#include "libia64.h"
/*
* Return a 'boothowto' value corresponding to the kernel arguments in
* (kargs) and any relevant environment variables.
*/
static struct
{
const char *ev;
int mask;
} howto_names[] = {
{ "boot_askname", RB_ASKNAME},
{ "boot_cdrom", RB_CDROM},
{ "boot_ddb", RB_KDB},
{ "boot_dfltroot", RB_DFLTROOT},
{ "boot_gdb", RB_GDB},
{ "boot_multicons", RB_MULTIPLE},
{ "boot_mute", RB_MUTE},
{ "boot_pause", RB_PAUSE},
{ "boot_serial", RB_SERIAL},
{ "boot_single", RB_SINGLE},
{ "boot_verbose", RB_VERBOSE},
{ NULL, 0}
};
static const char howto_switches[] = "aCdrgDmphsv";
static int howto_masks[] = {
RB_ASKNAME, RB_CDROM, RB_KDB, RB_DFLTROOT, RB_GDB, RB_MULTIPLE,
RB_MUTE, RB_PAUSE, RB_SERIAL, RB_SINGLE, RB_VERBOSE
};
int
bi_getboothowto(char *kargs)
{
const char *sw;
char *opts;
int howto, i;
howto = 0;
/* Get the boot options from the environment first. */
for (i = 0; howto_names[i].ev != NULL; i++) {
if (getenv(howto_names[i].ev) != NULL)
howto |= howto_names[i].mask;
}
/* Parse kargs */
if (kargs == NULL)
return (howto);
opts = strchr(kargs, '-');
while (opts != NULL) {
while (*(++opts) != '\0') {
sw = strchr(howto_switches, *opts);
if (sw == NULL)
break;
howto |= howto_masks[sw - howto_switches];
}
opts = strchr(opts, '-');
}
return (howto);
}
/*
* Copy the environment into the load area starting at (addr).
* Each variable is formatted as <name>=<value>, with a single nul
* separating each variable, and a double nul terminating the environment.
*/
vm_offset_t
bi_copyenv(vm_offset_t start)
{
struct env_var *ep;
vm_offset_t addr, last;
size_t len;
addr = last = start;
/* Traverse the environment. */
for (ep = environ; ep != NULL; ep = ep->ev_next) {
len = strlen(ep->ev_name);
if (ia64_copyin(ep->ev_name, addr, len) != len)
break;
addr += len;
if (ia64_copyin("=", addr, 1) != 1)
break;
addr++;
if (ep->ev_value != NULL) {
len = strlen(ep->ev_value);
if (ia64_copyin(ep->ev_value, addr, len) != len)
break;
addr += len;
}
if (ia64_copyin("", addr, 1) != 1)
break;
last = ++addr;
}
if (ia64_copyin("", last++, 1) != 1)
last = start;
return(last);
}
/*
* Copy module-related data into the load area, where it can be
* used as a directory for loaded modules.
*
* Module data is presented in a self-describing format. Each datum
* is preceded by a 32-bit identifier and a 32-bit size field.
*
* Currently, the following data are saved:
*
* MOD_NAME (variable) module name (string)
* MOD_TYPE (variable) module type (string)
* MOD_ARGS (variable) module parameters (string)
* MOD_ADDR sizeof(vm_offset_t) module load address
* MOD_SIZE sizeof(size_t) module size
* MOD_METADATA (variable) type-specific metadata
*/
#define COPY32(v, a) { \
u_int32_t x = (v); \
ia64_copyin(&x, a, sizeof(x)); \
a += sizeof(x); \
}
#define MOD_STR(t, a, s) { \
COPY32(t, a); \
COPY32(strlen(s) + 1, a); \
ia64_copyin(s, a, strlen(s) + 1); \
a += roundup(strlen(s) + 1, sizeof(u_int64_t));\
}
#define MOD_NAME(a, s) MOD_STR(MODINFO_NAME, a, s)
#define MOD_TYPE(a, s) MOD_STR(MODINFO_TYPE, a, s)
#define MOD_ARGS(a, s) MOD_STR(MODINFO_ARGS, a, s)
#define MOD_VAR(t, a, s) { \
COPY32(t, a); \
COPY32(sizeof(s), a); \
ia64_copyin(&s, a, sizeof(s)); \
a += roundup(sizeof(s), sizeof(u_int64_t)); \
}
#define MOD_ADDR(a, s) MOD_VAR(MODINFO_ADDR, a, s)
#define MOD_SIZE(a, s) MOD_VAR(MODINFO_SIZE, a, s)
#define MOD_METADATA(a, mm) { \
COPY32(MODINFO_METADATA | mm->md_type, a); \
COPY32(mm->md_size, a); \
ia64_copyin(mm->md_data, a, mm->md_size); \
a += roundup(mm->md_size, sizeof(u_int64_t));\
}
#define MOD_END(a) { \
COPY32(MODINFO_END, a); \
COPY32(0, a); \
}
vm_offset_t
bi_copymodules(vm_offset_t addr)
{
struct preloaded_file *fp;
struct file_metadata *md;
/* Start with the first module on the list, should be the kernel. */
for (fp = file_findfile(NULL, NULL); fp != NULL; fp = fp->f_next) {
/* The name field must come first. */
MOD_NAME(addr, fp->f_name);
MOD_TYPE(addr, fp->f_type);
if (fp->f_args)
MOD_ARGS(addr, fp->f_args);
MOD_ADDR(addr, fp->f_addr);
MOD_SIZE(addr, fp->f_size);
for (md = fp->f_metadata; md != NULL; md = md->md_next) {
if (!(md->md_type & MODINFOMD_NOCOPY))
MOD_METADATA(addr, md);
}
}
MOD_END(addr);
return(addr);
}
/*
* Load the information expected by the kernel.
*
* - The kernel environment is copied into kernel space.
* - Module metadata are formatted and placed in kernel space.
*/
int
ia64_bootinfo(struct preloaded_file *fp, struct bootinfo **res)
{
struct bootinfo bi;
struct preloaded_file *xp;
struct file_metadata *md;
struct devdesc *rootdev;
char *rootdevname;
vm_offset_t addr, ssym, esym;
int error;
*res = NULL;
bzero(&bi, sizeof(struct bootinfo));
bi.bi_magic = BOOTINFO_MAGIC;
bi.bi_version = 1;
bi.bi_boothowto = bi_getboothowto(fp->f_args);
/*
* Allow the environment variable 'rootdev' to override the supplied
* device. This should perhaps go to MI code and/or have $rootdev
* tested/set by MI code before launching the kernel.
*/
rootdevname = getenv("rootdev");
ia64_getdev((void**)&rootdev, rootdevname, NULL);
if (rootdev != NULL) {
/* Try reading /etc/fstab to select the root device. */
getrootmount(ia64_fmtdev(rootdev));
free(rootdev);
}
md = file_findmetadata(fp, MODINFOMD_SSYM);
ssym = (md != NULL) ? *((vm_offset_t *)&(md->md_data)) : 0;
md = file_findmetadata(fp, MODINFOMD_ESYM);
esym = (md != NULL) ? *((vm_offset_t *)&(md->md_data)) : 0;
if (ssym != 0 && esym != 0) {
bi.bi_symtab = ssym;
bi.bi_esymtab = esym;
}
/* Find the last module in the chain. */
addr = 0;
for (xp = file_findfile(NULL, NULL); xp != NULL; xp = xp->f_next) {
if (addr < (xp->f_addr + xp->f_size))
addr = xp->f_addr + xp->f_size;
}
addr = (addr + 15) & ~15;
/* Copy module list and metadata. */
bi.bi_modulep = addr;
addr = bi_copymodules(addr);
if (addr <= bi.bi_modulep) {
addr = bi.bi_modulep;
bi.bi_modulep = 0;
}
addr = (addr + 15) & ~15;
/* Copy our environment. */
bi.bi_envp = addr;
addr = bi_copyenv(addr);
if (addr <= bi.bi_envp) {
addr = bi.bi_envp;
bi.bi_envp = 0;
}
addr = (addr + 15) & ~15;
bi.bi_kernend = addr;
error = ia64_platform_bootinfo(&bi, res);
if (error)
return (error);
if (IS_LEGACY_KERNEL()) {
if (*res == NULL)
return (EDOOFUS);
bcopy(&bi, *res, sizeof(bi));
return (0);
}
bi.bi_pbvm_pgtbl = (uintptr_t)ia64_pgtbl;
bi.bi_pbvm_pgtblsz = ia64_pgtblsz;
ia64_copyin((void *)bi.bi_memmap, addr, bi.bi_memmap_size);
bi.bi_memmap = addr;
addr = (addr + bi.bi_memmap_size + 15) & ~15;
bi.bi_kernend = addr + sizeof(bi);
ia64_copyin(&bi, addr, sizeof(bi));
*res = (void *)addr;
return (0);
}