freebsd-dev/sys/arm/allwinner/a10_clk.c
Andrew Turner c794871343 Add support to enable/disable both the EHCI and OHCI Allwinner clocks. This
adds a lock to ensure only a single device is accessing the hardware. A
reference count is added to only enable when we start to use the clock,
and to disable after we have finished needing the clock.

This was extracted from a larger review to add OHCI support to the
Allwinner SoCs.

Submitted by:	Emmanuel Vadot <manu@bidouilliste.com>
Reviewed by:	jmcneill
X-Differential Revision:	https://reviews.freebsd.org/D5481
2016-03-05 13:17:53 +00:00

863 lines
20 KiB
C

/*-
* Copyright (c) 2013 Ganbold Tsagaankhuu <ganbold@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Simple clock driver for Allwinner A10 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus_subr.h>
#include "a10_clk.h"
#define TCON_PLL_WORST 1000000
#define TCON_PLL_N_MIN 1
#define TCON_PLL_N_MAX 15
#define TCON_PLL_M_MIN 9
#define TCON_PLL_M_MAX 127
#define TCON_PLLREF_SINGLE 3000 /* kHz */
#define TCON_PLLREF_DOUBLE 6000 /* kHz */
#define TCON_RATE_KHZ(rate_hz) ((rate_hz) / 1000)
#define TCON_RATE_HZ(rate_khz) ((rate_khz) * 1000)
#define HDMI_DEFAULT_RATE 297000000
#define DEBE_DEFAULT_RATE 300000000
struct a10_ccm_softc {
struct resource *res;
bus_space_tag_t bst;
bus_space_handle_t bsh;
struct mtx mtx;
int pll6_enabled;
int ehci_cnt;
int ohci_cnt;
int usbphy_cnt;
int usb_cnt;
};
static struct a10_ccm_softc *a10_ccm_sc = NULL;
static int a10_clk_usbphy_activate(struct a10_ccm_softc *sc);
static int a10_clk_usbphy_deactivate(struct a10_ccm_softc *sc);
static int a10_clk_usb_activate(struct a10_ccm_softc *sc);
static int a10_clk_usb_deactivate(struct a10_ccm_softc *sc);
#define CCM_LOCK(sc) mtx_lock(&(sc)->mtx);
#define CCM_UNLOCK(sc) mtx_unlock(&(sc)->mtx);
#define CCM_LOCK_ASSERT(sc) mtx_assert(&(sc)->mtx, MA_OWNED)
#define ccm_read_4(sc, reg) \
bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
#define ccm_write_4(sc, reg, val) \
bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
static int
a10_ccm_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "allwinner,sun4i-ccm")) {
device_set_desc(dev, "Allwinner Clock Control Module");
return(BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
a10_ccm_attach(device_t dev)
{
struct a10_ccm_softc *sc = device_get_softc(dev);
int rid = 0;
if (a10_ccm_sc)
return (ENXIO);
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (!sc->res) {
device_printf(dev, "could not allocate resource\n");
return (ENXIO);
}
sc->bst = rman_get_bustag(sc->res);
sc->bsh = rman_get_bushandle(sc->res);
mtx_init(&sc->mtx, "a10_ccm", NULL, MTX_DEF);
a10_ccm_sc = sc;
return (0);
}
static device_method_t a10_ccm_methods[] = {
DEVMETHOD(device_probe, a10_ccm_probe),
DEVMETHOD(device_attach, a10_ccm_attach),
{ 0, 0 }
};
static driver_t a10_ccm_driver = {
"a10_ccm",
a10_ccm_methods,
sizeof(struct a10_ccm_softc),
};
static devclass_t a10_ccm_devclass;
EARLY_DRIVER_MODULE(a10_ccm, simplebus, a10_ccm_driver, a10_ccm_devclass, 0, 0,
BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
int
a10_clk_ehci_activate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
CCM_LOCK(sc);
if (++sc->ehci_cnt == 1) {
/* Gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_EHCI0; /* AHB clock gate ehci0 */
reg_value |= CCM_AHB_GATING_EHCI1; /* AHB clock gate ehci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
}
a10_clk_usb_activate(sc);
a10_clk_usbphy_activate(sc);
CCM_UNLOCK(sc);
return (0);
}
int
a10_clk_ehci_deactivate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
CCM_LOCK(sc);
if (--sc->ehci_cnt == 0) {
/* Disable gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value &= ~CCM_AHB_GATING_EHCI0; /* disable AHB clock gate ehci0 */
reg_value &= ~CCM_AHB_GATING_EHCI1; /* disable AHB clock gate ehci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
}
a10_clk_usb_deactivate(sc);
a10_clk_usbphy_deactivate(sc);
CCM_UNLOCK(sc);
return (0);
}
int
a10_clk_ohci_activate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
CCM_LOCK(sc);
if (++sc->ohci_cnt == 1) {
/* Gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_OHCI0; /* AHB clock gate ohci0 */
reg_value |= CCM_AHB_GATING_OHCI1; /* AHB clock gate ohci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
/* Enable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value |= CCM_SCLK_GATING_OHCI0;
reg_value |= CCM_SCLK_GATING_OHCI1;
ccm_write_4(sc, CCM_USB_CLK, reg_value);
}
a10_clk_usb_activate(sc);
a10_clk_usbphy_activate(sc);
CCM_UNLOCK(sc);
return (0);
}
int
a10_clk_ohci_deactivate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
CCM_LOCK(sc);
if (--sc->ohci_cnt == 0) {
/* Disable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value &= ~CCM_SCLK_GATING_OHCI0;
reg_value &= ~CCM_SCLK_GATING_OHCI1;
ccm_write_4(sc, CCM_USB_CLK, reg_value);
/* Disable gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value &= ~CCM_AHB_GATING_OHCI0; /* disable AHB clock gate ohci0 */
reg_value &= ~CCM_AHB_GATING_OHCI1; /* disable AHB clock gate ohci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
}
a10_clk_usb_deactivate(sc);
a10_clk_usbphy_deactivate(sc);
CCM_UNLOCK(sc);
return (0);
}
static int
a10_clk_usb_activate(struct a10_ccm_softc *sc)
{
uint32_t reg_value;
CCM_LOCK_ASSERT(sc);
if (++sc->usb_cnt == 1) {
/* Gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_USB0; /* AHB clock gate usb0 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
}
return (0);
}
static int
a10_clk_usb_deactivate(struct a10_ccm_softc *sc)
{
uint32_t reg_value;
CCM_LOCK_ASSERT(sc);
if (--sc->usb_cnt == 0) {
/* Disable gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value &= ~CCM_AHB_GATING_USB0; /* disable AHB clock gate usb0 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
}
return (0);
}
static int
a10_clk_usbphy_activate(struct a10_ccm_softc *sc)
{
uint32_t reg_value;
CCM_LOCK_ASSERT(sc);
if (++sc->usbphy_cnt == 1) {
/* Enable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value |= CCM_USB_PHY; /* USBPHY */
reg_value |= CCM_USBPHY0_RESET; /* disable reset for USBPHY0 */
reg_value |= CCM_USBPHY1_RESET; /* disable reset for USBPHY1 */
reg_value |= CCM_USBPHY2_RESET; /* disable reset for USBPHY2 */
ccm_write_4(sc, CCM_USB_CLK, reg_value);
}
return (0);
}
static int
a10_clk_usbphy_deactivate(struct a10_ccm_softc *sc)
{
uint32_t reg_value;
CCM_LOCK_ASSERT(sc);
if (--sc->usbphy_cnt == 0) {
/* Disable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value &= ~CCM_USB_PHY; /* USBPHY */
reg_value &= ~CCM_USBPHY0_RESET; /* reset for USBPHY0 */
reg_value &= ~CCM_USBPHY1_RESET; /* reset for USBPHY1 */
reg_value &= ~CCM_USBPHY2_RESET; /* reset for USBPHY2 */
ccm_write_4(sc, CCM_USB_CLK, reg_value);
}
return (0);
}
int
a10_clk_emac_activate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for EMAC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_EMAC;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_gmac_activate(phandle_t node)
{
char *phy_type;
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for GMAC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
reg_value |= CCM_AHB_GATING_GMAC;
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
/* Set GMAC mode. */
reg_value = CCM_GMAC_CLK_MII;
if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type) > 0) {
if (strcasecmp(phy_type, "rgmii") == 0)
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
else if (strcasecmp(phy_type, "rgmii-bpi") == 0) {
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
reg_value |= (3 << CCM_GMAC_CLK_DELAY_SHIFT);
}
free(phy_type, M_OFWPROP);
}
ccm_write_4(sc, CCM_GMAC_CLK, reg_value);
return (0);
}
static void
a10_clk_pll6_enable(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
/*
* SATA needs PLL6 to be a 100MHz clock.
* The SATA output frequency is 24MHz * n * k / m / 6.
* To get to 100MHz, k & m must be equal and n must be 25.
* For other uses the output frequency is 24MHz * n * k / 2.
*/
sc = a10_ccm_sc;
if (sc->pll6_enabled)
return;
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
reg_value &= ~CCM_PLL_CFG_BYPASS;
reg_value &= ~(CCM_PLL_CFG_FACTOR_K | CCM_PLL_CFG_FACTOR_M |
CCM_PLL_CFG_FACTOR_N);
reg_value |= (25 << CCM_PLL_CFG_FACTOR_N_SHIFT);
reg_value |= CCM_PLL6_CFG_SATA_CLKEN;
reg_value |= CCM_PLL_CFG_ENABLE;
ccm_write_4(sc, CCM_PLL6_CFG, reg_value);
sc->pll6_enabled = 1;
}
static unsigned int
a10_clk_pll6_get_rate(void)
{
struct a10_ccm_softc *sc;
uint32_t k, n, reg_value;
sc = a10_ccm_sc;
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT);
k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) +
1;
return ((CCM_CLK_REF_FREQ * n * k) / 2);
}
static int
a10_clk_pll2_set_rate(unsigned int freq)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
unsigned int prediv, postdiv, n;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
reg_value = ccm_read_4(sc, CCM_PLL2_CFG);
reg_value &= ~(CCM_PLL2_CFG_PREDIV | CCM_PLL2_CFG_POSTDIV |
CCM_PLL_CFG_FACTOR_N);
/*
* Audio Codec needs PLL2 to be either 24576000 Hz or 22579200 Hz
*
* PLL2 output frequency is 24MHz * n / prediv / postdiv.
* To get as close as possible to the desired rate, we use a
* pre-divider of 21 and a post-divider of 4. With these values,
* a multiplier of 86 or 79 gets us close to the target rates.
*/
prediv = 21;
postdiv = 4;
switch (freq) {
case 24576000:
n = 86;
reg_value |= CCM_PLL_CFG_ENABLE;
break;
case 22579200:
n = 79;
reg_value |= CCM_PLL_CFG_ENABLE;
break;
case 0:
n = 1;
reg_value &= ~CCM_PLL_CFG_ENABLE;
break;
default:
return (EINVAL);
}
reg_value |= (prediv << CCM_PLL2_CFG_PREDIV_SHIFT);
reg_value |= (postdiv << CCM_PLL2_CFG_POSTDIV_SHIFT);
reg_value |= (n << CCM_PLL_CFG_FACTOR_N_SHIFT);
ccm_write_4(sc, CCM_PLL2_CFG, reg_value);
return (0);
}
static int
a10_clk_pll3_set_rate(unsigned int freq)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
int m;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
if (freq == 0) {
/* Disable PLL3 */
ccm_write_4(sc, CCM_PLL3_CFG, 0);
return (0);
}
m = freq / TCON_RATE_HZ(TCON_PLLREF_SINGLE);
reg_value = CCM_PLL_CFG_ENABLE | CCM_PLL3_CFG_MODE_SEL_INT | m;
ccm_write_4(sc, CCM_PLL3_CFG, reg_value);
return (0);
}
static unsigned int
a10_clk_pll5x_get_rate(void)
{
struct a10_ccm_softc *sc;
uint32_t k, n, p, reg_value;
sc = a10_ccm_sc;
reg_value = ccm_read_4(sc, CCM_PLL5_CFG);
n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT);
k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) +
1;
p = ((reg_value & CCM_PLL5_CFG_OUT_EXT_DIV_P) >> CCM_PLL5_CFG_OUT_EXT_DIV_P_SHIFT);
return ((CCM_CLK_REF_FREQ * n * k) >> p);
}
int
a10_clk_ahci_activate(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating AHB clock for SATA */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_SATA;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
DELAY(1000);
ccm_write_4(sc, CCM_SATA_CLK, CCM_PLL_CFG_ENABLE);
return (0);
}
int
a10_clk_mmc_activate(int devid)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating AHB clock for SD/MMC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_SDMMC0 << devid;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_mmc_cfg(int devid, int freq)
{
struct a10_ccm_softc *sc;
uint32_t clksrc, m, n, ophase, phase, reg_value;
unsigned int pll_freq;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
freq /= 1000;
if (freq <= 400) {
pll_freq = CCM_CLK_REF_FREQ / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_OSC24M;
ophase = 0;
phase = 0;
n = 2;
} else if (freq <= 25000) {
pll_freq = a10_clk_pll6_get_rate() / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
ophase = 0;
phase = 5;
n = 2;
} else if (freq <= 50000) {
pll_freq = a10_clk_pll6_get_rate() / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
ophase = 3;
phase = 5;
n = 0;
} else
return (EINVAL);
m = ((pll_freq / (1 << n)) / (freq)) - 1;
reg_value = ccm_read_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4));
reg_value &= ~CCM_SD_CLK_SRC_SEL;
reg_value |= (clksrc << CCM_SD_CLK_SRC_SEL_SHIFT);
reg_value &= ~CCM_SD_CLK_PHASE_CTR;
reg_value |= (phase << CCM_SD_CLK_PHASE_CTR_SHIFT);
reg_value &= ~CCM_SD_CLK_DIV_RATIO_N;
reg_value |= (n << CCM_SD_CLK_DIV_RATIO_N_SHIFT);
reg_value &= ~CCM_SD_CLK_OPHASE_CTR;
reg_value |= (ophase << CCM_SD_CLK_OPHASE_CTR_SHIFT);
reg_value &= ~CCM_SD_CLK_DIV_RATIO_M;
reg_value |= m;
reg_value |= CCM_PLL_CFG_ENABLE;
ccm_write_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4), reg_value);
return (0);
}
int
a10_clk_i2c_activate(int devid)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating APB clock for I2C/TWI */
reg_value = ccm_read_4(sc, CCM_APB1_GATING);
if (devid == 4)
reg_value |= CCM_APB1_GATING_TWI << 15;
else
reg_value |= CCM_APB1_GATING_TWI << devid;
ccm_write_4(sc, CCM_APB1_GATING, reg_value);
return (0);
}
int
a10_clk_dmac_activate(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for DMA controller */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_DMA;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_codec_activate(unsigned int freq)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll2_set_rate(freq);
/* Gating APB clock for ADDA */
reg_value = ccm_read_4(sc, CCM_APB0_GATING);
reg_value |= CCM_APB0_GATING_ADDA;
ccm_write_4(sc, CCM_APB0_GATING, reg_value);
/* Enable audio codec clock */
reg_value = ccm_read_4(sc, CCM_AUDIO_CODEC_CLK);
reg_value |= CCM_AUDIO_CODEC_ENABLE;
ccm_write_4(sc, CCM_AUDIO_CODEC_CLK, reg_value);
return (0);
}
static void
calc_tcon_pll(int f_ref, int f_out, int *pm, int *pn)
{
int best, m, n, f_cur, diff;
best = TCON_PLL_WORST;
for (n = TCON_PLL_N_MIN; n <= TCON_PLL_N_MAX; n++) {
for (m = TCON_PLL_M_MIN; m <= TCON_PLL_M_MAX; m++) {
f_cur = (m * f_ref) / n;
diff = f_out - f_cur;
if (diff > 0 && diff < best) {
best = diff;
*pm = m;
*pn = n;
}
}
}
}
int
a10_clk_debe_activate(void)
{
struct a10_ccm_softc *sc;
int pll_rate, clk_div;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Leave reset */
reg_value = ccm_read_4(sc, CCM_BE0_SCLK);
reg_value |= CCM_BE_CLK_RESET;
ccm_write_4(sc, CCM_BE0_SCLK, reg_value);
pll_rate = a10_clk_pll5x_get_rate();
clk_div = howmany(pll_rate, DEBE_DEFAULT_RATE);
/* Set BE0 source to PLL5 (DDR external peripheral clock) */
reg_value = CCM_BE_CLK_RESET;
reg_value |= (CCM_BE_CLK_SRC_SEL_PLL5 << CCM_BE_CLK_SRC_SEL_SHIFT);
reg_value |= (clk_div - 1);
ccm_write_4(sc, CCM_BE0_SCLK, reg_value);
/* Gating AHB clock for BE0 */
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
reg_value |= CCM_AHB_GATING_DE_BE0;
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
/* Enable DRAM clock to BE0 */
reg_value = ccm_read_4(sc, CCM_DRAM_CLK);
reg_value |= CCM_DRAM_CLK_BE0_CLK_ENABLE;
ccm_write_4(sc, CCM_DRAM_CLK, reg_value);
/* Enable BE0 clock */
reg_value = ccm_read_4(sc, CCM_BE0_SCLK);
reg_value |= CCM_BE_CLK_SCLK_GATING;
ccm_write_4(sc, CCM_BE0_SCLK, reg_value);
return (0);
}
int
a10_clk_lcd_activate(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Clear LCD0 reset */
reg_value = ccm_read_4(sc, CCM_LCD0_CH0_CLK);
reg_value |= CCM_LCD_CH0_RESET;
ccm_write_4(sc, CCM_LCD0_CH0_CLK, reg_value);
/* Gating AHB clock for LCD0 */
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
reg_value |= CCM_AHB_GATING_LCD0;
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
return (0);
}
int
a10_clk_tcon_activate(unsigned int freq)
{
struct a10_ccm_softc *sc;
int m, n, m2, n2, f_single, f_double, dbl, src_sel;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
m = n = m2 = n2 = 0;
dbl = 0;
calc_tcon_pll(TCON_PLLREF_SINGLE, TCON_RATE_KHZ(freq), &m, &n);
calc_tcon_pll(TCON_PLLREF_DOUBLE, TCON_RATE_KHZ(freq), &m2, &n2);
f_single = n ? (m * TCON_PLLREF_SINGLE) / n : 0;
f_double = n2 ? (m2 * TCON_PLLREF_DOUBLE) / n2 : 0;
if (f_double > f_single) {
dbl = 1;
m = m2;
n = n2;
}
src_sel = dbl ? CCM_LCD_CH1_SRC_SEL_PLL3_2X : CCM_LCD_CH1_SRC_SEL_PLL3;
if (n == 0 || m == 0)
return (EINVAL);
/* Set PLL3 to the closest possible rate */
a10_clk_pll3_set_rate(TCON_RATE_HZ(m * TCON_PLLREF_SINGLE));
/* Enable LCD0 CH1 clock */
ccm_write_4(sc, CCM_LCD0_CH1_CLK,
CCM_LCD_CH1_SCLK2_GATING | CCM_LCD_CH1_SCLK1_GATING |
(src_sel << CCM_LCD_CH1_SRC_SEL_SHIFT) | (n - 1));
return (0);
}
int
a10_clk_tcon_get_config(int *pdiv, int *pdbl)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
int src;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
reg_value = ccm_read_4(sc, CCM_LCD0_CH1_CLK);
*pdiv = (reg_value & CCM_LCD_CH1_CLK_DIV_RATIO_M) + 1;
src = (reg_value & CCM_LCD_CH1_SRC_SEL) >> CCM_LCD_CH1_SRC_SEL_SHIFT;
switch (src) {
case CCM_LCD_CH1_SRC_SEL_PLL3:
case CCM_LCD_CH1_SRC_SEL_PLL7:
*pdbl = 0;
break;
case CCM_LCD_CH1_SRC_SEL_PLL3_2X:
case CCM_LCD_CH1_SRC_SEL_PLL7_2X:
*pdbl = 1;
break;
}
return (0);
}
int
a10_clk_hdmi_activate(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
int error;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Set PLL3 to 297MHz */
error = a10_clk_pll3_set_rate(HDMI_DEFAULT_RATE);
if (error != 0)
return (error);
/* Enable HDMI clock, source PLL3 */
reg_value = ccm_read_4(sc, CCM_HDMI_CLK);
reg_value |= CCM_HDMI_CLK_SCLK_GATING;
reg_value &= ~CCM_HDMI_CLK_SRC_SEL;
reg_value |= (CCM_HDMI_CLK_SRC_SEL_PLL3 << CCM_HDMI_CLK_SRC_SEL_SHIFT);
ccm_write_4(sc, CCM_HDMI_CLK, reg_value);
/* Gating AHB clock for HDMI */
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
reg_value |= CCM_AHB_GATING_HDMI;
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
return (0);
}