freebsd-dev/sys/dev/hwpmc/hwpmc_arm64.c
Mitchell Horne 39f92a76a9 hwpmc: pass pmc pointer to more class methods
In many cases this avoids an extra lookup, since the callers always have
pm at hand. We can also eliminate several assertions, mostly for pm !=
NULL. The class methods are an internal interface, and the callers
already handle such a scenario. No functional change intended.

Reviewed by:	jkoshy
MFC after:	2 weeks
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D39915
2023-05-06 14:49:19 -03:00

610 lines
14 KiB
C

/*-
* Copyright (c) 2015 Ruslan Bukin <br@bsdpad.com>
* All rights reserved.
*
* This software was developed by the University of Cambridge Computer
* Laboratory with support from ARM Ltd.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <machine/pmc_mdep.h>
#include <machine/cpu.h>
#include "opt_acpi.h"
static int arm64_npmcs;
struct arm64_event_code_map {
enum pmc_event pe_ev;
uint8_t pe_code;
};
/*
* Per-processor information.
*/
struct arm64_cpu {
struct pmc_hw *pc_arm64pmcs;
};
static struct arm64_cpu **arm64_pcpu;
/*
* Interrupt Enable Set Register
*/
static __inline void
arm64_interrupt_enable(uint32_t pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmintenset_el1, reg);
isb();
}
/*
* Interrupt Clear Set Register
*/
static __inline void
arm64_interrupt_disable(uint32_t pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmintenclr_el1, reg);
isb();
}
/*
* Counter Set Enable Register
*/
static __inline void
arm64_counter_enable(unsigned int pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmcntenset_el0, reg);
isb();
}
/*
* Counter Clear Enable Register
*/
static __inline void
arm64_counter_disable(unsigned int pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmcntenclr_el0, reg);
isb();
}
/*
* Performance Monitors Control Register
*/
static uint32_t
arm64_pmcr_read(void)
{
uint32_t reg;
reg = READ_SPECIALREG(pmcr_el0);
return (reg);
}
static void
arm64_pmcr_write(uint32_t reg)
{
WRITE_SPECIALREG(pmcr_el0, reg);
isb();
}
/*
* Performance Count Register N
*/
static uint32_t
arm64_pmcn_read(unsigned int pmc)
{
KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc));
WRITE_SPECIALREG(pmselr_el0, pmc);
isb();
return (READ_SPECIALREG(pmxevcntr_el0));
}
static void
arm64_pmcn_write(unsigned int pmc, uint32_t reg)
{
KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc));
WRITE_SPECIALREG(pmselr_el0, pmc);
WRITE_SPECIALREG(pmxevcntr_el0, reg);
isb();
}
static int
arm64_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
uint32_t config;
enum pmc_event pe;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row index %d", __LINE__, ri));
if (a->pm_class != PMC_CLASS_ARMV8) {
return (EINVAL);
}
pe = a->pm_ev;
/* Adjust the config value if needed. */
config = a->pm_md.pm_md_config;
if ((a->pm_md.pm_md_flags & PM_MD_RAW_EVENT) == 0) {
config = (uint32_t)pe - PMC_EV_ARMV8_FIRST;
if (config > (PMC_EV_ARMV8_LAST - PMC_EV_ARMV8_FIRST))
return (EINVAL);
}
switch (a->pm_caps & (PMC_CAP_SYSTEM | PMC_CAP_USER)) {
case PMC_CAP_SYSTEM:
config |= PMEVTYPER_U;
break;
case PMC_CAP_USER:
config |= PMEVTYPER_P;
break;
default:
/*
* Trace both USER and SYSTEM if none are specified
* (default setting) or if both flags are specified
* (user explicitly requested both qualifiers).
*/
break;
}
pm->pm_md.pm_arm64.pm_arm64_evsel = config;
PMCDBG2(MDP, ALL, 2, "arm64-allocate ri=%d -> config=0x%x", ri, config);
return (0);
}
static int
arm64_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
{
pmc_value_t tmp;
register_t s;
int reg;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row index %d", __LINE__, ri));
/*
* Ensure we don't get interrupted while updating the overflow count.
*/
s = intr_disable();
tmp = arm64_pmcn_read(ri);
reg = (1 << ri);
if ((READ_SPECIALREG(pmovsclr_el0) & reg) != 0) {
/* Clear Overflow Flag */
WRITE_SPECIALREG(pmovsclr_el0, reg);
pm->pm_pcpu_state[cpu].pps_overflowcnt++;
/* Reread counter in case we raced. */
tmp = arm64_pmcn_read(ri);
}
tmp += 0x100000000llu * pm->pm_pcpu_state[cpu].pps_overflowcnt;
intr_restore(s);
PMCDBG2(MDP, REA, 2, "arm64-read id=%d -> %jd", ri, tmp);
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
/*
* Clamp value to 0 if the counter just overflowed,
* otherwise the returned reload count would wrap to a
* huge value.
*/
if ((tmp & (1ull << 63)) == 0)
tmp = 0;
else
tmp = ARMV8_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
}
*v = tmp;
return (0);
}
static int
arm64_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row-index %d", __LINE__, ri));
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
v = ARMV8_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
PMCDBG3(MDP, WRI, 1, "arm64-write cpu=%d ri=%d v=%jx", cpu, ri, v);
pm->pm_pcpu_state[cpu].pps_overflowcnt = v >> 32;
arm64_pmcn_write(ri, v);
return (0);
}
static int
arm64_config_pmc(int cpu, int ri, struct pmc *pm)
{
struct pmc_hw *phw;
PMCDBG3(MDP, CFG, 1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row-index %d", __LINE__, ri));
phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri];
KASSERT(pm == NULL || phw->phw_pmc == NULL,
("[arm64,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
__LINE__, pm, phw->phw_pmc));
phw->phw_pmc = pm;
return (0);
}
static int
arm64_start_pmc(int cpu, int ri, struct pmc *pm)
{
uint32_t config;
config = pm->pm_md.pm_arm64.pm_arm64_evsel;
/*
* Configure the event selection.
*/
WRITE_SPECIALREG(pmselr_el0, ri);
WRITE_SPECIALREG(pmxevtyper_el0, config);
isb();
/*
* Enable the PMC.
*/
arm64_interrupt_enable(ri);
arm64_counter_enable(ri);
return (0);
}
static int
arm64_stop_pmc(int cpu, int ri, struct pmc *pm __unused)
{
/*
* Disable the PMCs.
*/
arm64_counter_disable(ri);
arm64_interrupt_disable(ri);
return (0);
}
static int
arm64_release_pmc(int cpu, int ri, struct pmc *pmc)
{
struct pmc_hw *phw __diagused;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row-index %d", __LINE__, ri));
phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri];
KASSERT(phw->phw_pmc == NULL,
("[arm64,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
return (0);
}
static int
arm64_intr(struct trapframe *tf)
{
int retval, ri;
struct pmc *pm;
int error;
int reg, cpu;
cpu = curcpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] CPU %d out of range", __LINE__, cpu));
PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *)tf,
TRAPF_USERMODE(tf));
retval = 0;
for (ri = 0; ri < arm64_npmcs; ri++) {
pm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc;
if (pm == NULL)
continue;
/* Check if counter is overflowed */
reg = (1 << ri);
if ((READ_SPECIALREG(pmovsclr_el0) & reg) == 0)
continue;
/* Clear Overflow Flag */
WRITE_SPECIALREG(pmovsclr_el0, reg);
isb();
retval = 1; /* Found an interrupting PMC. */
pm->pm_pcpu_state[cpu].pps_overflowcnt += 1;
if (!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
continue;
if (pm->pm_state != PMC_STATE_RUNNING)
continue;
error = pmc_process_interrupt(PMC_HR, pm, tf);
if (error)
arm64_stop_pmc(cpu, ri, pm);
/* Reload sampling count */
arm64_write_pmc(cpu, ri, pm, pm->pm_sc.pm_reloadcount);
}
return (retval);
}
static int
arm64_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d], illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] row-index %d out of range", __LINE__, ri));
phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri];
snprintf(pi->pm_name, sizeof(pi->pm_name), "ARMV8-%d", ri);
pi->pm_class = PMC_CLASS_ARMV8;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
static int
arm64_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc;
return (0);
}
static int
arm64_pcpu_init(struct pmc_mdep *md, int cpu)
{
struct arm64_cpu *pac;
struct pmc_hw *phw;
struct pmc_cpu *pc;
uint64_t pmcr;
int first_ri;
int i;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] wrong cpu number %d", __LINE__, cpu));
PMCDBG1(MDP, INI, 1, "arm64-init cpu=%d", cpu);
arm64_pcpu[cpu] = pac = malloc(sizeof(struct arm64_cpu), M_PMC,
M_WAITOK | M_ZERO);
pac->pc_arm64pmcs = malloc(sizeof(struct pmc_hw) * arm64_npmcs,
M_PMC, M_WAITOK | M_ZERO);
pc = pmc_pcpu[cpu];
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8].pcd_ri;
KASSERT(pc != NULL, ("[arm64,%d] NULL per-cpu pointer", __LINE__));
for (i = 0, phw = pac->pc_arm64pmcs; i < arm64_npmcs; i++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[i + first_ri] = phw;
}
/*
* Disable all counters and overflow interrupts. Upon reset they are in
* an undefined state.
*
* Don't issue an isb here, just wait for the one in arm64_pmcr_write()
* to make the writes visible.
*/
WRITE_SPECIALREG(pmcntenclr_el0, 0xffffffff);
WRITE_SPECIALREG(pmintenclr_el1, 0xffffffff);
/* Enable unit */
pmcr = arm64_pmcr_read();
pmcr |= PMCR_E;
arm64_pmcr_write(pmcr);
return (0);
}
static int
arm64_pcpu_fini(struct pmc_mdep *md, int cpu)
{
uint32_t pmcr;
pmcr = arm64_pmcr_read();
pmcr &= ~PMCR_E;
arm64_pmcr_write(pmcr);
return (0);
}
struct pmc_mdep *
pmc_arm64_initialize(void)
{
struct pmc_mdep *pmc_mdep;
struct pmc_classdep *pcd;
int classes, idcode, impcode;
int reg;
uint64_t midr;
reg = arm64_pmcr_read();
arm64_npmcs = (reg & PMCR_N_MASK) >> PMCR_N_SHIFT;
impcode = (reg & PMCR_IMP_MASK) >> PMCR_IMP_SHIFT;
idcode = (reg & PMCR_IDCODE_MASK) >> PMCR_IDCODE_SHIFT;
PMCDBG1(MDP, INI, 1, "arm64-init npmcs=%d", arm64_npmcs);
/*
* Write the CPU model to kern.hwpmc.cpuid.
*
* We zero the variant and revision fields.
*
* TODO: how to handle differences between cores due to big.LITTLE?
* For now, just use MIDR from CPU 0.
*/
midr = (uint64_t)(pcpu_find(0)->pc_midr);
midr &= ~(CPU_VAR_MASK | CPU_REV_MASK);
snprintf(pmc_cpuid, sizeof(pmc_cpuid), "0x%016lx", midr);
/*
* Allocate space for pointers to PMC HW descriptors and for
* the MDEP structure used by MI code.
*/
arm64_pcpu = malloc(sizeof(struct arm64_cpu *) * pmc_cpu_max(),
M_PMC, M_WAITOK | M_ZERO);
/* One AArch64 CPU class */
classes = 1;
#ifdef DEV_ACPI
/* Query presence of optional classes and set max class. */
if (pmc_cmn600_nclasses() > 0)
classes = MAX(classes, PMC_MDEP_CLASS_INDEX_CMN600);
if (pmc_dmc620_nclasses() > 0)
classes = MAX(classes, PMC_MDEP_CLASS_INDEX_DMC620_C);
#endif
pmc_mdep = pmc_mdep_alloc(classes);
switch(impcode) {
case PMCR_IMP_ARM:
switch (idcode) {
case PMCR_IDCODE_CORTEX_A76:
case PMCR_IDCODE_NEOVERSE_N1:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A76;
break;
case PMCR_IDCODE_CORTEX_A57:
case PMCR_IDCODE_CORTEX_A72:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A57;
break;
default:
case PMCR_IDCODE_CORTEX_A53:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53;
break;
}
break;
default:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53;
break;
}
pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8];
pcd->pcd_caps = ARMV8_PMC_CAPS;
pcd->pcd_class = PMC_CLASS_ARMV8;
pcd->pcd_num = arm64_npmcs;
pcd->pcd_ri = pmc_mdep->pmd_npmc;
pcd->pcd_width = 32;
pcd->pcd_allocate_pmc = arm64_allocate_pmc;
pcd->pcd_config_pmc = arm64_config_pmc;
pcd->pcd_pcpu_fini = arm64_pcpu_fini;
pcd->pcd_pcpu_init = arm64_pcpu_init;
pcd->pcd_describe = arm64_describe;
pcd->pcd_get_config = arm64_get_config;
pcd->pcd_read_pmc = arm64_read_pmc;
pcd->pcd_release_pmc = arm64_release_pmc;
pcd->pcd_start_pmc = arm64_start_pmc;
pcd->pcd_stop_pmc = arm64_stop_pmc;
pcd->pcd_write_pmc = arm64_write_pmc;
pmc_mdep->pmd_intr = arm64_intr;
pmc_mdep->pmd_npmc += arm64_npmcs;
#ifdef DEV_ACPI
if (pmc_cmn600_nclasses() > 0)
pmc_cmn600_initialize(pmc_mdep);
if (pmc_dmc620_nclasses() > 0) {
pmc_dmc620_initialize_cd2(pmc_mdep);
pmc_dmc620_initialize_c(pmc_mdep);
}
#endif
return (pmc_mdep);
}
void
pmc_arm64_finalize(struct pmc_mdep *md)
{
}