freebsd-dev/sys/dev/hwpmc/hwpmc_powerpc.c
Mitchell Horne 39f92a76a9 hwpmc: pass pmc pointer to more class methods
In many cases this avoids an extra lookup, since the callers always have
pm at hand. We can also eliminate several assertions, mostly for pm !=
NULL. The class methods are an internal interface, and the callers
already handle such a scenario. No functional change intended.

Reviewed by:	jkoshy
MFC after:	2 weeks
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D39915
2023-05-06 14:49:19 -03:00

623 lines
15 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011,2013 Justin Hibbits
* Copyright (c) 2005, Joseph Koshy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <sys/sysent.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <machine/pmc_mdep.h>
#include <machine/spr.h>
#include <machine/pte.h>
#include <machine/sr.h>
#include <machine/cpu.h>
#include <machine/stack.h>
#include "hwpmc_powerpc.h"
#ifdef __powerpc64__
#define OFFSET 4 /* Account for the TOC reload slot */
#else
#define OFFSET 0
#endif
struct powerpc_cpu **powerpc_pcpu;
struct pmc_ppc_event *ppc_event_codes;
size_t ppc_event_codes_size;
int ppc_event_first;
int ppc_event_last;
int ppc_max_pmcs;
enum pmc_class ppc_class;
void (*powerpc_set_pmc)(int cpu, int ri, int config);
pmc_value_t (*powerpc_pmcn_read)(unsigned int pmc);
void (*powerpc_pmcn_write)(unsigned int pmc, uint32_t val);
void (*powerpc_resume_pmc)(bool ie);
int
pmc_save_kernel_callchain(uintptr_t *cc, int maxsamples,
struct trapframe *tf)
{
uintptr_t *osp, *sp;
uintptr_t pc;
int frames = 0;
cc[frames++] = PMC_TRAPFRAME_TO_PC(tf);
sp = (uintptr_t *)PMC_TRAPFRAME_TO_FP(tf);
osp = (uintptr_t *)PAGE_SIZE;
for (; frames < maxsamples; frames++) {
if (sp <= osp)
break;
#ifdef __powerpc64__
pc = sp[2];
#else
pc = sp[1];
#endif
if ((pc & 3) || (pc < 0x100))
break;
/*
* trapexit() and asttrapexit() are sentinels
* for kernel stack tracing.
* */
if (pc + OFFSET == (uintptr_t) &trapexit ||
pc + OFFSET == (uintptr_t) &asttrapexit)
break;
cc[frames] = pc;
osp = sp;
sp = (uintptr_t *)*sp;
}
return (frames);
}
int
powerpc_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d], illegal CPU %d", __LINE__, cpu));
phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
snprintf(pi->pm_name, sizeof(pi->pm_name), "POWERPC-%d", ri);
pi->pm_class = powerpc_pcpu[cpu]->pc_class;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
int
powerpc_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
return (0);
}
int
powerpc_pcpu_init(struct pmc_mdep *md, int cpu)
{
struct pmc_cpu *pc;
struct powerpc_cpu *pac;
struct pmc_hw *phw;
int first_ri, i;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d] wrong cpu number %d", __LINE__, cpu));
PMCDBG1(MDP,INI,1,"powerpc-init cpu=%d", cpu);
powerpc_pcpu[cpu] = pac = malloc(sizeof(struct powerpc_cpu) +
ppc_max_pmcs * sizeof(struct pmc_hw), M_PMC, M_WAITOK | M_ZERO);
pac->pc_class =
md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_class;
pc = pmc_pcpu[cpu];
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_ri;
KASSERT(pc != NULL, ("[powerpc,%d] NULL per-cpu pointer", __LINE__));
for (i = 0, phw = pac->pc_ppcpmcs; i < ppc_max_pmcs; i++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[i + first_ri] = phw;
}
return (0);
}
int
powerpc_pcpu_fini(struct pmc_mdep *md, int cpu)
{
PMCDBG1(MDP,INI,1,"powerpc-fini cpu=%d", cpu);
free(powerpc_pcpu[cpu], M_PMC);
powerpc_pcpu[cpu] = NULL;
return (0);
}
int
powerpc_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
enum pmc_event pe;
uint32_t caps, config = 0, counter = 0;
int i;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
("[powerpc,%d] illegal row index %d", __LINE__, ri));
if (a->pm_class != ppc_class)
return (EINVAL);
caps = a->pm_caps;
pe = a->pm_ev;
if (pe < ppc_event_first || pe > ppc_event_last)
return (EINVAL);
for (i = 0; i < ppc_event_codes_size; i++) {
if (ppc_event_codes[i].pe_event == pe) {
config = ppc_event_codes[i].pe_code;
counter = ppc_event_codes[i].pe_flags;
break;
}
}
if (i == ppc_event_codes_size)
return (EINVAL);
if ((counter & (1 << ri)) == 0)
return (EINVAL);
if (caps & PMC_CAP_SYSTEM)
config |= POWERPC_PMC_KERNEL_ENABLE;
if (caps & PMC_CAP_USER)
config |= POWERPC_PMC_USER_ENABLE;
if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
config |= POWERPC_PMC_ENABLE;
pm->pm_md.pm_powerpc.pm_powerpc_evsel = config;
PMCDBG3(MDP,ALL,1,"powerpc-allocate cpu=%d ri=%d -> config=0x%x",
cpu, ri, config);
return (0);
}
int
powerpc_release_pmc(int cpu, int ri, struct pmc *pmc)
{
struct pmc_hw *phw __diagused;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
("[powerpc,%d] illegal row-index %d", __LINE__, ri));
phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
KASSERT(phw->phw_pmc == NULL,
("[powerpc,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
return (0);
}
int
powerpc_start_pmc(int cpu, int ri, struct pmc *pm)
{
PMCDBG2(MDP,STA,1,"powerpc-start cpu=%d ri=%d", cpu, ri);
powerpc_set_pmc(cpu, ri, pm->pm_md.pm_powerpc.pm_powerpc_evsel);
return (0);
}
int
powerpc_stop_pmc(int cpu, int ri, struct pmc *pm __unused)
{
PMCDBG2(MDP,STO,1, "powerpc-stop cpu=%d ri=%d", cpu, ri);
powerpc_set_pmc(cpu, ri, PMCN_NONE);
return (0);
}
int
powerpc_config_pmc(int cpu, int ri, struct pmc *pm)
{
struct pmc_hw *phw;
PMCDBG3(MDP,CFG,1, "powerpc-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
("[powerpc,%d] illegal row-index %d", __LINE__, ri));
phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
KASSERT(pm == NULL || phw->phw_pmc == NULL,
("[powerpc,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
__LINE__, pm, phw->phw_pmc));
phw->phw_pmc = pm;
return (0);
}
pmc_value_t
powerpc_pmcn_read_default(unsigned int pmc)
{
pmc_value_t val;
if (pmc > ppc_max_pmcs)
panic("Invalid PMC number: %d\n", pmc);
switch (pmc) {
case 0:
val = mfspr(SPR_PMC1);
break;
case 1:
val = mfspr(SPR_PMC2);
break;
case 2:
val = mfspr(SPR_PMC3);
break;
case 3:
val = mfspr(SPR_PMC4);
break;
case 4:
val = mfspr(SPR_PMC5);
break;
case 5:
val = mfspr(SPR_PMC6);
break;
case 6:
val = mfspr(SPR_PMC7);
break;
case 7:
val = mfspr(SPR_PMC8);
break;
}
return (val);
}
void
powerpc_pmcn_write_default(unsigned int pmc, uint32_t val)
{
if (pmc > ppc_max_pmcs)
panic("Invalid PMC number: %d\n", pmc);
switch (pmc) {
case 0:
mtspr(SPR_PMC1, val);
break;
case 1:
mtspr(SPR_PMC2, val);
break;
case 2:
mtspr(SPR_PMC3, val);
break;
case 3:
mtspr(SPR_PMC4, val);
break;
case 4:
mtspr(SPR_PMC5, val);
break;
case 5:
mtspr(SPR_PMC6, val);
break;
case 6:
mtspr(SPR_PMC7, val);
break;
case 7:
mtspr(SPR_PMC8, val);
break;
}
}
int
powerpc_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
{
pmc_value_t p, r, tmp;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
("[powerpc,%d] illegal row index %d", __LINE__, ri));
/*
* After an interrupt occurs because of a PMC overflow, the PMC value
* is not always MAX_PMC_VALUE + 1, but may be a little above it.
* This may mess up calculations and frustrate machine independent
* layer expectations, such as that no value read should be greater
* than reload count in sampling mode.
* To avoid these issues, use MAX_PMC_VALUE as an upper limit.
*/
p = MIN(powerpc_pmcn_read(ri), POWERPC_MAX_PMC_VALUE);
r = pm->pm_sc.pm_reloadcount;
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
/*
* Special case 1: r is too big
* This usually happens when a PMC write fails, the PMC is
* stopped and then it is read.
*
* Special case 2: PMC was reseted or has a value
* that should not be possible with current r.
*
* In the above cases, just return 0 instead of an arbitrary
* value.
*/
if (r > POWERPC_MAX_PMC_VALUE || p + r <= POWERPC_MAX_PMC_VALUE)
tmp = 0;
else
tmp = POWERPC_PERFCTR_VALUE_TO_RELOAD_COUNT(p);
} else
tmp = p + (POWERPC_MAX_PMC_VALUE + 1) * PPC_OVERFLOWCNT(pm);
PMCDBG5(MDP,REA,1,"ppc-read cpu=%d ri=%d -> %jx (%jx,%jx)",
cpu, ri, (uintmax_t)tmp, (uintmax_t)PPC_OVERFLOWCNT(pm),
(uintmax_t)p);
*v = tmp;
return (0);
}
int
powerpc_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
{
pmc_value_t vlo;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < ppc_max_pmcs,
("[powerpc,%d] illegal row-index %d", __LINE__, ri));
if (PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) {
PPC_OVERFLOWCNT(pm) = v / (POWERPC_MAX_PMC_VALUE + 1);
vlo = v % (POWERPC_MAX_PMC_VALUE + 1);
} else if (v > POWERPC_MAX_PMC_VALUE) {
PMCDBG3(MDP,WRI,2,
"powerpc-write cpu=%d ri=%d: PMC value is too big: %jx",
cpu, ri, (uintmax_t)v);
return (EINVAL);
} else
vlo = POWERPC_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
PMCDBG5(MDP,WRI,1,"powerpc-write cpu=%d ri=%d -> %jx (%jx,%jx)",
cpu, ri, (uintmax_t)v, (uintmax_t)PPC_OVERFLOWCNT(pm),
(uintmax_t)vlo);
powerpc_pmcn_write(ri, vlo);
return (0);
}
int
powerpc_pmc_intr(struct trapframe *tf)
{
struct pmc *pm;
struct powerpc_cpu *pc;
int cpu, error, i, retval;
cpu = curcpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[powerpc,%d] out of range CPU %d", __LINE__, cpu));
PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
TRAPF_USERMODE(tf));
retval = 0;
pc = powerpc_pcpu[cpu];
/*
* Look for a running, sampling PMC which has overflowed
* and which has a valid 'struct pmc' association.
*/
for (i = 0; i < ppc_max_pmcs; i++) {
if (!POWERPC_PMC_HAS_OVERFLOWED(i))
continue;
retval = 1; /* Found an interrupting PMC. */
/*
* Always clear the PMC, to make it stop interrupting.
* If pm is available and in sampling mode, use reload
* count, to make PMC read after stop correct.
* Otherwise, just reset the PMC.
*/
if ((pm = pc->pc_ppcpmcs[i].phw_pmc) != NULL &&
PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
if (pm->pm_state != PMC_STATE_RUNNING) {
powerpc_write_pmc(cpu, i, pm,
pm->pm_sc.pm_reloadcount);
continue;
}
} else {
if (pm != NULL) { /* !PMC_IS_SAMPLING_MODE */
PPC_OVERFLOWCNT(pm) = (PPC_OVERFLOWCNT(pm) +
1) % PPC_OVERFLOWCNT_MAX;
PMCDBG3(MDP,INT,2,
"cpu=%d ri=%d: overflowcnt=%d",
cpu, i, PPC_OVERFLOWCNT(pm));
}
powerpc_pmcn_write(i, 0);
continue;
}
error = pmc_process_interrupt(PMC_HR, pm, tf);
if (error != 0) {
PMCDBG3(MDP,INT,3,
"cpu=%d ri=%d: error %d processing interrupt",
cpu, i, error);
powerpc_stop_pmc(cpu, i, pm);
}
/* Reload sampling count */
powerpc_write_pmc(cpu, i, pm, pm->pm_sc.pm_reloadcount);
}
if (retval)
counter_u64_add(pmc_stats.pm_intr_processed, 1);
else
counter_u64_add(pmc_stats.pm_intr_ignored, 1);
/*
* Re-enable PERF exceptions if we were able to find the interrupt
* source and handle it. Otherwise, it's better to disable PERF
* interrupts, to avoid the risk of processing the same interrupt
* forever.
*/
powerpc_resume_pmc(retval != 0);
if (retval == 0)
log(LOG_WARNING,
"pmc_intr: couldn't find interrupting PMC on cpu %d - "
"disabling PERF interrupts\n", cpu);
return (retval);
}
struct pmc_mdep *
pmc_md_initialize(void)
{
struct pmc_mdep *pmc_mdep;
int error;
uint16_t vers;
/*
* Allocate space for pointers to PMC HW descriptors and for
* the MDEP structure used by MI code.
*/
powerpc_pcpu = malloc(sizeof(struct powerpc_cpu *) * pmc_cpu_max(), M_PMC,
M_WAITOK|M_ZERO);
/* Just one class */
pmc_mdep = pmc_mdep_alloc(1);
vers = mfpvr() >> 16;
switch (vers) {
case MPC7447A:
case MPC7448:
case MPC7450:
case MPC7455:
case MPC7457:
error = pmc_mpc7xxx_initialize(pmc_mdep);
break;
case IBM970:
case IBM970FX:
case IBM970MP:
error = pmc_ppc970_initialize(pmc_mdep);
break;
case IBMPOWER8E:
case IBMPOWER8NVL:
case IBMPOWER8:
case IBMPOWER9:
error = pmc_power8_initialize(pmc_mdep);
break;
case FSL_E500v1:
case FSL_E500v2:
case FSL_E500mc:
case FSL_E5500:
error = pmc_e500_initialize(pmc_mdep);
break;
default:
error = -1;
break;
}
if (error != 0) {
pmc_mdep_free(pmc_mdep);
pmc_mdep = NULL;
}
/* Set the value for kern.hwpmc.cpuid */
snprintf(pmc_cpuid, sizeof(pmc_cpuid), "%08x", mfpvr());
return (pmc_mdep);
}
void
pmc_md_finalize(struct pmc_mdep *md)
{
free(powerpc_pcpu, M_PMC);
powerpc_pcpu = NULL;
}
int
pmc_save_user_callchain(uintptr_t *cc, int maxsamples,
struct trapframe *tf)
{
uintptr_t *osp, *sp;
int frames = 0;
cc[frames++] = PMC_TRAPFRAME_TO_PC(tf);
sp = (uintptr_t *)PMC_TRAPFRAME_TO_FP(tf);
osp = NULL;
for (; frames < maxsamples; frames++) {
if (sp <= osp)
break;
osp = sp;
#ifdef __powerpc64__
/* Check if 32-bit mode. */
if (!(tf->srr1 & PSL_SF)) {
cc[frames] = fuword32((uint32_t *)sp + 1);
sp = (uintptr_t *)(uintptr_t)fuword32(sp);
} else {
cc[frames] = fuword(sp + 2);
sp = (uintptr_t *)fuword(sp);
}
#else
cc[frames] = fuword32((uint32_t *)sp + 1);
sp = (uintptr_t *)fuword32(sp);
#endif
}
return (frames);
}