freebsd-dev/sys/crypto/ccp/ccp.c
John Baldwin c034143269 Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
  initialization is replaced with a new flat structure: struct
  crypto_session_params.  This session includes a new mode to define
  how the other fields should be interpreted.  Available modes
  include:

  - COMPRESS (for compression/decompression)
  - CIPHER (for simply encryption/decryption)
  - DIGEST (computing and verifying digests)
  - AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
  - ETA (combined auth and encryption using encrypt-then-authenticate)

  Additional modes could be added in the future (e.g. if we wanted to
  support TLS MtE for AES-CBC in the kernel we could add a new mode
  for that.  TLS modes might also affect how AAD is interpreted, etc.)

  The flat structure also includes the key lengths and algorithms as
  before.  However, code doesn't have to walk the linked list and
  switch on the algorithm to determine which key is the auth key vs
  encryption key.  The 'csp_auth_*' fields are always used for auth
  keys and settings and 'csp_cipher_*' for cipher.  (Compression
  algorithms are stored in csp_cipher_alg.)

- Drivers no longer register a list of supported algorithms.  This
  doesn't quite work when you factor in modes (e.g. a driver might
  support both AES-CBC and SHA2-256-HMAC separately but not combined
  for ETA).  Instead, a new 'crypto_probesession' method has been
  added to the kobj interface for symmteric crypto drivers.  This
  method returns a negative value on success (similar to how
  device_probe works) and the crypto framework uses this value to pick
  the "best" driver.  There are three constants for hardware
  (e.g. ccr), accelerated software (e.g. aesni), and plain software
  (cryptosoft) that give preference in that order.  One effect of this
  is that if you request only hardware when creating a new session,
  you will no longer get a session using accelerated software.
  Another effect is that the default setting to disallow software
  crypto via /dev/crypto now disables accelerated software.

  Once a driver is chosen, 'crypto_newsession' is invoked as before.

- Crypto operations are now solely described by the flat 'cryptop'
  structure.  The linked list of descriptors has been removed.

  A separate enum has been added to describe the type of data buffer
  in use instead of using CRYPTO_F_* flags to make it easier to add
  more types in the future if needed (e.g. wired userspace buffers for
  zero-copy).  It will also make it easier to re-introduce separate
  input and output buffers (in-kernel TLS would benefit from this).

  Try to make the flags related to IV handling less insane:

  - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
    member of the operation structure.  If this flag is not set, the
    IV is stored in the data buffer at the 'crp_iv_start' offset.

  - CRYPTO_F_IV_GENERATE means that a random IV should be generated
    and stored into the data buffer.  This cannot be used with
    CRYPTO_F_IV_SEPARATE.

  If a consumer wants to deal with explicit vs implicit IVs, etc. it
  can always generate the IV however it needs and store partial IVs in
  the buffer and the full IV/nonce in crp_iv and set
  CRYPTO_F_IV_SEPARATE.

  The layout of the buffer is now described via fields in cryptop.
  crp_aad_start and crp_aad_length define the boundaries of any AAD.
  Previously with GCM and CCM you defined an auth crd with this range,
  but for ETA your auth crd had to span both the AAD and plaintext
  (and they had to be adjacent).

  crp_payload_start and crp_payload_length define the boundaries of
  the plaintext/ciphertext.  Modes that only do a single operation
  (COMPRESS, CIPHER, DIGEST) should only use this region and leave the
  AAD region empty.

  If a digest is present (or should be generated), it's starting
  location is marked by crp_digest_start.

  Instead of using the CRD_F_ENCRYPT flag to determine the direction
  of the operation, cryptop now includes an 'op' field defining the
  operation to perform.  For digests I've added a new VERIFY digest
  mode which assumes a digest is present in the input and fails the
  request with EBADMSG if it doesn't match the internally-computed
  digest.  GCM and CCM already assumed this, and the new AEAD mode
  requires this for decryption.  The new ETA mode now also requires
  this for decryption, so IPsec and GELI no longer do their own
  authentication verification.  Simple DIGEST operations can also do
  this, though there are no in-tree consumers.

  To eventually support some refcounting to close races, the session
  cookie is now passed to crypto_getop() and clients should no longer
  set crp_sesssion directly.

- Assymteric crypto operation structures should be allocated via
  crypto_getkreq() and freed via crypto_freekreq().  This permits the
  crypto layer to track open asym requests and close races with a
  driver trying to unregister while asym requests are in flight.

- crypto_copyback, crypto_copydata, crypto_apply, and
  crypto_contiguous_subsegment now accept the 'crp' object as the
  first parameter instead of individual members.  This makes it easier
  to deal with different buffer types in the future as well as
  separate input and output buffers.  It's also simpler for driver
  writers to use.

- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
  This understands the various types of buffers so that drivers that
  use DMA do not have to be aware of different buffer types.

- Helper routines now exist to build an auth context for HMAC IPAD
  and OPAD.  This reduces some duplicated work among drivers.

- Key buffers are now treated as const throughout the framework and in
  device drivers.  However, session key buffers provided when a session
  is created are expected to remain alive for the duration of the
  session.

- GCM and CCM sessions now only specify a cipher algorithm and a cipher
  key.  The redundant auth information is not needed or used.

- For cryptosoft, split up the code a bit such that the 'process'
  callback now invokes a function pointer in the session.  This
  function pointer is set based on the mode (in effect) though it
  simplifies a few edge cases that would otherwise be in the switch in
  'process'.

  It does split up GCM vs CCM which I think is more readable even if there
  is some duplication.

- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
  as an auth algorithm and updated cryptocheck to work with it.

- Combined cipher and auth sessions via /dev/crypto now always use ETA
  mode.  The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
  This was actually documented as being true in crypto(4) before, but
  the code had not implemented this before I added the CIPHER_FIRST
  flag.

- I have not yet updated /dev/crypto to be aware of explicit modes for
  sessions.  I will probably do that at some point in the future as well
  as teach it about IV/nonce and tag lengths for AEAD so we can support
  all of the NIST KAT tests for GCM and CCM.

- I've split up the exising crypto.9 manpage into several pages
  of which many are written from scratch.

- I have converted all drivers and consumers in the tree and verified
  that they compile, but I have not tested all of them.  I have tested
  the following drivers:

  - cryptosoft
  - aesni (AES only)
  - blake2
  - ccr

  and the following consumers:

  - cryptodev
  - IPsec
  - ktls_ocf
  - GELI (lightly)

  I have not tested the following:

  - ccp
  - aesni with sha
  - hifn
  - kgssapi_krb5
  - ubsec
  - padlock
  - safe
  - armv8_crypto (aarch64)
  - glxsb (i386)
  - sec (ppc)
  - cesa (armv7)
  - cryptocteon (mips64)
  - nlmsec (mips64)

Discussed with:	cem
Relnotes:	yes
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00

856 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2017 Chelsio Communications, Inc.
* Copyright (c) 2017 Conrad Meyer <cem@FreeBSD.org>
* All rights reserved.
* Largely borrowed from ccr(4), Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/random.h>
#include <sys/sglist.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <dev/pci/pcivar.h>
#include <dev/random/randomdev.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include "cryptodev_if.h"
#include "ccp.h"
#include "ccp_hardware.h"
MALLOC_DEFINE(M_CCP, "ccp", "AMD CCP crypto");
/*
* Need a global softc available for garbage random_source API, which lacks any
* context pointer. It's also handy for debugging.
*/
struct ccp_softc *g_ccp_softc;
bool g_debug_print = false;
SYSCTL_BOOL(_hw_ccp, OID_AUTO, debug, CTLFLAG_RWTUN, &g_debug_print, 0,
"Set to enable debugging log messages");
static struct pciid {
uint32_t devid;
const char *desc;
} ccp_ids[] = {
{ 0x14561022, "AMD CCP-5a" },
{ 0x14681022, "AMD CCP-5b" },
};
static struct random_source random_ccp = {
.rs_ident = "AMD CCP TRNG",
.rs_source = RANDOM_PURE_CCP,
.rs_read = random_ccp_read,
};
/*
* ccp_populate_sglist() generates a scatter/gather list that covers the entire
* crypto operation buffer.
*/
static int
ccp_populate_sglist(struct sglist *sg, struct cryptop *crp)
{
int error;
sglist_reset(sg);
switch (crp->crp_buf_type) {
case CRYPTO_BUF_MBUF:
error = sglist_append_mbuf(sg, crp->crp_mbuf);
break;
case CRYPTO_BUF_UIO:
error = sglist_append_uio(sg, crp->crp_uio);
break;
case CRYPTO_BUF_CONTIG:
error = sglist_append(sg, crp->crp_buf, crp->crp_ilen);
break;
default:
error = EINVAL;
}
return (error);
}
/*
* Handle a GCM request with an empty payload by performing the
* operation in software.
*/
static void
ccp_gcm_soft(struct ccp_session *s, struct cryptop *crp)
{
struct aes_gmac_ctx gmac_ctx;
char block[GMAC_BLOCK_LEN];
char digest[GMAC_DIGEST_LEN];
char iv[AES_BLOCK_LEN];
int i, len;
/*
* This assumes a 12-byte IV from the crp. See longer comment
* above in ccp_gcm() for more details.
*/
if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0) {
crp->crp_etype = EINVAL;
goto out;
}
memcpy(iv, crp->crp_iv, 12);
*(uint32_t *)&iv[12] = htobe32(1);
/* Initialize the MAC. */
AES_GMAC_Init(&gmac_ctx);
AES_GMAC_Setkey(&gmac_ctx, s->blkcipher.enckey, s->blkcipher.key_len);
AES_GMAC_Reinit(&gmac_ctx, iv, sizeof(iv));
/* MAC the AAD. */
for (i = 0; i < crp->crp_aad_length; i += sizeof(block)) {
len = imin(crp->crp_aad_length - i, sizeof(block));
crypto_copydata(crp, crp->crp_aad_start + i, len, block);
bzero(block + len, sizeof(block) - len);
AES_GMAC_Update(&gmac_ctx, block, sizeof(block));
}
/* Length block. */
bzero(block, sizeof(block));
((uint32_t *)block)[1] = htobe32(crp->crp_aad_length * 8);
AES_GMAC_Update(&gmac_ctx, block, sizeof(block));
AES_GMAC_Final(digest, &gmac_ctx);
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
crypto_copyback(crp, crp->crp_digest_start, sizeof(digest),
digest);
crp->crp_etype = 0;
} else {
char digest2[GMAC_DIGEST_LEN];
crypto_copydata(crp, crp->crp_digest_start, sizeof(digest2),
digest2);
if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0)
crp->crp_etype = 0;
else
crp->crp_etype = EBADMSG;
}
out:
crypto_done(crp);
}
static int
ccp_probe(device_t dev)
{
struct pciid *ip;
uint32_t id;
id = pci_get_devid(dev);
for (ip = ccp_ids; ip < &ccp_ids[nitems(ccp_ids)]; ip++) {
if (id == ip->devid) {
device_set_desc(dev, ip->desc);
return (0);
}
}
return (ENXIO);
}
static void
ccp_initialize_queues(struct ccp_softc *sc)
{
struct ccp_queue *qp;
size_t i;
for (i = 0; i < nitems(sc->queues); i++) {
qp = &sc->queues[i];
qp->cq_softc = sc;
qp->cq_qindex = i;
mtx_init(&qp->cq_lock, "ccp queue", NULL, MTX_DEF);
/* XXX - arbitrarily chosen sizes */
qp->cq_sg_crp = sglist_alloc(32, M_WAITOK);
/* Two more SGEs than sg_crp to accommodate ipad. */
qp->cq_sg_ulptx = sglist_alloc(34, M_WAITOK);
qp->cq_sg_dst = sglist_alloc(2, M_WAITOK);
}
}
static void
ccp_free_queues(struct ccp_softc *sc)
{
struct ccp_queue *qp;
size_t i;
for (i = 0; i < nitems(sc->queues); i++) {
qp = &sc->queues[i];
mtx_destroy(&qp->cq_lock);
sglist_free(qp->cq_sg_crp);
sglist_free(qp->cq_sg_ulptx);
sglist_free(qp->cq_sg_dst);
}
}
static int
ccp_attach(device_t dev)
{
struct ccp_softc *sc;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
sc->cid = crypto_get_driverid(dev, sizeof(struct ccp_session),
CRYPTOCAP_F_HARDWARE);
if (sc->cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
return (ENXIO);
}
error = ccp_hw_attach(dev);
if (error != 0)
return (error);
mtx_init(&sc->lock, "ccp", NULL, MTX_DEF);
ccp_initialize_queues(sc);
if (g_ccp_softc == NULL) {
g_ccp_softc = sc;
if ((sc->hw_features & VERSION_CAP_TRNG) != 0)
random_source_register(&random_ccp);
}
return (0);
}
static int
ccp_detach(device_t dev)
{
struct ccp_softc *sc;
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
sc->detaching = true;
mtx_unlock(&sc->lock);
crypto_unregister_all(sc->cid);
if (g_ccp_softc == sc && (sc->hw_features & VERSION_CAP_TRNG) != 0)
random_source_deregister(&random_ccp);
ccp_hw_detach(dev);
ccp_free_queues(sc);
if (g_ccp_softc == sc)
g_ccp_softc = NULL;
mtx_destroy(&sc->lock);
return (0);
}
static void
ccp_init_hmac_digest(struct ccp_session *s, const char *key, int klen)
{
union authctx auth_ctx;
struct auth_hash *axf;
u_int i;
/*
* If the key is larger than the block size, use the digest of
* the key as the key instead.
*/
axf = s->hmac.auth_hash;
if (klen > axf->blocksize) {
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, key, klen);
axf->Final(s->hmac.ipad, &auth_ctx);
explicit_bzero(&auth_ctx, sizeof(auth_ctx));
klen = axf->hashsize;
} else
memcpy(s->hmac.ipad, key, klen);
memset(s->hmac.ipad + klen, 0, axf->blocksize - klen);
memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize);
for (i = 0; i < axf->blocksize; i++) {
s->hmac.ipad[i] ^= HMAC_IPAD_VAL;
s->hmac.opad[i] ^= HMAC_OPAD_VAL;
}
}
static bool
ccp_aes_check_keylen(int alg, int klen)
{
switch (klen * 8) {
case 128:
case 192:
if (alg == CRYPTO_AES_XTS)
return (false);
break;
case 256:
break;
case 512:
if (alg != CRYPTO_AES_XTS)
return (false);
break;
default:
return (false);
}
return (true);
}
static void
ccp_aes_setkey(struct ccp_session *s, int alg, const void *key, int klen)
{
unsigned kbits;
if (alg == CRYPTO_AES_XTS)
kbits = (klen / 2) * 8;
else
kbits = klen * 8;
switch (kbits) {
case 128:
s->blkcipher.cipher_type = CCP_AES_TYPE_128;
break;
case 192:
s->blkcipher.cipher_type = CCP_AES_TYPE_192;
break;
case 256:
s->blkcipher.cipher_type = CCP_AES_TYPE_256;
break;
default:
panic("should not get here");
}
s->blkcipher.key_len = klen;
memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len);
}
static bool
ccp_auth_supported(struct ccp_softc *sc,
const struct crypto_session_params *csp)
{
if ((sc->hw_features & VERSION_CAP_SHA) == 0)
return (false);
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (csp->csp_auth_key == NULL)
return (false);
break;
default:
return (false);
}
return (true);
}
static bool
ccp_cipher_supported(struct ccp_softc *sc,
const struct crypto_session_params *csp)
{
if ((sc->hw_features & VERSION_CAP_AES) == 0)
return (false);
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
if (csp->csp_ivlen != AES_BLOCK_LEN)
return (false);
break;
case CRYPTO_AES_ICM:
if (csp->csp_ivlen != AES_BLOCK_LEN)
return (false);
break;
case CRYPTO_AES_XTS:
if (csp->csp_ivlen != AES_XTS_IV_LEN)
return (false);
break;
default:
return (false);
}
return (ccp_aes_check_keylen(csp->csp_cipher_alg,
csp->csp_cipher_klen));
}
static int
ccp_probesession(device_t dev, const struct crypto_session_params *csp)
{
struct ccp_softc *sc;
if (csp->csp_flags != 0)
return (EINVAL);
sc = device_get_softc(dev);
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
if (!ccp_auth_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_CIPHER:
if (!ccp_cipher_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_AEAD:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
if (csp->csp_ivlen != AES_GCM_IV_LEN)
return (EINVAL);
if (csp->csp_auth_mlen < 0 ||
csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
return (EINVAL);
if ((sc->hw_features & VERSION_CAP_AES) == 0)
return (EINVAL);
break;
default:
return (EINVAL);
}
break;
case CSP_MODE_ETA:
if (!ccp_auth_supported(sc, csp) ||
!ccp_cipher_supported(sc, csp))
return (EINVAL);
break;
default:
return (EINVAL);
}
return (CRYPTODEV_PROBE_HARDWARE);
}
static int
ccp_newsession(device_t dev, crypto_session_t cses,
const struct crypto_session_params *csp)
{
struct ccp_softc *sc;
struct ccp_session *s;
struct auth_hash *auth_hash;
enum ccp_aes_mode cipher_mode;
unsigned auth_mode;
unsigned q;
/* XXX reconcile auth_mode with use by ccp_sha */
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
auth_hash = &auth_hash_hmac_sha1;
auth_mode = SHA1;
break;
case CRYPTO_SHA2_256_HMAC:
auth_hash = &auth_hash_hmac_sha2_256;
auth_mode = SHA2_256;
break;
case CRYPTO_SHA2_384_HMAC:
auth_hash = &auth_hash_hmac_sha2_384;
auth_mode = SHA2_384;
break;
case CRYPTO_SHA2_512_HMAC:
auth_hash = &auth_hash_hmac_sha2_512;
auth_mode = SHA2_512;
break;
default:
auth_hash = NULL;
auth_mode = 0;
break;
}
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
cipher_mode = CCP_AES_MODE_CBC;
break;
case CRYPTO_AES_ICM:
cipher_mode = CCP_AES_MODE_CTR;
break;
case CRYPTO_AES_NIST_GCM_16:
cipher_mode = CCP_AES_MODE_GCTR;
break;
case CRYPTO_AES_XTS:
cipher_mode = CCP_AES_MODE_XTS;
break;
default:
cipher_mode = CCP_AES_MODE_ECB;
break;
}
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
if (sc->detaching) {
mtx_unlock(&sc->lock);
return (ENXIO);
}
s = crypto_get_driver_session(cses);
/* Just grab the first usable queue for now. */
for (q = 0; q < nitems(sc->queues); q++)
if ((sc->valid_queues & (1 << q)) != 0)
break;
if (q == nitems(sc->queues)) {
mtx_unlock(&sc->lock);
return (ENXIO);
}
s->queue = q;
switch (csp->csp_mode) {
case CSP_MODE_AEAD:
s->mode = GCM;
break;
case CSP_MODE_ETA:
s->mode = AUTHENC;
break;
case CSP_MODE_DIGEST:
s->mode = HMAC;
break;
case CSP_MODE_CIPHER:
s->mode = BLKCIPHER;
break;
}
if (s->mode == GCM) {
if (csp->csp_auth_mlen == 0)
s->gmac.hash_len = AES_GMAC_HASH_LEN;
else
s->gmac.hash_len = csp->csp_auth_mlen;
} else if (auth_hash != NULL) {
s->hmac.auth_hash = auth_hash;
s->hmac.auth_mode = auth_mode;
if (csp->csp_auth_mlen == 0)
s->hmac.hash_len = auth_hash->hashsize;
else
s->hmac.hash_len = csp->csp_auth_mlen;
ccp_init_hmac_digest(s, csp->csp_auth_key, csp->csp_auth_klen);
}
if (cipher_mode != CCP_AES_MODE_ECB) {
s->blkcipher.cipher_mode = cipher_mode;
if (csp->csp_cipher_key != NULL)
ccp_aes_setkey(s, csp->csp_cipher_alg,
csp->csp_cipher_key, csp->csp_cipher_klen);
}
s->active = true;
mtx_unlock(&sc->lock);
return (0);
}
static void
ccp_freesession(device_t dev, crypto_session_t cses)
{
struct ccp_session *s;
s = crypto_get_driver_session(cses);
if (s->pending != 0)
device_printf(dev,
"session %p freed with %d pending requests\n", s,
s->pending);
s->active = false;
}
static int
ccp_process(device_t dev, struct cryptop *crp, int hint)
{
const struct crypto_session_params *csp;
struct ccp_softc *sc;
struct ccp_queue *qp;
struct ccp_session *s;
int error;
bool qpheld;
qpheld = false;
qp = NULL;
csp = crypto_get_params(crp->crp_session);
s = crypto_get_driver_session(crp->crp_session);
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
qp = &sc->queues[s->queue];
mtx_unlock(&sc->lock);
error = ccp_queue_acquire_reserve(qp, 1 /* placeholder */, M_NOWAIT);
if (error != 0)
goto out;
qpheld = true;
error = ccp_populate_sglist(qp->cq_sg_crp, crp);
if (error != 0)
goto out;
if (crp->crp_auth_key != NULL) {
KASSERT(s->hmac.auth_hash != NULL, ("auth key without HMAC"));
ccp_init_hmac_digest(s, crp->crp_auth_key, csp->csp_auth_klen);
}
if (crp->crp_cipher_key != NULL)
ccp_aes_setkey(s, csp->csp_cipher_alg, crp->crp_cipher_key,
csp->csp_cipher_klen);
switch (s->mode) {
case HMAC:
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_hmac(qp, s, crp);
break;
case BLKCIPHER:
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_blkcipher(qp, s, crp);
break;
case AUTHENC:
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_authenc(qp, s, crp);
break;
case GCM:
if (crp->crp_payload_length == 0) {
mtx_unlock(&qp->cq_lock);
ccp_gcm_soft(s, crp);
return (0);
}
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_gcm(qp, s, crp);
break;
}
if (error == 0)
s->pending++;
out:
if (qpheld) {
if (error != 0) {
/*
* Squash EAGAIN so callers don't uselessly and
* expensively retry if the ring was full.
*/
if (error == EAGAIN)
error = ENOMEM;
ccp_queue_abort(qp);
} else
ccp_queue_release(qp);
}
if (error != 0) {
DPRINTF(dev, "%s: early error:%d\n", __func__, error);
crp->crp_etype = error;
crypto_done(crp);
}
return (0);
}
static device_method_t ccp_methods[] = {
DEVMETHOD(device_probe, ccp_probe),
DEVMETHOD(device_attach, ccp_attach),
DEVMETHOD(device_detach, ccp_detach),
DEVMETHOD(cryptodev_probesession, ccp_probesession),
DEVMETHOD(cryptodev_newsession, ccp_newsession),
DEVMETHOD(cryptodev_freesession, ccp_freesession),
DEVMETHOD(cryptodev_process, ccp_process),
DEVMETHOD_END
};
static driver_t ccp_driver = {
"ccp",
ccp_methods,
sizeof(struct ccp_softc)
};
static devclass_t ccp_devclass;
DRIVER_MODULE(ccp, pci, ccp_driver, ccp_devclass, NULL, NULL);
MODULE_VERSION(ccp, 1);
MODULE_DEPEND(ccp, crypto, 1, 1, 1);
MODULE_DEPEND(ccp, random_device, 1, 1, 1);
#if 0 /* There are enough known issues that we shouldn't load automatically */
MODULE_PNP_INFO("W32:vendor/device", pci, ccp, ccp_ids,
nitems(ccp_ids));
#endif
static int
ccp_queue_reserve_space(struct ccp_queue *qp, unsigned n, int mflags)
{
struct ccp_softc *sc;
mtx_assert(&qp->cq_lock, MA_OWNED);
sc = qp->cq_softc;
if (n < 1 || n >= (1 << sc->ring_size_order))
return (EINVAL);
while (true) {
if (ccp_queue_get_ring_space(qp) >= n)
return (0);
if ((mflags & M_WAITOK) == 0)
return (EAGAIN);
qp->cq_waiting = true;
msleep(&qp->cq_tail, &qp->cq_lock, 0, "ccpqfull", 0);
}
}
int
ccp_queue_acquire_reserve(struct ccp_queue *qp, unsigned n, int mflags)
{
int error;
mtx_lock(&qp->cq_lock);
qp->cq_acq_tail = qp->cq_tail;
error = ccp_queue_reserve_space(qp, n, mflags);
if (error != 0)
mtx_unlock(&qp->cq_lock);
return (error);
}
void
ccp_queue_release(struct ccp_queue *qp)
{
mtx_assert(&qp->cq_lock, MA_OWNED);
if (qp->cq_tail != qp->cq_acq_tail) {
wmb();
ccp_queue_write_tail(qp);
}
mtx_unlock(&qp->cq_lock);
}
void
ccp_queue_abort(struct ccp_queue *qp)
{
unsigned i;
mtx_assert(&qp->cq_lock, MA_OWNED);
/* Wipe out any descriptors associated with this aborted txn. */
for (i = qp->cq_acq_tail; i != qp->cq_tail;
i = (i + 1) % (1 << qp->cq_softc->ring_size_order)) {
memset(&qp->desc_ring[i], 0, sizeof(qp->desc_ring[i]));
}
qp->cq_tail = qp->cq_acq_tail;
mtx_unlock(&qp->cq_lock);
}
#ifdef DDB
#define _db_show_lock(lo) LOCK_CLASS(lo)->lc_ddb_show(lo)
#define db_show_lock(lk) _db_show_lock(&(lk)->lock_object)
static void
db_show_ccp_sc(struct ccp_softc *sc)
{
db_printf("ccp softc at %p\n", sc);
db_printf(" cid: %d\n", (int)sc->cid);
db_printf(" lock: ");
db_show_lock(&sc->lock);
db_printf(" detaching: %d\n", (int)sc->detaching);
db_printf(" ring_size_order: %u\n", sc->ring_size_order);
db_printf(" hw_version: %d\n", (int)sc->hw_version);
db_printf(" hw_features: %b\n", (int)sc->hw_features,
"\20\24ELFC\23TRNG\22Zip_Compress\16Zip_Decompress\13ECC\12RSA"
"\11SHA\0103DES\07AES");
db_printf(" hw status:\n");
db_ccp_show_hw(sc);
}
static void
db_show_ccp_qp(struct ccp_queue *qp)
{
db_printf(" lock: ");
db_show_lock(&qp->cq_lock);
db_printf(" cq_qindex: %u\n", qp->cq_qindex);
db_printf(" cq_softc: %p\n", qp->cq_softc);
db_printf(" head: %u\n", qp->cq_head);
db_printf(" tail: %u\n", qp->cq_tail);
db_printf(" acq_tail: %u\n", qp->cq_acq_tail);
db_printf(" desc_ring: %p\n", qp->desc_ring);
db_printf(" completions_ring: %p\n", qp->completions_ring);
db_printf(" descriptors (phys): 0x%jx\n",
(uintmax_t)qp->desc_ring_bus_addr);
db_printf(" hw status:\n");
db_ccp_show_queue_hw(qp);
}
DB_SHOW_COMMAND(ccp, db_show_ccp)
{
struct ccp_softc *sc;
unsigned unit, qindex;
if (!have_addr)
goto usage;
unit = (unsigned)addr;
sc = devclass_get_softc(ccp_devclass, unit);
if (sc == NULL) {
db_printf("No such device ccp%u\n", unit);
goto usage;
}
if (count == -1) {
db_show_ccp_sc(sc);
return;
}
qindex = (unsigned)count;
if (qindex >= nitems(sc->queues)) {
db_printf("No such queue %u\n", qindex);
goto usage;
}
db_show_ccp_qp(&sc->queues[qindex]);
return;
usage:
db_printf("usage: show ccp <unit>[,<qindex>]\n");
return;
}
#endif /* DDB */