freebsd-dev/sys/dev/hifn/hifn7751.c

2744 lines
72 KiB
C

/* $OpenBSD: hifn7751.c,v 1.120 2002/05/17 00:33:34 deraadt Exp $ */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Invertex AEON / Hifn 7751 driver
* Copyright (c) 1999 Invertex Inc. All rights reserved.
* Copyright (c) 1999 Theo de Raadt
* Copyright (c) 2000-2001 Network Security Technologies, Inc.
* http://www.netsec.net
* Copyright (c) 2003 Hifn Inc.
*
* This driver is based on a previous driver by Invertex, for which they
* requested: Please send any comments, feedback, bug-fixes, or feature
* requests to software@invertex.com.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for various Hifn encryption processors.
*/
#include "opt_hifn.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform_auth.h>
#include <sys/random.h>
#include <sys/kobj.h>
#include "cryptodev_if.h"
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#ifdef HIFN_RNDTEST
#include <dev/rndtest/rndtest.h>
#endif
#include <dev/hifn/hifn7751reg.h>
#include <dev/hifn/hifn7751var.h>
#ifdef HIFN_VULCANDEV
#include <sys/conf.h>
#include <sys/uio.h>
static struct cdevsw vulcanpk_cdevsw; /* forward declaration */
#endif
/*
* Prototypes and count for the pci_device structure
*/
static int hifn_probe(device_t);
static int hifn_attach(device_t);
static int hifn_detach(device_t);
static int hifn_suspend(device_t);
static int hifn_resume(device_t);
static int hifn_shutdown(device_t);
static int hifn_probesession(device_t, const struct crypto_session_params *);
static int hifn_newsession(device_t, crypto_session_t,
const struct crypto_session_params *);
static int hifn_process(device_t, struct cryptop *, int);
static device_method_t hifn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, hifn_probe),
DEVMETHOD(device_attach, hifn_attach),
DEVMETHOD(device_detach, hifn_detach),
DEVMETHOD(device_suspend, hifn_suspend),
DEVMETHOD(device_resume, hifn_resume),
DEVMETHOD(device_shutdown, hifn_shutdown),
/* crypto device methods */
DEVMETHOD(cryptodev_probesession, hifn_probesession),
DEVMETHOD(cryptodev_newsession, hifn_newsession),
DEVMETHOD(cryptodev_process, hifn_process),
DEVMETHOD_END
};
static driver_t hifn_driver = {
"hifn",
hifn_methods,
sizeof (struct hifn_softc)
};
DRIVER_MODULE(hifn, pci, hifn_driver, 0, 0);
MODULE_DEPEND(hifn, crypto, 1, 1, 1);
#ifdef HIFN_RNDTEST
MODULE_DEPEND(hifn, rndtest, 1, 1, 1);
#endif
static void hifn_reset_board(struct hifn_softc *, int);
static void hifn_reset_puc(struct hifn_softc *);
static void hifn_puc_wait(struct hifn_softc *);
static int hifn_enable_crypto(struct hifn_softc *);
static void hifn_set_retry(struct hifn_softc *sc);
static void hifn_init_dma(struct hifn_softc *);
static void hifn_init_pci_registers(struct hifn_softc *);
static int hifn_sramsize(struct hifn_softc *);
static int hifn_dramsize(struct hifn_softc *);
static int hifn_ramtype(struct hifn_softc *);
static void hifn_sessions(struct hifn_softc *);
static void hifn_intr(void *);
static u_int hifn_write_command(struct hifn_command *, u_int8_t *);
static u_int32_t hifn_next_signature(u_int32_t a, u_int cnt);
static void hifn_callback(struct hifn_softc *, struct hifn_command *, u_int8_t *);
static int hifn_crypto(struct hifn_softc *, struct hifn_command *, struct cryptop *, int);
static int hifn_readramaddr(struct hifn_softc *, int, u_int8_t *);
static int hifn_writeramaddr(struct hifn_softc *, int, u_int8_t *);
static int hifn_dmamap_load_src(struct hifn_softc *, struct hifn_command *);
static int hifn_dmamap_load_dst(struct hifn_softc *, struct hifn_command *);
static int hifn_init_pubrng(struct hifn_softc *);
static void hifn_rng(void *);
static void hifn_tick(void *);
static void hifn_abort(struct hifn_softc *);
static void hifn_alloc_slot(struct hifn_softc *, int *, int *, int *, int *);
static void hifn_write_reg_0(struct hifn_softc *, bus_size_t, u_int32_t);
static void hifn_write_reg_1(struct hifn_softc *, bus_size_t, u_int32_t);
static __inline u_int32_t
READ_REG_0(struct hifn_softc *sc, bus_size_t reg)
{
u_int32_t v = bus_space_read_4(sc->sc_st0, sc->sc_sh0, reg);
sc->sc_bar0_lastreg = (bus_size_t) -1;
return (v);
}
#define WRITE_REG_0(sc, reg, val) hifn_write_reg_0(sc, reg, val)
static __inline u_int32_t
READ_REG_1(struct hifn_softc *sc, bus_size_t reg)
{
u_int32_t v = bus_space_read_4(sc->sc_st1, sc->sc_sh1, reg);
sc->sc_bar1_lastreg = (bus_size_t) -1;
return (v);
}
#define WRITE_REG_1(sc, reg, val) hifn_write_reg_1(sc, reg, val)
static SYSCTL_NODE(_hw, OID_AUTO, hifn, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Hifn driver parameters");
#ifdef HIFN_DEBUG
static int hifn_debug = 0;
SYSCTL_INT(_hw_hifn, OID_AUTO, debug, CTLFLAG_RW, &hifn_debug,
0, "control debugging msgs");
#endif
static struct hifn_stats hifnstats;
SYSCTL_STRUCT(_hw_hifn, OID_AUTO, stats, CTLFLAG_RD, &hifnstats,
hifn_stats, "driver statistics");
static int hifn_maxbatch = 1;
SYSCTL_INT(_hw_hifn, OID_AUTO, maxbatch, CTLFLAG_RW, &hifn_maxbatch,
0, "max ops to batch w/o interrupt");
/*
* Probe for a supported device. The PCI vendor and device
* IDs are used to detect devices we know how to handle.
*/
static int
hifn_probe(device_t dev)
{
if (pci_get_vendor(dev) == PCI_VENDOR_INVERTEX &&
pci_get_device(dev) == PCI_PRODUCT_INVERTEX_AEON)
return (BUS_PROBE_DEFAULT);
if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
(pci_get_device(dev) == PCI_PRODUCT_HIFN_7751 ||
pci_get_device(dev) == PCI_PRODUCT_HIFN_7951 ||
pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 ||
pci_get_device(dev) == PCI_PRODUCT_HIFN_7956 ||
pci_get_device(dev) == PCI_PRODUCT_HIFN_7811))
return (BUS_PROBE_DEFAULT);
if (pci_get_vendor(dev) == PCI_VENDOR_NETSEC &&
pci_get_device(dev) == PCI_PRODUCT_NETSEC_7751)
return (BUS_PROBE_DEFAULT);
return (ENXIO);
}
static void
hifn_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
*paddr = segs->ds_addr;
}
static const char*
hifn_partname(struct hifn_softc *sc)
{
/* XXX sprintf numbers when not decoded */
switch (pci_get_vendor(sc->sc_dev)) {
case PCI_VENDOR_HIFN:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_HIFN_6500: return "Hifn 6500";
case PCI_PRODUCT_HIFN_7751: return "Hifn 7751";
case PCI_PRODUCT_HIFN_7811: return "Hifn 7811";
case PCI_PRODUCT_HIFN_7951: return "Hifn 7951";
case PCI_PRODUCT_HIFN_7955: return "Hifn 7955";
case PCI_PRODUCT_HIFN_7956: return "Hifn 7956";
}
return "Hifn unknown-part";
case PCI_VENDOR_INVERTEX:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_INVERTEX_AEON: return "Invertex AEON";
}
return "Invertex unknown-part";
case PCI_VENDOR_NETSEC:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_NETSEC_7751: return "NetSec 7751";
}
return "NetSec unknown-part";
}
return "Unknown-vendor unknown-part";
}
static void
default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
{
/* MarkM: FIX!! Check that this does not swamp the harvester! */
random_harvest_queue(buf, count, RANDOM_PURE_HIFN);
}
static u_int
checkmaxmin(device_t dev, const char *what, u_int v, u_int min, u_int max)
{
if (v > max) {
device_printf(dev, "Warning, %s %u out of range, "
"using max %u\n", what, v, max);
v = max;
} else if (v < min) {
device_printf(dev, "Warning, %s %u out of range, "
"using min %u\n", what, v, min);
v = min;
}
return v;
}
/*
* Select PLL configuration for 795x parts. This is complicated in
* that we cannot determine the optimal parameters without user input.
* The reference clock is derived from an external clock through a
* multiplier. The external clock is either the host bus (i.e. PCI)
* or an external clock generator. When using the PCI bus we assume
* the clock is either 33 or 66 MHz; for an external source we cannot
* tell the speed.
*
* PLL configuration is done with a string: "pci" for PCI bus, or "ext"
* for an external source, followed by the frequency. We calculate
* the appropriate multiplier and PLL register contents accordingly.
* When no configuration is given we default to "pci66" since that
* always will allow the card to work. If a card is using the PCI
* bus clock and in a 33MHz slot then it will be operating at half
* speed until the correct information is provided.
*
* We use a default setting of "ext66" because according to Mike Ham
* of HiFn, almost every board in existence has an external crystal
* populated at 66Mhz. Using PCI can be a problem on modern motherboards,
* because PCI33 can have clocks from 0 to 33Mhz, and some have
* non-PCI-compliant spread-spectrum clocks, which can confuse the pll.
*/
static void
hifn_getpllconfig(device_t dev, u_int *pll)
{
const char *pllspec;
u_int freq, mul, fl, fh;
u_int32_t pllconfig;
char *nxt;
if (resource_string_value("hifn", device_get_unit(dev),
"pllconfig", &pllspec))
pllspec = "ext66";
fl = 33, fh = 66;
pllconfig = 0;
if (strncmp(pllspec, "ext", 3) == 0) {
pllspec += 3;
pllconfig |= HIFN_PLL_REF_SEL;
switch (pci_get_device(dev)) {
case PCI_PRODUCT_HIFN_7955:
case PCI_PRODUCT_HIFN_7956:
fl = 20, fh = 100;
break;
#ifdef notyet
case PCI_PRODUCT_HIFN_7954:
fl = 20, fh = 66;
break;
#endif
}
} else if (strncmp(pllspec, "pci", 3) == 0)
pllspec += 3;
freq = strtoul(pllspec, &nxt, 10);
if (nxt == pllspec)
freq = 66;
else
freq = checkmaxmin(dev, "frequency", freq, fl, fh);
/*
* Calculate multiplier. We target a Fck of 266 MHz,
* allowing only even values, possibly rounded down.
* Multipliers > 8 must set the charge pump current.
*/
mul = checkmaxmin(dev, "PLL divisor", (266 / freq) &~ 1, 2, 12);
pllconfig |= (mul / 2 - 1) << HIFN_PLL_ND_SHIFT;
if (mul > 8)
pllconfig |= HIFN_PLL_IS;
*pll = pllconfig;
}
/*
* Attach an interface that successfully probed.
*/
static int
hifn_attach(device_t dev)
{
struct hifn_softc *sc = device_get_softc(dev);
caddr_t kva;
int rseg, rid;
char rbase;
uint16_t rev;
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), "hifn driver", MTX_DEF);
/* XXX handle power management */
/*
* The 7951 and 795x have a random number generator and
* public key support; note this.
*/
if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
(pci_get_device(dev) == PCI_PRODUCT_HIFN_7951 ||
pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 ||
pci_get_device(dev) == PCI_PRODUCT_HIFN_7956))
sc->sc_flags = HIFN_HAS_RNG | HIFN_HAS_PUBLIC;
/*
* The 7811 has a random number generator and
* we also note it's identity 'cuz of some quirks.
*/
if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
pci_get_device(dev) == PCI_PRODUCT_HIFN_7811)
sc->sc_flags |= HIFN_IS_7811 | HIFN_HAS_RNG;
/*
* The 795x parts support AES.
*/
if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
(pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 ||
pci_get_device(dev) == PCI_PRODUCT_HIFN_7956)) {
sc->sc_flags |= HIFN_IS_7956 | HIFN_HAS_AES;
/*
* Select PLL configuration. This depends on the
* bus and board design and must be manually configured
* if the default setting is unacceptable.
*/
hifn_getpllconfig(dev, &sc->sc_pllconfig);
}
/*
* Setup PCI resources. Note that we record the bus
* tag and handle for each register mapping, this is
* used by the READ_REG_0, WRITE_REG_0, READ_REG_1,
* and WRITE_REG_1 macros throughout the driver.
*/
pci_enable_busmaster(dev);
rid = HIFN_BAR0;
sc->sc_bar0res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_bar0res == NULL) {
device_printf(dev, "cannot map bar%d register space\n", 0);
goto fail_pci;
}
sc->sc_st0 = rman_get_bustag(sc->sc_bar0res);
sc->sc_sh0 = rman_get_bushandle(sc->sc_bar0res);
sc->sc_bar0_lastreg = (bus_size_t) -1;
rid = HIFN_BAR1;
sc->sc_bar1res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_bar1res == NULL) {
device_printf(dev, "cannot map bar%d register space\n", 1);
goto fail_io0;
}
sc->sc_st1 = rman_get_bustag(sc->sc_bar1res);
sc->sc_sh1 = rman_get_bushandle(sc->sc_bar1res);
sc->sc_bar1_lastreg = (bus_size_t) -1;
hifn_set_retry(sc);
/*
* Setup the area where the Hifn DMA's descriptors
* and associated data structures.
*/
if (bus_dma_tag_create(bus_get_dma_tag(dev), /* PCI parent */
1, 0, /* alignment,boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
HIFN_MAX_DMALEN, /* maxsize */
MAX_SCATTER, /* nsegments */
HIFN_MAX_SEGLEN, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->sc_dmat)) {
device_printf(dev, "cannot allocate DMA tag\n");
goto fail_io1;
}
if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_dmamap)) {
device_printf(dev, "cannot create dma map\n");
bus_dma_tag_destroy(sc->sc_dmat);
goto fail_io1;
}
if (bus_dmamem_alloc(sc->sc_dmat, (void**) &kva, BUS_DMA_NOWAIT, &sc->sc_dmamap)) {
device_printf(dev, "cannot alloc dma buffer\n");
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
bus_dma_tag_destroy(sc->sc_dmat);
goto fail_io1;
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, kva,
sizeof (*sc->sc_dma),
hifn_dmamap_cb, &sc->sc_dma_physaddr,
BUS_DMA_NOWAIT)) {
device_printf(dev, "cannot load dma map\n");
bus_dmamem_free(sc->sc_dmat, kva, sc->sc_dmamap);
bus_dma_tag_destroy(sc->sc_dmat);
goto fail_io1;
}
sc->sc_dma = (struct hifn_dma *)kva;
bzero(sc->sc_dma, sizeof(*sc->sc_dma));
KASSERT(sc->sc_st0 != 0, ("hifn_attach: null bar0 tag!"));
KASSERT(sc->sc_sh0 != 0, ("hifn_attach: null bar0 handle!"));
KASSERT(sc->sc_st1 != 0, ("hifn_attach: null bar1 tag!"));
KASSERT(sc->sc_sh1 != 0, ("hifn_attach: null bar1 handle!"));
/*
* Reset the board and do the ``secret handshake''
* to enable the crypto support. Then complete the
* initialization procedure by setting up the interrupt
* and hooking in to the system crypto support so we'll
* get used for system services like the crypto device,
* IPsec, RNG device, etc.
*/
hifn_reset_board(sc, 0);
if (hifn_enable_crypto(sc) != 0) {
device_printf(dev, "crypto enabling failed\n");
goto fail_mem;
}
hifn_reset_puc(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
/* XXX can't dynamically determine ram type for 795x; force dram */
if (sc->sc_flags & HIFN_IS_7956)
sc->sc_drammodel = 1;
else if (hifn_ramtype(sc))
goto fail_mem;
if (sc->sc_drammodel == 0)
hifn_sramsize(sc);
else
hifn_dramsize(sc);
/*
* Workaround for NetSec 7751 rev A: half ram size because two
* of the address lines were left floating
*/
if (pci_get_vendor(dev) == PCI_VENDOR_NETSEC &&
pci_get_device(dev) == PCI_PRODUCT_NETSEC_7751 &&
pci_get_revid(dev) == 0x61) /*XXX???*/
sc->sc_ramsize >>= 1;
/*
* Arrange the interrupt line.
*/
rid = 0;
sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE|RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "could not map interrupt\n");
goto fail_mem;
}
/*
* NB: Network code assumes we are blocked with splimp()
* so make sure the IRQ is marked appropriately.
*/
if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, hifn_intr, sc, &sc->sc_intrhand)) {
device_printf(dev, "could not setup interrupt\n");
goto fail_intr2;
}
hifn_sessions(sc);
/*
* NB: Keep only the low 16 bits; this masks the chip id
* from the 7951.
*/
rev = READ_REG_1(sc, HIFN_1_REVID) & 0xffff;
rseg = sc->sc_ramsize / 1024;
rbase = 'K';
if (sc->sc_ramsize >= (1024 * 1024)) {
rbase = 'M';
rseg /= 1024;
}
device_printf(sc->sc_dev, "%s, rev %u, %d%cB %cram",
hifn_partname(sc), rev,
rseg, rbase, sc->sc_drammodel ? 'd' : 's');
if (sc->sc_flags & HIFN_IS_7956)
printf(", pll=0x%x<%s clk, %ux mult>",
sc->sc_pllconfig,
sc->sc_pllconfig & HIFN_PLL_REF_SEL ? "ext" : "pci",
2 + 2*((sc->sc_pllconfig & HIFN_PLL_ND) >> 11));
printf("\n");
WRITE_REG_0(sc, HIFN_0_PUCNFG,
READ_REG_0(sc, HIFN_0_PUCNFG) | HIFN_PUCNFG_CHIPID);
sc->sc_ena = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
switch (sc->sc_ena) {
case HIFN_PUSTAT_ENA_2:
case HIFN_PUSTAT_ENA_1:
sc->sc_cid = crypto_get_driverid(dev,
sizeof(struct hifn_session), CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
goto fail_intr;
}
break;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->sc_flags & (HIFN_HAS_PUBLIC | HIFN_HAS_RNG))
hifn_init_pubrng(sc);
callout_init(&sc->sc_tickto, 1);
callout_reset(&sc->sc_tickto, hz, hifn_tick, sc);
return (0);
fail_intr:
bus_teardown_intr(dev, sc->sc_irq, sc->sc_intrhand);
fail_intr2:
/* XXX don't store rid */
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
fail_mem:
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
bus_dmamem_free(sc->sc_dmat, sc->sc_dma, sc->sc_dmamap);
bus_dma_tag_destroy(sc->sc_dmat);
/* Turn off DMA polling */
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
fail_io1:
bus_release_resource(dev, SYS_RES_MEMORY, HIFN_BAR1, sc->sc_bar1res);
fail_io0:
bus_release_resource(dev, SYS_RES_MEMORY, HIFN_BAR0, sc->sc_bar0res);
fail_pci:
mtx_destroy(&sc->sc_mtx);
return (ENXIO);
}
/*
* Detach an interface that successfully probed.
*/
static int
hifn_detach(device_t dev)
{
struct hifn_softc *sc = device_get_softc(dev);
KASSERT(sc != NULL, ("hifn_detach: null software carrier!"));
/* disable interrupts */
WRITE_REG_1(sc, HIFN_1_DMA_IER, 0);
/*XXX other resources */
callout_stop(&sc->sc_tickto);
callout_stop(&sc->sc_rngto);
#ifdef HIFN_RNDTEST
if (sc->sc_rndtest)
rndtest_detach(sc->sc_rndtest);
#endif
/* Turn off DMA polling */
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
crypto_unregister_all(sc->sc_cid);
bus_generic_detach(dev); /*XXX should be no children, right? */
bus_teardown_intr(dev, sc->sc_irq, sc->sc_intrhand);
/* XXX don't store rid */
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
bus_dmamem_free(sc->sc_dmat, sc->sc_dma, sc->sc_dmamap);
bus_dma_tag_destroy(sc->sc_dmat);
bus_release_resource(dev, SYS_RES_MEMORY, HIFN_BAR1, sc->sc_bar1res);
bus_release_resource(dev, SYS_RES_MEMORY, HIFN_BAR0, sc->sc_bar0res);
mtx_destroy(&sc->sc_mtx);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
hifn_shutdown(device_t dev)
{
#ifdef notyet
hifn_stop(device_get_softc(dev));
#endif
return (0);
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
hifn_suspend(device_t dev)
{
struct hifn_softc *sc = device_get_softc(dev);
#ifdef notyet
hifn_stop(sc);
#endif
sc->sc_suspended = 1;
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
hifn_resume(device_t dev)
{
struct hifn_softc *sc = device_get_softc(dev);
#ifdef notyet
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
rl_init(sc);
#endif
sc->sc_suspended = 0;
return (0);
}
static int
hifn_init_pubrng(struct hifn_softc *sc)
{
u_int32_t r;
int i;
#ifdef HIFN_RNDTEST
sc->sc_rndtest = rndtest_attach(sc->sc_dev);
if (sc->sc_rndtest)
sc->sc_harvest = rndtest_harvest;
else
sc->sc_harvest = default_harvest;
#else
sc->sc_harvest = default_harvest;
#endif
if ((sc->sc_flags & HIFN_IS_7811) == 0) {
/* Reset 7951 public key/rng engine */
WRITE_REG_1(sc, HIFN_1_PUB_RESET,
READ_REG_1(sc, HIFN_1_PUB_RESET) | HIFN_PUBRST_RESET);
for (i = 0; i < 100; i++) {
DELAY(1000);
if ((READ_REG_1(sc, HIFN_1_PUB_RESET) &
HIFN_PUBRST_RESET) == 0)
break;
}
if (i == 100) {
device_printf(sc->sc_dev, "public key init failed\n");
return (1);
}
}
/* Enable the rng, if available */
if (sc->sc_flags & HIFN_HAS_RNG) {
if (sc->sc_flags & HIFN_IS_7811) {
r = READ_REG_1(sc, HIFN_1_7811_RNGENA);
if (r & HIFN_7811_RNGENA_ENA) {
r &= ~HIFN_7811_RNGENA_ENA;
WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
}
WRITE_REG_1(sc, HIFN_1_7811_RNGCFG,
HIFN_7811_RNGCFG_DEFL);
r |= HIFN_7811_RNGENA_ENA;
WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
} else
WRITE_REG_1(sc, HIFN_1_RNG_CONFIG,
READ_REG_1(sc, HIFN_1_RNG_CONFIG) |
HIFN_RNGCFG_ENA);
sc->sc_rngfirst = 1;
if (hz >= 100)
sc->sc_rnghz = hz / 100;
else
sc->sc_rnghz = 1;
callout_init(&sc->sc_rngto, 1);
callout_reset(&sc->sc_rngto, sc->sc_rnghz, hifn_rng, sc);
}
/* Enable public key engine, if available */
if (sc->sc_flags & HIFN_HAS_PUBLIC) {
WRITE_REG_1(sc, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
sc->sc_dmaier |= HIFN_DMAIER_PUBDONE;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
#ifdef HIFN_VULCANDEV
sc->sc_pkdev = make_dev(&vulcanpk_cdevsw, 0,
UID_ROOT, GID_WHEEL, 0666,
"vulcanpk");
sc->sc_pkdev->si_drv1 = sc;
#endif
}
return (0);
}
static void
hifn_rng(void *vsc)
{
#define RANDOM_BITS(n) (n)*sizeof (u_int32_t), (n)*sizeof (u_int32_t)*NBBY, 0
struct hifn_softc *sc = vsc;
u_int32_t sts, num[2];
int i;
if (sc->sc_flags & HIFN_IS_7811) {
/* ONLY VALID ON 7811!!!! */
for (i = 0; i < 5; i++) {
sts = READ_REG_1(sc, HIFN_1_7811_RNGSTS);
if (sts & HIFN_7811_RNGSTS_UFL) {
device_printf(sc->sc_dev,
"RNG underflow: disabling\n");
return;
}
if ((sts & HIFN_7811_RNGSTS_RDY) == 0)
break;
/*
* There are at least two words in the RNG FIFO
* at this point.
*/
num[0] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
num[1] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
/* NB: discard first data read */
if (sc->sc_rngfirst)
sc->sc_rngfirst = 0;
else
(*sc->sc_harvest)(sc->sc_rndtest,
num, sizeof (num));
}
} else {
num[0] = READ_REG_1(sc, HIFN_1_RNG_DATA);
/* NB: discard first data read */
if (sc->sc_rngfirst)
sc->sc_rngfirst = 0;
else
(*sc->sc_harvest)(sc->sc_rndtest,
num, sizeof (num[0]));
}
callout_reset(&sc->sc_rngto, sc->sc_rnghz, hifn_rng, sc);
#undef RANDOM_BITS
}
static void
hifn_puc_wait(struct hifn_softc *sc)
{
int i;
int reg = HIFN_0_PUCTRL;
if (sc->sc_flags & HIFN_IS_7956) {
reg = HIFN_0_PUCTRL2;
}
for (i = 5000; i > 0; i--) {
DELAY(1);
if (!(READ_REG_0(sc, reg) & HIFN_PUCTRL_RESET))
break;
}
if (!i)
device_printf(sc->sc_dev, "proc unit did not reset\n");
}
/*
* Reset the processing unit.
*/
static void
hifn_reset_puc(struct hifn_softc *sc)
{
/* Reset processing unit */
int reg = HIFN_0_PUCTRL;
if (sc->sc_flags & HIFN_IS_7956) {
reg = HIFN_0_PUCTRL2;
}
WRITE_REG_0(sc, reg, HIFN_PUCTRL_DMAENA);
hifn_puc_wait(sc);
}
/*
* Set the Retry and TRDY registers; note that we set them to
* zero because the 7811 locks up when forced to retry (section
* 3.6 of "Specification Update SU-0014-04". Not clear if we
* should do this for all Hifn parts, but it doesn't seem to hurt.
*/
static void
hifn_set_retry(struct hifn_softc *sc)
{
/* NB: RETRY only responds to 8-bit reads/writes */
pci_write_config(sc->sc_dev, HIFN_RETRY_TIMEOUT, 0, 1);
pci_write_config(sc->sc_dev, HIFN_TRDY_TIMEOUT, 0, 1);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
static void
hifn_reset_board(struct hifn_softc *sc, int full)
{
u_int32_t reg;
/*
* Set polling in the DMA configuration register to zero. 0x7 avoids
* resetting the board and zeros out the other fields.
*/
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
/*
* Now that polling has been disabled, we have to wait 1 ms
* before resetting the board.
*/
DELAY(1000);
/* Reset the DMA unit */
if (full) {
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
DELAY(1000);
} else {
WRITE_REG_1(sc, HIFN_1_DMA_CNFG,
HIFN_DMACNFG_MODE | HIFN_DMACNFG_MSTRESET);
hifn_reset_puc(sc);
}
KASSERT(sc->sc_dma != NULL, ("hifn_reset_board: null DMA tag!"));
bzero(sc->sc_dma, sizeof(*sc->sc_dma));
/* Bring dma unit out of reset */
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
hifn_puc_wait(sc);
hifn_set_retry(sc);
if (sc->sc_flags & HIFN_IS_7811) {
for (reg = 0; reg < 1000; reg++) {
if (READ_REG_1(sc, HIFN_1_7811_MIPSRST) &
HIFN_MIPSRST_CRAMINIT)
break;
DELAY(1000);
}
if (reg == 1000)
printf(": cram init timeout\n");
} else {
/* set up DMA configuration register #2 */
/* turn off all PK and BAR0 swaps */
WRITE_REG_1(sc, HIFN_1_DMA_CNFG2,
(3 << HIFN_DMACNFG2_INIT_WRITE_BURST_SHIFT)|
(3 << HIFN_DMACNFG2_INIT_READ_BURST_SHIFT)|
(2 << HIFN_DMACNFG2_TGT_WRITE_BURST_SHIFT)|
(2 << HIFN_DMACNFG2_TGT_READ_BURST_SHIFT));
}
}
static u_int32_t
hifn_next_signature(u_int32_t a, u_int cnt)
{
int i;
u_int32_t v;
for (i = 0; i < cnt; i++) {
/* get the parity */
v = a & 0x80080125;
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v ^= v >> 2;
v ^= v >> 1;
a = (v & 1) ^ (a << 1);
}
return a;
}
struct pci2id {
u_short pci_vendor;
u_short pci_prod;
char card_id[13];
};
static struct pci2id pci2id[] = {
{
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7951,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7955,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7956,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_NETSEC,
PCI_PRODUCT_NETSEC_7751,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_INVERTEX,
PCI_PRODUCT_INVERTEX_AEON,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7811,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
/*
* Other vendors share this PCI ID as well, such as
* http://www.powercrypt.com, and obviously they also
* use the same key.
*/
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7751,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
},
};
/*
* Checks to see if crypto is already enabled. If crypto isn't enable,
* "hifn_enable_crypto" is called to enable it. The check is important,
* as enabling crypto twice will lock the board.
*/
static int
hifn_enable_crypto(struct hifn_softc *sc)
{
u_int32_t dmacfg, ramcfg, encl, addr, i;
char *offtbl = NULL;
for (i = 0; i < nitems(pci2id); i++) {
if (pci2id[i].pci_vendor == pci_get_vendor(sc->sc_dev) &&
pci2id[i].pci_prod == pci_get_device(sc->sc_dev)) {
offtbl = pci2id[i].card_id;
break;
}
}
if (offtbl == NULL) {
device_printf(sc->sc_dev, "Unknown card!\n");
return (1);
}
ramcfg = READ_REG_0(sc, HIFN_0_PUCNFG);
dmacfg = READ_REG_1(sc, HIFN_1_DMA_CNFG);
/*
* The RAM config register's encrypt level bit needs to be set before
* every read performed on the encryption level register.
*/
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
/*
* Make sure we don't re-unlock. Two unlocks kills chip until the
* next reboot.
*/
if (encl == HIFN_PUSTAT_ENA_1 || encl == HIFN_PUSTAT_ENA_2) {
#ifdef HIFN_DEBUG
if (hifn_debug)
device_printf(sc->sc_dev,
"Strong crypto already enabled!\n");
#endif
goto report;
}
if (encl != 0 && encl != HIFN_PUSTAT_ENA_0) {
#ifdef HIFN_DEBUG
if (hifn_debug)
device_printf(sc->sc_dev,
"Unknown encryption level 0x%x\n", encl);
#endif
return 1;
}
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_UNLOCK |
HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
DELAY(1000);
addr = READ_REG_1(sc, HIFN_UNLOCK_SECRET1);
DELAY(1000);
WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, 0);
DELAY(1000);
for (i = 0; i <= 12; i++) {
addr = hifn_next_signature(addr, offtbl[i] + 0x101);
WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, addr);
DELAY(1000);
}
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
#ifdef HIFN_DEBUG
if (hifn_debug) {
if (encl != HIFN_PUSTAT_ENA_1 && encl != HIFN_PUSTAT_ENA_2)
device_printf(sc->sc_dev, "Engine is permanently "
"locked until next system reset!\n");
else
device_printf(sc->sc_dev, "Engine enabled "
"successfully!\n");
}
#endif
report:
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg);
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, dmacfg);
switch (encl) {
case HIFN_PUSTAT_ENA_1:
case HIFN_PUSTAT_ENA_2:
break;
case HIFN_PUSTAT_ENA_0:
default:
device_printf(sc->sc_dev, "disabled");
break;
}
return 0;
}
/*
* Give initial values to the registers listed in the "Register Space"
* section of the HIFN Software Development reference manual.
*/
static void
hifn_init_pci_registers(struct hifn_softc *sc)
{
/* write fixed values needed by the Initialization registers */
WRITE_REG_0(sc, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
WRITE_REG_0(sc, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
WRITE_REG_0(sc, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
/* write all 4 ring address registers */
WRITE_REG_1(sc, HIFN_1_DMA_CRAR, sc->sc_dma_physaddr +
offsetof(struct hifn_dma, cmdr[0]));
WRITE_REG_1(sc, HIFN_1_DMA_SRAR, sc->sc_dma_physaddr +
offsetof(struct hifn_dma, srcr[0]));
WRITE_REG_1(sc, HIFN_1_DMA_DRAR, sc->sc_dma_physaddr +
offsetof(struct hifn_dma, dstr[0]));
WRITE_REG_1(sc, HIFN_1_DMA_RRAR, sc->sc_dma_physaddr +
offsetof(struct hifn_dma, resr[0]));
DELAY(2000);
/* write status register */
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
((sc->sc_flags & HIFN_HAS_PUBLIC) ?
HIFN_DMACSR_PUBDONE : 0) |
((sc->sc_flags & HIFN_IS_7811) ?
HIFN_DMACSR_ILLW | HIFN_DMACSR_ILLR : 0));
sc->sc_d_busy = sc->sc_r_busy = sc->sc_s_busy = sc->sc_c_busy = 0;
sc->sc_dmaier |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
((sc->sc_flags & HIFN_IS_7811) ?
HIFN_DMAIER_ILLW | HIFN_DMAIER_ILLR : 0);
sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
if (sc->sc_flags & HIFN_IS_7956) {
u_int32_t pll;
WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32);
/* turn off the clocks and insure bypass is set */
pll = READ_REG_1(sc, HIFN_1_PLL);
pll = (pll &~ (HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL))
| HIFN_PLL_BP | HIFN_PLL_MBSET;
WRITE_REG_1(sc, HIFN_1_PLL, pll);
DELAY(10*1000); /* 10ms */
/* change configuration */
pll = (pll &~ HIFN_PLL_CONFIG) | sc->sc_pllconfig;
WRITE_REG_1(sc, HIFN_1_PLL, pll);
DELAY(10*1000); /* 10ms */
/* disable bypass */
pll &= ~HIFN_PLL_BP;
WRITE_REG_1(sc, HIFN_1_PLL, pll);
/* enable clocks with new configuration */
pll |= HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL;
WRITE_REG_1(sc, HIFN_1_PLL, pll);
} else {
WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
(sc->sc_drammodel ? HIFN_PUCNFG_DRAM : HIFN_PUCNFG_SRAM));
}
WRITE_REG_0(sc, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
}
/*
* The maximum number of sessions supported by the card
* is dependent on the amount of context ram, which
* encryption algorithms are enabled, and how compression
* is configured. This should be configured before this
* routine is called.
*/
static void
hifn_sessions(struct hifn_softc *sc)
{
u_int32_t pucnfg;
int ctxsize;
pucnfg = READ_REG_0(sc, HIFN_0_PUCNFG);
if (pucnfg & HIFN_PUCNFG_COMPSING) {
if (pucnfg & HIFN_PUCNFG_ENCCNFG)
ctxsize = 128;
else
ctxsize = 512;
/*
* 7955/7956 has internal context memory of 32K
*/
if (sc->sc_flags & HIFN_IS_7956)
sc->sc_maxses = 32768 / ctxsize;
else
sc->sc_maxses = 1 +
((sc->sc_ramsize - 32768) / ctxsize);
} else
sc->sc_maxses = sc->sc_ramsize / 16384;
if (sc->sc_maxses > 2048)
sc->sc_maxses = 2048;
}
/*
* Determine ram type (sram or dram). Board should be just out of a reset
* state when this is called.
*/
static int
hifn_ramtype(struct hifn_softc *sc)
{
u_int8_t data[8], dataexpect[8];
int i;
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = 0x55;
if (hifn_writeramaddr(sc, 0, data))
return (-1);
if (hifn_readramaddr(sc, 0, data))
return (-1);
if (bcmp(data, dataexpect, sizeof(data)) != 0) {
sc->sc_drammodel = 1;
return (0);
}
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = 0xaa;
if (hifn_writeramaddr(sc, 0, data))
return (-1);
if (hifn_readramaddr(sc, 0, data))
return (-1);
if (bcmp(data, dataexpect, sizeof(data)) != 0) {
sc->sc_drammodel = 1;
return (0);
}
return (0);
}
#define HIFN_SRAM_MAX (32 << 20)
#define HIFN_SRAM_STEP_SIZE 16384
#define HIFN_SRAM_GRANULARITY (HIFN_SRAM_MAX / HIFN_SRAM_STEP_SIZE)
static int
hifn_sramsize(struct hifn_softc *sc)
{
u_int32_t a;
u_int8_t data[8];
u_int8_t dataexpect[sizeof(data)];
int32_t i;
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = i ^ 0x5a;
for (i = HIFN_SRAM_GRANULARITY - 1; i >= 0; i--) {
a = i * HIFN_SRAM_STEP_SIZE;
bcopy(&i, data, sizeof(i));
hifn_writeramaddr(sc, a, data);
}
for (i = 0; i < HIFN_SRAM_GRANULARITY; i++) {
a = i * HIFN_SRAM_STEP_SIZE;
bcopy(&i, dataexpect, sizeof(i));
if (hifn_readramaddr(sc, a, data) < 0)
return (0);
if (bcmp(data, dataexpect, sizeof(data)) != 0)
return (0);
sc->sc_ramsize = a + HIFN_SRAM_STEP_SIZE;
}
return (0);
}
/*
* XXX For dram boards, one should really try all of the
* HIFN_PUCNFG_DSZ_*'s. This just assumes that PUCNFG
* is already set up correctly.
*/
static int
hifn_dramsize(struct hifn_softc *sc)
{
u_int32_t cnfg;
if (sc->sc_flags & HIFN_IS_7956) {
/*
* 7955/7956 have a fixed internal ram of only 32K.
*/
sc->sc_ramsize = 32768;
} else {
cnfg = READ_REG_0(sc, HIFN_0_PUCNFG) &
HIFN_PUCNFG_DRAMMASK;
sc->sc_ramsize = 1 << ((cnfg >> 13) + 18);
}
return (0);
}
static void
hifn_alloc_slot(struct hifn_softc *sc, int *cmdp, int *srcp, int *dstp, int *resp)
{
struct hifn_dma *dma = sc->sc_dma;
if (sc->sc_cmdi == HIFN_D_CMD_RSIZE) {
sc->sc_cmdi = 0;
dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*cmdp = sc->sc_cmdi++;
sc->sc_cmdk = sc->sc_cmdi;
if (sc->sc_srci == HIFN_D_SRC_RSIZE) {
sc->sc_srci = 0;
dma->srcr[HIFN_D_SRC_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*srcp = sc->sc_srci++;
sc->sc_srck = sc->sc_srci;
if (sc->sc_dsti == HIFN_D_DST_RSIZE) {
sc->sc_dsti = 0;
dma->dstr[HIFN_D_DST_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_DSTR_SYNC(sc, HIFN_D_DST_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*dstp = sc->sc_dsti++;
sc->sc_dstk = sc->sc_dsti;
if (sc->sc_resi == HIFN_D_RES_RSIZE) {
sc->sc_resi = 0;
dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
*resp = sc->sc_resi++;
sc->sc_resk = sc->sc_resi;
}
static int
hifn_writeramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
{
struct hifn_dma *dma = sc->sc_dma;
hifn_base_command_t wc;
const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
int r, cmdi, resi, srci, dsti;
wc.masks = htole16(3 << 13);
wc.session_num = htole16(addr >> 14);
wc.total_source_count = htole16(8);
wc.total_dest_count = htole16(addr & 0x3fff);
hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
/* build write command */
bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND);
*(hifn_base_command_t *)dma->command_bufs[cmdi] = wc;
bcopy(data, &dma->test_src, sizeof(dma->test_src));
dma->srcr[srci].p = htole32(sc->sc_dma_physaddr
+ offsetof(struct hifn_dma, test_src));
dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr
+ offsetof(struct hifn_dma, test_dst));
dma->cmdr[cmdi].l = htole32(16 | masks);
dma->srcr[srci].l = htole32(8 | masks);
dma->dstr[dsti].l = htole32(4 | masks);
dma->resr[resi].l = htole32(4 | masks);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
for (r = 10000; r >= 0; r--) {
DELAY(10);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
if (r == 0) {
device_printf(sc->sc_dev, "writeramaddr -- "
"result[%d](addr %d) still valid\n", resi, addr);
r = -1;
return (-1);
} else
r = 0;
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
return (r);
}
static int
hifn_readramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
{
struct hifn_dma *dma = sc->sc_dma;
hifn_base_command_t rc;
const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
int r, cmdi, srci, dsti, resi;
rc.masks = htole16(2 << 13);
rc.session_num = htole16(addr >> 14);
rc.total_source_count = htole16(addr & 0x3fff);
rc.total_dest_count = htole16(8);
hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND);
*(hifn_base_command_t *)dma->command_bufs[cmdi] = rc;
dma->srcr[srci].p = htole32(sc->sc_dma_physaddr +
offsetof(struct hifn_dma, test_src));
dma->test_src = 0;
dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr +
offsetof(struct hifn_dma, test_dst));
dma->test_dst = 0;
dma->cmdr[cmdi].l = htole32(8 | masks);
dma->srcr[srci].l = htole32(8 | masks);
dma->dstr[dsti].l = htole32(8 | masks);
dma->resr[resi].l = htole32(HIFN_MAX_RESULT | masks);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
for (r = 10000; r >= 0; r--) {
DELAY(10);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
if (r == 0) {
device_printf(sc->sc_dev, "readramaddr -- "
"result[%d](addr %d) still valid\n", resi, addr);
r = -1;
} else {
r = 0;
bcopy(&dma->test_dst, data, sizeof(dma->test_dst));
}
WRITE_REG_1(sc, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
return (r);
}
/*
* Initialize the descriptor rings.
*/
static void
hifn_init_dma(struct hifn_softc *sc)
{
struct hifn_dma *dma = sc->sc_dma;
int i;
hifn_set_retry(sc);
/* initialize static pointer values */
for (i = 0; i < HIFN_D_CMD_RSIZE; i++)
dma->cmdr[i].p = htole32(sc->sc_dma_physaddr +
offsetof(struct hifn_dma, command_bufs[i][0]));
for (i = 0; i < HIFN_D_RES_RSIZE; i++)
dma->resr[i].p = htole32(sc->sc_dma_physaddr +
offsetof(struct hifn_dma, result_bufs[i][0]));
dma->cmdr[HIFN_D_CMD_RSIZE].p =
htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, cmdr[0]));
dma->srcr[HIFN_D_SRC_RSIZE].p =
htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, srcr[0]));
dma->dstr[HIFN_D_DST_RSIZE].p =
htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, dstr[0]));
dma->resr[HIFN_D_RES_RSIZE].p =
htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, resr[0]));
sc->sc_cmdu = sc->sc_srcu = sc->sc_dstu = sc->sc_resu = 0;
sc->sc_cmdi = sc->sc_srci = sc->sc_dsti = sc->sc_resi = 0;
sc->sc_cmdk = sc->sc_srck = sc->sc_dstk = sc->sc_resk = 0;
}
/*
* Writes out the raw command buffer space. Returns the
* command buffer size.
*/
static u_int
hifn_write_command(struct hifn_command *cmd, u_int8_t *buf)
{
struct cryptop *crp;
u_int8_t *buf_pos;
hifn_base_command_t *base_cmd;
hifn_mac_command_t *mac_cmd;
hifn_crypt_command_t *cry_cmd;
int using_mac, using_crypt, ivlen;
u_int32_t dlen, slen;
crp = cmd->crp;
buf_pos = buf;
using_mac = cmd->base_masks & HIFN_BASE_CMD_MAC;
using_crypt = cmd->base_masks & HIFN_BASE_CMD_CRYPT;
base_cmd = (hifn_base_command_t *)buf_pos;
base_cmd->masks = htole16(cmd->base_masks);
slen = cmd->src_mapsize;
if (cmd->sloplen)
dlen = cmd->dst_mapsize - cmd->sloplen + sizeof(u_int32_t);
else
dlen = cmd->dst_mapsize;
base_cmd->total_source_count = htole16(slen & HIFN_BASE_CMD_LENMASK_LO);
base_cmd->total_dest_count = htole16(dlen & HIFN_BASE_CMD_LENMASK_LO);
dlen >>= 16;
slen >>= 16;
base_cmd->session_num = htole16(
((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
buf_pos += sizeof(hifn_base_command_t);
if (using_mac) {
mac_cmd = (hifn_mac_command_t *)buf_pos;
dlen = crp->crp_aad_length + crp->crp_payload_length;
mac_cmd->source_count = htole16(dlen & 0xffff);
dlen >>= 16;
mac_cmd->masks = htole16(cmd->mac_masks |
((dlen << HIFN_MAC_CMD_SRCLEN_S) & HIFN_MAC_CMD_SRCLEN_M));
if (crp->crp_aad_length != 0)
mac_cmd->header_skip = htole16(crp->crp_aad_start);
else
mac_cmd->header_skip = htole16(crp->crp_payload_start);
mac_cmd->reserved = 0;
buf_pos += sizeof(hifn_mac_command_t);
}
if (using_crypt) {
cry_cmd = (hifn_crypt_command_t *)buf_pos;
dlen = crp->crp_payload_length;
cry_cmd->source_count = htole16(dlen & 0xffff);
dlen >>= 16;
cry_cmd->masks = htole16(cmd->cry_masks |
((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & HIFN_CRYPT_CMD_SRCLEN_M));
cry_cmd->header_skip = htole16(crp->crp_payload_length);
cry_cmd->reserved = 0;
buf_pos += sizeof(hifn_crypt_command_t);
}
if (using_mac && cmd->mac_masks & HIFN_MAC_CMD_NEW_KEY) {
bcopy(cmd->mac, buf_pos, HIFN_MAC_KEY_LENGTH);
buf_pos += HIFN_MAC_KEY_LENGTH;
}
if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_KEY) {
switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
case HIFN_CRYPT_CMD_ALG_AES:
/*
* AES keys are variable 128, 192 and
* 256 bits (16, 24 and 32 bytes).
*/
bcopy(cmd->ck, buf_pos, cmd->cklen);
buf_pos += cmd->cklen;
break;
}
}
if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_IV) {
switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
case HIFN_CRYPT_CMD_ALG_AES:
ivlen = HIFN_AES_IV_LENGTH;
break;
default:
ivlen = HIFN_IV_LENGTH;
break;
}
bcopy(cmd->iv, buf_pos, ivlen);
buf_pos += ivlen;
}
if ((cmd->base_masks & (HIFN_BASE_CMD_MAC|HIFN_BASE_CMD_CRYPT)) == 0) {
bzero(buf_pos, 8);
buf_pos += 8;
}
return (buf_pos - buf);
}
static int
hifn_dmamap_aligned(struct hifn_operand *op)
{
int i;
for (i = 0; i < op->nsegs; i++) {
if (op->segs[i].ds_addr & 3)
return (0);
if ((i != (op->nsegs - 1)) && (op->segs[i].ds_len & 3))
return (0);
}
return (1);
}
static __inline int
hifn_dmamap_dstwrap(struct hifn_softc *sc, int idx)
{
struct hifn_dma *dma = sc->sc_dma;
if (++idx == HIFN_D_DST_RSIZE) {
dma->dstr[idx].l = htole32(HIFN_D_VALID | HIFN_D_JUMP |
HIFN_D_MASKDONEIRQ);
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
idx = 0;
}
return (idx);
}
static int
hifn_dmamap_load_dst(struct hifn_softc *sc, struct hifn_command *cmd)
{
struct hifn_dma *dma = sc->sc_dma;
struct hifn_operand *dst = &cmd->dst;
u_int32_t p, l;
int idx, used = 0, i;
idx = sc->sc_dsti;
for (i = 0; i < dst->nsegs - 1; i++) {
dma->dstr[idx].p = htole32(dst->segs[i].ds_addr);
dma->dstr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | dst->segs[i].ds_len);
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
used++;
idx = hifn_dmamap_dstwrap(sc, idx);
}
if (cmd->sloplen == 0) {
p = dst->segs[i].ds_addr;
l = HIFN_D_VALID | HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
dst->segs[i].ds_len;
} else {
p = sc->sc_dma_physaddr +
offsetof(struct hifn_dma, slop[cmd->slopidx]);
l = HIFN_D_VALID | HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
sizeof(u_int32_t);
if ((dst->segs[i].ds_len - cmd->sloplen) != 0) {
dma->dstr[idx].p = htole32(dst->segs[i].ds_addr);
dma->dstr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_MASKDONEIRQ |
(dst->segs[i].ds_len - cmd->sloplen));
HIFN_DSTR_SYNC(sc, idx,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
used++;
idx = hifn_dmamap_dstwrap(sc, idx);
}
}
dma->dstr[idx].p = htole32(p);
dma->dstr[idx].l = htole32(l);
HIFN_DSTR_SYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
used++;
idx = hifn_dmamap_dstwrap(sc, idx);
sc->sc_dsti = idx;
sc->sc_dstu += used;
return (idx);
}
static __inline int
hifn_dmamap_srcwrap(struct hifn_softc *sc, int idx)
{
struct hifn_dma *dma = sc->sc_dma;
if (++idx == HIFN_D_SRC_RSIZE) {
dma->srcr[idx].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
idx = 0;
}
return (idx);
}
static int
hifn_dmamap_load_src(struct hifn_softc *sc, struct hifn_command *cmd)
{
struct hifn_dma *dma = sc->sc_dma;
struct hifn_operand *src = &cmd->src;
int idx, i;
u_int32_t last = 0;
idx = sc->sc_srci;
for (i = 0; i < src->nsegs; i++) {
if (i == src->nsegs - 1)
last = HIFN_D_LAST;
dma->srcr[idx].p = htole32(src->segs[i].ds_addr);
dma->srcr[idx].l = htole32(src->segs[i].ds_len |
HIFN_D_VALID | HIFN_D_MASKDONEIRQ | last);
HIFN_SRCR_SYNC(sc, idx,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
idx = hifn_dmamap_srcwrap(sc, idx);
}
sc->sc_srci = idx;
sc->sc_srcu += src->nsegs;
return (idx);
}
static void
hifn_op_cb(void* arg, bus_dma_segment_t *seg, int nsegs, int error)
{
struct hifn_operand *op = arg;
KASSERT(nsegs <= MAX_SCATTER,
("hifn_op_cb: too many DMA segments (%u > %u) "
"returned when mapping operand", nsegs, MAX_SCATTER));
op->nsegs = nsegs;
bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
}
static int
hifn_crypto(
struct hifn_softc *sc,
struct hifn_command *cmd,
struct cryptop *crp,
int hint)
{
struct hifn_dma *dma = sc->sc_dma;
u_int32_t cmdlen, csr;
int cmdi, resi, err = 0;
/*
* need 1 cmd, and 1 res
*
* NB: check this first since it's easy.
*/
HIFN_LOCK(sc);
if ((sc->sc_cmdu + 1) > HIFN_D_CMD_RSIZE ||
(sc->sc_resu + 1) > HIFN_D_RES_RSIZE) {
#ifdef HIFN_DEBUG
if (hifn_debug) {
device_printf(sc->sc_dev,
"cmd/result exhaustion, cmdu %u resu %u\n",
sc->sc_cmdu, sc->sc_resu);
}
#endif
hifnstats.hst_nomem_cr++;
HIFN_UNLOCK(sc);
return (ERESTART);
}
if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &cmd->src_map)) {
hifnstats.hst_nomem_map++;
HIFN_UNLOCK(sc);
return (ENOMEM);
}
if (bus_dmamap_load_crp(sc->sc_dmat, cmd->src_map, crp, hifn_op_cb,
&cmd->src, BUS_DMA_NOWAIT)) {
hifnstats.hst_nomem_load++;
err = ENOMEM;
goto err_srcmap1;
}
cmd->src_mapsize = crypto_buffer_len(&crp->crp_buf);
if (hifn_dmamap_aligned(&cmd->src)) {
cmd->sloplen = cmd->src_mapsize & 3;
cmd->dst = cmd->src;
} else if (crp->crp_buf.cb_type == CRYPTO_BUF_MBUF) {
int totlen, len;
struct mbuf *m, *m0, *mlast;
KASSERT(cmd->dst_m == NULL,
("hifn_crypto: dst_m initialized improperly"));
hifnstats.hst_unaligned++;
/*
* Source is not aligned on a longword boundary.
* Copy the data to insure alignment. If we fail
* to allocate mbufs or clusters while doing this
* we return ERESTART so the operation is requeued
* at the crypto later, but only if there are
* ops already posted to the hardware; otherwise we
* have no guarantee that we'll be re-entered.
*/
totlen = cmd->src_mapsize;
if (crp->crp_buf.cb_mbuf->m_flags & M_PKTHDR) {
len = MHLEN;
MGETHDR(m0, M_NOWAIT, MT_DATA);
if (m0 && !m_dup_pkthdr(m0, crp->crp_buf.cb_mbuf,
M_NOWAIT)) {
m_free(m0);
m0 = NULL;
}
} else {
len = MLEN;
MGET(m0, M_NOWAIT, MT_DATA);
}
if (m0 == NULL) {
hifnstats.hst_nomem_mbuf++;
err = sc->sc_cmdu ? ERESTART : ENOMEM;
goto err_srcmap;
}
if (totlen >= MINCLSIZE) {
if (!(MCLGET(m0, M_NOWAIT))) {
hifnstats.hst_nomem_mcl++;
err = sc->sc_cmdu ? ERESTART : ENOMEM;
m_freem(m0);
goto err_srcmap;
}
len = MCLBYTES;
}
totlen -= len;
m0->m_pkthdr.len = m0->m_len = len;
mlast = m0;
while (totlen > 0) {
MGET(m, M_NOWAIT, MT_DATA);
if (m == NULL) {
hifnstats.hst_nomem_mbuf++;
err = sc->sc_cmdu ? ERESTART : ENOMEM;
m_freem(m0);
goto err_srcmap;
}
len = MLEN;
if (totlen >= MINCLSIZE) {
if (!(MCLGET(m, M_NOWAIT))) {
hifnstats.hst_nomem_mcl++;
err = sc->sc_cmdu ? ERESTART : ENOMEM;
mlast->m_next = m;
m_freem(m0);
goto err_srcmap;
}
len = MCLBYTES;
}
m->m_len = len;
m0->m_pkthdr.len += len;
totlen -= len;
mlast->m_next = m;
mlast = m;
}
cmd->dst_m = m0;
if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&cmd->dst_map)) {
hifnstats.hst_nomem_map++;
err = ENOMEM;
goto err_srcmap;
}
if (bus_dmamap_load_mbuf_sg(sc->sc_dmat, cmd->dst_map, m0,
cmd->dst_segs, &cmd->dst_nsegs, 0)) {
hifnstats.hst_nomem_map++;
err = ENOMEM;
goto err_dstmap1;
}
cmd->dst_mapsize = m0->m_pkthdr.len;
} else {
err = EINVAL;
goto err_srcmap;
}
#ifdef HIFN_DEBUG
if (hifn_debug) {
device_printf(sc->sc_dev,
"Entering cmd: stat %8x ien %8x u %d/%d/%d/%d n %d/%d\n",
READ_REG_1(sc, HIFN_1_DMA_CSR),
READ_REG_1(sc, HIFN_1_DMA_IER),
sc->sc_cmdu, sc->sc_srcu, sc->sc_dstu, sc->sc_resu,
cmd->src_nsegs, cmd->dst_nsegs);
}
#endif
if (cmd->src_map == cmd->dst_map) {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
BUS_DMASYNC_PREREAD);
}
/*
* need N src, and N dst
*/
if ((sc->sc_srcu + cmd->src_nsegs) > HIFN_D_SRC_RSIZE ||
(sc->sc_dstu + cmd->dst_nsegs + 1) > HIFN_D_DST_RSIZE) {
#ifdef HIFN_DEBUG
if (hifn_debug) {
device_printf(sc->sc_dev,
"src/dst exhaustion, srcu %u+%u dstu %u+%u\n",
sc->sc_srcu, cmd->src_nsegs,
sc->sc_dstu, cmd->dst_nsegs);
}
#endif
hifnstats.hst_nomem_sd++;
err = ERESTART;
goto err_dstmap;
}
if (sc->sc_cmdi == HIFN_D_CMD_RSIZE) {
sc->sc_cmdi = 0;
dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
cmdi = sc->sc_cmdi++;
cmdlen = hifn_write_command(cmd, dma->command_bufs[cmdi]);
HIFN_CMD_SYNC(sc, cmdi, BUS_DMASYNC_PREWRITE);
/* .p for command/result already set */
dma->cmdr[cmdi].l = htole32(cmdlen | HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ);
HIFN_CMDR_SYNC(sc, cmdi,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sc->sc_cmdu++;
/*
* We don't worry about missing an interrupt (which a "command wait"
* interrupt salvages us from), unless there is more than one command
* in the queue.
*/
if (sc->sc_cmdu > 1) {
sc->sc_dmaier |= HIFN_DMAIER_C_WAIT;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
}
hifnstats.hst_ipackets++;
hifnstats.hst_ibytes += cmd->src_mapsize;
hifn_dmamap_load_src(sc, cmd);
/*
* Unlike other descriptors, we don't mask done interrupt from
* result descriptor.
*/
#ifdef HIFN_DEBUG
if (hifn_debug)
printf("load res\n");
#endif
if (sc->sc_resi == HIFN_D_RES_RSIZE) {
sc->sc_resi = 0;
dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
resi = sc->sc_resi++;
KASSERT(sc->sc_hifn_commands[resi] == NULL,
("hifn_crypto: command slot %u busy", resi));
sc->sc_hifn_commands[resi] = cmd;
HIFN_RES_SYNC(sc, resi, BUS_DMASYNC_PREREAD);
if ((hint & CRYPTO_HINT_MORE) && sc->sc_curbatch < hifn_maxbatch) {
dma->resr[resi].l = htole32(HIFN_MAX_RESULT |
HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
sc->sc_curbatch++;
if (sc->sc_curbatch > hifnstats.hst_maxbatch)
hifnstats.hst_maxbatch = sc->sc_curbatch;
hifnstats.hst_totbatch++;
} else {
dma->resr[resi].l = htole32(HIFN_MAX_RESULT |
HIFN_D_VALID | HIFN_D_LAST);
sc->sc_curbatch = 0;
}
HIFN_RESR_SYNC(sc, resi,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sc_resu++;
if (cmd->sloplen)
cmd->slopidx = resi;
hifn_dmamap_load_dst(sc, cmd);
csr = 0;
if (sc->sc_c_busy == 0) {
csr |= HIFN_DMACSR_C_CTRL_ENA;
sc->sc_c_busy = 1;
}
if (sc->sc_s_busy == 0) {
csr |= HIFN_DMACSR_S_CTRL_ENA;
sc->sc_s_busy = 1;
}
if (sc->sc_r_busy == 0) {
csr |= HIFN_DMACSR_R_CTRL_ENA;
sc->sc_r_busy = 1;
}
if (sc->sc_d_busy == 0) {
csr |= HIFN_DMACSR_D_CTRL_ENA;
sc->sc_d_busy = 1;
}
if (csr)
WRITE_REG_1(sc, HIFN_1_DMA_CSR, csr);
#ifdef HIFN_DEBUG
if (hifn_debug) {
device_printf(sc->sc_dev, "command: stat %8x ier %8x\n",
READ_REG_1(sc, HIFN_1_DMA_CSR),
READ_REG_1(sc, HIFN_1_DMA_IER));
}
#endif
sc->sc_active = 5;
HIFN_UNLOCK(sc);
KASSERT(err == 0, ("hifn_crypto: success with error %u", err));
return (err); /* success */
err_dstmap:
if (cmd->src_map != cmd->dst_map)
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
err_dstmap1:
if (cmd->src_map != cmd->dst_map)
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
err_srcmap:
if (crp->crp_buf.cb_type == CRYPTO_BUF_MBUF) {
if (cmd->dst_m != NULL)
m_freem(cmd->dst_m);
}
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
err_srcmap1:
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
HIFN_UNLOCK(sc);
return (err);
}
static void
hifn_tick(void* vsc)
{
struct hifn_softc *sc = vsc;
HIFN_LOCK(sc);
if (sc->sc_active == 0) {
u_int32_t r = 0;
if (sc->sc_cmdu == 0 && sc->sc_c_busy) {
sc->sc_c_busy = 0;
r |= HIFN_DMACSR_C_CTRL_DIS;
}
if (sc->sc_srcu == 0 && sc->sc_s_busy) {
sc->sc_s_busy = 0;
r |= HIFN_DMACSR_S_CTRL_DIS;
}
if (sc->sc_dstu == 0 && sc->sc_d_busy) {
sc->sc_d_busy = 0;
r |= HIFN_DMACSR_D_CTRL_DIS;
}
if (sc->sc_resu == 0 && sc->sc_r_busy) {
sc->sc_r_busy = 0;
r |= HIFN_DMACSR_R_CTRL_DIS;
}
if (r)
WRITE_REG_1(sc, HIFN_1_DMA_CSR, r);
} else
sc->sc_active--;
HIFN_UNLOCK(sc);
callout_reset(&sc->sc_tickto, hz, hifn_tick, sc);
}
static void
hifn_intr(void *arg)
{
struct hifn_softc *sc = arg;
struct hifn_dma *dma;
u_int32_t dmacsr, restart;
int i, u;
dmacsr = READ_REG_1(sc, HIFN_1_DMA_CSR);
/* Nothing in the DMA unit interrupted */
if ((dmacsr & sc->sc_dmaier) == 0)
return;
HIFN_LOCK(sc);
dma = sc->sc_dma;
#ifdef HIFN_DEBUG
if (hifn_debug) {
device_printf(sc->sc_dev,
"irq: stat %08x ien %08x damier %08x i %d/%d/%d/%d k %d/%d/%d/%d u %d/%d/%d/%d\n",
dmacsr, READ_REG_1(sc, HIFN_1_DMA_IER), sc->sc_dmaier,
sc->sc_cmdi, sc->sc_srci, sc->sc_dsti, sc->sc_resi,
sc->sc_cmdk, sc->sc_srck, sc->sc_dstk, sc->sc_resk,
sc->sc_cmdu, sc->sc_srcu, sc->sc_dstu, sc->sc_resu);
}
#endif
WRITE_REG_1(sc, HIFN_1_DMA_CSR, dmacsr & sc->sc_dmaier);
if ((sc->sc_flags & HIFN_HAS_PUBLIC) &&
(dmacsr & HIFN_DMACSR_PUBDONE))
WRITE_REG_1(sc, HIFN_1_PUB_STATUS,
READ_REG_1(sc, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
restart = dmacsr & (HIFN_DMACSR_D_OVER | HIFN_DMACSR_R_OVER);
if (restart)
device_printf(sc->sc_dev, "overrun %x\n", dmacsr);
if (sc->sc_flags & HIFN_IS_7811) {
if (dmacsr & HIFN_DMACSR_ILLR)
device_printf(sc->sc_dev, "illegal read\n");
if (dmacsr & HIFN_DMACSR_ILLW)
device_printf(sc->sc_dev, "illegal write\n");
}
restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
if (restart) {
device_printf(sc->sc_dev, "abort, resetting.\n");
hifnstats.hst_abort++;
hifn_abort(sc);
HIFN_UNLOCK(sc);
return;
}
if ((dmacsr & HIFN_DMACSR_C_WAIT) && (sc->sc_cmdu == 0)) {
/*
* If no slots to process and we receive a "waiting on
* command" interrupt, we disable the "waiting on command"
* (by clearing it).
*/
sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
}
/* clear the rings */
i = sc->sc_resk; u = sc->sc_resu;
while (u != 0) {
HIFN_RESR_SYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->resr[i].l & htole32(HIFN_D_VALID)) {
HIFN_RESR_SYNC(sc, i,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (i != HIFN_D_RES_RSIZE) {
struct hifn_command *cmd;
u_int8_t *macbuf = NULL;
HIFN_RES_SYNC(sc, i, BUS_DMASYNC_POSTREAD);
cmd = sc->sc_hifn_commands[i];
KASSERT(cmd != NULL,
("hifn_intr: null command slot %u", i));
sc->sc_hifn_commands[i] = NULL;
if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
macbuf = dma->result_bufs[i];
macbuf += 12;
}
hifn_callback(sc, cmd, macbuf);
hifnstats.hst_opackets++;
u--;
}
if (++i == (HIFN_D_RES_RSIZE + 1))
i = 0;
}
sc->sc_resk = i; sc->sc_resu = u;
i = sc->sc_srck; u = sc->sc_srcu;
while (u != 0) {
if (i == HIFN_D_SRC_RSIZE)
i = 0;
HIFN_SRCR_SYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->srcr[i].l & htole32(HIFN_D_VALID)) {
HIFN_SRCR_SYNC(sc, i,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
i++, u--;
}
sc->sc_srck = i; sc->sc_srcu = u;
i = sc->sc_cmdk; u = sc->sc_cmdu;
while (u != 0) {
HIFN_CMDR_SYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->cmdr[i].l & htole32(HIFN_D_VALID)) {
HIFN_CMDR_SYNC(sc, i,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
if (i != HIFN_D_CMD_RSIZE) {
u--;
HIFN_CMD_SYNC(sc, i, BUS_DMASYNC_POSTWRITE);
}
if (++i == (HIFN_D_CMD_RSIZE + 1))
i = 0;
}
sc->sc_cmdk = i; sc->sc_cmdu = u;
HIFN_UNLOCK(sc);
if (sc->sc_needwakeup) { /* XXX check high watermark */
int wakeup = sc->sc_needwakeup & CRYPTO_SYMQ;
#ifdef HIFN_DEBUG
if (hifn_debug)
device_printf(sc->sc_dev,
"wakeup crypto (%x) u %d/%d/%d/%d\n",
sc->sc_needwakeup,
sc->sc_cmdu, sc->sc_srcu, sc->sc_dstu, sc->sc_resu);
#endif
sc->sc_needwakeup &= ~wakeup;
crypto_unblock(sc->sc_cid, wakeup);
}
}
static bool
hifn_auth_supported(struct hifn_softc *sc,
const struct crypto_session_params *csp)
{
switch (sc->sc_ena) {
case HIFN_PUSTAT_ENA_2:
case HIFN_PUSTAT_ENA_1:
break;
default:
return (false);
}
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1:
break;
case CRYPTO_SHA1_HMAC:
if (csp->csp_auth_klen > HIFN_MAC_KEY_LENGTH)
return (false);
break;
default:
return (false);
}
return (true);
}
static bool
hifn_cipher_supported(struct hifn_softc *sc,
const struct crypto_session_params *csp)
{
if (csp->csp_cipher_klen == 0)
return (false);
if (csp->csp_ivlen > HIFN_MAX_IV_LENGTH)
return (false);
switch (sc->sc_ena) {
case HIFN_PUSTAT_ENA_2:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
if ((sc->sc_flags & HIFN_HAS_AES) == 0)
return (false);
switch (csp->csp_cipher_klen) {
case 128:
case 192:
case 256:
break;
default:
return (false);
}
return (true);
}
}
return (false);
}
static int
hifn_probesession(device_t dev, const struct crypto_session_params *csp)
{
struct hifn_softc *sc;
sc = device_get_softc(dev);
if (csp->csp_flags != 0)
return (EINVAL);
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
if (!hifn_auth_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_CIPHER:
if (!hifn_cipher_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_ETA:
if (!hifn_auth_supported(sc, csp) ||
!hifn_cipher_supported(sc, csp))
return (EINVAL);
break;
default:
return (EINVAL);
}
return (CRYPTODEV_PROBE_HARDWARE);
}
/*
* Allocate a new 'session'.
*/
static int
hifn_newsession(device_t dev, crypto_session_t cses,
const struct crypto_session_params *csp)
{
struct hifn_session *ses;
ses = crypto_get_driver_session(cses);
if (csp->csp_auth_alg != 0) {
if (csp->csp_auth_mlen == 0)
ses->hs_mlen = crypto_auth_hash(csp)->hashsize;
else
ses->hs_mlen = csp->csp_auth_mlen;
}
return (0);
}
/*
* XXX freesession routine should run a zero'd mac/encrypt key into context
* ram. to blow away any keys already stored there.
*/
static int
hifn_process(device_t dev, struct cryptop *crp, int hint)
{
const struct crypto_session_params *csp;
struct hifn_softc *sc = device_get_softc(dev);
struct hifn_command *cmd = NULL;
const void *mackey;
int err, keylen;
struct hifn_session *ses;
ses = crypto_get_driver_session(crp->crp_session);
cmd = malloc(sizeof(struct hifn_command), M_DEVBUF, M_NOWAIT | M_ZERO);
if (cmd == NULL) {
hifnstats.hst_nomem++;
err = ENOMEM;
goto errout;
}
csp = crypto_get_params(crp->crp_session);
/*
* The driver only supports ETA requests where there is no
* gap between the AAD and payload.
*/
if (csp->csp_mode == CSP_MODE_ETA && crp->crp_aad_length != 0 &&
crp->crp_aad_start + crp->crp_aad_length !=
crp->crp_payload_start) {
err = EINVAL;
goto errout;
}
switch (csp->csp_mode) {
case CSP_MODE_CIPHER:
case CSP_MODE_ETA:
if (!CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
cmd->base_masks |= HIFN_BASE_CMD_DECODE;
cmd->base_masks |= HIFN_BASE_CMD_CRYPT;
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_AES |
HIFN_CRYPT_CMD_MODE_CBC |
HIFN_CRYPT_CMD_NEW_IV;
break;
default:
err = EINVAL;
goto errout;
}
crypto_read_iv(crp, cmd->iv);
if (crp->crp_cipher_key != NULL)
cmd->ck = crp->crp_cipher_key;
else
cmd->ck = csp->csp_cipher_key;
cmd->cklen = csp->csp_cipher_klen;
cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY;
/*
* Need to specify the size for the AES key in the masks.
*/
if ((cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) ==
HIFN_CRYPT_CMD_ALG_AES) {
switch (cmd->cklen) {
case 16:
cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_128;
break;
case 24:
cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_192;
break;
case 32:
cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_256;
break;
default:
err = EINVAL;
goto errout;
}
}
break;
}
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
case CSP_MODE_ETA:
cmd->base_masks |= HIFN_BASE_CMD_MAC;
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1:
cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH |
HIFN_MAC_CMD_POS_IPSEC;
break;
case CRYPTO_SHA1_HMAC:
cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC |
HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
break;
}
if (csp->csp_auth_alg == CRYPTO_SHA1_HMAC) {
cmd->mac_masks |= HIFN_MAC_CMD_NEW_KEY;
if (crp->crp_auth_key != NULL)
mackey = crp->crp_auth_key;
else
mackey = csp->csp_auth_key;
keylen = csp->csp_auth_klen;
bcopy(mackey, cmd->mac, keylen);
bzero(cmd->mac + keylen, HIFN_MAC_KEY_LENGTH - keylen);
}
}
cmd->crp = crp;
cmd->session = ses;
cmd->softc = sc;
err = hifn_crypto(sc, cmd, crp, hint);
if (!err) {
return 0;
} else if (err == ERESTART) {
/*
* There weren't enough resources to dispatch the request
* to the part. Notify the caller so they'll requeue this
* request and resubmit it again soon.
*/
#ifdef HIFN_DEBUG
if (hifn_debug)
device_printf(sc->sc_dev, "requeue request\n");
#endif
free(cmd, M_DEVBUF);
sc->sc_needwakeup |= CRYPTO_SYMQ;
return (err);
}
errout:
if (cmd != NULL)
free(cmd, M_DEVBUF);
if (err == EINVAL)
hifnstats.hst_invalid++;
else
hifnstats.hst_nomem++;
crp->crp_etype = err;
crypto_done(crp);
return (0);
}
static void
hifn_abort(struct hifn_softc *sc)
{
struct hifn_dma *dma = sc->sc_dma;
struct hifn_command *cmd;
struct cryptop *crp;
int i, u;
i = sc->sc_resk; u = sc->sc_resu;
while (u != 0) {
cmd = sc->sc_hifn_commands[i];
KASSERT(cmd != NULL, ("hifn_abort: null command slot %u", i));
sc->sc_hifn_commands[i] = NULL;
crp = cmd->crp;
if ((dma->resr[i].l & htole32(HIFN_D_VALID)) == 0) {
/* Salvage what we can. */
u_int8_t *macbuf;
if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
macbuf = dma->result_bufs[i];
macbuf += 12;
} else
macbuf = NULL;
hifnstats.hst_opackets++;
hifn_callback(sc, cmd, macbuf);
} else {
if (cmd->src_map == cmd->dst_map) {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
} else {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
BUS_DMASYNC_POSTREAD);
}
if (cmd->dst_m != NULL) {
m_freem(cmd->dst_m);
}
/* non-shared buffers cannot be restarted */
if (cmd->src_map != cmd->dst_map) {
/*
* XXX should be EAGAIN, delayed until
* after the reset.
*/
crp->crp_etype = ENOMEM;
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
} else
crp->crp_etype = ENOMEM;
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
free(cmd, M_DEVBUF);
if (crp->crp_etype != EAGAIN)
crypto_done(crp);
}
if (++i == HIFN_D_RES_RSIZE)
i = 0;
u--;
}
sc->sc_resk = i; sc->sc_resu = u;
hifn_reset_board(sc, 1);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
}
static void
hifn_callback(struct hifn_softc *sc, struct hifn_command *cmd, u_int8_t *macbuf)
{
struct hifn_dma *dma = sc->sc_dma;
struct cryptop *crp = cmd->crp;
uint8_t macbuf2[SHA1_HASH_LEN];
struct mbuf *m;
int totlen, i, u;
if (cmd->src_map == cmd->dst_map) {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
BUS_DMASYNC_POSTREAD);
}
if (crp->crp_buf.cb_type == CRYPTO_BUF_MBUF) {
if (cmd->dst_m != NULL) {
totlen = cmd->src_mapsize;
for (m = cmd->dst_m; m != NULL; m = m->m_next) {
if (totlen < m->m_len) {
m->m_len = totlen;
totlen = 0;
} else
totlen -= m->m_len;
}
cmd->dst_m->m_pkthdr.len =
crp->crp_buf.cb_mbuf->m_pkthdr.len;
m_freem(crp->crp_buf.cb_mbuf);
crp->crp_buf.cb_mbuf = cmd->dst_m;
}
}
if (cmd->sloplen != 0) {
crypto_copyback(crp, cmd->src_mapsize - cmd->sloplen,
cmd->sloplen, &dma->slop[cmd->slopidx]);
}
i = sc->sc_dstk; u = sc->sc_dstu;
while (u != 0) {
if (i == HIFN_D_DST_RSIZE)
i = 0;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (dma->dstr[i].l & htole32(HIFN_D_VALID)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
break;
}
i++, u--;
}
sc->sc_dstk = i; sc->sc_dstu = u;
hifnstats.hst_obytes += cmd->dst_mapsize;
if (macbuf != NULL) {
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
crypto_copydata(crp, crp->crp_digest_start,
cmd->session->hs_mlen, macbuf2);
if (timingsafe_bcmp(macbuf, macbuf2,
cmd->session->hs_mlen) != 0)
crp->crp_etype = EBADMSG;
} else
crypto_copyback(crp, crp->crp_digest_start,
cmd->session->hs_mlen, macbuf);
}
if (cmd->src_map != cmd->dst_map) {
bus_dmamap_unload(sc->sc_dmat, cmd->dst_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->dst_map);
}
bus_dmamap_unload(sc->sc_dmat, cmd->src_map);
bus_dmamap_destroy(sc->sc_dmat, cmd->src_map);
free(cmd, M_DEVBUF);
crypto_done(crp);
}
/*
* 7811 PB3 rev/2 parts lock-up on burst writes to Group 0
* and Group 1 registers; avoid conditions that could create
* burst writes by doing a read in between the writes.
*
* NB: The read we interpose is always to the same register;
* we do this because reading from an arbitrary (e.g. last)
* register may not always work.
*/
static void
hifn_write_reg_0(struct hifn_softc *sc, bus_size_t reg, u_int32_t val)
{
if (sc->sc_flags & HIFN_IS_7811) {
if (sc->sc_bar0_lastreg == reg - 4)
bus_space_read_4(sc->sc_st0, sc->sc_sh0, HIFN_0_PUCNFG);
sc->sc_bar0_lastreg = reg;
}
bus_space_write_4(sc->sc_st0, sc->sc_sh0, reg, val);
}
static void
hifn_write_reg_1(struct hifn_softc *sc, bus_size_t reg, u_int32_t val)
{
if (sc->sc_flags & HIFN_IS_7811) {
if (sc->sc_bar1_lastreg == reg - 4)
bus_space_read_4(sc->sc_st1, sc->sc_sh1, HIFN_1_REVID);
sc->sc_bar1_lastreg = reg;
}
bus_space_write_4(sc->sc_st1, sc->sc_sh1, reg, val);
}
#ifdef HIFN_VULCANDEV
/*
* this code provides support for mapping the PK engine's register
* into a userspace program.
*
*/
static int
vulcanpk_mmap(struct cdev *dev, vm_ooffset_t offset,
vm_paddr_t *paddr, int nprot, vm_memattr_t *memattr)
{
struct hifn_softc *sc;
vm_paddr_t pd;
void *b;
sc = dev->si_drv1;
pd = rman_get_start(sc->sc_bar1res);
b = rman_get_virtual(sc->sc_bar1res);
#if 0
printf("vpk mmap: %p(%016llx) offset=%lld\n", b,
(unsigned long long)pd, offset);
hexdump(b, HIFN_1_PUB_MEMEND, "vpk", 0);
#endif
if (offset == 0) {
*paddr = pd;
return (0);
}
return (-1);
}
static struct cdevsw vulcanpk_cdevsw = {
.d_version = D_VERSION,
.d_mmap = vulcanpk_mmap,
.d_name = "vulcanpk",
};
#endif /* HIFN_VULCANDEV */