freebsd-dev/sys/pci/if_rl.c
Pyun YongHyeon 16796cb910 Add D-Link DFE-520TX rev C1.
Tested by:	Ruslan Makhmatkhanov < cvs-src <> yandex dot ru >
MFC After:	1 week
2013-01-16 01:30:46 +00:00

2127 lines
54 KiB
C

/*-
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* RealTek 8129/8139 PCI NIC driver
*
* Supports several extremely cheap PCI 10/100 adapters based on
* the RealTek chipset. Datasheets can be obtained from
* www.realtek.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
* probably the worst PCI ethernet controller ever made, with the possible
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
* DMA, but it has a terrible interface that nullifies any performance
* gains that bus-master DMA usually offers.
*
* For transmission, the chip offers a series of four TX descriptor
* registers. Each transmit frame must be in a contiguous buffer, aligned
* on a longword (32-bit) boundary. This means we almost always have to
* do mbuf copies in order to transmit a frame, except in the unlikely
* case where a) the packet fits into a single mbuf, and b) the packet
* is 32-bit aligned within the mbuf's data area. The presence of only
* four descriptor registers means that we can never have more than four
* packets queued for transmission at any one time.
*
* Reception is not much better. The driver has to allocate a single large
* buffer area (up to 64K in size) into which the chip will DMA received
* frames. Because we don't know where within this region received packets
* will begin or end, we have no choice but to copy data from the buffer
* area into mbufs in order to pass the packets up to the higher protocol
* levels.
*
* It's impossible given this rotten design to really achieve decent
* performance at 100Mbps, unless you happen to have a 400Mhz PII or
* some equally overmuscled CPU to drive it.
*
* On the bright side, the 8139 does have a built-in PHY, although
* rather than using an MDIO serial interface like most other NICs, the
* PHY registers are directly accessible through the 8139's register
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
* filter.
*
* The 8129 chip is an older version of the 8139 that uses an external PHY
* chip. The 8129 has a serial MDIO interface for accessing the MII where
* the 8139 lets you directly access the on-board PHY registers. We need
* to select which interface to use depending on the chip type.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
MODULE_DEPEND(rl, pci, 1, 1, 1);
MODULE_DEPEND(rl, ether, 1, 1, 1);
MODULE_DEPEND(rl, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#include <pci/if_rlreg.h>
/*
* Various supported device vendors/types and their names.
*/
static const struct rl_type rl_devs[] = {
{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
"RealTek 8129 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
"RealTek 8139 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
"RealTek 8139 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
"RealTek 8139 10/100BaseTX CardBus" },
{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
"RealTek 8100 10/100BaseTX" },
{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
"Accton MPX 5030/5038 10/100BaseTX" },
{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
"Delta Electronics 8139 10/100BaseTX" },
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
"Addtron Technology 8139 10/100BaseTX" },
{ DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139,
"D-Link DFE-520TX (rev. C1) 10/100BaseTX" },
{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
"D-Link DFE-530TX+ 10/100BaseTX" },
{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
"D-Link DFE-690TXD 10/100BaseTX" },
{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
"Nortel Networks 10/100BaseTX" },
{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
"Corega FEther CB-TXD" },
{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
"Corega FEtherII CB-TXD" },
{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
"Peppercon AG ROL-F" },
{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
"Planex FNW-3603-TX" },
{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
"Planex FNW-3800-TX" },
{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
"Compaq HNE-300" },
{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
"LevelOne FPC-0106TX" },
{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
"Edimax EP-4103DL CardBus" }
};
static int rl_attach(device_t);
static int rl_detach(device_t);
static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int rl_dma_alloc(struct rl_softc *);
static void rl_dma_free(struct rl_softc *);
static void rl_eeprom_putbyte(struct rl_softc *, int);
static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
static int rl_encap(struct rl_softc *, struct mbuf **);
static int rl_list_tx_init(struct rl_softc *);
static int rl_list_rx_init(struct rl_softc *);
static int rl_ifmedia_upd(struct ifnet *);
static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int rl_ioctl(struct ifnet *, u_long, caddr_t);
static void rl_intr(void *);
static void rl_init(void *);
static void rl_init_locked(struct rl_softc *sc);
static int rl_miibus_readreg(device_t, int, int);
static void rl_miibus_statchg(device_t);
static int rl_miibus_writereg(device_t, int, int, int);
#ifdef DEVICE_POLLING
static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
#endif
static int rl_probe(device_t);
static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
static void rl_reset(struct rl_softc *);
static int rl_resume(device_t);
static int rl_rxeof(struct rl_softc *);
static void rl_rxfilter(struct rl_softc *);
static int rl_shutdown(device_t);
static void rl_start(struct ifnet *);
static void rl_start_locked(struct ifnet *);
static void rl_stop(struct rl_softc *);
static int rl_suspend(device_t);
static void rl_tick(void *);
static void rl_txeof(struct rl_softc *);
static void rl_watchdog(struct rl_softc *);
static void rl_setwol(struct rl_softc *);
static void rl_clrwol(struct rl_softc *);
/*
* MII bit-bang glue
*/
static uint32_t rl_mii_bitbang_read(device_t);
static void rl_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
rl_mii_bitbang_read,
rl_mii_bitbang_write,
{
RL_MII_DATAOUT, /* MII_BIT_MDO */
RL_MII_DATAIN, /* MII_BIT_MDI */
RL_MII_CLK, /* MII_BIT_MDC */
RL_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static device_method_t rl_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, rl_probe),
DEVMETHOD(device_attach, rl_attach),
DEVMETHOD(device_detach, rl_detach),
DEVMETHOD(device_suspend, rl_suspend),
DEVMETHOD(device_resume, rl_resume),
DEVMETHOD(device_shutdown, rl_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, rl_miibus_readreg),
DEVMETHOD(miibus_writereg, rl_miibus_writereg),
DEVMETHOD(miibus_statchg, rl_miibus_statchg),
DEVMETHOD_END
};
static driver_t rl_driver = {
"rl",
rl_methods,
sizeof(struct rl_softc)
};
static devclass_t rl_devclass;
DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
#define EE_SET(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) & ~x)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
rl_eeprom_putbyte(struct rl_softc *sc, int addr)
{
register int d, i;
d = addr | sc->rl_eecmd_read;
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
EE_SET(RL_EE_DATAIN);
} else {
EE_CLR(RL_EE_DATAIN);
}
DELAY(100);
EE_SET(RL_EE_CLK);
DELAY(150);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
{
register int i;
uint16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Send address of word we want to read.
*/
rl_eeprom_putbyte(sc, addr);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
EE_SET(RL_EE_CLK);
DELAY(100);
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
word |= i;
EE_CLR(RL_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
{
int i;
uint16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
rl_eeprom_getword(sc, off + i, &word);
ptr = (uint16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
}
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
rl_mii_bitbang_read(device_t dev)
{
struct rl_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
val = CSR_READ_1(sc, RL_MII);
CSR_BARRIER(sc, RL_MII, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
rl_mii_bitbang_write(device_t dev, uint32_t val)
{
struct rl_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_1(sc, RL_MII, val);
CSR_BARRIER(sc, RL_MII, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
static int
rl_miibus_readreg(device_t dev, int phy, int reg)
{
struct rl_softc *sc;
uint16_t rl8139_reg;
sc = device_get_softc(dev);
if (sc->rl_type == RL_8139) {
switch (reg) {
case MII_BMCR:
rl8139_reg = RL_BMCR;
break;
case MII_BMSR:
rl8139_reg = RL_BMSR;
break;
case MII_ANAR:
rl8139_reg = RL_ANAR;
break;
case MII_ANER:
rl8139_reg = RL_ANER;
break;
case MII_ANLPAR:
rl8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
/*
* Allow the rlphy driver to read the media status
* register. If we have a link partner which does not
* support NWAY, this is the register which will tell
* us the results of parallel detection.
*/
case RL_MEDIASTAT:
return (CSR_READ_1(sc, RL_MEDIASTAT));
default:
device_printf(sc->rl_dev, "bad phy register\n");
return (0);
}
return (CSR_READ_2(sc, rl8139_reg));
}
return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
}
static int
rl_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct rl_softc *sc;
uint16_t rl8139_reg;
sc = device_get_softc(dev);
if (sc->rl_type == RL_8139) {
switch (reg) {
case MII_BMCR:
rl8139_reg = RL_BMCR;
break;
case MII_BMSR:
rl8139_reg = RL_BMSR;
break;
case MII_ANAR:
rl8139_reg = RL_ANAR;
break;
case MII_ANER:
rl8139_reg = RL_ANER;
break;
case MII_ANLPAR:
rl8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
break;
default:
device_printf(sc->rl_dev, "bad phy register\n");
return (0);
}
CSR_WRITE_2(sc, rl8139_reg, data);
return (0);
}
mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
return (0);
}
static void
rl_miibus_statchg(device_t dev)
{
struct rl_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->rl_miibus);
ifp = sc->rl_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->rl_flags &= ~RL_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->rl_flags |= RL_FLAG_LINK;
break;
default:
break;
}
}
/*
* RealTek controllers do not provide any interface to
* Tx/Rx MACs for resolved speed, duplex and flow-control
* parameters.
*/
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
rl_rxfilter(struct rl_softc *sc)
{
struct ifnet *ifp = sc->rl_ifp;
int h = 0;
uint32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
uint32_t rxfilt;
RL_LOCK_ASSERT(sc);
rxfilt = CSR_READ_4(sc, RL_RXCFG);
rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
RL_RXCFG_RX_MULTI);
/* Always accept frames destined for this host. */
rxfilt |= RL_RXCFG_RX_INDIV;
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST)
rxfilt |= RL_RXCFG_RX_BROAD;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= RL_RXCFG_RX_MULTI;
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= RL_RXCFG_RX_ALLPHYS;
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
/* Now program new ones. */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
if_maddr_runlock(ifp);
if (hashes[0] != 0 || hashes[1] != 0)
rxfilt |= RL_RXCFG_RX_MULTI;
}
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
}
static void
rl_reset(struct rl_softc *sc)
{
register int i;
RL_LOCK_ASSERT(sc);
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
break;
}
if (i == RL_TIMEOUT)
device_printf(sc->rl_dev, "reset never completed!\n");
}
/*
* Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
rl_probe(device_t dev)
{
const struct rl_type *t;
uint16_t devid, revid, vendor;
int i;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
revid = pci_get_revid(dev);
if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
if (revid == 0x20) {
/* 8139C+, let re(4) take care of this device. */
return (ENXIO);
}
}
t = rl_devs;
for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) {
if (vendor == t->rl_vid && devid == t->rl_did) {
device_set_desc(dev, t->rl_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
struct rl_dmamap_arg {
bus_addr_t rl_busaddr;
};
static void
rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct rl_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct rl_dmamap_arg *)arg;
ctx->rl_busaddr = segs[0].ds_addr;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
rl_attach(device_t dev)
{
uint8_t eaddr[ETHER_ADDR_LEN];
uint16_t as[3];
struct ifnet *ifp;
struct rl_softc *sc;
const struct rl_type *t;
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
int error = 0, hwrev, i, phy, pmc, rid;
int prefer_iomap, unit;
uint16_t rl_did = 0;
char tn[32];
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->rl_dev = dev;
sc->rl_twister_enable = 0;
snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
ctx = device_get_sysctl_ctx(sc->rl_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
&sc->rl_twister_enable, 0, "");
mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
pci_enable_busmaster(dev);
/*
* Map control/status registers.
* Default to using PIO access for this driver. On SMP systems,
* there appear to be problems with memory mapped mode: it looks
* like doing too many memory mapped access back to back in rapid
* succession can hang the bus. I'm inclined to blame this on
* crummy design/construction on the part of RealTek. Memory
* mapped mode does appear to work on uniprocessor systems though.
*/
prefer_iomap = 1;
snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
TUNABLE_INT_FETCH(tn, &prefer_iomap);
if (prefer_iomap) {
sc->rl_res_id = PCIR_BAR(0);
sc->rl_res_type = SYS_RES_IOPORT;
sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
&sc->rl_res_id, RF_ACTIVE);
}
if (prefer_iomap == 0 || sc->rl_res == NULL) {
sc->rl_res_id = PCIR_BAR(1);
sc->rl_res_type = SYS_RES_MEMORY;
sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
&sc->rl_res_id, RF_ACTIVE);
}
if (sc->rl_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
#ifdef notdef
/*
* Detect the Realtek 8139B. For some reason, this chip is very
* unstable when left to autoselect the media
* The best workaround is to set the device to the required
* media type or to set it to the 10 Meg speed.
*/
if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
device_printf(dev,
"Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
#endif
sc->rl_btag = rman_get_bustag(sc->rl_res);
sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
/* Allocate interrupt */
rid = 0;
sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->rl_irq[0] == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
sc->rl_cfg0 = RL_8139_CFG0;
sc->rl_cfg1 = RL_8139_CFG1;
sc->rl_cfg2 = 0;
sc->rl_cfg3 = RL_8139_CFG3;
sc->rl_cfg4 = RL_8139_CFG4;
sc->rl_cfg5 = RL_8139_CFG5;
/*
* Reset the adapter. Only take the lock here as it's needed in
* order to call rl_reset().
*/
RL_LOCK(sc);
rl_reset(sc);
RL_UNLOCK(sc);
sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
if (rl_did != 0x8129)
sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
/*
* Get station address from the EEPROM.
*/
rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
for (i = 0; i < 3; i++) {
eaddr[(i * 2) + 0] = as[i] & 0xff;
eaddr[(i * 2) + 1] = as[i] >> 8;
}
/*
* Now read the exact device type from the EEPROM to find
* out if it's an 8129 or 8139.
*/
rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
t = rl_devs;
sc->rl_type = 0;
while(t->rl_name != NULL) {
if (rl_did == t->rl_did) {
sc->rl_type = t->rl_basetype;
break;
}
t++;
}
if (sc->rl_type == 0) {
device_printf(dev, "unknown device ID: %x assuming 8139\n",
rl_did);
sc->rl_type = RL_8139;
/*
* Read RL_IDR register to get ethernet address as accessing
* EEPROM may not extract correct address.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
}
if ((error = rl_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
#define RL_PHYAD_INTERNAL 0
/* Do MII setup */
phy = MII_PHY_ANY;
if (sc->rl_type == RL_8139)
phy = RL_PHYAD_INTERNAL;
error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rl_ioctl;
ifp->if_start = rl_start;
ifp->if_init = rl_init;
ifp->if_capabilities = IFCAP_VLAN_MTU;
/* Check WOL for RTL8139B or newer controllers. */
if (sc->rl_type == RL_8139 &&
pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
switch (hwrev) {
case RL_HWREV_8139B:
case RL_HWREV_8130:
case RL_HWREV_8139C:
case RL_HWREV_8139D:
case RL_HWREV_8101:
case RL_HWREV_8100:
ifp->if_capabilities |= IFCAP_WOL;
/* Disable WOL. */
rl_clrwol(sc);
break;
default:
break;
}
}
ifp->if_capenable = ifp->if_capabilities;
ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
NULL, rl_intr, sc, &sc->rl_intrhand[0]);
if (error) {
device_printf(sc->rl_dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
}
fail:
if (error)
rl_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
rl_detach(device_t dev)
{
struct rl_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->rl_ifp;
KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
RL_LOCK(sc);
rl_stop(sc);
RL_UNLOCK(sc);
callout_drain(&sc->rl_stat_callout);
ether_ifdetach(ifp);
}
#if 0
sc->suspended = 1;
#endif
if (sc->rl_miibus)
device_delete_child(dev, sc->rl_miibus);
bus_generic_detach(dev);
if (sc->rl_intrhand[0])
bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
if (sc->rl_irq[0])
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
if (sc->rl_res)
bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
sc->rl_res);
if (ifp)
if_free(ifp);
rl_dma_free(sc);
mtx_destroy(&sc->rl_mtx);
return (0);
}
static int
rl_dma_alloc(struct rl_softc *sc)
{
struct rl_dmamap_arg ctx;
int error, i;
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rl_parent_tag);
if (error) {
device_printf(sc->rl_dev,
"failed to create parent DMA tag.\n");
goto fail;
}
/* Create DMA tag for Rx memory block. */
error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */
RL_RX_8139_BUF_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1, /* maxsize,nsegments */
RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rl_cdata.rl_rx_tag);
if (error) {
device_printf(sc->rl_dev,
"failed to create Rx memory block DMA tag.\n");
goto fail;
}
/* Create DMA tag for Tx buffer. */
error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */
RL_TX_8139_BUF_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rl_cdata.rl_tx_tag);
if (error) {
device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
goto fail;
}
/*
* Allocate DMA'able memory and load DMA map for Rx memory block.
*/
error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
(void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
if (error != 0) {
device_printf(sc->rl_dev,
"failed to allocate Rx DMA memory block.\n");
goto fail;
}
ctx.rl_busaddr = 0;
error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
BUS_DMA_NOWAIT);
if (error != 0 || ctx.rl_busaddr == 0) {
device_printf(sc->rl_dev,
"could not load Rx DMA memory block.\n");
goto fail;
}
sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < RL_TX_LIST_CNT; i++) {
sc->rl_cdata.rl_tx_chain[i] = NULL;
sc->rl_cdata.rl_tx_dmamap[i] = NULL;
error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
&sc->rl_cdata.rl_tx_dmamap[i]);
if (error != 0) {
device_printf(sc->rl_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Leave a few bytes before the start of the RX ring buffer. */
sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
fail:
return (error);
}
static void
rl_dma_free(struct rl_softc *sc)
{
int i;
/* Rx memory block. */
if (sc->rl_cdata.rl_rx_tag != NULL) {
if (sc->rl_cdata.rl_rx_dmamap != NULL)
bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
sc->rl_cdata.rl_rx_dmamap);
if (sc->rl_cdata.rl_rx_dmamap != NULL &&
sc->rl_cdata.rl_rx_buf_ptr != NULL)
bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
sc->rl_cdata.rl_rx_buf_ptr,
sc->rl_cdata.rl_rx_dmamap);
sc->rl_cdata.rl_rx_buf_ptr = NULL;
sc->rl_cdata.rl_rx_buf = NULL;
sc->rl_cdata.rl_rx_dmamap = NULL;
bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
sc->rl_cdata.rl_tx_tag = NULL;
}
/* Tx buffers. */
if (sc->rl_cdata.rl_tx_tag != NULL) {
for (i = 0; i < RL_TX_LIST_CNT; i++) {
if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
bus_dmamap_destroy(
sc->rl_cdata.rl_tx_tag,
sc->rl_cdata.rl_tx_dmamap[i]);
sc->rl_cdata.rl_tx_dmamap[i] = NULL;
}
}
bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
sc->rl_cdata.rl_tx_tag = NULL;
}
if (sc->rl_parent_tag != NULL) {
bus_dma_tag_destroy(sc->rl_parent_tag);
sc->rl_parent_tag = NULL;
}
}
/*
* Initialize the transmit descriptors.
*/
static int
rl_list_tx_init(struct rl_softc *sc)
{
struct rl_chain_data *cd;
int i;
RL_LOCK_ASSERT(sc);
cd = &sc->rl_cdata;
for (i = 0; i < RL_TX_LIST_CNT; i++) {
cd->rl_tx_chain[i] = NULL;
CSR_WRITE_4(sc,
RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
}
sc->rl_cdata.cur_tx = 0;
sc->rl_cdata.last_tx = 0;
return (0);
}
static int
rl_list_rx_init(struct rl_softc *sc)
{
RL_LOCK_ASSERT(sc);
bzero(sc->rl_cdata.rl_rx_buf_ptr,
RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*
* You know there's something wrong with a PCI bus-master chip design
* when you have to use m_devget().
*
* The receive operation is badly documented in the datasheet, so I'll
* attempt to document it here. The driver provides a buffer area and
* places its base address in the RX buffer start address register.
* The chip then begins copying frames into the RX buffer. Each frame
* is preceded by a 32-bit RX status word which specifies the length
* of the frame and certain other status bits. Each frame (starting with
* the status word) is also 32-bit aligned. The frame length is in the
* first 16 bits of the status word; the lower 15 bits correspond with
* the 'rx status register' mentioned in the datasheet.
*
* Note: to make the Alpha happy, the frame payload needs to be aligned
* on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
* as the offset argument to m_devget().
*/
static int
rl_rxeof(struct rl_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp = sc->rl_ifp;
uint8_t *rxbufpos;
int total_len = 0;
int wrap = 0;
int rx_npkts = 0;
uint32_t rxstat;
uint16_t cur_rx;
uint16_t limit;
uint16_t max_bytes, rx_bytes = 0;
RL_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
/* Do not try to read past this point. */
limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
if (limit < cur_rx)
max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
else
max_bytes = limit - cur_rx;
while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
rxstat = le32toh(*(uint32_t *)rxbufpos);
/*
* Here's a totally undocumented fact for you. When the
* RealTek chip is in the process of copying a packet into
* RAM for you, the length will be 0xfff0. If you spot a
* packet header with this value, you need to stop. The
* datasheet makes absolutely no mention of this and
* RealTek should be shot for this.
*/
total_len = rxstat >> 16;
if (total_len == RL_RXSTAT_UNFINISHED)
break;
if (!(rxstat & RL_RXSTAT_RXOK) ||
total_len < ETHER_MIN_LEN ||
total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
ifp->if_ierrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
rl_init_locked(sc);
return (rx_npkts);
}
/* No errors; receive the packet. */
rx_bytes += total_len + 4;
/*
* XXX The RealTek chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
/*
* Avoid trying to read more bytes than we know
* the chip has prepared for us.
*/
if (rx_bytes > max_bytes)
break;
rxbufpos = sc->rl_cdata.rl_rx_buf +
((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
rxbufpos = sc->rl_cdata.rl_rx_buf;
wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
if (total_len > wrap) {
m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
NULL);
if (m != NULL)
m_copyback(m, wrap, total_len - wrap,
sc->rl_cdata.rl_rx_buf);
cur_rx = (total_len - wrap + ETHER_CRC_LEN);
} else {
m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
NULL);
cur_rx += total_len + 4 + ETHER_CRC_LEN;
}
/* Round up to 32-bit boundary. */
cur_rx = (cur_rx + 3) & ~3;
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
if (m == NULL) {
ifp->if_iqdrops++;
continue;
}
ifp->if_ipackets++;
RL_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
RL_LOCK(sc);
rx_npkts++;
}
/* No need to sync Rx memory block as we didn't modify it. */
return (rx_npkts);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
rl_txeof(struct rl_softc *sc)
{
struct ifnet *ifp = sc->rl_ifp;
uint32_t txstat;
RL_LOCK_ASSERT(sc);
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded.
*/
do {
if (RL_LAST_TXMBUF(sc) == NULL)
break;
txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
if (!(txstat & (RL_TXSTAT_TX_OK|
RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
break;
ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
m_freem(RL_LAST_TXMBUF(sc));
RL_LAST_TXMBUF(sc) = NULL;
/*
* If there was a transmit underrun, bump the TX threshold.
* Make sure not to overflow the 63 * 32byte we can address
* with the 6 available bit.
*/
if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
(sc->rl_txthresh < 2016))
sc->rl_txthresh += 32;
if (txstat & RL_TXSTAT_TX_OK)
ifp->if_opackets++;
else {
int oldthresh;
ifp->if_oerrors++;
if ((txstat & RL_TXSTAT_TXABRT) ||
(txstat & RL_TXSTAT_OUTOFWIN))
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
oldthresh = sc->rl_txthresh;
/* error recovery */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
rl_init_locked(sc);
/* restore original threshold */
sc->rl_txthresh = oldthresh;
return;
}
RL_INC(sc->rl_cdata.last_tx);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
if (RL_LAST_TXMBUF(sc) == NULL)
sc->rl_watchdog_timer = 0;
}
static void
rl_twister_update(struct rl_softc *sc)
{
uint16_t linktest;
/*
* Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
* Linux driver. Values undocumented otherwise.
*/
static const uint32_t param[4][4] = {
{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
};
/*
* Tune the so-called twister registers of the RTL8139. These
* are used to compensate for impedance mismatches. The
* method for tuning these registers is undocumented and the
* following procedure is collected from public sources.
*/
switch (sc->rl_twister)
{
case CHK_LINK:
/*
* If we have a sufficient link, then we can proceed in
* the state machine to the next stage. If not, then
* disable further tuning after writing sane defaults.
*/
if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
sc->rl_twister = FIND_ROW;
} else {
CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
sc->rl_twister = DONE;
}
break;
case FIND_ROW:
/*
* Read how long it took to see the echo to find the tuning
* row to use.
*/
linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
if (linktest == RL_CSCFG_ROW3)
sc->rl_twist_row = 3;
else if (linktest == RL_CSCFG_ROW2)
sc->rl_twist_row = 2;
else if (linktest == RL_CSCFG_ROW1)
sc->rl_twist_row = 1;
else
sc->rl_twist_row = 0;
sc->rl_twist_col = 0;
sc->rl_twister = SET_PARAM;
break;
case SET_PARAM:
if (sc->rl_twist_col == 0)
CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
CSR_WRITE_4(sc, RL_PARA7C,
param[sc->rl_twist_row][sc->rl_twist_col]);
if (++sc->rl_twist_col == 4) {
if (sc->rl_twist_row == 3)
sc->rl_twister = RECHK_LONG;
else
sc->rl_twister = DONE;
}
break;
case RECHK_LONG:
/*
* For long cables, we have to double check to make sure we
* don't mistune.
*/
linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
if (linktest == RL_CSCFG_ROW3)
sc->rl_twister = DONE;
else {
CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
sc->rl_twister = RETUNE;
}
break;
case RETUNE:
/* Retune for a shorter cable (try column 2) */
CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
sc->rl_twist_row--;
sc->rl_twist_col = 0;
sc->rl_twister = SET_PARAM;
break;
case DONE:
break;
}
}
static void
rl_tick(void *xsc)
{
struct rl_softc *sc = xsc;
struct mii_data *mii;
int ticks;
RL_LOCK_ASSERT(sc);
/*
* If we're doing the twister cable calibration, then we need to defer
* watchdog timeouts. This is a no-op in normal operations, but
* can falsely trigger when the cable calibration takes a while and
* there was traffic ready to go when rl was started.
*
* We don't defer mii_tick since that updates the mii status, which
* helps the twister process, at least according to similar patches
* for the Linux driver I found online while doing the fixes. Worst
* case is a few extra mii reads during calibration.
*/
mii = device_get_softc(sc->rl_miibus);
mii_tick(mii);
if ((sc->rl_flags & RL_FLAG_LINK) == 0)
rl_miibus_statchg(sc->rl_dev);
if (sc->rl_twister_enable) {
if (sc->rl_twister == DONE)
rl_watchdog(sc);
else
rl_twister_update(sc);
if (sc->rl_twister == DONE)
ticks = hz;
else
ticks = hz / 10;
} else {
rl_watchdog(sc);
ticks = hz;
}
callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
}
#ifdef DEVICE_POLLING
static int
rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rl_softc *sc = ifp->if_softc;
int rx_npkts = 0;
RL_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rx_npkts = rl_poll_locked(ifp, cmd, count);
RL_UNLOCK(sc);
return (rx_npkts);
}
static int
rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rl_softc *sc = ifp->if_softc;
int rx_npkts;
RL_LOCK_ASSERT(sc);
sc->rxcycles = count;
rx_npkts = rl_rxeof(sc);
rl_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
rl_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
uint16_t status;
/* We should also check the status register. */
status = CSR_READ_2(sc, RL_ISR);
if (status == 0xffff)
return (rx_npkts);
if (status != 0)
CSR_WRITE_2(sc, RL_ISR, status);
/* XXX We should check behaviour on receiver stalls. */
if (status & RL_ISR_SYSTEM_ERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
rl_init_locked(sc);
}
}
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
rl_intr(void *arg)
{
struct rl_softc *sc = arg;
struct ifnet *ifp = sc->rl_ifp;
uint16_t status;
int count;
RL_LOCK(sc);
if (sc->suspended)
goto done_locked;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
goto done_locked;
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done_locked2;
status = CSR_READ_2(sc, RL_ISR);
if (status == 0xffff || (status & RL_INTRS) == 0)
goto done_locked;
/*
* Ours, disable further interrupts.
*/
CSR_WRITE_2(sc, RL_IMR, 0);
for (count = 16; count > 0; count--) {
CSR_WRITE_2(sc, RL_ISR, status);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
rl_rxeof(sc);
if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
rl_txeof(sc);
if (status & RL_ISR_SYSTEM_ERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
rl_init_locked(sc);
RL_UNLOCK(sc);
return;
}
}
status = CSR_READ_2(sc, RL_ISR);
/* If the card has gone away, the read returns 0xffff. */
if (status == 0xffff || (status & RL_INTRS) == 0)
break;
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
rl_start_locked(ifp);
done_locked2:
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
done_locked:
RL_UNLOCK(sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
rl_encap(struct rl_softc *sc, struct mbuf **m_head)
{
struct mbuf *m;
bus_dma_segment_t txsegs[1];
int error, nsegs, padlen;
RL_LOCK_ASSERT(sc);
m = *m_head;
padlen = 0;
/*
* Hardware doesn't auto-pad, so we have to make sure
* pad short frames out to the minimum frame length.
*/
if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
/*
* The RealTek is brain damaged and wants longword-aligned
* TX buffers, plus we can only have one fragment buffer
* per packet. We have to copy pretty much all the time.
*/
if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
(padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
m = m_defrag(*m_head, M_NOWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
}
*m_head = m;
if (padlen > 0) {
/*
* Make security-conscious people happy: zero out the
* bytes in the pad area, since we don't know what
* this mbuf cluster buffer's previous user might
* have left in it.
*/
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
m->m_pkthdr.len += padlen;
m->m_len = m->m_pkthdr.len;
}
error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
RL_CUR_TXMBUF(sc) = m;
bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
return (0);
}
/*
* Main transmit routine.
*/
static void
rl_start(struct ifnet *ifp)
{
struct rl_softc *sc = ifp->if_softc;
RL_LOCK(sc);
rl_start_locked(ifp);
RL_UNLOCK(sc);
}
static void
rl_start_locked(struct ifnet *ifp)
{
struct rl_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
RL_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
return;
while (RL_CUR_TXMBUF(sc) == NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (rl_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/* Pass a copy of this mbuf chain to the bpf subsystem. */
BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
/* Transmit the frame. */
CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
RL_TXTHRESH(sc->rl_txthresh) |
RL_CUR_TXMBUF(sc)->m_pkthdr.len);
RL_INC(sc->rl_cdata.cur_tx);
/* Set a timeout in case the chip goes out to lunch. */
sc->rl_watchdog_timer = 5;
}
/*
* We broke out of the loop because all our TX slots are
* full. Mark the NIC as busy until it drains some of the
* packets from the queue.
*/
if (RL_CUR_TXMBUF(sc) != NULL)
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
static void
rl_init(void *xsc)
{
struct rl_softc *sc = xsc;
RL_LOCK(sc);
rl_init_locked(sc);
RL_UNLOCK(sc);
}
static void
rl_init_locked(struct rl_softc *sc)
{
struct ifnet *ifp = sc->rl_ifp;
struct mii_data *mii;
uint32_t eaddr[2];
RL_LOCK_ASSERT(sc);
mii = device_get_softc(sc->rl_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
rl_stop(sc);
rl_reset(sc);
if (sc->rl_twister_enable) {
/*
* Reset twister register tuning state. The twister
* registers and their tuning are undocumented, but
* are necessary to cope with bad links. rl_twister =
* DONE here will disable this entirely.
*/
sc->rl_twister = CHK_LINK;
}
/*
* Init our MAC address. Even though the chipset
* documentation doesn't mention it, we need to enter "Config
* register write enable" mode to modify the ID registers.
*/
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
bzero(eaddr, sizeof(eaddr));
bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
/* Init the RX memory block pointer register. */
CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
RL_RX_8139_BUF_RESERVE);
/* Init TX descriptors. */
rl_list_tx_init(sc);
/* Init Rx memory block. */
rl_list_rx_init(sc);
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
/* Set RX filter. */
rl_rxfilter(sc);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, RL_IMR, 0);
else
#endif
/* Enable interrupts. */
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
/* Set initial TX threshold */
sc->rl_txthresh = RL_TX_THRESH_INIT;
/* Start RX/TX process. */
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
sc->rl_flags &= ~RL_FLAG_LINK;
mii_mediachg(mii);
CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
}
/*
* Set media options.
*/
static int
rl_ifmedia_upd(struct ifnet *ifp)
{
struct rl_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->rl_miibus);
RL_LOCK(sc);
mii_mediachg(mii);
RL_UNLOCK(sc);
return (0);
}
/*
* Report current media status.
*/
static void
rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct rl_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->rl_miibus);
RL_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
RL_UNLOCK(sc);
}
static int
rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
struct rl_softc *sc = ifp->if_softc;
int error = 0, mask;
switch (command) {
case SIOCSIFFLAGS:
RL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
((ifp->if_flags ^ sc->rl_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)))
rl_rxfilter(sc);
else
rl_init_locked(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rl_stop(sc);
sc->rl_if_flags = ifp->if_flags;
RL_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
RL_LOCK(sc);
rl_rxfilter(sc);
RL_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->rl_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (ifr->ifr_reqcap & IFCAP_POLLING &&
!(ifp->if_capenable & IFCAP_POLLING)) {
error = ether_poll_register(rl_poll, ifp);
if (error)
return(error);
RL_LOCK(sc);
/* Disable interrupts */
CSR_WRITE_2(sc, RL_IMR, 0x0000);
ifp->if_capenable |= IFCAP_POLLING;
RL_UNLOCK(sc);
return (error);
}
if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
ifp->if_capenable & IFCAP_POLLING) {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
RL_LOCK(sc);
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
ifp->if_capenable &= ~IFCAP_POLLING;
RL_UNLOCK(sc);
return (error);
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_WOL) != 0 &&
(ifp->if_capabilities & IFCAP_WOL) != 0) {
if ((mask & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
rl_watchdog(struct rl_softc *sc)
{
RL_LOCK_ASSERT(sc);
if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
return;
device_printf(sc->rl_dev, "watchdog timeout\n");
sc->rl_ifp->if_oerrors++;
rl_txeof(sc);
rl_rxeof(sc);
sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
rl_init_locked(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
rl_stop(struct rl_softc *sc)
{
register int i;
struct ifnet *ifp = sc->rl_ifp;
RL_LOCK_ASSERT(sc);
sc->rl_watchdog_timer = 0;
callout_stop(&sc->rl_stat_callout);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->rl_flags &= ~RL_FLAG_LINK;
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
CSR_WRITE_2(sc, RL_IMR, 0x0000);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_1(sc, RL_COMMAND) &
(RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
break;
}
if (i == RL_TIMEOUT)
device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
/*
* Free the TX list buffers.
*/
for (i = 0; i < RL_TX_LIST_CNT; i++) {
if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
sc->rl_cdata.rl_tx_dmamap[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
sc->rl_cdata.rl_tx_dmamap[i]);
m_freem(sc->rl_cdata.rl_tx_chain[i]);
sc->rl_cdata.rl_tx_chain[i] = NULL;
}
CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
0x0000000);
}
}
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
rl_suspend(device_t dev)
{
struct rl_softc *sc;
sc = device_get_softc(dev);
RL_LOCK(sc);
rl_stop(sc);
rl_setwol(sc);
sc->suspended = 1;
RL_UNLOCK(sc);
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
rl_resume(device_t dev)
{
struct rl_softc *sc;
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
sc = device_get_softc(dev);
ifp = sc->rl_ifp;
RL_LOCK(sc);
if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
/* Disable PME and clear PME status. */
pmstat = pci_read_config(sc->rl_dev,
pmc + PCIR_POWER_STATUS, 2);
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->rl_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
/*
* Clear WOL matching such that normal Rx filtering
* wouldn't interfere with WOL patterns.
*/
rl_clrwol(sc);
}
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
rl_init_locked(sc);
sc->suspended = 0;
RL_UNLOCK(sc);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
rl_shutdown(device_t dev)
{
struct rl_softc *sc;
sc = device_get_softc(dev);
RL_LOCK(sc);
rl_stop(sc);
/*
* Mark interface as down since otherwise we will panic if
* interrupt comes in later on, which can happen in some
* cases.
*/
sc->rl_ifp->if_flags &= ~IFF_UP;
rl_setwol(sc);
RL_UNLOCK(sc);
return (0);
}
static void
rl_setwol(struct rl_softc *sc)
{
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
uint8_t v;
RL_LOCK_ASSERT(sc);
ifp = sc->rl_ifp;
if ((ifp->if_capabilities & IFCAP_WOL) == 0)
return;
if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
return;
/* Enable config register write. */
CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
/* Enable PME. */
v = CSR_READ_1(sc, sc->rl_cfg1);
v &= ~RL_CFG1_PME;
if ((ifp->if_capenable & IFCAP_WOL) != 0)
v |= RL_CFG1_PME;
CSR_WRITE_1(sc, sc->rl_cfg1, v);
v = CSR_READ_1(sc, sc->rl_cfg3);
v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
v |= RL_CFG3_WOL_MAGIC;
CSR_WRITE_1(sc, sc->rl_cfg3, v);
v = CSR_READ_1(sc, sc->rl_cfg5);
v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
v &= ~RL_CFG5_WOL_LANWAKE;
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
v |= RL_CFG5_WOL_UCAST;
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
if ((ifp->if_capenable & IFCAP_WOL) != 0)
v |= RL_CFG5_WOL_LANWAKE;
CSR_WRITE_1(sc, sc->rl_cfg5, v);
/* Config register write done. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
/* Request PME if WOL is requested. */
pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
static void
rl_clrwol(struct rl_softc *sc)
{
struct ifnet *ifp;
uint8_t v;
ifp = sc->rl_ifp;
if ((ifp->if_capabilities & IFCAP_WOL) == 0)
return;
/* Enable config register write. */
CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
v = CSR_READ_1(sc, sc->rl_cfg3);
v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
CSR_WRITE_1(sc, sc->rl_cfg3, v);
/* Config register write done. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
v = CSR_READ_1(sc, sc->rl_cfg5);
v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
v &= ~RL_CFG5_WOL_LANWAKE;
CSR_WRITE_1(sc, sc->rl_cfg5, v);
}